
1

Reinforcement Learning-Based Joint Reliability and
Performance Optimization for Hybrid-Cache

Computing Servers
Darong Huang, Graduate Student Member, IEEE, Ali Pahlevan, Luis Costero, Marina Zapater, Member, IEEE,

David Atienza, Fellow, IEEE

Abstract—Computing servers play a key role in the develop-
ment and process of emerging compute-intensive applications in
recent years. However, they need to operate efficiently from an
energy perspective viewpoint, while maximizing the performance
and lifetime of the hottest server components (i.e., cores and
cache). Previous methods focused on either improving energy
efficiency by adopting new hybrid-cache architectures including
the resistive random-access memory (RRAM) and static random-
access memory (SRAM) at the hardware level, or exploring
trade-offs between lifetime limitation and performance of multi-
core processors under stable workloads conditions. Therefore, no
work has so far proposed a co-optimization method with hybrid-
cache-based server architectures for real-life dynamic scenarios
taking into account scalability, performance, lifetime reliability,
and energy efficiency at the same time. In this paper, we first
formulate a reliability model for the hybrid-cache architecture
to enable precise lifetime reliability management and energy
efficiency optimization. We also include the performance and
energy overheads of cache switching, and optimize the benefits of
hybrid-cache usage for better energy efficiency and performance.
Then, we propose a runtime Q-Learning-based reliability man-
agement and performance optimization approach for multi-core
microprocessors with the hybrid-cache architecture, jointly incor-
porated with a dynamic preemptive priority queue management
method to improve the overall tasks’ performance by targeting
to respect their end time limits. Experimental results show that
our proposed method achieves up to 44% average performance
(i.e., tasks execution time) improvement, while maintaining the
whole system design lifetime longer than 5 years, when compared
to the latest state-of-the-art energy efficiency optimization and
reliability management methods for computing servers.

Index Terms—Computing servers, hybrid-cache, reliability
management, preemptive queue management, performance opti-
mization, reinforcement learning

I. INTRODUCTION

NOWADAYS the energy efficiency management of com-
puting servers has been brought into focus due to the

increase of number and complexity of computing-intensive
tasks [1]. In this context, an approximate power breakdown
shows that multi-core processors consume over 37% of the
total energy consumption of a computing server [2]. Within a

Darong Huang, Ali Pahlevan, Luis Costero, and David Atienza are with
the Embedded Systems Laboratory (ESL), École polytechnique fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland. E-mail: {darong.huang,
ali.pahlevan, luis.costerovalero, david.atienza}@epfl.ch.

Marina Zapater was with the Embedded System Laboratory (ESL), École
Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
Now, she is with the School of Engineering and Management of Vaud (HEIG-
VD), University of Applied Sciences Western Switzerland (HES-SO), 1401
Yverdon-les-Bains, Switzerland. (e-mail: marina.zapater@heig-vd.ch).

processor, besides cores, the last level cache (LLC) also plays
a significant role in the system performance, while encompass-
ing over 44% of its total power consumption [3], [4] because
of its large capacity and area. Hence, the scalability of LLC
size and number of cores in demand for better performance
leads to processor aging and, consequently, conducting energy
and lifetime reliability management in server infrastructures.

In order to improve the energy efficiency of multi-core
processors, non-volatile memory (NVM), which has near-
zero leakage power [5], is a promising technology compared
to the traditional static random-access memory (SRAM).
Indeed, several types of NVM technologies, such as re-
sistive random-access memory (RRAM), spin-transfer-torque
magnetic random-access memory (STT-MRAM), and phase-
change random-access memory (PCRAM) can be used. These
NVM technologies offer the same high speed as SRAM,
but with more storage density and less leakage power. An
accumulated multiply accelerator has been proposed and fab-
ricated by fully integrating RRAM and CMOS technology
together [6]. A CMOS-RRAM neurosynaptic core also has
been fabricated and tested in [7]. However, the reliability
limitation (or constraint) is still the major problem for RRAM
and hinders its mass application [8]. Their limited endurance,
and especially their limited write cycles generally prevent their
use for high-performance tasks [5], [9]. Hence, a hybrid-cache
technology that uses both SRAM and NVM at the architecture
level is proposed to address the shortcomings of both SRAM
and NVM-based LLC [5], [10]. Fig. 1 shows the target core
and uncore (e.g., hybrid LLC) parts in an actual octa-core
microprocessor architecture, which has been used as case
study in this work. Nevertheless, prior techniques neglect the
utilization of software-level reliability management to tackle
the trade-offs between energy efficiency and reliability for the
hybrid-cache.

From the core reliability management perspective, there
are several underlying reliability issues at the hardware level,
such as electromigration (EM), stress migration (SM), time-
dependent dielectric breakdown (TTDB), thermal cycling
(TC), and negative bias temperature instability (NBTI) [11].
Recently, several studies have started to address these issues
at the hardware level by controlling the operating temperature,
which has a significant impact on the overall system perfor-
mance [12], [13], [14]. However, the performance degrada-
tion becomes intolerable, especially in a dynamic scenario
where different types of tasks and workloads need to be

“© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or 
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”

Published in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, early 
access, which should be cited to refer to this work.
DOI: 10.1109/TCAD.2022.3158832

https://doi.org/10.1109/TCAD.2022.3158832


2

Core 5

Core 6

Core 7

Core 8

Core 1

Core 2

Core 3

Core 4
SRAM

RRAM

LLC

Core

Uncore

Fig. 1. The Hybrid-cache configuration used in an octa-core microprocessor.

executed. Such a dynamic scenario also increases significantly
the overall management complexity. In this context, previous
techniques fall short in a joint reliability and task performance
management policy for multi-core computing servers.

As complexity raises, finding an optimal solution of overall
optimization of the whole system on performance, reliability,
and energy efficiency becomes unfeasible at runtime because
of non-tolerable computation overhead. Similarly, heuristics
are problem-specific and less sensitive to dynamic environ-
ments, and their benefits become limited for large and complex
problems. Thus, when tackling dynamic problems with large
state and/or action spaces, machine learning (ML) methods,
and in particular reinforcement learning (RL), are suitable
techniques [15], [16], [17]. In real scenarios, reliability man-
agement faces the need to incorporate and assess a wide range
of metrics (temperature, energy, performance, lifetime, etc.).
This challenges the deployment of ML methods due to the
large action spaces (e.g., several levels of core frequency,
cache selection, etc.). Therefore, the proposal of a runtime
method that achieves the highest energy efficiency and task
performance, in addition to enhancing system reliability under
temperature and reliability restrictions of different components
of the processor (i.e., cores and hybrid-cache), remains an
open challenge for the computing server processors. Thus, the
specific contributions of this work are listed as follows:

• We formulate an RRAM mean-time-to-failure (MTTF)
model based on the existing RRAM endurance equation,
thus making its runtime lifetime management feasible.
Furthermore, we incorporate the cache switching over-
heads (in energy and performance) to our proposed
method to accurately explore the trade-offs between
SRAM and RRAM cache technologies’ benefits when
high-performance applications with different memory ac-
cess characteristics are executed in real-time.

• We propose a runtime Q-Learning (QL)-based reliability
management method to maximize performance of tasks
by setting the best cores frequency level, and system en-
ergy efficiency by selecting appropriate cache technology
for multi-core processors with hybrid-cache architectures
(i.e., SRAM and RRAM). A preemptive priority queue
management method is also presented to dynamically
adjust the priority of tasks execution, and consequently,

to improve the overall performance with respect to the
tasks’ end time constraint.

• Our proposed method achieves up to 44% performance
improvement on average and reduces the method com-
putational overhead (i.e., the execution time of the algo-
rithm) by 3x compared to the latest state-of-the-art MPC
technique, while ensuring a processor lifetime of 5 years.

The remainder of this paper is organized as follows. Sec-
tion II reviews related work. In Section III, we provide
an overview of the problem description and target scenario.
Section IV describes the system modeling used for the multi-
core server processor. In Section V, we introduce our proposed
QL-based reliability management method. Section VI and VII
present the experimental setup and results, followed by the
conclusions in Section VIII.

II. RELATED WORK

Our work bring new research contributions in two different
areas: 1) energy-efficient hybrid-cache techniques and RRAM
endurance modeling, and 2) multicore server reliability man-
agement.

A. Energy-Efficient Hybrid-Cache Techniques and RRAM En-
durance Modeling

The SRAM technology, although vastly used for LLC in
servers, is not suitable for energy efficiency design due to its
high leakage power consumption [10]. On the contrary, NVM
technologies have higher energy efficiency because of the zero-
leakage power characteristic [5]. However, the NVM-based
LLC suffers from low endurance cycles and a short lifetime.
To fit NVM technology into the high-performance micropro-
cessor, different hybrid-cache architectures (e.g., SRAM+STT-
RAM and SRAM+RRAM) are proposed to compensate draw-
backs of both SRAM and NVM [10], [18]. These studies target
NVM as the main LLC to reduce energy consumption, while
SRAM is used for reliability and performance compensation.
In this way, the system benefits from both techniques, in terms
of performance, reliability, and energy efficiency. Nonetheless,
lifetime-aware cache management remains an open challenge.

In order to better quantify the reliability status of NVM,
a generalized endurance model is proposed by Strukov [19]
to estimate the endurance cycles of NVM. Zhang et al. [20]
extended Strukov’s work and proposed a detailed model to
estimate the endurance of RRAM. By applying these modeling
works, Beiji et al. [21] proposed a novel cache management
method to estimate the remaining number of write cycles
to the RRAM, and then reduce write accesses to RRAM
banks with lower endurance. An endurance and thermal aware
management method is also proposed to address RRAM’s
thermal and reliability issues while processing in-memory ap-
plications [22]. However, these approaches are not designed to
estimate the lifetime of hybrid-cache architectures and its ben-
efits become limited for high-performance tasks. Furthermore,
the existing methods only focus on the reliability aspect of
the hybrid-cache architecture, but do not consider the different
performance potential of SRAM and RRAM technologies (i.e.,
fast read accesses to the RRAM and write accesses to the
SRAM) to improve the overall system performance.



3

B. Multicore Server Reliability Management

In this section, we study the related works about server reli-
ability management that aim to maintain the design lifetime of
the main components of multi-core microprocessors, including
both the core and uncore parts.

1) Core’s Reliability Management: Temperature is the main
factor that greatly impacts the system’s reliability. In this
sense, a prevalent reliability management strategy is to throttle
the core’s frequency and then applying dynamic thermal
management techniques [23], [24], [25], [26] to multi-core
processors. Finally, the target is to keep the operating tem-
perature below a certain threshold (e.g., 70 °C). However, this
strategy severely limits the performance of the server.

In addition, recent studies demonstrate that server failure
is induced by different temperature-dependent failure mecha-
nisms, such as EM, SM, TDDB, TC, and NBTI [11]. Based
on these models, reliability management methods to address
the EM concern are proposed in [27] and [28] by Zhou et al.
and Wang et al., respectively. Furthermore, another reliability
management method is introduced to address both TC and
SM problems in [29]. Mercati et al. proposed a workload-
aware reliability management scheme considering three main
reliability issues for Android platform [30]. However, they fall
short in covering all of the failure mechanisms for computing
server architectures (cf. Section I). In this context, Srinivasan
et al. [31] have presented a unified reliability model consid-
ering all these failure mechanisms for microprocessors that
allows to better manage cores’ lifetime at runtime. In this
direction, [13] proposes a method to deposit lifetime when
the temperature is low, then, consume the lifetime deposit
for performance boosting during heavy workload periods.
Another direction is to increase the lifetime of the cores by
throttling the system temperature and, consequently, limiting
performance [12]. Nonetheless, existing methods fall short in
presenting an efficient method to consider the energy, relia-
bility, and performance trade-offs along with a temperature-
dependent lifetime reliability control.

To precisely control cores’ reliability, several model predic-
tive control (MPC)-based temperature and reliability manage-
ment methods have been proposed [32], [33]. However, they
suffer from high computational overhead in online manage-
ment using a fine-grained thermal model. Although recent ther-
mal modeling identification works on multicore systems [34],
[35] show that coarse-grained thermal models are effective in
predicting temperature and may ease the MPC computational
burden, such models have never been tested with MPC con-
trollers for the management of computing servers. Hence, ML
methods are promising solutions recently used in the context
of reliability management [16]. Nonetheless, these works do
not consider the use of comprehensive thermal and reliability
control methods for the whole microprocessor (i.e., core and
uncore parts) in highly dynamic scenarios.

In order to further improve the performance of computing
tasks, different queue management schemes are proposed to be
embedded into cores’ management schemes. For instance, tra-
ditional first come first served (FCFS) approach [36] is widely
implemented in existing works [37], [38], [39]. However,

FCFS-based methods fail to improve the overall performance
of the system due to the fixed execution order of tasks.
Thus, shortest job first (SJF) -based methods [40], [41] are
implemented to alleviate the congestion problem by bringing
the shortest job to the head of the queue. However, SJF-based
methods suffer from limited improvements as they put much
emphasis on the short execution time tasks but neglect tasks’
execution time limit.

2) Uncore’s Reliability Management: In a traditional mi-
croprocessor architecture, the uncore part (i.e., LLC, memory
controller, etc.) is not a concern because of the relatively
low temperature and activity ratio compared to the cores.
However, with the introduction of the NVM and hybrid-
cache techniques, the reliability concern of uncore part is not
negligible anymore.

Targeting the proposed hybrid-cache architecture, several
reliability management methods [10], [5] have been proposed
to maintain NVM’s reliability and avoid its failures earlier
than the design lifetime. Mittal et al. [5] have proposed a
method to migrate write-intensive data to SRAM to alleviate
the reliability issue of NVM. Chen et al. [10] set an access
threshold for hybrid-cache design to decide when to power
on/off SRAM cache. When the SRAM is powered off, the
leakage power consumption is eliminated. However, these
methods neglect the NVM’s reliability model, which may
shorten its lifetime due to setting an inappropriate threshold.
In addition, none of the previous works have explored a joint
reliability management approach with cores.

III. PROBLEM DESCRIPTION

As explained in Section II, the overall management and
optimization of a computing server with hybrid-cache ar-
chitecture on performance, reliability, and energy efficiency
remains an open challenge as it requires a deep assessment
of the previous techniques. More importantly, system-wide
optimization requires changing the control knobs (e.g., core
frequency or operating cache) dynamically during runtime to
meet the highly dynamic behaviors of high-performance tasks,
and thus to meet the system reliability constraints and optimize
the system performance. Therefore, we propose a novel two-
level management scheme to incorporate the core and cache
reliability management using a runtime QL-based reliability
management approach in the first level, while in the second
level, a Task Queue Management module is used to minimize
the number of overdue tasks (i.e., surpassing the expected end
time) by dynamically changing tasks’ execution order.

In this section, for better illustration of the proposed meth-
ods, we provide a description of the overall scenario, the
system we optimize, and the main assumptions taken. Fig. 2
illustrates the proposed scenario and strategy, including key
inputs and outputs. The goal of the proposed strategy is to co-
optimize the performance, energy consumption, and lifetime
reliability of a multi-core server processor equipped with a
hybrid-cache architecture (SRAM+RRAM).

From the perspective of the Hybrid-cache, the SRAM com-
ponent provides higher speed for LLC write accesses but at
the cost of high leakage power consumption, while RRAM



4

Dynamic
Preemp�ve  

Priority 
Queue 

Management

Task Queue Management

Tasks Info

System Time

System

RRAM

SRAM

8x 
Cores

Cores Info

Temperature

Cores Freq.

Temperature

Write Num.

Cache Info QL-Based Reliability Management

QL agent

Tasks Queue

Ac�on: selected cache and cores freq.

Read Num.

LLC Occupancy

Modeling

Cache Reliability/
Performance Model

Core Reliability/
Performance Model

Hybrid Cache 
states

Cores states

Updated Task Queue

Fig. 2. Overall diagram of the proposed scenario and method, including QL-based reliability management and task queue management blocks.

technology is more energy-efficient and has higher speed in
read accesses, but suffers from limited endurance (numbers of
write cycles) [42]. Hence, given the system information (LLC
occupancy, number of reads and writes to LLC, and cache
temperature), and the cache reliability/performance model
during the task execution time, our proposal will select the best
operating cache for the task to optimize the energy efficiency,
reliability, and performance of the system.

From the perspective of the cores’ management, our pro-
posal is able to tune the frequency of each core via dynamic
voltage and frequency scaling (DVFS) to maximize the task
performance while satisfying the cores’ lifetime constraints.
Similar to modern processors, we assume that each core is
able to run at its own frequency.

In the first level of our proposed management approach,
we gather these techniques (i.e., adapting cores’ frequency
and operating cache) in a QL-based reliability management
method to achieve the best performance while maintaining the
reliability constraints of the system.

For the second level of management, we optimize the
management of the task queuing process in multi-core servers,
and show how to properly define the optimal order of the
execution of the tasks. In our scenario for high-performance
computing servers, we assume that multiple (and possibly
different) tasks need to be executed on the platform, but
only one (occupying all the cores simultaneously) runs on the
server at each time. This assumption is legible considering
resource managers in high-performance computing scenarios
allocate exclusive computing servers for the single coming
task [43]. This assumption is also widely adopted in the
existing management schemes [44], [1]. In order to improve
the overall tasks’ performance, the Task Queue Management
block takes all the tasks information (i.e., arrival time, amount
of time required for being processed on the server - burst time,
and expected end time) and tries to re-order the tasks sequence
in the queue to reduce the number of overdue tasks (i.e.,
surpassing expected end time). For this purpose, we present
a dynamic preemptive priority queue management method
to dynamically suspend, resume, and switch tasks for better

performance with respect to their end time limits.
To implement a solution for system-level management to

consider all of the above aspects (hybrid-cache, core, and
queue management), we need to accurately model the system
first. However, state-of-the-art methods [10], [12], [33] do
not consider a comprehensive model of the server including
cores and the hybrid-cache. In particular, they do not quantify
the switching overhead and different performance potentials
of SRAM and RRAM technologies. Therefore, in the next
section, we introduce a new overall system characterization
and its required modeling technique.

IV. SYSTEM CHARACTERIZATION AND MODELING

A. Multi-Core Computing Server Architecture

a) Processor Specification: The target computing server
of this work is a Supermicro SuperBlade server, which consists
of an octa-core Intel Xeon E5-2667 v4 CPU and 256GB of
memory. The CPU is a homogeneous multi-core processor
with identical cores, and it has 16 adjustable frequency levels
varying from 1.2GHz to 3.5GHz. The cache subsystem com-
prises a 32KB L1 cache and a 256KB L2 cache. The detailed
floorplan of the target microprocessor is illustrated in Fig. 3.
Based on this target server, we take real measurements (i.e.,
CPU load, power trace, LLC occupancy, etc.) for characteriz-
ing and modeling the whole system in this work.

b) SRAM and RRAM Hybrid-Cache: A hybrid-cache
architecture (SRAM+RRAM) configured with 16MB for each
technology and without increasing the LLC area in the floor-
plan has been used in this work. The characteristics of both
technologies are extracted by NVSim simulator [45], as shown
in Table I. In the simulator, we tuned the parameters of the
general model in accordance with the previous work [46].

B. Cache Switching Overhead Characterization

Due to the LLC data migration, hybrid-cache architectures
introduce an overhead when switching the operating cache.
This overhead is associated both with energy and performance.
The performance overhead (described in Eq. 1) is determined



5

Core2

Core3

Core4

Reserved

Core6

Core7

Core8

Reserved

Core1 Core5

Last level
cache (LLC)

Memory controller

Blank
area

Queue, uncore, I/O controller

Fig. 3. Floorplan of Intel Xeon E5-2667 v4 CPU.

TABLE I
CHARACTERISTICS OF 16MB SRAM AND RRAM CACHE

SRAM RRAM

Area (mm) 11.64 1.37
Read Latency (ns) 5.82 2.71
Write Latency (ns) 3.00 20.93
Read Energy (nJ) 0.58 0.86
Write Energy (nJ) 0.52 0.48
Leakage Power (W) 5.15 0.83
Endurance (Cycles) 10E16 10E6-10E12

by how much data need to be migrated (sizedata) and the
migration time for each data block considering both read
latency from one cache (tread) and write latency to another
cache (twrite). The energy overhead (Eq. 2) computation is
similar to the performance overhead, but it also considers the
leakage power consumption during the whole migration time
(Overheadperf ).

Overheadperf = sizedata · (tread + twrite) (1)

(2)Overheadenergy = sizedata · (Eread + Ewrite)

+ Pleak ·Overheadperf

C. Server Processor Power and Thermal Model

1) Power Characterization: We consider two main contrib-
utors to the overall power consumption of the server processor,
namely, the core and the uncore power. First, the core power
contains a total of 8 cores’ power, and each core’s power can
vary according to the current frequency level and the task
being executed. Therefore, we first measure the power con-
sumption profile for a single core, including static and dynamic
power, as a function of core’s frequency level for a specific
task using running average power limit (RAPL) interface [47].
Then, to obtain the total core power, we aggregate all cores’
power with respect to their individual frequency level and task
information. This is a common methodology adopted from
recent works [33], [48].

Second, the uncore power includes all power consumption
outside the core region in the processor, such as LLC, memory

controller, and I/O subsystems. For traditional SRAM LLC,
previous work [48] considers the worst-case power consump-
tion as a constant value. Nevertheless, in this work for hybrid-
cache architecture, we consider the leakage power (as shown
in Table I) and dynamic power for each technology extracted
by the NVSim simulator [45] for a 16MB capacity (the same
size for both technologies). We also measure the worst-case
memory controller and I/O subsystem power overhead.

2) Processor Thermal Model: The thermal model is used
to provide cores and cache temperature information for the
reliability model in the simulation framework. It is extracted
using the 3D-ICE simulator [49] to characterize our target
platform by using the temperature distribution T and power
consumption P as follows:

T (k) = AT (k − 1) +BdP (k − 1) (3)

where T (k−1) and P (k−1) are temperature distribution and
power consumption of the processor at time k−1, respectively.
A and Bd are associated with thermal resistance, capacitance,
and power injection matrices of the targeted Intel Xeon E5-
2667 v4 processor fabricated with 14 nm technology [50], and
are used to compute the temperature for the next time step (i.e.,
T (k)). Finally, T (k) contains temperature distribution of the
processor, including cores (Tc) and RRAM cache (TRRAM ).

D. Reliability Modelling of Server Processor

We define the lifetime reliability models for the two main
components: 1) cores and 2) RRAM cache.

1) Cores Reliability Model: We consider five main failure
effects for cores based on previous works [31], [11], [51], [52],
including the mean time to failure (MTTF) under the effects
of EM (transport of material), SM (caused by mechanical
stress), TDDB (caused by gate oxide breakdown), TC (caused
by temperature cycling), and NBTI (increasing the transistors’
threshold voltage).

Finally, a unified reliability model is formulated using the
industry-standard sum-of-failure-rates model [31], as follows:

MTTFcores =

(∑ 1

MTTFi

)−1

(4)

where MTTFi means the aforementioned individual reliabil-
ity model (i.e., EM, SM, TDDB, TC, and NBTI).

2) RRAM Reliability Model: NVM’s reliability models are
traditionally defined in terms of endurance, which is measured
in terms of the total number of write cycles during the
whole lifetime of the cache. A recent study [21] models the
endurance of RRAM with the write latency tw, the activation
energy for failure mechanism UF , the activation energy for
the switching mechanism US , and device-related constant t0,
as follows:

Endurance ∝
(
tw
t0

)UF
US

−1

(5)

According to [21], the write latency coefficient tw
t0

of
RRAM is expressed as:

tw
t0

=
D2

t0µI(TRRAM )vw
(
r1 − 1

2
(x2

0−x2
f )+(r1+t2)(xf−x0)) (6)



6

where the parameters, except for µI(TRRAM ), are all material-
dependent constants [21]. In addition, µI(TRRAM ) is given by
the following equation [21]:

µI(T ) =
qIfa

2e
−Ea

KBTRRAM

KBTRRAM
(7)

where the parameters except for RRAM operating temperature
TRRAM are also all material-dependent constants [21]. Com-
bining Eq. 7 and Eq. 6, tw

t0
is expressed in an equation with

RRAM’s operating temperature TRRAM :

(8)
tw
t0

=
D2KB

t0vwqIfa2
(
r1 − 1

2
(x2

0 − x2
f )

+ (r1 + t2)(xf − x0))TRRAMe
Ea

KBTRRAM

In this work, the parameter cr1 is used to simplify the
equation by substituting the material constants. Therefore, tw

t0
is derived as:

tw
t0

= cr1TRRAMe
Ea

KBTRRAM (9)

By substituting tw
t0

in Eq. 5 with Eq. 9, finally we derive
the the following Eq. 10 to describe the relationship between
RRAM’s endurance and its operating temperature. Please note
that material-dependent constants, i.e., cr1 = 8.99E − 3 and
cr2 = 4.0, are derived by combining all of the material-
dependent parameters used in [21]:

Endurance ∝
(
cr1TRRAMe

Ea
kBTRRAM

)cr2−1

(10)

where values for other parameters, such as Boltzmann constant
kB and the ion activation energy Ea, are following the recent
works in the topic [11], [21].

Based on this endurance model, we formulate an MTTF
reliability model for RRAM by dividing endurance with the
rate of write to the RRAM (Nwrite), i.e., the lifetime of RRAM
is determined by the total amount of writes and write rate
(Nwrite) to the RRAM, as follows:

MTTFRRAM ∝

(
cr1TRRAMe

Ea
kBTRRAM

)cr2−1

Nwrite
(11)

Based on this equation, the MTTF of RRAM (MTTFRRAM )
decreases with the increase of operating temperature and the
number of accesses to the RRAM. Therefore, it is crucial to in-
troduce the temperature-aware runtime reliability management
scheme for the RRAM to maintain its reliability.

3) Lifetime Deposit Computation: In contrast to the fixed
MTTF threshold used in previous reliability management
works [12], [32], a lifetime deposit technique based on lifetime
banking [29], [13] is leveraged in this work. Thus, the lifetime
deposit (LD) can be expressed as follows:

LD =

k∑
t=1

(
1

MTTFnominal
− 1

MTTFt

)
(12)

where MTTFnominal is the nominal MTTF (i.e., 5 years) for
the system. If LD is larger than 0, it means that the average
of real MTTFt from time 1 to k (discrete time consistent

with Eq. 3) is larger than MTTFnominal. Therefore, actual
MTTF of the system is guaranteed for not being less than
MTTFnominal (i.e., 5 years). Lifetime deposit for cores
(LDcores) or RRAM cache (LDRRAM ) can be derived by
substituting MTTFt with MTTF information of cores (Eq. 4)
or RRAM cache (Eq. 11), respectively.

V. PROPOSED Q-LEARNING (QL)-BASED RELIABILITY
MANAGEMENT METHOD

As depicted by Fig. 2 in Section III, our proposal consists of
two main blocks, namely: 1) QL-based reliability management
and, 2) task queue management.

A. Q-Learning (QL)-Based Core and RRAM Reliability Man-
agement Method

In this subsection, we introduce how we formulate our
new Q-Learning (QL) algorithm [53] to maximize the system
performance by selecting the best frequency level per core
and operating cache, while guaranteeing lifetime constraints
of cores and the hybrid-cache. As illustrated in Fig. 4, the
hybrid-cache and cores’ information is first sampled from the
target system. Then, the runtime information is translated into
specific state information for the QL agent. Finally, the QL
agent will take relevant actions to finish the control loop
by selecting the operating cache and adjusting the cores’
frequency.

Typically, RL models are composed of an agent and an
environment with a finite set of actions (A) and a state set (S).
In the environment, states are observed and actions are applied
by the agent (mapping actions to states). Additionally, a reward
function (R) is defined for each state-action pair, determining
how good is an action to be applied to a specific state. To
apply the best action at each moment, a QL agent bases its
decisions in an internal q-table storing a q-value associated
with each state-action pair. Being the system in a specific
state st, the final goal of the agent is to apply the action at
that maximizes the q-value. These q-values are dynamically
computed based on multiples observations of the system by
means of the Bellman equation, as follows:

(13)
Q(st, at)← Q(st, at) + α(Rt+1 + γmax

a
Q(st+1, a)

−Q(st, at))

where Q(st, at) is the q-value corresponding to the current
state and action pair. Rt+1 is the reward value after the action
at is taken, and next state st+1 is observed. α and γ represent
the learning rate and discount factor, respectively. In this work,
they were set to α = 0.2 and γ = 0.2 to get an optimal
learning speed and reduce training overhead. Please note that
these values are empirically determined based on the specific
application [16], [53]. Learning iteration process ends when
the q-table converges.

In our work, at runtime, the agent decides the best frequency
levels per core and cache selection (A) considering the runtime
system states information (S). After applying the actions, we
update the cores’ temperature, lifetime deposit states, and
remaining instructions for the task, set the server state and



7

QL-Based Reliability Management

QL agent

Hybrid cache states

Cores states

System

RRAM

SRAM

8x 
Cores

Cores Info

Temperature

Cores Freq.

Temperature

Write Num.

Cache Info

Read Num.

LLC Occupancy

Modeling

Cache 
Reliability/

Performance 
Model

Core 
Reliability/

Performance 
Model

Fig. 4. Workflow of the proposed QL-based reliability management method.

reward, and send them back to the agent. The following
subsections describe the specific state, actions, and reward
function design for the QL algorithm. Then, the performance
and computational overhead of our method are analyzed in
Section VII.

1) State Definition: We consider the state definition of the
server as a pair of states of the hybrid-cache and cores (i.e.,
s = [scache, score]) covering all the important and necessary
runtime information for the hybrid-cache and cores.

Regarding the scache, we take into account three main as-
pects: temperature-dependent reliability state (sreliacache), current
operating cache state (soperatingcache ), and the benefits of cache
switching state (sswitch

cache ). Therefore, we define this sub-state
as scache =

[
sreliacache, s

operating
cache , sswitch

cache

]
.

Then, we define the reliability state sreliacache in terms of the
runtime RRAM reliability information (LDRRAM ) , which is
estimated based on the Eq. 12 introduced in Section IV-D
(Lifetime Deposit Computation). We only consider the reli-
ability concerns of RRAM because it has a limited lifetime
duration that is at least four orders of magnitude lower than
SRAM cache [5]. Typically, SRAM is designed to meet the
performance goals and provide a wider working temperature
range (i.e., long lifetime period). However, it suffers from
high-leakage power and low-energy efficiency. Therefore, we
consider three different values for the reliability states for the
RRAM cache, sreliacache, defined as follows:

sreliacache =


State 1 : LDRRAM > θRRAM

State 2 : 0 < LDRRAM ≤ θRRAM

State 3 : LDRRAM ≤ 0

(14)

where θRRAM is the lifetime deposit threshold for the RRAM
cache. We create a safe margin state (i.e., State 2) by setting
θRRAM = 15 s to avoid lifetime deposit of RRAM going
directly to negative.

For soperatingcache , there are a total of two states as only two
available operating cache options are considered, namely:

soperating
cache =

{
State 1 : Current operating cache is RRAM
State 2 : Current operating cache is SRAM

(15)
Finally, the sub-state sswitch

cache represents the benefit of
switching or keeping the currently operating cache, and is
defined as follows:

sswitch
cache =

{
State 1 : benefitswitch > benefitkeep
State 2 : benefitswitch ≤ benefitkeep

(16)

where the benefit of switching (benefitswitch) and the benefit
of keeping currently operating cache unchanged (benefitkeep)
are introduced in Subsection V-A2.

In summary, the state of cache scache encompasses
all the three aspects introduced above, i.e.,
scache = {(x, y, z) : x ∈ sreliacache, y ∈ soperatingcache , z ∈ sswitch

cache }.
Considering that sreliacache, soperatingcache , and sswitch

cache have 3, 2,
and 2 individual elements, respectively, scache has a total
of twelve (i.e., 3 × 2 × 2 = 12) different states to cover all
the possible reliability, operating cache, and switch benefits
information for the hybrid-cache.

score is defined in terms of the frequency level and current
temperature-dependent lifetime deposit (i.e., LDcores). Each
core is able to run at 16 frequency levels, from 1.2GHz
to 3.5GHz, therefore, we define the frequency state of the
core sfreqcore to cover all of these 16 frequency states. The 16
frequency levels used in this work influence reliability to dif-
ferent extents. In particular, lower frequency levels increase the
lifetime while higher frequency levels consume the lifetime.
Therefore, 16 frequency levels have 16 different influences on
the lifetime deposit, separating the reliability values into 17
buckets, i.e., 17 reliability states. Consequently, we defined 17
reliability states to encompass all possible reliability effects
from 16 frequency levels. In order to make the QL control
scheme more robust, we also added 10 more states, with
five states below and five states upper the frequency levels’
influence range. In the end, the reliability state of the core
sreliacore has a total of 27 reliability states in this work.

Finally, the overall state S is designed to integrate all the
combinations of scache and score, covering all the different
states the system can be in our formulation.

2) Estimation of Benefits of Switching and Keeping the
Operating Cache: Our proposed flow to estimate the benefit
of switching the cache (benefitswitch) or, alternatively, the
benefit of keeping the cache unchanged (benefitkeep) are
detailed in Algorithm 1. This algorithm takes the necessary
LLC runtime information as the input (i.e., size of the data
in the operating cache, sizedata, predicted read and write
accesses to the LLC in the next management step, Nread and
Nwrite) to compute the performance and energy trade-offs of
switching and keeping the operating cache.

The performance and energy overhead of switching cache is
firstly computed (lines 1-2), which has already been introduced



8

Algorithm 1: Estimation of benefits of switching and
keeping the operating cache

Input: Size of the data in the operating cache
(sizedata), predicted read and write accesses to
the LLC in the next management step (Nread,
Nwrite)

Output: benefit of switching and keeping operating
cache (benefitswtich, benefitkeep)

1 Overheadperf = sizedata · (tread + twrite);
2 Overheadenergy =

sizedata · (Eread + Ewrite) + Eleak ·Overheadperf ;
3 Overheadswitch =

w1 ·Overheadenergy + w2 ·Overheadperf ;
4 Overheadkeep = 0;
5 Gainswitch

perf = Nwrite ·∆tswitch
write +Nread ·∆tswitch

read ;
6 Gainswitch

energy =
Nwrite ·∆Eswitch

write +Nread ·∆Eswitch
read +∆Eswitch

leakage;
7 Gainswitch = w1 ·Gainswitch

energy + w2 ·Gainswitch
perf ;

8 Gainkeep = −Gainswitch;
9 benefitswtich = Gainswitch −Overheadswitch;

10 benefitkeep = Gainkeep −Overheadkeep;

in Section IV-B. Then, the overall overhead of switching
consists of both energy and performance overheads (line 3),
where we define the weight factor w1 for energy and w2 for
performance. In this work, we tried different pairs of w1 and
w2. Finally, 0.2 and 0.8 were empirically chosen, respectively,
to achieve the best trade-off between energy efficiency and
performance perspectives. As for other scenarios, w1 and w2

can be chosen accordingly to adapt the specific optimization
goal, i.e., either strength on energy efficiency by increasing w1

or strength on performance by increasing w2. When keeping
the operating cache unchanged, there is no overhead (line 4).

Then, the performance and energy gain in the next man-
agement step for both switching and keeping cache actions
are estimated (lines 5-8). For instance, if the system switched
the operating cache, compared with the previous cache type,
there is a performance difference between them in both read
and write latency. Therefore, we summarize the differences
as ∆twrite and ∆tread. Combing with the number of write
and read accesses to the cache (Nwrite and Nread), the
overall performance gain for the next management step can
be estimated (line 5). The energy gain of switching the cache
can be computed in a similar way (line 6), while it needs
to consider the leakage energy difference for the two caches
(∆Eswitch

leakage). Finally, the overall performance and energy gain
of cache switch are computed using the same weight factors,
i.e., w1 and w2, for consistency (line 7). The overall gain for
keeping the cache unchanged (Gainkeep) is the opposite of the
Gainswitch as they have the opposite operating cache config-
uration, and consequently, representing opposite performance
and energy differences. In the end, the benefits of switching
cache and keeping cache unchanged are derived by subtracting
overall overhead from the overall gain (lines 9-10).

3) Action Definition: The action set A includes actions that
affects the cache (acache) and core (acore) independently.

Regarding acache, only two options exist, namely, either

keep using the operating cache (acache = 1) or switching to
another cache (acache = 2) to run the task.

We design the action of the core (acore) in terms of changes
in the frequency level. Therefore, acore can only get a discrete
value in a finite range as [0,±1,±2, ...,±Nf ], which means
increasing or decreasing the current frequency level by this
value (the maximum value of Nf is 16). Selecting the value
of Nf affects the QL overhead (execution time) and control
quality (converging to the best solution). The higher value of
Nf increases the solution quality, but at the expense of higher
time and space complexity of the QL algorithm (larger action
space). On the contrary, a lower value of Nf provides lower
overhead but increases the number of time steps to reach the
target state. Therefore, we heuristically choose Nf = 7 to
balance the QL overhead and control quality.

4) Reward Function: Associated to each pair of state-
action, the reward (R) is defined to maximize performance
and energy efficiency, while maintaining the cores and cache
lifetime limits, as follows:

Rcore = sign(LDcores) · freq
Rcache = H(−LDRRAM ) · f1(cache) +H(LDRRAM )

· f2(acache) · sign(benefitswtich − benefitkeep)

R = β1 ·Rcore + β2 ·Rcache (17)

where sign(·) is the signum function, which returns 1 when
the input value is greater than 0, and -1 otherwise; H(·) is
the Heaviside step function, it gives 1 when the input value is
greater than 0, and gives 0 for all other scenarios.

When the reliability of cores is guaranteed (LDcores > 0),
the reward function of cores (Rcore) would be higher if the
frequency of cores (freq) increases. This design guarantees
that the system reaches its best performance (i.e., highest
frequency level) when the reliability of the cores is sustained.

For the cache management, when the reliability of RRAM is
low (i.e., LDRRAM ≤ 0), the reward function (Rcache) takes
its largest value when SRAM is the operating cache as the
function f1(cache) is designed to return value 1; otherwise,
return -1 when RRAM is selected.

If the reliability of RRAM is not the concern (i.e.,
LDRRAM > 0), the second term of the Rcache equation
will be enabled by the Heaviside function H(LDRRAM ). The
function f2(acache) gives 1 when the cache switch action is
taken (acache = 2); otherwise, it returns -1 when the acache =
1 to continue the usage of current operating cache. The reward
function of cache reaches the highest value by switching the
operating cache when benefitswitch > benefitkeep, or keep-
ing the operating cache when benefitswitch < benefitkeep.
In summary, the cache reward function is designed to maintain
the lifetime of RRAM when the reliability is low. Otherwise,
it selects the operating cache to optimize the overall energy
and performance benefits of the system.

Finally, user-defined weight factors βi ∈ [0, 1] are used
to adjust the importance of each sub-reward function and
accordingly compute the overall reward function for the QL
agent. Considering that the reliability concerns for both the
cores and the hybrid-cache are equally critical for the system



9

Algorithm 2: Preemptive Priority Queue Management
Input: System time (tsys), Tasks queue (queue) and

information: burst time (tburst) and end time
(tend), instructions left to be executed (instleft)

Output: Set task (taskexe) for execution
1 Wait until mod(tsys, tstep) == 0
2 if queue is empty then
3 System keeps idle;
4 else
5 t∗burst ← Estimate burst time left for each task

in the queue based on instleft;
6 taskurgent ← Find tasks with

tend − tsys < t∗burst;
7 if taskurgent != Null then
8 tasknext ← taskurgent;
9 else

10 taskshortest ← Find the task with shortest
tburst;

11 tsys next ← tsys + taskshortest.t
∗
burst;

12 taskurgent ← find task with
tend − tsys next < t∗burst;

13 if taskurgent == Null then
14 tasknext ← taskshortest;
15 else
16 tasknext ← taskurgent;
17 end
18 end
19 if taskexe == tasknext then
20 continue executing taskexe;
21 else
22 suspend taskexe;
23 taskexe ← tasknext;
24 end
25 end
26 Go to line 1;
27 end

operation, we choose 0.5 for both coefficients (i.e., β1 and β2)
to put the same weight on the cores and hybrid-cache.

B. Dynamic Preemptive Priority Queue Management

Queue management is a key point that greatly impacts
overall tasks’ performance in a dynamic context. Traditionally,
first come first served (FCFS) approach [36] has been used to
execute tasks by strictly following the order of tasks arrival
time. However, this approach can significantly degrade the
overall system performance, especially when a task with a
long execution time imposes congestion to the queue.

In order to alleviate drawbacks of existing queue manage-
ment methods, we consider both a burst time (i.e., processing
time on the CPU) and an end time limit of tasks to improve
the overall performance. Therefore, based on these factors,
we propose a dynamic preemptive priority queue management
method, as shown in Algorithm 2.

This algorithm runs in the background and is invoked after
reaching a specific time period (tstep) (line 1). It is important
to note that the system time tsys indicates the reading from the

pe
rlb

en
ch

gc
c

m
cf

om
ne

tp
p

xa
la
nc

bm
k

x2
64

de
ep

sje
ng
le
el
a

ex
ch

an
ge

2
xz

bw
av

es

ca
ct

uB
SS

N

na
m

d

pa
re

st

po
vr

ay
lb

m wrf

bl
en

de
r

ca
m

4

im
ag

ic
k
na

b

fo
to

ni
k3

d

ro
m

s
0

5

10

N
u
m

b
e
r 

o
f 

A
cc

e
ss

#108

Read per second
Write per second

Fig. 5. Different applications’ read and write data to the LLC.

hardware timer. Therefore, it is automatically updated by the
system. In the first step, the task queue (queue) is checked.
If it is empty, the server stays idle (lines 2-3). Otherwise, the
algorithm starts to find the next task (tasknext) for execution
(lines 5-18). To select tasknext, first, the burst time (t∗burst)
of tasks in the queue is estimated based on their number of
instructions left (instleft) for being executed (line 5). Then,
we find urgent tasks (taskurgent) that breach their end time
limits (tend) with respect to the current system time (tsys) and
their estimated t∗burst (line 6). If there is more than one urgent
task, we consider the earliest arrived task among taskurgent
as tasknext (lines 7-8). This rule also applies to the whole al-
gorithm when there is more than one task candidate available.
Otherwise, we perform a proactive procedure to select the next
task (lines 10-17). In this procedure, we first find the task with
the shortest burst time (taskshortest). Based on the assumption
of running this task on the system, we update the system time
from tsys to tsys next (lines 10-11). Then, we check in the
urgent task list if the shortest task is being executed (lines 12-
13). If the list is empty, we select taskshortest as the next task.
Otherwise, the new urgent task is selected as tasknext (lines
13-17). Finally, if the selected task (i.e., tasknext) is the same
as current running task (taskexe), we continue its execution
(line 20). Otherwise, taskexe is suspended and returned to the
queue to resume its execution in the future, and tasknext is
executed (lines 22-23). In the end, the algorithm will go to line
1 and wait until the next iteration. In this regard, in the worst
case, the computational complexity of our proposed dynamic
preemptive priority queue management method is O(n).

VI. EXPERIMENTAL SETUP AND COMPARISON METHODS

A. Experimental Setup

1) Task Description and Simulation Framework: We use
the SPEC CPU 2017 benchmark suite as a set of tasks
to simulate realistic scenarios. Benchmarks’ power and per-
formance statistics (i.e., power, burst time, instructions, and
LLC read/write accesses) under different frequency levels are
collected using RAPL and perf tools. Among all the metrics
sampled, LLC read/write data for each task is measured with
the perf tool with resolution at 1 second to consider the
temporal distribution of read/write access. The average LLC
read/write data for different applications is shown in Fig. 5 to
show the read/write ratio variation among tasks.

We use pqos to sample the runtime LLC occupancy for each
task. Fig. 6 shows the LLC occupancy traces for the 4 most
representative applications.



10

0 200 400
0

5

10

15

20

25
perlbench

0 200 400
0

5

10

15

20

25
mcf

0 500
0

5

10

15

20

25
leela

0 500 1000
Time (s)

0

5

10

15

20

25
LL

C
 O

cc
u

p
a
n
cy

 (
M

B
) exchange2

Fig. 6. The LLC occupancy traces for the selected applications.

Given the power, performance, thermal, and reliability mod-
els, we develop a high-level simulation framework written in
MATLAB to co-optimize the operation of the whole system.
The control time step was set to 1 second and all the
experiments were performed for a total simulation time of
3× 107 s (i.e., 347 days) to avoid the possible random effects
of different workloads and methods.

In order to evaluate the time overhead of the proposed
method, all the comparison methods were implemented and
tested on the same system modeled in Section IV, namely, an
octa-core Intel Xeon E5-2667 v4 CPU and 256GB of RAM.

2) Experimental Scenario: To mimic the realistic behavior
of tasks arriving at different speeds, we use a Poisson distribu-
tion with parameter λ to compute the arrival time of tasks, as
validated in the literature [1]. Thus, the number of tasks that
arrive in the system at each time slot can be tuned by λ. Then,
a uniform distribution is used to determine the task type when
there is a task coming. More specifically, when a task arrives
at the system, a random number from 1 to 23 (a total of 23
SPEC benchmarks) is generated by the uniform distribution to
specify the task name.

In general, the load of the server varies during the day, i.e.,
a heavy workload during the day (large λ), and lower during
the night (small λ). Therefore, different λ values are taken
into account for such a dynamic scenario, where the system
idle ratio varies from 4% to 45% during the simulation time.

B. Comparison Methods
In this work, we compare our proposed method against three

different state-of-the-art management methods for computing
servers, as follows:

1) Reactive Method (Reactive) [12]: This method sets
a fixed reliability threshold at each time (i.e., MTTFt >
MTTFnominal) to keep the cores always operating in a safe
area by controlling their temperature (i.e., decrease the cores’
frequency). This method does not support the hybrid-cache
reliability management method, so we assume it always uses
SRAM cache for performance and reliability goals.

2) Reactive Method with Hybrid-Cache (Hybrid Reac-
tive) [10]: This method uses an energy-efficient hybrid-cache
architecture (i.e., SRAM+NVM), and manages the NVM re-
liability by setting a threshold for the number of writes to the
cache. If the number of write accesses does not exceed the
threshold, SRAM is powered off to save energy. Otherwise,
SRAM is powered on to reduce the stress of NVM and
maintain system reliability. In addition, this method does not
support cores reliability management. Therefore, we com-
bine this hybrid-cache management method with the Reactive
method [12] to control the whole system.

3) MPC [32], [33]: This method shows the performance
benefits of an advanced control policy for core reliability
management. The MPC controller will try to reach a higher
temperature (i.e., higher operating frequency) if the cores life-
time deposit (LDcores) is still available for high performance
consideration. However, hybrid-cache and queue management
are important aspects missing from these works. Therefore,
we combine the MPC technique with the Hybrid Reactive
approach for a fair comparison.

The above three methods do not involve any task queue
management policy, therefore, by default, we assume the
comparison methods use the FCFS policy [36] for executing
the tasks.

VII. EXPERIMENTAL RESULTS

A. Behavior Comparison of Different Server Reliability Man-
agement Methods

Figs. 7 to 11 show the cores’ temperature, lifetime deposit,
cache selection decision, endurance deposit, cache energy
consumption, and task executing order for the comparison
and proposed methods. We start the evaluation by considering
a limited simulation time to better show the key behavior
comparison of different methods.

Temperature traces for different methods are shown in
Fig. 7. The Reactive method keeps cores’ temperature be-
low the preset threshold (i.e., 70 °C) for reliability concerns.
This temperature limit guarantees the cores’ lifetime longer
than the design lifetime (i.e., 5 years) because the lifetime
deposit of the Reactive method is always positive, as depicted
in Fig. 8(a). However, this fixed conservative temperature
threshold is not sensitive to dynamic environments (variable
loads of server) and, consequently, degrades the performance.
On the contrary, MPC and our proposed QL method achieve
a better use of the cores’ lifetime deposit to maximize the
overall task performance (i.e., increasing cores frequency and
operating temperature in Fig. 7(b) and 7(c)) but still maintain
the server’s design lifetime of 5 years by keeping the lifetime
deposit positive according to Fig. 8(b) and 8(c). Thanks to
our new fine-grained reliability model, every single core’s
lifetime deposit can be utilized by both the MPC and QL
methods. Therefore, these two methods can tune each core’s
operating frequency based on their lifetime deposit. More
specifically, for the MPC method, temperature traces of tasks 3
and 4 in Fig. 7(b) show how different cores can have different
temperature levels (i.e., frequency level). Some cores run out
of lifetime deposit and stay at the safe temperature limit (i.e.,
70 °C) like the same behavior of Reactive method. On the
contrary, the other cores can stay at a higher temperature level
until they run out of lifetime deposits. A similar phenomenon
can also be found for the QL method in Fig. 7(c).

Due to the lack of hybrid-cache management support,
Fig. 9(a) shows how the Reactive method always uses the
SRAM cache (red background color), leading to higher leak-
age power consumption according to Fig. 10(a). As it is
shown, the cache energy consumption of the Reactive method
is the largest among all the tested approaches and it increases
approximately linearly with time because the leakage power



11

Fig. 7. Temperature comparison of different core management methods with
the average frequency as blue background.

(a) Reactive

2000 4000 6000 8000 10000 12000 14000
Time (s)

0

2

4

Fr
e
q
u
e
n
cy

(G
H

z)

0

5000

Li
fe

ti
m

e
d
e
p
o
si

t 
(s

)

(b) MPC

2000 4000 6000 8000 10000 12000 14000
Time (s)

0

2

4

Fr
e
q
u
e
n
cy

(G
H

z)

0

5000

Li
fe

ti
m

e
d
e
p
o
si

t 
(s

)

(c) Q-learning (QL)

2000 4000 6000 8000 10000 12000 14000
Time (s)

0

2

4

Fr
e
q
u
e
n
cy

(G
H

z)

0

5000

Li
fe

ti
m

e
d
e
p
o
si

t 
(s

)

Different cores

Fig. 8. Cores lifetime deposit comparison of different core management
methods with the average frequency as blue background.

Fig. 9. RRAM lifetime deposit comparison of different methods. Fig. 10. Cache energy consumption comparison of different methods.

0
20

00
40

00
60

00
80

00

10
00

0

12
00

0

14
00

0

Time (s)

1

3

5

7

9

A
p
p
lic

a
ti

o
n

(a) FCFS

0
20

00
40

00
60

00
80

00

10
00

0

12
00

0

14
00

0

Time (s)

1

3

5

7

9

A
p
p
lic

a
ti

o
n

(b) Preemptive Queue (PQ)

Execution

Waiting

Execution

Waiting

Fig. 11. Queue comparison.

of SRAM takes dominant composition in the overall cache
energy consumption. On the contrary, the Hybrid Reactive
method sets a write access threshold to decide when SRAM is
powered off, and unnecessary leakage power consumption is
saved. However, a fixed access threshold cannot optimize the
energy efficiency of the hybrid-cache architecture, as it cannot
fully exploit the endurance deposit of the hybrid-cache. This
can be seen from Fig. 9(b), where the endurance deposit of
the Hybrid-Cache method is overabundant at the end of the
demo (above 100s). Finally, the proposed QL method exploits
RRAM cache more frequently than the other methods for

energy efficiency (i.e., lowest cache energy consumption in
Fig. 10(c)), while keeping the RRAM lifetime deposit positive
(i.e., Fig. 9(c)) to maintain the server’s design lifetime.

Fig. 11 demonstrates the outcomes of the different queue
management methods, where applications’ execution time
horizon is represented with blue rectangles and the waiting
time horizon is represented with orange rectangles. The solid
line in the figure indicates applications’ end time limit. Dif-
ferent applications are discerned with different y-axis levels,
and the lower y-axis level of the application, the earlier it
arrives. The Reactive and MPC approaches use the default
FCFS method for task scheduling (i.e., the task arrival order).
However, the FCFS method failed to guarantee the end time
limit of applications 5 and 6, as shown in Fig. 11(a). In
comparison, our proposed queue optimization (Fig. 11(b)) can
suspend, reorder, and resume the tasks in the queue (e.g.,
suspend task 4 when task 5 arrives and reorder task 9 to
be executed earlier than task 8) to obtain a better overall
performance considering their end time limits and efficient
usage of cores and cache lifetime deposits. As explained
before in Section VI-A, we have considered the arrival interval
of the applications following a Poisson distribution [1], and



12

TABLE II
RESULTS FOR REACTIVE METHOD (BASELINE)

Total Cache Average Worst Overdue Overdue
energy energy PD -case PD tasks (#) time (s)

1.4E9 1.7E8 9.6 224.2 6344 1.1E8

therefore, idle periods are present during the experiment. The
gap between applications indicates idle time on the system and
no executing or queued tasks. Considering a comprehensive
comparison is needed for different methods, we take into con-
sideration of energy consumption, temperature, and reliability
information during both the active and idle time in this work,
and they will be introduced in the following discussions.

B. Energy Efficiency and Performance Comparison for a
Long-term Simulation

For a full comparison (covering the whole simulation time
of 3× 107 s), we evaluate the efficiency of different methods
(improvements) for different metrics compared to the Reactive
method (Table II), as a baseline. The abbreviation ”PD” refers
to Performance Degradation, which is defined as the task
execution time (waiting time + burst time) divided by the
shortest burst time the task can achieve on the target system.
In this work, we have collected over 16,000 instances of the
applications running on the target system, with PD calculated
for each instance. The average PD is calculated by taking the
mean of these PD values. The worst-case PD is the largest PD
value among all of the instances.

Fig. 12 shows the improvements of different methods com-
pared to the baseline (i.e., the Reactive method). The Hybrid
Reactive method can reduce 51% cache energy consumption
and achieve 10% overall energy savings compared to the
Reactive method because of the benefits of hybrid-cache,
(i.e., lower energy consumption). Besides a higher energy
efficiency, a lower power consumption hybrid-cache means
less heat generation, therefore, cores can run at a higher
frequency and achieve greater performance. The higher per-
formance also shortens the application’s execution time and
reduces cores’ overall static power consumption. Therefore,
the Hybrid Reactive method demonstrates a 6% core energy
saving compared to the baseline. In the end, the Hybrid
Reactive method achieves good improvements on both average
and worst performance degradation, reducing the overdue
tasks and time because of the improved system performance
compared to the Reactive method. However, it strictly limits
cores’ temperature at the expense of limited improvements in
average PD and many more overdue tasks compared to the
MPC method.

The MPC method achieves better improvements than Hy-
brid Reactive in both performance degradation and overdue
task reduction due to removing strict operating temperature
threshold for the cores and dynamically managing the tem-
perature and reliability constraints with respect to the server’s
load. However, running the cores at higher frequencies entails
a higher core and total energy consumption, and therefore,
the MPC method has the lowest total energy improvements

(6%) and consume 1% more core energy than the baseline. In
summary, the existing methods bring limited improvements to
the computing server with hybrid-cache architecture.

Finally, our proposed QL method improves average and
worst-case performance degradation by 37% and 44% com-
pared to the baseline method, respectively. The performance
improvements are contributed both by the proposed hybrid-
cache management and core management methods. While the
QL-based hybrid-cache method selects the operating cache
based on the system performance and energy consideration,
the QL-based core management method dynamically controls
the operating frequency to improve the system performance.
In the meantime, the proposed QL method fully exploits the
energy efficiency benefits of the hybrid-cache architecture to
achieve the best cache, core, and total energy saving (i.e., 63%,
9%, and 15%) among all the comparison methods.

In order to evaluate the improvements of the Dynamic
Preemptive Priority Queue Management method (PQ). we for-
mulate the Proposed QL with the PQ and enable the task queue
management method. The results show the proposed QL with
PQ method have a similar energy consumption with the QL
method, but achieve better average performance degradation
improvements, and drastically reduce the overdue tasks (i.e.,
43% improvements) thanks to the task queue management.

In summary, our proposed approach combines the benefits
of a novel QL-based reliability management method and a
task queue optimization technique to reach the best overall
performance and energy efficiency while ensuring a system
lifetime longer than 5 years. Moreover, for other lifetime limit
targets, we only need to update MTTFnominal with respect
to the desired lifetime duration (i.e., Eq. 12).

C. Computational Overhead (Execution Time) Analysis

In order to achieve a high control accuracy for the MPC
method, a complex and accurate thermal model with a large
number of thermal cells is needed to be formulated before
the implementation of the MPC controller. Besides the pre-
thermal modeling work, a thermal model with a large number
of thermal cells drastically increases the time and space
complexity of the MPC controller, making runtime manage-
ment unfeasible, as shown in Fig. 13. This is a key reason
why the MPC controller has rarely been used in real-life
implementations of thermal and reliability control schemes for
multi-core microprocessors. On the other hand, the proposed
QL method is much faster than MPC (>3x) because QL’s time
and space overheads are independent of the thermal grid size,
thus making it suitable to be applied to large-scale problems
and chip sizes, as in latest multi-core microprocessor designs.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a runtime RL-based relia-
bility management method to optimize the energy efficiency
and task performance for computing server processors with
a hybrid-cache architecture, while maintaining the system
lifetime reliability. First, we have formulated a RRAM MTTF
reliability model to meet the RRAM lifetime constraint at
runtime. Second, we combined a QL-based reliability-aware



13

Total energy Core energy Cache energy Avg. PD Worst PD Overdue tasks Overdue time

0

20

40

60

Im
p

ro
v
e

m
e

n
t(

%
)

Hybrid Reactive MPC Proposed QL Proposed QL with PQ

Fig. 12. Different methods improvements compared to baseline.

 27.4  34.2
 65.6

289.5

    536

   7922

 124326

1983051

  7.9    223

288 1024 4096 16384

0

100

200

300

se
co

nd
s

102

104

106

108

K
B

 (
lo

g 
sc

al
e)Space

Time

MPC
Model size:

Method: QL

Fig. 13. Computational Overhead comparison of MPC and QL.

management method with a preemptive queue optimization
approach to maximize the performance and energy efficiency
of the whole system, when running diverse sets of tasks in
a dynamic scenario. Our results have shown that the pro-
posed method provides up to 44% performance improvements
compared to conventional techniques, while guaranteeing an
overall system design lifetime longer than 5 years.

Thanks to the modular design of the proposed method, we
can change the reliability, performance, and power models
used in this work from RRAM to the accordingly non-volatile
memory technology, e.g., STT-MRAM and PCRAM, thus to
support other types of hybrid cache technologies. This will be
a subject of future work, in which we will study the proposed
method’s behaviors with other hybrid cache techniques.

ACKNOWLEDGMENT

This work has been partially supported by the EC H2020
RECIPE FET-HPC project (No. 801137), the ERC Consolida-
tor Grant COMPUSAPIEN (No. 725657), and the EC H2020
DeepHealth Project (GA No. 825111).

REFERENCES

[1] M. Zapater et al., “Leakage-aware cooling management for improving
server energy efficiency,” IEEE Trans. on Parallel and Distributed
Systems, vol. 26, pp. 2764–2777, 2015.

[2] C. S. Chan et al., “Optimal performance-aware cooling on enterprise
servers,” IEEE TCAD, vol. 38, no. 9, pp. 1689–1702, 2019.

[3] S. Chakraborty and H. K. Kapoor, “Analysing the role of last level
caches in controlling chip temperature,” IEEE Trans. on Sustainable
Computing, vol. 3, no. 4, pp. 289–305, 2018.

[4] A. Pahlevan et al., “Towards near-threshold server processors,” in DATE,
2016, pp. 7–12.

[5] S. Mittal and J. S. Vetter, “AYUSH: Extending lifetime of SRAM-NVM
way-based hybrid caches using wear-leveling,” in IEEE Int. Sym. on
Modeling, Analysis, and Simulation of Computer and Telecommunica-
tion Systems, 2015, pp. 112–121.

[6] W. Wan et al., “33.1 A 74 TMACS/W CMOS-RRAM neurosynaptic
core with dynamically reconfigurable dataflow and in-situ transposable
weights for probabilistic graphical models,” in IEEE Int. Solid-State
Circuits Conference. IEEE, 2020, pp. 498–500.

[7] F. Cai et al., “A fully integrated reprogrammable memristor–cmos sys-
tem for efficient multiply–accumulate operations,” Nature Electronics,
vol. 2, no. 7, pp. 290–299, 2019.

[8] W. Banerjee, “Challenges and applications of emerging nonvolatile
memory devices,” Electronics, vol. 9, no. 6, p. 1029, 2020.

[9] Y. Cai et al., “Long live time: Improving lifetime and security for nvm-
based training-in-memory systems,” IEEE TCAD, vol. 39, no. 12, pp.
4707–4720, 2020.

[10] Y.-T. Chen et al., “Dynamically reconfigurable hybrid cache: An energy-
efficient last-level cache design,” in DATE, 2012, pp. 45–50.

[11] JEDEC, “Failure mechanisms and models for semiconductor devices,”
JEDEC Publication JEP122H, 2016.

[12] M. G. Moghaddam et al., “Investigation of DVFS based dynamic
reliability management for chip multiprocessors,” in Int. Conf. on High
Perf. Comp. & Simulation, 2015, pp. 563–568.

[13] Z. Lu et al., “Improved thermal management with reliability banking,”
IEEE Micro, vol. 25, no. 6, pp. 40–49, 2005.

[14] A. Iranfar et al., “Thespot: Thermal stress-aware power and temperature
management for multiprocessor systems-on-chip,” IEEE TCAD, vol. 37,
no. 8, pp. 1532–1545, 2018.

[15] A. Pahlevan et al., “Integrating heuristic and machine-learning methods
for efficient virtual machine allocation in data centers,” IEEE TCAD,
vol. 37, no. 8, pp. 1667–1680, 2017.

[16] A. Iranfar et al., “Machine learning-based quality-aware power and
thermal management of multistream HEVC encoding on multicore
servers,” IEEE Trans. on Parallel and Distributed Systems, vol. 29,
no. 10, pp. 2268–2281, 2018.

[17] Z. Yang et al., “Enhanced phase-driven q-learning-based DRM for
multicore processors,” IEEE TCAD, vol. 38, no. 11, pp. 2022–2031,
2019.

[18] T.-K. Chien et al., “Write-energy-saving ReRAM-based nonvolatile
SRAM with redundant bit-write-aware controller for last-level caches,”
in Int. Sym. on Low Power Electronics and Design, 2017, pp. 1–6.

[19] D. B. Strukov, “Endurance-write-speed tradeoffs in nonvolatile memo-
ries,” Applied Physics A, vol. 122, no. 4, p. 302, 2016.

[20] L. Zhang et al., “Mellow writes: Extending lifetime in resistive memories
through selective slow write backs,” in 2016 ACM/IEEE 43rd Annual
Int. Sym. on Computer Architecture (ISCA). IEEE, 2016, pp. 519–531.

[21] M. V. Beigi and G. Memik, “THOR: Thermal-aware optimizations
for extending ReRAM lifetime,” in IEEE Int. Parallel & Distributed
Processing Sym., 2018, pp. 670–679.

[22] M. Zhou et al., “Thermal-aware design and management for search-
based in-memory acceleration,” in Proceedings of the 56th Annual
Design Automation Conference 2019, 2019, pp. 1–6.

[23] S. A. A. Bukhari et al., “Toward model checking-driven fair compar-
ison of dynamic thermal management techniques under multithreaded
workloads,” IEEE TCAD, vol. 39, no. 8, pp. 1725–1738, 2020.

[24] H. Wang et al., “Leakage-aware predictive thermal management for
multicore systems using echo state network,” IEEE TCAD, vol. 39, no. 7,
pp. 1400–1413, 2020.

[25] M. Li et al., “Chip temperature optimization for dark silicon many-core
systems,” IEEE TCAD, vol. 37, no. 5, pp. 941–953, 2018.

[26] J. Saber-Latibari et al., “Ready: Reliability- and deadline-aware power-
budgeting for heterogeneous multicore systems,” IEEE TCAD, vol. 40,
no. 4, pp. 646–654, 2021.

[27] J. Zhou et al., “Resource management for improving soft-error and
lifetime reliability of real-time mpsocs,” IEEE TCAD, vol. 38, no. 12,
pp. 2215–2228, 2019.



14

[28] L. Wang et al., “A lifetime reliability-constrained runtime mapping for
throughput optimization in many-core systems,” IEEE TCAD, vol. 38,
no. 9, pp. 1771–1784, 2019.

[29] H. Wang et al., “STREAM: Stress and Thermal Aware Reliability
Management for 3-D ICs,” IEEE TCAD, vol. 38, pp. 2058–2071, 2019.

[30] P. Mercati et al., “Warm: Workload-aware reliability management in
linux/android,” IEEE TCAD, vol. 36, no. 9, pp. 1557–1570, 2016.

[31] J. Srinivasan et al., “The case for lifetime reliability-aware micropro-
cessors,” in ISCA, 2004, pp. 276–287.

[32] F. Zanini et al., “Multicore thermal management with model predictive
control,” in DATE, 2009, pp. 711–714.

[33] H. Wang et al., “Hierarchical dynamic thermal management method for
high-performance many-core microprocessors,” ACM TODAES, vol. 22,
no. 1, 2016.

[34] F. Pittino et al., “Robust identification of thermal models for in-
production high-performance-computing clusters with machine learning-
based data selection,” IEEE TCAD, vol. 39, no. 10, pp. 2042–2054, 2019.

[35] R. Diversi et al., “Thermal model identification of computing nodes
in high-performance computing systems,” IEEE Trans. on Industrial
Electronics, vol. 67, no. 9, pp. 7778–7788, 2019.

[36] Y. Etsion and D. Tsafrir, “A short survey of commercial cluster batch
schedulers,” School of Computer Science and Engineering, The Hebrew
University of Jerusalem, Tech. Rep., 2005.

[37] L. Wang et al., “Towards thermal aware workload scheduling in a data
center,” in 2009 10th Int. Sym. on pervasive systems, algorithms, and
networks. IEEE, 2009, pp. 116–122.

[38] M. Mohaqeqi et al., “Stochastic thermal control of a multicore real-time
system,” in 2016 24th Euromicro Int. Conf. on Parallel, Distributed, and
Network-Based Processing (PDP). IEEE, 2016, pp. 208–215.

[39] S. S. Gill et al., “Thermosim: Deep learning based framework for
modeling and simulation of thermal-aware resource management for
cloud computing environments,” Journal of Systems and Software, vol.
166, p. 110596, 2020.

[40] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau, Operating systems:
Three easy pieces. Arpaci-Dusseau Books LLC, 2018.

[41] A. H. El Bakely and H. A. Hefny, “Using shortest job first scheduling in
greencloud computing,” Int. Journal of Advanced Research in Computer
and Communication Engineering, vol. 4, pp. 348–354, 2015.

[42] S. Yu and P.-Y. Chen, “Emerging memory technologies: Recent trends
and prospects,” IEEE Solid-State Circuits Magazine, vol. 8, no. 2, pp.
43–56, 2016.

[43] X. Zheng et al., “Exploring plan-based scheduling for large-scale
computing systems,” in 2016 IEEE Int. Conf. on Cluster Computing
(CLUSTER). IEEE, 2016, pp. 259–268.

[44] M. A. Salim et al., “Balsam: Near real-time experimental data analysis
on supercomputers,” 2019 IEEE/ACM 1st Annual Workshop on Large-
scale Experiment-in-the-Loop Computing (XLOOP), pp. 26–31, 2019.

[45] X. Dong et al., “NVSim: A circuit-level performance, energy, and area
model for emerging nonvolatile memory,” IEEE TCAD, vol. 31, no. 7,
pp. 994–1007, 2012.

[46] C.-H. Jan et al., “A 14nm SoC platform technology featuring 2nd
generation tri-gate transistors, 70nm gate pitch, 52nm metal pitch, and
0.0499um2 SRAM cells, optimized for low power, high performance and
high density SoC products,” in Sym. on VLSI Tech., 2015, pp. 12–13.

[47] J. Pan. RAPL (Running Average Power Limit). [Online]. Available:
https://lwn.net/Articles/545745

[48] A. Iranfar et al., “Enhancing two-phase cooling efficiency through
thermal-aware workload mapping for power-hungry servers,” in DATE,
2019, pp. 66–71.

[49] A. Sridhar et al., “3D-ICE: A compact thermal model for early-stage
design of liquid-cooled ics,” IEEE Trans. on Computers, vol. 63, no. 10,
pp. 2576–2589, 2014.

[50] Intel Xeon Processor E5-2667 v4. [Online]. Avail-
able: https://ark.intel.com/content/www/us/en/ark/products/92979/intel-
xeon-processor-e5-2667-v4-25m-cache-3-20-ghz.html

[51] C. Liu et al., “Service reliability in an HC: Considering from the
perspective of scheduling with load-dependent machine reliability,”
IEEE Trans. on Reliability, vol. 68, no. 2, pp. 476–495, 2019.

[52] X. Gao et al., “Investigating security vulnerabilities in a hot data center
with reduced cooling redundancy,” IEEE Trans. on Dependable and
Secure Computing, pp. 208–226, 2020.

[53] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998, vol. 1.

Darong Huang is currently a Ph.D. candidate in
Electrical Engineering (EE) in the Embedded Sys-
tems Laboratory (ESL) at Swiss Federal Institute of
Technology Lausanne (EPFL). He received his B.Sc.
and M.Sc. degrees in Electrical Engineering from the
University of Electronic Science and Technology of
China in 2016 and 2019, respectively. His research
interests focus on the thermal and reliability man-
agement of microprocessors.

Ali Pahlevan is a post-doctoral researcher in the
Embedded Systems Laboratory (ESL) at Swiss Fed-
eral Institute of Technology Lausanne (EPFL). He
received his Ph.D. degree in Electrical Engineering
(EE) from EPFL in 2019, M.Sc. degree in Computer
Engineering from Sharif University of Technology
(SUT) in 2012, and B.Sc. degree in Computer
Engineering from Ferdowsi University of Mashhad
(FUM) in 2010. He has published over 15 research
papers in top international journals and conferences.

Luis Costero Luis M. Costero is a post-doctoral
researcher in the Embedded Systems Laboratory
(ESL) at Swiss Federal Institute of Technology in
Lausanne (EPFL). He received his Ph.D. degree in
Computer Engineering from the Universidad Com-
plutense de Madrid (UCM) in 2021. He also ob-
tained a M.Sc. in Computer Engineering from the
same university. His main research areas involve
high performance computing, asymmetric proces-
sors, power consumption and real-time resource
management.

Marina Zapater is associate professor in the School
of Engineering and Management of Vaud (HEIG-
VD) at the University of Applied Sciences West-
ern Switzerland (HES-SO) since 2020. She was a
Postdoctoral Research Associate with the Embedded
System Laboratory (ESL) at EPFL until February
2020, and is currently an external collaborator of
ESL-EPFL. She received her Ph.D. degree in elec-
tronic engineering from UPM, Spain, in 2015. Her
research interests include thermal, power and per-
formance design and optimization of heterogeneous

architectures, from edge devices to high-performance computing processors;
and energy efficiency in servers and datacenters. In these fields, she has co-
authored more than 75 papers in top-notch conferences and journals. She is an
IEEE and CEDA member, and CEDA Assistant VP of finance (2019-2020).

David Atienza (M’05-SM’13-F’16) is professor
of electrical and computer engineering, and head
of the Embedded Systems Laboratory (ESL) at
EPFL, Switzerland. He received his PhD in com-
puter science and engineering from UCM, Spain,
and IMEC, Belgium, in 2005. His research in-
terests include system-level design methodologies
for high-performance multi-processor system-on-
chip and low power Internet-of-Things systems,
including thermal-aware design for MPSoCs and
many-core servers, and edge AI architectures for

wearables and IoT systems. He is a co-author of more than 350 papers,
one book and 14 patents in these fields. Among others, Dr. Atienza has
received the ICCAD 2020 10-Year Retrospective Most Influential Paper
Award, the 2018 DAC Under-40 Innovators Award, an ERC Consolidator
Grant in 2016, the 2013 IEEE CEDA Early Career Award, and the 2012
ACM SIGDA Outstanding New Faculty Award. He is an IEEE Fellow, an
ACM Distinguished Member, and served as IEEE CEDA President (period
2018-2019).


