
1

Fuzzing+Hardware Performance Counters-Based
Detection of Algorithm Subversion Attacks on

Post-Quantum Signature Schemes
Animesh Basak Chowdhury, Anushree Mahapatra, Deepraj Soni, and Ramesh Karri, Fellow, IEEE

Abstract—NIST is standardizing Post Quantum Cryptogra-
phy (PQC) algorithms that are resilient to the computational
capability of quantum computers. Past works show malicious
subversion with cryptographic software (algorithm subversion
attacks) that weaken the implementations. We show that PQC
digital signature codes can be subverted in line with previously
reported flawed implementations [1], [2] that generate verifiable,
but less-secure signatures, demonstrating the risk of such at-
tacks. Since, all processors have built-in Hardware Performance
Counters (HPCs), there exists a body of work proposing a low-
cost Machine Learning (ML)-based integrity checking of software
using HPC fingerprints. However, such HPC-based approaches
may not detect subversion of PQC codes. A miniscule percentage
of qualitative inputs when applied to the PQC codes improve
this accuracy to 98%. We propose grey-box fuzzing as a pre-
processing step to obtain inputs to aid the HPC-based method.

Index Terms—Post-Quantum Cryptography, Hardware Perfor-
mance Counters, Integrity Verification, Tamper Detection

I. INTRODUCTION

Algorithm Subversion Attacks (ASA) on cryptographic soft-
ware deployed for public use is an important class of attacks
on cryptosystems besides the well-known side-channel and
fault attacks [1], [3], [4]. ASA is also known as Kleptogra-
phy [3]. ASAs weaken cryptography implementation without
user knowledge. The subverted software leaks all (or part)
of the secret key during message encryption and signature
generation. The attacker can recover the secret key of any party
that uses such a subverted system. Flawed implementations
by software developers introduce vulnerabilities, which when
discovered can be exploited [5], [6].

The main challenge in detecting ASAs is that the outputs
generated by the subverted crypto software are computa-
tionally indistinguishable from those generated by trusted
implementations. The subversion is due to the low resilience to
crypt-analysis, fragility of implementation due to bad random-
ness, reuse of nonces, and leakage of sensitive data via side-
channels. ASA was first studied and systematically explored
by Young et al. [3], where they showed feasibility of such
attacks on RSA (they called it the SETUP attack). Bellare et
al. extended this attack to symmetric encryption standards [4].
Recent works show that Post-Quantum Cryptography imple-
mentations are vulnerable to such attacks [7]–[9].

A.B. Chowdhury, A. Mahapatra, D. Soni, and R. Karri are with the Dept.
of Electrical and Computer Engineering, New York University, Brooklyn, NY,
11201 USA. E-mail: {am11019, abc586, dss545, rkarri}@nyu.edu

This paper will study detection of subversions in PQC
implementations. State-of-the-art literature suggests two path-
ways to evade ASA: 1) design of subversion-resilient algo-
rithms and 2) detection. Subversion-resilient design of cryp-
tography algorithms were proposed in [10], [11]. Designing
subversion-resilient algorithms requires cryptanalysis of the al-
gorithm. Complementing this approach, we propose a scheme
to check if the subverted software implementations leave
unique micro-architectural traces during execution different
from the traces of a trusted PQC software implementation.
We will investigate Machine Learning (ML)-based detectors
using Hardware Performance Counters (HPC).

HPCs are low-cost performance monitors built into all
processors and can be reused at no extra cost. HPCs have
been used as light-weight instrumentation tools in embedded
systems to monitor the run-time behaviour of software [12]–
[15]. HPC-based integrity check has been shown to be a suc-
cessful and effective low-cost detection solution [12], [14]. We
started with using ML-based detection technique to classify
a subverted PQC implementation using run-time HPC traces.
Unfortunately, our experimental findings in section IV-A show
that 95% of HPC traces for a subverted implementation are
similar to those for a trusted implementation. Clearly, vanilla
ML-based detectors cannot classify the run-time HPC traces
of subverted implementation. We overcame this limitation by
using Greybox fuzzing to determine the unique input to the
PQC implementations that create distinguishable HPC traces.
Contributions of this study are three-fold:

1) We show that PQC implementations can be subverted [1],
[2], [16]–[18] in at least three ways: (i) tampering with
PQC security parameters, (ii) tweaking the Random Num-
ber generators, and (iii) subverting the hash functions. We
show that ML-based classifiers that monitor HPC traces
on random inputs cannot detect the subversions.

2) We adopt Greybox fuzzing to discover inputs that yield
discernible HPC signatures of the PQC codes to distin-
guish subverted PQC implementations from the original.

3) We build an ML classifier that performs temporal and
spatial integrity checks using discernible HPC signatures
on inputs derived using Greybox fuzzing of PQC imple-
mentations.

The paper is organized as follows: Section II lays out the
threat model and preliminaries on HPCs and PQC signature
algorithms. Section III describes three types of subversions
introduced into PQC signature algorithms. Section IV outline

ar
X

iv
:2

20
3.

06
78

2v
1

 [
cs

.C
R

]
 1

3
M

ar
 2

02
2

2

TABLE I: Players in Threat model[19]

Player Goal

Saboteur
Adds weakness to crypto
implementation (Software developer)

Attacker
Extract secret information
from weakened signature (NSA)

Victim
Uses subverted crypto
implementation (User)

Defender
Protects integrity of crypto
implementation (NIST)

the challenges of using vanilla ML-based HPC detection
scheme. Section V shows greybox fuzzing guided input gener-
ation to aid ML detection methodology using HPC signatures.
Section VI discusses the experimental results. Section VII
reviews the related work and finally, Section VIII presents the
conclusions of this study.

II. PRELIMINARIES

A. Threat Model

Our threat model is in line with the setting proposed in
[19]. We have four players in the setting: Saboteur, Victim,
Attacker, and Defender(Table I). The goal of the Saboteur
is to stealthily weaken the PQC software, which may later
be exploited by an Attacker to target specific user(s) and
recover their secret keys or sensitive information. The victim
is the user who deploys the weakened PQC software. The
defender is the algorithm-level designer of the PQC software.
The goal of the Defender is to ensure that Victim can easily
check the integrity of the PQC software implementations. We
encourage the reader to go through [19] for more details.
We motivate our threat model using the classic FREAK [17]
attack, where the Saboteur was allegedly the National Security
Agency (NSA). They intentionally weakened the OpenSSL
protocols by restricting to use RSA export key size below
512 bits. This can be easily decrypted by number field sieve
factorization algorithm using modest computing resources.
NIST in its role of a Defender has to ensure that the victim
can check for weaknesses in implementations. We assume
PQC implementations in TLS/SSL libraries can be subverted
intentionally or accidentally by software developers.

B. Motivation

The core research question we ask in our work is: How
can a user trust the implementation of crypto APIs from third-
party developers (possible Saboteur)? Our threat model shows
that the Attacker with the help of third-party crypto software
developers (Saboteur) can perform backdoor injection/subvert
cryptography algorithm leaking secret key information through
output. There are multitude reasons leading to failure of
existing techniques to solve the problem.

• Third-party developers generally provide static check-
sums for users to trust libraries are from authentic
sources. However, this defense is moot since the source
corrupts the implementation.

TABLE II: NIST PQC Digital Signature candidates[21]

Type PQC Digital Signature
Lattice-based Dilithium, Falcon
Symmetric-based SPHINCS+ (alternate candidate)
Multivariate-based Rainbow

• Honest implementations are available from Defender but
are not user-friendly APIs (support for debugging, par-
allelism). One can use such implementation and tune it
according to the needs. This directly mitigate any threats
from third-party developers. However, such scenario is
out of scope from our work.

• We show seeds provided by Defender are random and
do not fully explore the state-space of crypto implemen-
tations. Thus, validation based on random test-inputs is
incomplete and backdoor may still be hidden.

We propose the defender to release dynamic/runtime sig-
natures generated by running fuzz-guided inputs on PQC
implementations. For versatility across different architectures
(arm, x86), we assume the defender creates the binary for all
notable architectures with predefined libraries and compiler
versions. The defender/victim can train a ML-based model
using runtime HPC signatures generated by fuzzed input
for detecting anomalous behaviour in PQC implementations.
We believe our work will help NIST’s ongoing Automated
Cryptographic Validation Testing(ACVT) program[20].

C. Overview of PQC Digital Signature Algorithms

NIST is standardizing quantum-resistant a.k.a post quantum
public key cryptography in two main classes: 1. post quantum
digital signature (DS) schemes and 2. post quantum Key
Encapsulation Mechanisms (KEM). In current work, we study
impact of algorithm subversion attacks on PQC DS schemes
although these can be similarly extended to KEM algorithms.
The DS schemes authenticate the identity of the signatory [21]
and detect unauthorized modifications to data. There are three
main modules of DS: 1) Keypair generation: The signatory
generates a pair of keys: secret key (sk) and public key (pk)
with seed as input. 2) Signature generation: The signatory
signs a message(m) with the secret key (sign(sk,m)). 3)
Signature verification: The authenticator receives the signed
message and verifies the signatory using signVerify(pk,Sm).
We target the DS algorithms from NIST PQC round 3 sub-
mission as summarized in Table II. The DS candidates are
classified into 3 classes based on the underlying mechanisms.
Our work demonstrates on all three types.

• Lattice-based DS builds on the hardness of shortest
vector problem (SVP) and takes polynomial time in
quantum computers.

• Multi-variate DS solves Multi-variate Polynomial(MVP)
algorithm in finite field and has NP-hard complexity.
They are light-weight due to their short signatures.

• Symmetric-based DS resists quantum computer attacks
based on the security of the underlying cryptographic
hash functions.

3

D. Hardware Performance Counters (HPC)
HPCs are special-purpose registers built into the perfor-

mance monitoring unit of all processors. HPCs store counts
of software and hardware events in the processor. Every HPC
provides information about the micro-architectural state and
events in different parts of the processor. Example HPCs
include events like cache misses and branch mis-predictions.
HPC-based monitoring incurs minimal time overhead with
zero hardware cost. Further, HPC-based monitoring does not
require any extra modifications to the monitored code.The
HPCs differ from one processor to the next [22]. For example,
HPCs in ARM Cortex A8 processor count Level-2 Data
Cache misses, while HPCs in AMD x86 processor count the
cumulative misses in Level-2 caches. Table III tabulates the
list of HPCs from ARM Cortex A8 processor that we use.

TABLE III: HPCs and hardware-level events

HPC Hardware events
CYCLES CPU Cycles
L2-TCM L2 Total Cache Misses
BR-MSP Branch Mispredictions
L1-ICM L1 Instruction Cache Misses
L1-DCA L1 Data Cache Accesses
L2-DCA L2 Data Cache Accesses
L1-DCM L1 Data Cache Misses
L2-DCM L2 Data Cache Misses

E. HPC Signatures
HPC signature of a PQC code denotes the HPC values ob-

tained during execution. We use HPC signatures to fingerprint
run-time behavior of a PQC code in two ways: The time-series
based signature captures the temporal variations of the HPC
values during the PQC code execution for a seed input and
message. Program-checkpoint (PC) based signature: A PC
is a location in the code where HPCs are monitored. Fig. 1
shows HPC collection across multiple PCs. PC-based HPC
signature captures spatial variations of HPC values at different
PCs by executing PQC code with seed inputs and message.
Tampering with the PQC code results in deviation from the
trusted HPC signature.

HPC signatures represent dynamic hashes of PQC DS
implementations. Ideally, HPC signatures of a PQC imple-
mentation at any given time are cumulative of counts of the
monitored HPCs. In reality, when monitoring HPCs at runtime,
system noise becomes a factor. Thus, we form HPC signatures
by deriving statistical measures from multiple readings of the
HPCs monitored for a period of time. The HPC signatures
are then reproducible and deterministic. At any time, when
an attacker maliciously modifies the code, the HPC signatures
will vary from the pre-computed signatures. Section 7 has a
detailed discussion of HPC signatures for PQC DS algorithms.

HPC-based techniques complement the static integrity ver-
ification techniques that compute the hashes of the program
executable at program installation time and periodically during
the program execution [23].

Trusted : HPCPC1, HPCPC2, HPCPC1, HPCPC2, HPCPC3

PC1

PC2

PC3

PC1

PC2

PC1

PC2

PC3

PC1

PC2

PC3

Tampered : HPCPC1, HPCPC2, HPCPC3

HPC monitoring

Fig. 1: Consider crypto sign() of Dilithium with
program-checkpoints. PC1, PC2 are hit different number of
times for trusted (green) and tampered codes (red) yielding

different HPC signatures.

III. ASA ON PQC DIGITAL SIGNATURE CODES

In this section, we describe three types of algorithm subver-
sion attacks (ASA) on PQC DS codes to reduce their security
strength: Subverting the random number generator (PRNG),
Subverting the Hash function (HASH), Subverting the Security
Parameters (SPARAM). Our choices of attack for PRNG and
HASH were motivated by software-based attacks FREAK[17].
PRNG and HASH modifications impact all the cryptographic
modules of signature algorithms (Figure 2) and generated
signature were validated at verification end (Although, an
honest verifier showed the signature is corrupted).

S-PARAM attacks introduce vulnerabilities by tampering
security parameters. These vulnerabilities are documented by
the signature algorithm designers they can be exploited by
attacker. We aim to detect subversions in PQC signatures (and
not designing them in first place).

skbob,pkbob
= Keypair()

Sm =
sign(skbob,m)

m: "Hi
Alice"

signVerify
(pkbob,Sm)

Bob Alice

CS-PRNG

Secure
Hash

Grasshopper
Cipher

Adversary

SHA0

Sm verified

Adversary

SHA-2/
SHA-3

AES/SHA-2
/SHA-3

Fig. 2: Pseudo-RNG: ASA on Hashes used in PQC DS
implementations.

A. ASA on Pseudo Random Number Generators (PRNG)
A good pseudo-random number generator (PRNG) is es-

sential for all PQCs. In NIST submissions, the PQC DS

4

candidates use block ciphers like AES-256 and cryptographic
hashes like SHA-3 to implement PRNGs. These PRNGs
underlie all three modules in a PQC DS code namely, key-pair
generation, signature creation and verification. As shown in
Fig. 2, one can subvert the PRNGs by replacing secure hashes
and block ciphers with less secure variants. The adversary
reduces the entropy of the output of the PRNG and make it less
secure in line with Debian openssl threat[1]. Table IV shows
implementations of PRNG in the PQC digital signatures.

PRNG PQC DS Algorithms
Dilithium Falcon Rainbow SPHINCS+

AES-256 based 3 3 7 3
SHA-3 based 3 3 3 3

TABLE IV: PRNGs used in PQC DS Algorithms.

1) Lattice-based DS: Lattice DS implementations use
PRNGs to generate secret and error components during key-
pair and nonce generation (y) during signature generation
(Sign()) modules [24]–[26]. Prior knowledge of y or infor-
mation about its repeated usage for different messages com-
promises the security of the signature [26]–[28]. We subvert
the with PRNG in Sign() by replacing AES-256 block cipher
in PRNG with a different block cipher Grasshopper [29].
Grasshoper was chosen as the S-box values were not gen-
erated pseudo-randomly [30].

2) Symmetric-based DS: In SPHINCS+, PRNG is imple-
mented by SHA-based hash using a secret-key sk and message
M . In sign(), the PRNG randomly selects a key-pair from
the SPHINCS+ tree to sign a message. We subvert PRNG by
replacing it with a different block cipher (Grasshopper [29])
based PRNG. The signature generation can leak sk via less-
secure PRNG [31].

3) Multivariate-based DS: MQDSS and Rainbow use a
PRNG for sampling variable coefficients. These algorithms
use secure hashes to implement PRNG using sk as input. We
replace AES in PRNG with Grasshopper [29] cipher.

B. ASA on Hash functions (HASH)

Cryptographic hashes SHA-2 and SHA-3 have been used
for key-pair generation, signature generation and verification
modules across PQC DS. In table V, we outline the secure
hashes in various PQC DS codes. ASA replaces secure SHA-
2/SHA-3 hashes with SHA-0 (Fig. 2), which is broken. For
compatibility with length of SHA-2/3 outputs, we repeated
the sequence of SHA-0’s output to match the length. By
using SHA-0 for generating hashes, an adversary can launch
collision attacks [32] for key recovery.

C. ASA on the Security Parameters (SPARAM)

We propose subverting the security parameters for each
PQC DS algorithm. The goal of the adversary is to reduce
the strength of the generated signature by modifying crucial
Security parameters in the algorithm. This leads to weaker
PQC codes violating NIST security levels. The ASAs the for
three classes are:

TABLE V: NIST hashes used by PQC DS Algorithms.

PQC DS
Algorithms

Secure Hash Algorithm
SHA-2 SHA-3 (SHAKE-)

256 384 512 128 256
Dilithium 7 7 7 3 3
Falcon 7 7 7 3 3
Rainbow 3 3 3 7 7
SPHINCS+ 7 7 7 7 3

Algorithm 1: DILITHIUM.Sign(Skey, µ) [33]
Parameters: d, γ1, γ2, β, ω, k, l

1) A = PRNG(ρ) ∈ Rk×lq

2) T1 = Truncate(T, d) ∈ Rk×1
q

3) T0 = T - T1 · 2d ∈ Rk×1
q

Rejection sampling loop
4) ρ” ← {0, 1}256
5) Y = PRNG(ρ”) ∈ Rl×1

γ1−1

6) W = A · Y ∈ Rk×1
q

7) W1 = HighBitsq(W, 2γ2) ∈ Rk×1
q

8) C = Hash(γ, T1,W1, µ) ∈ {0, 1}256
9) Z = Y + CS1 ∈ Rl×1

q

10) R0 = LowBitsq(W − CS2, 2γ2)
11) H = MakeHintq(−CT0,W − CS2 + CT0, 2γ2)

Bound Checking
12) if ‖ Z ‖inf ≥ γ1 − β goto 4 β = 375 =⇒ 0 subverted
13) if ‖ R0 ‖inf ≥ γ2 − β goto 4 β = 375 =⇒ 0 subverted
14) if ‖ CT0 ‖inf ≥ γ2 goto 4
15) ifH > ω goto 4
16) σ = (Z,H,C)
17) return σ

1) Lattice-based DS: In Lattice-based DS, security strength
and correctness of a signature is computed by executing
bound checks [28]. Security parameters control the number
of times bound checks are performed. The bounds ensure
that the signature does not leak out information about secret
key. We subvert the code such that it modifies one of the
crucial Security parameters with a lower value. For example,
in Dilithium (Algo 1), reducing the parameter β with a lower
threshold (375→ 0) helps reveal information about the secret-
key components (S1, S2) making it vulnerable to forging
signatures [24], [34]. SPARAM subversion similarly extends
to Falcon as shown in table VI.

2) Symmetric-based DS: SPHINCS+ [31] uses Merkle
hyper-tree of height h, k sub-trees each with t leaves in
Forest of Random Subsets (FORS). The security strength
of SPHINCS+ is affected by h, k and t [31]. The classical
security of SPHINCS+ [31] is defined as:

b = − log

 1

28n
+
∑
γ

(
1 −

(
1 −

1

t

)γ)k (q
γ

)(
1 −

1

2h

)q−γ 1

2hγ


The security parameter is n (is 128 bits for security level

I/II), the number of adversarial signature queries to the oracle
is q and the bit-level security of SPHINCS+ is b. One can
weaken 128-bit simple SPHINCS+ by altering the parameters
as follows: h: 64 → 8, k: 10 → 2 and t: 215 → 21. This
decreases b violating the security level of SPHINCS+. Secret

5

key recovery is easy for the adversary by reducing the number
of queries q to the oracle.

3) Multivariate-based DS: Security assumptions in mul-
tivariate cryptography are based on the difficulty of solving
systems of multivariate polynomials over finite fields (MVP).
Rainbow [35] derives its structure from unbalanced Oil and
Vinegar (UOV) scheme. To achieve NIST security level I,
Rainbow selects the finite-field Fq with q elements, m multi-
variate equations and n variables as the security parameters.
Here, m = n−v1 and n = v1+o1+o2 where v1 is the value of
vinegar variable and o1 and o2 are the cardinalities of oil sets
O1 and O2 respectively. In order to maintain security level I/II
(seclev), m ≥ 2.seclev

log2 q
must be satisfied by setting m to be at

least 64. We subvert the code by changing o1: 32 → 16, o2:
32→ 16 resulting in m = 32. This makes the implementation
prone to collision attacks.

TABLE VI: Subverting security parameters (SPARAM) in
PQC digital signatures.

PQC DS SPARAM (NIST Security level-I)
Original Subverted

Dilithium β = 375 β = 0
Falcon β = 6599 β = 0
Rainbow o1 = 32, o2 = 32 o1 = 16, o2 = 16
SPHINCS+ h = 64, k = 10, t = 215 h = 8, k = 2, t = 21

IV. LIMITATIONS OF STATE-OF-THE-ART DETECTORS

In section III, we injected ASAs [1], [2] into PQC DS codes
to create subverted implementations. We outline limitations
of ML-based HPC detectors in detecting ASA-compromised
codes and motivate our approach. We will study whether ML-
based HPC detectors can distinguish a trusted implementation
from a subverted one.

A. Preliminary Findings

We collect HPC side-channels and use ML-based clas-
sifier to detect traces of ASA-compromised implementa-
tions. Results show that about 95% of HPC traces of ASA-
compromised implementations are similar to that for original
implementations. In Fig. 3a and 3b, the spread of HPC values
with random inputs overlaps for trusted and ASA implemen-
tations. This motivates us to find out the shortcomings of such
detection techniques. We analyzed the traces from the profiled
code and make two key observations:

• Most inputs (messages + secret keys) used to generate
digital signatures have poor code coverage. Random
inputs do not go deep into the code segments. This led
to the indistinguishable HPC traces for trusted and ASA
implementations.

• PQCs rely a lot on randomness. Given an input (message
+ key), the output signature differs non-determinstically
based on the seed used by the implementation.

B. Improving the Coverage

Fuzzing [36] is an automated test generation technique
used to check the robustness of software. Our work lever-
ages coverage-guided Greybox fuzz testing [37] to generate
intelligent seed inputs to maximize edge coverage [38] on
the control-flow graph of a PQC code. A control-flow graph
(CFG) represents the flow of sequential program statements
(basic blocks) based on conditions. The technique annotates
every edge of the CFG and uses an evolutionary algorithm with
fitness functions to monitor run-time behavior. Fig 4 represents
a typical flow of Greybox fuzzing.

TABLE VII: Coverage achieved using random and Greybox
fuzzed seed inputs on PQC DS Algorithms

Coverage
metric PQC DS Coverage achieved

Random
Seed

Fuzz
Seed

Improve
(%)

Basic
blocks
covered

Dilithium 594 687 15.65
Falcon 827 870 5.19

Rainbow 791 815 3.03
SPHINCS+ 1623 1812 11.64

Control
flow edge
covered

Dilithium 1549 2093 35.11
Falcon 1088 1314 20.77

Rainbow 1563 1696 8.57
SPHINCS+ 1215 1594 31.19

Obtaining high quality seed inputs which can provide best
coverage is important as subverted codes are stealthy and
trigger at certain program states. Prior work [39] has shown
malicious subverting maybe inserted in complex conditional
checks. Random seed inputs provide shallow coverage and
cannot trigger stealthy subversion. HPC values obtained for
a seed input can be directly correlated to its execution pro-
file [40]. Execution traces using random seed inputs on trusted
and subverted code will be exact, yielding indistinguishable
HPC signatures in subverted PQC codes. HPC signature
should be collected using inputs that maximize state-space
coverage. Seed inputs from Greybox fuzzing give statistical
guarantees about achievable program state coverage under a
specific time constraint [41]. In table VII, we compare basic-
block and edge coverage of PQC DS codes using random seeds
and seeds generated using Greybox fuzzing. There is upto ∼35
% improvement in edge coverage relative to random seeds.

These findings lead us to propose our core contribution:
combine testing with HPC-based detection. We leverage light-
weight state-of-art greybox fuzzer AFL, to generate inputs that
improve coverage on PQC implementations. Fuzz generated
test-inputs have superior distinguishablity power on HPC
traces (see Fig. 3c & 3d). We use these inputs to extract
meaningful features from HPC traces, train our ML-classifier
and deploy it to detect a subverted implementation. Our work
offers a systematic approach to help NIST generate good
quality inputs for detecting vulnerable implementations. In
next section, we discuss our detection scheme.

6

0 200 400
L1_ICM

0

200 k
L1

_D
CA

hash

baseline

(a) random inputs

0
200

400
L1_ICM

0
10

0
k

20
0

k

L1
_D

CA

rng

baseline

(b) random inputs

0 250 500
L1_ICM

0

200 k

L1
_D

CA

hash

baseline

(c) fuzzed inputs

0
500

L1_ICM

0
20

0
k

L1
_D

CA

rng

baseline

(d) fuzzed inputs

Fig. 3: Kernel density estimation plots for HPC pairs at a PC in trusted and (HASH and PRNG) ASA code executions of
Dilithium using (a,b) random (c, d) fuzzed inputs.

Program P
Initial Seed input

-Population TiLightweight
Instrumention

Executable
generation

Seed
Prioriti-
zation

Fitness Check

Program
execution

Seed
 selection

Mutation
&

Crossover

Goal
satisfied

?

Report
Greybox

fuzzed seed
inputs

Genetic algorithm

NoYes

Fig. 4: Coverage-based greybox fuzzing.

V. HPC-BASED DETECTION OF ALGORITHM SUBVERSION

We present ML-based methodology to detect subverting of
PQC DS codes using HPCs combined with greybox fuzzing
as a pre-processing step. We use a (i) time-series approach
to capture the temporal variations of HPCs and (ii) program
checkpoint (PC) to capture spatial variations of HPCs in
program-flow, as HPC signatures of the PQC codes. The PC-
based approach monitors the HPC values at every checkpoint
in the code. Any modification in the code is expected to
cause variation of HPC values during run-time in one (or
more) PCs detecting ASA. Fig. 5 explains our two-phase
approach: The offline phase entails running a trusted PQC
code with inputs generated by greybox fuzzing to form HPC
signatures. Features from the HPC signatures are trained using
ML methods. While detection at end-user(victim), given a
subverted PQC code from a third party, the trained ML models
are deployed to monitor HPC signatures to predict if PQC code
was subverted. We describe the steps in this section.

A. HPC Signature Collection

We use Greybox fuzzing as our first step to generate
qualitative seed inputs S for a trusted PQC code P . Using S,
we collect HPC signatures of the sign() component of P . We
present a time-series (PTSsign), and PC HPC signature (PPCsign)
for fingerprinting P .

1) Time-series based HPC Signature Collection: We run P
using a seed input s ∈ S for a time-period TM . HPC signatures

Trusted
PQC

Random
Seeds

Message
(m)

Greybox
fuzzing:

Qualitative
Seed

Generation

HPC
Finger-
printing

Feature
engineering

Model
creation:

Training and
Validation

Unknown
PQC

Message
(m)

Fuzzed
Seeds

HPC
Finger-
printing

Detector:
Majority voting

+
One-class

SVM

Trusted

Subverted

Detection
at Victim's

end

Defender's
Strategy

Fig. 5: Two-Phase Approach to HPC-based Detection of
Algorithm Subversion Attacks.

are collected at sampling interval of TS with N samples, each
having K HPC values. This HPC signature obtained across the
monitored time-period fingerprints the PQC code. Algorithm 2
summarises this approach.

Algorithm 2: Time-series HPC Signature Collection
Input: DS Program P , Monitored set of HPCs :

{HPCidx|idx ∈ [1,K]}, Sampling interval : TS ,
Monitored time-period : TM

Output: Time-series HPC Signature: PTSsign ∈ RN×K ,
PTSsign ← φ;
Number of samples collected (N) ← bTM/TSc+ 1 ;
for idx← 1 to K do

for i← 1 to N do
Collect HPCiidx.

PTSsign ← HPCNK ;
return PTSsign.

2) PC-based Signature Collection: We insert PCs and run
P using seed inputs S from fuzzing. HPC signatures are
collected across multiple PCs H as shown in Algorithm 3.

B. HPC Selection

The ARM Cortex A8 processor has 16 HPCs. However, the
processor restricts use of four HPCs simultaneously. All HPCs
can be monitored by time-multiplexing. It is crucial to select
the set of HPCs that can uniquely characterize the program

7

Algorithm 3: Program Checkpoint (PC) HPC Signa-
ture

Input: DS Program P , Monitored HPCs:
{HPCidx|idx ∈ [1,K]} , Seed inputs: S,
Checkpoints: H

Output: PC-based HPC Signature: PPCsign ∈ R(S∗H)×K

PPCsign ← φ;
for seed input i ∈ S do

for PC j ∈ H do
Collect HPCijidx, ∀idx ∈ [1,K]

PPCsign ← HPCS∗HK ;
return PPCsign

behavior. We use metrics from [22] to identify HPCs that can
uniquely fingerprint the codes:

• Principal Component Analysis (PCA): Select HPCs with
maximum variance by creating uncorrelated variables
from orthogonal components that maximise variance [42].

• Maximum Standard Deviation threshold: Identify HPCs
with high deviation from mean exceeds a threshold.

• Maximum Variance threshold: Identify HPCs with high
variance whose variance exceeds a threshold value.

• Fisher Score (F-score): Measures discriminative power of
HPCs that have large separation between their deviation
and mean for data of different classes.

We use PCA to identify HPCs with maximum variance.

C. Feature Engineering

Feature engineering is an key aspect of our methodology.
Our goal is to generate features from the HPC signature to
train our ML-classifiers for every PQC algorithm.

1) Time-series based: To extract features, we apply over-
lapping sliding time-window and generate windowed sub-
sequence of time-series data. We define two parameters :
time-window duration (Tlen) and time-window shift (Tshift).
Tlen denotes the time-duration considered in the frame of one
window and Tshift denotes the shift in time-interval between
successive time-windows. Tlen and Tshift are configurable pa-
rameters based on temporal granularity required. We obtain D
windowed sub-sequences. For feature generation, we use the
set of HPCs Z obtained from HPC selection. We extract mean,
maximum, kurtosis, and Kendall-tau correlation coefficient
as features from every windowed sub-sequence. Algorithm 4
summarizes feature generation FTSsign of dimension [D × 4Z]
for time-series data.

2) PC based: Once HPCs Z are selected, we create a
feature matrix FPChpc of dimension [(S ×H)× Z] from HPC
signature PPCsign. Algorithm 5 describes how to generate feature
matrix for PCs.

D. ML Model: Training and Validation

Using the extracted features, we train the ML models to
predict if a PQC code is trusted or subverted. We train two
models for every PQC algorithm, using time-series and PC-
based features. Our goal is to train a model that learns trusted
data distribution in an unsupervised manner as a one-class

Algorithm 4: Feature Engg. : Time-series
Input: Time-series HPC : PTSsign ∈ RN×K , Time-window

duration : Tlen, Time-window shift : Tshift, Selected
HPCs: Z

Output: Feature Matrix : FTShpc ∈ RD×4Z

Function ComputeSWFeature(HPCNK ,i):
tstart ← (i− 1) ∗ Tshift ;
tend ← tstart + Tlen ;
W ⊂ N & W ∈ [tstart, tend);
−→µi = Mean({HPCjl , j ∈W, l ∈ Z});−→κi = Kurtosis({HPCjl , j ∈W, l ∈ Z});−→τi = Corr.({HPCjl , j ∈W, l ∈ Z});−−−→maxi = max({HPCjl , j ∈W, l ∈ Z});
return [−→µi ,−→σi , −→τi ,−−−→maxi];

FTShpc ← φ;
HPCNK ≡ PTSsign (Algo-2);
Number of time-window segments (D) ← bTM/Tshiftc+1
for i← 1 to D do

FTShpc ← FTShpc
⋃

ComputeSWFeature(HPCNK ,i) ;

return FTShpc.

Algorithm 5: Feature Engineering: Checkpoint

Input: Checkpoint HPC data : PPCsign ∈ R(S∗H)×K , Selected
HPCs: Z

Output: Feature Matrix : FPChpc ∈ R(S∗H)×Z

FPCsign ← φ;
HPCS,HK ≡ PPCsign;
S → Seed inputs obtained to from fuzzing (Algo-3);
H → Checkpoints in Program P (Algo-3);
K → # Number of monitored HPCs (Algo-3);
for seed input i ∈ S do

for checkpoint j ∈ H do
FPChpc ← FPChpc

⋃
HPCi,jZ ;

return FPChpc .

problem. Once the model is trained, it predicts if a given test
point belongs to the trusted distribution or not. We use the one-
class SVM [43] to map the unlabelled data onto the features
space using kernel functions and find the maximum distance
of the data bounded by a hyper-plane from the origin. We use
the Radial Basis Function (RBF) to model non-linear repre-
sentations. Training the model with RBF requires parameter
tuning to generalize the model. The model uses parameters γ
and ν. Increasing γ decreases regularization value and finds
the optimal hyper-plane and ν ∈ (0, 1] controls the trade-
off between penalty of mis-classification and generalization
of parameters. We tune γ and ν separately for time-series and
PC-based features.

1) Time-series: We use time-series features to train a one-
class SVM model for every PQC algorithm (ModelTS). We
use 90% of trusted feature set for training and rest for testing.
During training, we use feature set FTSsign to train each model
with its own hyper-parameters. We use three steps to evaluate
model performance on test dataset.

1) Given a feature set of Xts observation vectors (i.e.,
feature vectors of Xts time-windows), on prediction, they
yield trusted (1) or subverted (-1) labels.

8

2) We temporally aggregate prediction label set (PL). We
define a majority threshold as tts ∈ Xts, divide into
subsets, where each subset has tts prediction labels. The
number of subsets, NP=bXts/ttsc. In every subset, we
aggregate labels as:

∑tts
i=1 Pi, Pi ∈ PL. If this sum is

positive, the prediction label for that subset is assigned
as trusted else subverted.

3) We compute accuracy: (# correctly predicted subsets) /
(# subsets).

We use temporal aggregation with majority threshold to reduce
mis-classification rates. Temporal aggregation enables mitigat-
ing errors caused by mis-predictions of certain time-windows.
The best threshold is selected via experimentation.

2) Program Checkpoints (PC): We use PC as a feature
of the trusted PQC codes, FPChpc and develop ensembles of
one-class SVM models (ModelPC). Our ensemble models
are formed by dividing HPC features into smaller subsets,
and train one-class SVM models on each feature subset.
ModelPC = Ensemble{SVM(FPChpc1−4

), SVM(FPChpc5−8
)}.

We train models on smaller subset of HPCs so that they
learn different behavioral characteristics. We use 66.6% of the
baseline dataset for training. We follow four steps to evaluate
performance on any test dataset.

1) Given a feature matrix containing Xpc observations, on
prediction yields prediction labels (Ph) of length Xpc, as
1 or -1, i.e., trusted or subverted respectively.

2) We perform spatial aggregation on the prediction labels.
We define a majority threshold, tpc ≤ Xpc, where the set
is divided into smaller subsets, such that each subset has
tpc labels. Thus, the number of subsets becomes Nh =
bXpc/tpcc. For every subset, we aggregate the labels as:∑tpc
i=1 Pi, Pi ∈ Ph. If the sum is positive, the prediction

label for that subset is assigned trusted else subverted
obtaining a set of prediction labels of size Nh.

3) We compute accuracy as: (number of truly predicted
subsets) / (number of subsets).

4) We perform three-fold cross validation on the trusted
dataset. We select the seed inputs (Ys) from the set which
performs best during cross validation.

E. Detection
The victim perform spatial and temporal checking by de-

ploying models, ModelTS and ModelPC in his environment.
The victim collect PC-based and time-series based HPC signa-
tures from the untrusted PQC codes using S seed inputs and
the given message. While ModelTS performs dynamic run-
time detection continuously, ModelPC performs a one-time
check by predicting observations using Ys seed inputs.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup
We performed our experiments on NIST Round 3 digi-

tal signature algorithms - Dilithium, Falcon, Rainbow and
SPHINCS+ from the alternative candidate. The experiments
were run on 32-bit ARM Cortex A8 processor running Linux
kernel 4.14 with clock-frequency of 1.5 GHz. We report
detailed breakdown of time consumed at each phase of our
proposed HPC-based detection in Table VIII.

TABLE VIII: Timing complexity of proposed detection

PQC Signatures →
Time Taken(in s) ↓ Dilithium Falcon SPHINCS+ Rainbow

Offline

Fuzz seed
generation 18000 18000 18000 18000

HPC extraction 2.958 20.468 209.210 2.112
Training 4.58 4.64 4.54 4.38

Online
(TS)

HPC extraction 10 20 10 20
Detection 3.7 3.6 3.6 3.7

Online
(PC)

HPC extraction 0.687 4.68 48.4 0.499
Detection 1.2 1.35 0.8 1.34

B. HPC Variations

We collect time-series PTSsign and program checkpoint PPCsign
HPC signatures for six PQC DS codes. We visualize the
variations observed in time-series and program checkpoint
HPC signatures in figures 6 and 7.

1) Time-series: We run the Sign() module of a PQC DS
code in an infinite loop at a sampling frequency of 100KHz
for 1s, to collect PTSsign. We run a lightweight time-series HPC
measurement tool parallel to collection of HPCs. We obtain
time-series features (FTShpc) using a time-window of 1000
samples with an overlap of 100 samples between successive
windows. We set Tshift = 0.001s and Tlen = 0.01s. We
execute trusted and subverted code (PRNG, HASH, SPARAM)
variants for considered PQC algorithms and collect the HPC
signatures. Fig. 6 show variations of HPC signatures between
trusted and subverted PQC executions. HPCs are selected sep-
arately for each trusted PQC code using principal component
analysis (PCA) creating trusted HPC signature. For Dilithium,
L1-ICM and L1-DCA are selected, and Fig. 6 show that
they discriminate the signature of the trusted implementation
from subverted implementation. In Falcon, while trusted code
executions incur large L1-ICM, the subverted implementations
yield lower L1-ICM. So L1-ICM has high distinguishability
power for Falcon. The plots also show that L2-TCM for Falcon
and L1-DCA for SPHINCS+ cannot distinguish trusted from
subverted implementations.

2) Program Checkpoints (PCs): We execute trusted and
subverted PQC implementations with seed inputs obtained by
fuzzing. We generate program checkpoint (PC) based HPC
signatures. We show the Gaussian Kernel Density Estima-
tion (KDE) of pairs of HPCs across a set of checkpoints
(Fig. 7). To reiterate, choice of HPCs is guided by PCA.
We visualize checkpoints where maximum HPC variations
are seen. The plots estimate the probability density of HPC
pairs. This aids kernel selection. For SPHINCS+, KDE plots
for program checkpoints pc1, pc4 and pc7 (Fig. 7j, 7k, 7l)
indicate that data distribution of L1-ICM, L2-DCM, L2-DCA
at those checkpoints are separable by a polynomial kernel. For
Dilithium (Fig. 7a, 7b, 7c), HPC data-distribution of subverted
code executions lies within that of the trusted code execution.
Therefore, an RBF kernel can learn the separability of the data
for training the SVM. These KDE plots aid us select kernel
function of one-class SVM for training our model. Empirical
evaluations deduce that for an RBF kernel γ=0.01-0.0001 and
µ = 0.1-0.4 are parameters for favourable model performance.

9

Fig. 6: Time-series HPC variations of Trusted (Green) and subverted codes (SPARAM (Red), PRNG (Blue), and HASH
(Black)). HPCs are selected and monitored for four PQCs.

Dilithium Rainbow Falcon SPHINCS+

(a) (g)

(c)

(b)

(j)

(h)

(i)

(k)

(l)

(e)

(f)

(d)

Fig. 7: Kernel density estimation plots show correlation between pairs of HPCs for program checkpoints (PCs) in trusted and
subverted (HASH, PRNG, SPARAM) PQC code executions. Dilithium: (a) PC9 (b) PC9 (c) PC10. Rainbow: (d) PC5 (e)

PC2 (f) PC9. Falcon: (g) PC35 (h) PC31 (i) PC18. SPHINCS+: (j) PC1 (k) PC4 (i) PC7.

10

TABLE IX: HPC time-series for different thresholds (t) over
time windows: Positive (Pos), Negative (Neg) predictions
for trusted and SPARAM, PRNG, HASH subverted codes.

Predicted Type
Algorithm Variant tts = 21 tts = 31 tts = 41

Type Pos Neg Pos Neg Pos Neg

Dilithium Trusted 1.0 0.0 1.0 0.0 1.0 0.0
SPARAM 0.02 0.98 0.02 0.98 0.02 0.98

PRNG 0.0 1.0 0 1.0 0 1.0
HASH 0 1.0 0 1.0 0 1.0

Falcon Trusted 1.0 0.0 1.0 0.0 1.0 0.0
SPARAM 0.0 1.0 0.0 1.0 0.0 1.0

PRNG 0.0 1.0 0.0 1.0 0.0 1.0
HASH 0.0 1.0 0.0 1.0 0.0 1.0

SPHINCS+ Trusted 0.79 0.29 0.71 0.29 0.63 0.37
SPARAM 0.0 1.0 0.0 1.0 0.0 1.0

PRNG 0.28 0.72 0.26 0.74 0.27 0.73
HASH 0.21 0.79 0.22 0.78 0.21 0.79

Rainbow Trusted 1.0 0.0 1.0 0.0 1.0 0.0
SPARAM 0.0 1.0 0.0 1.0 0.0 1.0

PRNG 0.0 1.0 0.0 1.0 0.0 1.0
HASH 0.0 1.0 0.0 1.0 0.0 1.0

C. Code Subversion Detection Results

Subversion detection using ModelTS and ModelPC are
shown in Tables IX and X. We evaluate using trusted/subverted
PRNG, HASH, SPARAM HPC datasets. In Tables IX and X,
predicted type column indicates fractions of test data points
predicted as positive (Pos) or negative (Neg). Variant type
column lists the type of code subversion.

1) Time-series: In Table IX, tts is the majority threshold
varied over 21 to 41 time windows. Our models for Falcon
and Rainbow can detect the trusted code and three subverted
codes with 100% accuracy. There is good temporal granularity
amongst the successive time-windows in our data and the
methodology mitigates mis-classification rates caused due to
a few time-window segments. In SPHINCS+, the accuracy of
our model is less than in other algorithms. Since the time-
series HPC variations of the trusted code is closer to that
of subverted codes, the hyper-plane of the model was not
able to distinguish the trusted code from the subverted ones.
The subverted PQC codes are so stealthy that their behavior
closely matches with the trusted code. From the Table, we
select tts=41 to use in the detection phase for authenticating
the integrity of PQC implementation.

2) Program Checkpoints: In Table X, tpc is the majority
threshold varied from 11 to 31 seed inputs. The Table shows
that the PC-based models can identify trusted PQC codes and
three subverted code data sets with 100% accuracy across all
tpc values for Dilithium and Falcon. In Rainbow, the perfor-
mance of the model in identifying trusted and HASH subverted
codes reduces for tpc=11 and 21 seeds. The HASH subverted
code is hidden in a way that these seeds capture baseline-like
behavior. Hence, HPCs do no show a distinguishable variation.
SPHINCS+ plots in Fig 7 show that the mean BR-MSP and
L1-ICA variations of the HASH subversion is similar to that
of the trusted one. tpc=31 is the best choice for use in the
online phase for one-time verification. Our models can detect

TABLE X: Program checkpoints (PCs) with Majority
thresholds (t): Positive (Pos), negative (Neg) predictions for

trusted and SPARAM, PRNG, HASH subverted codes.

Predicted Type
Algorithm Variant tpc = 11 tpc = 21 tpc = 31

Type Pos Neg Pos Neg Pos Neg

Dilithium Trusted 1.0 0.0 1.0 0.0 1.0 0.0
SPARAM 0.0 1.0 0.0 1.0 0.0 1.0

PRNG 0.0 1.0 0.0 1.0 0.0 1.0
HASH 0.0 1.0 0.0 1.0 0.0 1.0

Falcon Trusted 1.0 0.0 1.0 0.0 1.0 0.0
SPARAM 0.27 0.72 0.0 1.0 0.0 1.0

PRNG 0.0 1.0 0.0 1.0 0.0 1.0
HASH 0.0 1.0 0.0 1.0 0.0 1.0

SPHINCS+ Trusted 0.82 0.18 0.84 0.16 1.0 0.0
SPARAM 0.09 0.91 0.0 1.0 0.0 1.0

PRNG 0.0 1.0 0.0 1.0 0.0 1.0
HASH 0.0 1.0 0.0 1.0 0.0 1.0

Rainbow Trusted 0.81 0.19 0.81 0.19 1.0 0.0
SPARAM 0.0 1.0 0.0 1.0 0.0 1.0

PRNG 0.0 1.0 0.0 1.0 0.0 1.0
HASH 0.2 0.8 0.2 0.8 0.33 0.67

a subverted or trusted PQC code with ∼100% accuracy and
∼2% mis-classification.

VII. RELATED WORK

Side-channel attacks: PQC implementations for
resource constrained embedded processors are subject to
implementation-based attacks. By tracing branch instructions
on AVR micro-controllers one can recover the secret key
in the BLISS PQC signature [44]. Power side-channel
attack was performed on Dilithium using an intermediate
value as the side-channel [24]. A single trace is used as a
side-channel on PQC lattice-based encryption schemes to
perform key recovery [25]. Power side-channels on FPGA
implementations of McEliece PQC was shown in [45].
Differential power side-channels were revealed in PQC
XMSS and SPHINCS [46]. Resource-efficient fault attacks
on pqm4 implementations are shown by [26]. These attacks
show that PQC implementations on embedded platforms are
vulnerable to side-channel attacks.

Algorithm subversion attacks: Cryptography implementa-
tions are subject to code subversion attacks creating weaker
signatures. Weaker RSA signature implementations are prone
to fault attacks [6]. Jafarholi et. al., [5] present non-malleable
codes as counter-measures for cryptographic algorithm subver-
sion attacks. Cappos et. al. [47] show that software package
managers are vulnerable to code subversion attacks when
downloaded via untrusted channels. Subverting programs by
accessing the disk memory of a user device is shown in [48].
The FREAK exploit [17] shows that vulnerable SSL applica-
tions producing weaker signatures can be retrieved via man-
in-the-middle attacks over untrusted networks. The POODLE
exploit [18] downgrades the version of TLS similarly.

VIII. CONCLUSION

PQC based digital signatures will be adopted in several
domains replacing classic digital signatures. This work in-

11

vestigates various types of subverted PQC signature imple-
mentations. Algorithm subversion attacks weaken the PQC
signatures and make it vulnerable to attacks revealing secret
information. Thus, securing PQC implementation on resource-
constrained devices is a key requirement to maintain their
integrity. We use Greybox fuzz testing to generate quality
seed inputs to maximize state space coverage of a PQC im-
plementation. These seed inputs aid in capturing unique HPC
signatures and make our ML-based detection model robust
against algorithm subversion attacks. The scheme makes it
difficult for an adversary to hide malicious subversions from
HPC signatures generated using Greybox fuzzed inputs.

REFERENCES

[1] “Debian security advisory: Openssl predictable random number
generator,” May 2008. [Online]. Available: https://www.debian.org/
security/2008/dsa-1571

[2] D. J. Bernstein, T. Lange, and R. Niederhagen, Dual EC: A Standardized
Back Door. Springer Berlin Heidelberg, 2016, pp. 256–281.

[3] A. Young and M. Yung, “The dark side of “black-box” cryptography
or: Should we trust capstone?” in IACR Cryptology Conference, 1996,
pp. 89–103.

[4] M. Bellare, K. G. Paterson, and P. Rogaway, “Security of symmetric
encryption against mass surveillance,” in IACR Cryptology Conference,
J. A. Garay and R. Gennaro, Eds., 2014, pp. 1–19.

[5] Z. Jafargholi and D. Wichs, “Tamper Detection and Continuous Non-
Malleable Codes,” in IACR Conference on Theory of Cryptography,
2015, pp. 451–480.

[6] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the Importance of Elim-
inating Errors in Cryptographic Computations,” Journal of Cryptology,
vol. 14, pp. 101–119, 2001.

[7] Z. Yang, R. Chen, C. Li, L. Qu, and G. Yang, “On the Security of
LWE Cryptosystem against Subversion Attacks,” The Computer Journal,
vol. 63, no. 4, pp. 495–507, 2019.

[8] Z. Yang, T. Xie, and Y. Pan, “Lattice klepto revisited,” in Proceedings
of the 15th ACM Asia Conference on Computer and Communications
Security. Association for Computing Machinery, 2020, p. 867–873.

[9] S. Berndt and M. Liundefinedkiewicz, “Algorithm substitution attacks
from a steganographic perspective,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. New
York, NY, USA: Association for Computing Machinery, 2017, p.
1649–1660.

[10] A. Russell, Q. Tang, M. Yung, and H.-S. Zhou, “Cliptography: Clipping
the power of kleptographic attacks,” in Advances in Cryptology –
ASIACRYPT 2016, J. H. Cheon and T. Takagi, Eds., 2016, pp. 34–64.

[11] G. Ateniese, B. Magri, and D. Venturi, “Subversion-resilient signatures:
Definitions, constructions and applications,” Theoretical Computer Sci-
ence, vol. 820, pp. 91–122, 2020.

[12] C. Malone, M. Zahran, and R. Karri, “Are Hardware Performance
Counters a Cost Effective way for Integrity Checking of Programs,”
in ACM Workshop on Scalable Trusted Computing, 2011, pp. 71–76.

[13] M. Alam, S. Bhattacharya, D. Mukhopadhyay, and S. Bhattacharya,
“Performance Counters to Rescue: A Machine Learning based safeguard
against Micro-architectural Side-Channel-Attacks,” IACR Cryptology
ePrint Archive, pp. 564–590, 2017.

[14] X. Wang and J. Backer, “SIGDROP: Signature-based ROP Detection us-
ing Hardware Performance Counters,” arXiv preprint arXiv:1609.02667,
2016.

[15] P. Krishnamurthy, R. Karri, and F. Khorrami, “Anomaly Detection
in Real-time Multi-Threaded Processes Using Hardware Performance
Counters,” IEEE Transactions on Information Forensics and Security,
vol. 15, pp. 666–680, 2020.

[16] “Heartbleed CVE,” Common Vulnerabilities and Exposures
(CVE), 2014, https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2014-0160.

[17] “Freak CVE,” Common Vulnerabilities and Exposures (CVE), 2014,
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0204.

[18] “Poodle CVE,” Common Vulnerabilities and Exposures (CVE), 2014,
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3566.

[19] B. Schneier, M. Fredrikson, T. Kohno, and T. Ristenpart, “Surreptitiously
weakening cryptographic systems.” IACR Cryptol. ePrint Arch., p. 97,
2015.

[20] Skeller, “Cryptographic algorithm validation program,” Mar
2018. [Online]. Available: https://www.nist.gov/programs-projects/
cryptographic-algorithm-validation-program

[21] NIST, “PQC round 3 submissions,” 2020, https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions.

[22] A. Tang, S. Sethumadhavan, and S. J. Stolfo, “Unsupervised Anomaly-
based Malware Detection using Hardware Features,” in USENIX Work-
shop on Recent Advances in Intrusion Detection, 2014, pp. 109–129.

[23] A. M. Fiskiran and R. B. Lee, “Runtime execution monitoring (REM) to
detect and prevent malicious code execution,” in International Confer-
ence on Computer Design: VLSI in Computers and Processors. IEEE,
2004, pp. 452–457.

[24] P. Ravi, M. P. Jhanwar, J. Howe, A. Chattopadhyay, and S. Bhasin,
“Side-channel Assisted Existential Forgery Attack on Dilithium - a NIST
PQC candidate,” IACR Cryptology ePrint Archive, pp. 821–842, 2018.

[25] R. Primas, P. Pessl, and S. Mangard, “Single-Trace Side-Channel
Attacks on Masked Lattice-Based Encryption,” in IACR Conference on
Cryptographic Hardware and Embedded Systems, 2017, pp. 513–533.

[26] P. Ravi, M. P. Jhanwar, J. Howe, A. Chattopadhyay, and S. Bhasin,
“Exploiting Determinism in Lattice-based Signatures: Practical Fault
Attacks on pqm4 Implementations of NIST candidates,” in ACM Confer-
ence on Asia Computer and Communications Security, 2019, pp. 427–
440.

[27] L. Ducas, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and
D. Stehlé, “CRYSTALS-Dilithium: Digital Signatures from Module
Lattices,” IACR Transactions on Symmetric Cryptology, vol. 2018, pp.
238–268, 2018.

[28] E. Alkim, P. S. Barreto, N. Bindel, P. Longa, and J. E. Ricardini, “The
Lattice-Based Digital Signature Scheme qTESLA,” IACR Cryptology
ePrint Archive, pp. 85–125, 2019.

[29] A. Biryukov, L. Perrin, and A. Udovenko, “The Secret Structure of the
S-Box of Streebog, Kuznechik and Stribob,” IACR Cryptology ePrint
Archive, pp. 812–818, 2015.

[30] L. Perrin, “Partitions in the s-box of streebog and kuznyechik,” Cryptol-
ogy ePrint Archive, Report 2019/092, 2019, https://eprint.iacr.org/2019/
092.

[31] D. J. Bernstein, A. Hülsing, S. Kölbl, R. Niederhagen, J. Rijneveld,
and P. Schwabe, “The SPHINCS+ Signature Framework,” in ACM
Conference on Computer and Communications Security, 2019, pp.
2129–2146.

[32] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov,
“The first collision for full SHA-1,” in IACR Cryptology Conference,
2017, pp. 570–596.

[33] V. Migliore, B. Gérard, M. Tibouchi, and P.-A. Fouque, “Masking
Dilithium,” in International Conference on Applied Cryptography and
Network Security, 2019, pp. 344–362.

[34] Y. Liu, Y. Zhou, S. Sun, T. Wang, and R. Zhang, “On Security of
Fiat-Shamir Signatures over Lattice in the Presence of Randomness
Leakage,” IACR Cryptology ePrint Archive, pp. 715–752, 2019.

[35] T. Yasuda and K. Sakurai, “A Multivariate Encryption Scheme with
Rainbow,” in International Conference on Information and Communi-
cations Security, 2015, pp. 236–251.

[36] M. Sutton, A. Greene, and P. Amini, Fuzzing: Brute Force Vulnerability
Discovery. Pearson Education, 2007.

[37] M. Zalewski, “American Fuzzy Lop,” 2014, http://lcamtuf.coredump.cx/
afl.

[38] J. J. Chilenski and S. P. Miller, “Applicability of modified condi-
tion/decision coverage to software testing,” Software Engineering Jour-
nal, vol. 9, pp. 193–200, 1994.

[39] P. Godefroid, M. Y. Levin, and D. Molnar, “SAGE: Whitebox Fuzzing
for Security Testing,” Queue, vol. 10, pp. 20–27, 2012.

[40] G. Ammons, T. Ball, and J. R. Larus, “Exploiting Hardware Performance
Counters with Flow and Context Sensitive Profiling,” ACM Sigplan
Notices, vol. 32, pp. 85–96, 1997.

[41] M. Böhme, “STADS: Software Testing as Species Discovery,” ACM
Transactions on Software Engineering and Methodology, vol. 27, pp.
1–52, 2018.

[42] G. T. Chetsa, L. Lefèvre, J.-M. Pierson, P. Stolf, and G. Da Costa,
“Exploiting performance counters to predict and improve energy perfor-
mance of HPC systems,” Future Generation Computer Systems, vol. 36,
pp. 287–298, 2014.

[43] B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT press, 2001.

[44] T. Espitau, P.-A. Fouque, B. Gérard, and M. Tibouchi, “Side-Channel
Attacks on BLISS Lattice-Based Signatures: Exploiting Branch Trac-
ing against Strongswan and Electromagnetic Emanations in Micro-

https://www.debian.org/security/2008/dsa-1571
https://www.debian.org/security/2008/dsa-1571
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0204
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3566
https://www.nist.gov/programs-projects/cryptographic-algorithm-validation-program
https://www.nist.gov/programs-projects/cryptographic-algorithm-validation-program
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2019/092
https://eprint.iacr.org/2019/092
http://lcamtuf. coredump. cx/afl
http://lcamtuf. coredump. cx/afl

12

controllers,” in ACM Conference on Computer and Communications
Security, 2017, pp. 1857–1874.

[45] C. Chen, T. Eisenbarth, I. von Maurich, and R. Steinwandt, “Horizontal
and Vertical Side Channel Analysis of a McEliece Cryptosystem,” IEEE
Transactions on Information Forensics and Security, vol. 11, pp. 1093–
1105, 2015.

[46] M. J. Kannwischer, A. Genêt, D. Butin, J. Krämer, and J. Buchmann,
“Differential Power Analysis of XMSS and SPHINCS,” in International
Workshop on Constructive Side-Channel Analysis and Secure Design,
2018, pp. 168–188.

[47] J. Cappos, J. Samuel, S. Baker, and J. H. Hartman, “A Look In
the Mirror: Attacks on Package Managers,” in ACM Conference on
Computer and Communications Security, 2008, pp. 565–574.

[48] A. Tereshkin, “Evil Maid Goes after PGP Whole Disk Encryption,” in
ACM Conference on Security of Information and Networks, 2010, pp.
2–2.

Animesh Basak Chowdhury is a Ph.D. candidate
at the NYU Centre for Cybersecurity, where he
works in the area of machine learning for Electronics
Design Automation and security testing. He received
his MS in Computer Science from Indian Statistical
Institute in 2016. Prior to joining the Ph.D. program,
he spent three years as a researcher at Tata Re-
search Development and Design Centre (TRDDC),
India, where he was primarily working in the area
of formal verification and security testing. He has
won several awards and recognition in International

Software Verification and Testing Competitions (SV-COMP, TEST COMP,
and RERS-Challenge).

Anushree Mahapatra is a research engineer at
Innatera Systems, Netherlands where she primarily
works on electronics design automation problems
of mapping Neural networks directly on hardware.
She worked as post-doctoral researcher for a year
at NYU Tandon School of Engineering in the ar-
eas like High-level synthesis security and Hardware
Performance Counters based security. She received
her Ph.D. from Hong Kong Poly-technique Univer-
sity in 2018 and MS from Nanyang Technological
University in 2013. Her research interests include

High level synthesis, design space exploration, machine learning and SoC
security. Post completion of Ph.D., she spent a year in industry and worked
on recommender systems.

Deepraj Soni is a Ph.D. candidate at the NYU
Tandon School of Engineering, where he works
on hardware implementation, and evaluation and
security of post-quantum cryptographic algorithms.
He received his M.Tech from the Department of
Electrical Engineering at the Indian Institute of
Technology in Bombay (IIT-B). His thesis focused
on developing a framework for a hardware-software
co-simulator and neural network implementation on
an FPGA. After graduation, Deepraj worked as a
design engineer in the semiconductor division of

Samsung and SanDisk. At Samsung, he was responsible for the design
and architecture of image processing IPs, such as region segmentation and
Embedded CODEC. He also had charge of communication IPs, such as
FFT/IFFT, Time & Frequency Deinterleaving and Demapper for canceling
noise. At SanDisk, Deepraj helped in the development of System-On-Chip
(SoC) level design for the memory controller.

Ramesh Karri is a Professor of ECE at
New York University. He co-directs the NYU
Center for Cyber Security (http://cyber.nyu.edu).
He founded the Embedded Systems Challenge
(https://csaw.engineering.nyu.edu/esc), the annual
red team blue team event. He co-founded Trust-
Hub (http://trust-hub.org). Ramesh Karri has a Ph.D.
in Computer Science and Engineering, from the
UC San Diego and a B.E in ECE from Andhra
University. His research and education activities
in hardware cybersecurity include trustworthy ICs;

processors and cyber-physical systems; security-aware computer-aided design,
test, verification, validation, and reliability; nano meets security; hardware
security competitions, benchmarks, and metrics; biochip security; additive
manufacturing security. He published over 250 articles in leading journals
and conference proceedings. Karri’s work on hardware cybersecurity received
best paper nominations (ICCD 2015 and DFTS 2015) and awards (ACM
TODAES 2018, ITC 2014, CCS 2013, DFTS 2013 and VLSI Design 2012).
He received the Humboldt Fellowship and the NSF CAREER Award. He is the
editor-in-chief of ACM JETC and serve(d)s on the editorial boards of IEEE
and ACM Transactions (TIFS, TCAD, TODAES, ESL, D&T, JETC). He was
an IEEE Computer Society Distinguished Visitor (2013-2015). He served on
the Executive Committee of the IEEE/ACM DAC leading the SecurityDAC
initiative (2014-2017). He served as program/general chair of conferences and
serves on program committees. He is a Fellow of the IEEE for leadership and
contributions to Trustworthy Hardware.

