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Abstract— A multiscale simulation method is developed to 

model a quantum dot (QD) array of germanium (Ge) holes for 
quantum computing. Guided by three-dimensional numerical 
quantum device simulations of QD structures, an analytical model 
of the tunnel coupling between the neighboring hole QDs is 
obtained. Two-qubit entangling quantum gate operations and 
quantum circuit characteristics of the QD array processor are 
then modeled. Device analysis of two-qubit Ge hole quantum gates 
demonstrates faster gate speed, smaller process variability, and 
less stringent requirement of feature size, compared to its silicon 
counterpart. The multiscale simulation method allows assessment 
of the quantum processor circuit performance from a bottom-up, 
physics-informed perspective. Application of the simulation 
method to the Ge QD array processor indicates its promising 
potential for preparing high-fidelity ansatz states in quantum 
chemistry simulations. 
 

Index Terms- Quantum computing, Germanium, Hole, 
Quantum dot, Quantum gate, Multiscale simulation  

I. INTRODUCTION 
EMICONDUCTOR materials provide a promising platform for 
the hardware realization of quantum computers. Rapid 

progress on semiconductor-based quantum computers has been 
achieved recently. In particular, two-qubit quantum gates and 
quantum processors with fast operation speed and high fidelity 
have been demonstrated on semiconductors [1][2][3][4][5]. 
While most experimental demonstrations of semiconductor 
quantum computing devices are based on electrons, recent 
experimental demonstrations of hole-based quantum gates and 
processors show attractive performance potentials [6][7][8]. 
For example, a single qubit gate fidelity of 99.9899% has been 
demonstrated for hole spins in germanium (Ge) [9]. In two-
qubit quantum gates based on Ge hole spins,  a fast two-qubit 
gate operation time of <10 ns has been achieved [8]. Compared 
to compound semiconductor materials such as GaAs and InAs, 
silicon (Si) and Ge can remove nuclear spin dephasing through 
isotope engineering. These “quieter” semiconductor material 
systems can help to remove quantum decoherence for achieving 
longer coherence time and higher quantum fidelity. [10], [11] 

Compared to more mature hardware platforms such as 
superconducting and trapped ion quantum computing [12], 
semiconductor-based quantum computing is limited to a 
smaller qubit count. While studies on semiconductor quantum 

computing have mostly focused on single and two-qubit 
systems, a 2 × 2  quantum dot (QD) array with controllable 
interdot coupling has previously been demonstrated on GaAs 
[13]. Recently, a four-qubit quantum processor based on holes 
in the Ge QD array was successfully demonstrated [8]. 
Although it only demonstrated semiconductor quantum 
processors up to 4 qubits,  the pioneering work opened a door 
for scaling up the qubit count of a semiconductor-based 
quantum processor [8]. 

Motivated by these recent experiments and the potential of 
semiconductor QDs for quantum computing in the noisy 
intermediate-scale quantum (NISQ) era [14], it is imperative to 
develop computer-aided simulation and design methods for the 
design of quantum processors based on Ge QD array. While 
top-down approaches have been generally used for quantum 
computing algorithms and circuits, and co-design of quantum 
software and hardware has been reported recently [15], a 
bottom-up approach that encapsulates essential material and 
device physics of quantum circuits has not yet been developed. 
Bottom-up approaches have been shown effective for assessing 
device options in neuromorphic computing systems [16]. In this 
study, a multiscale, bottom-up simulation framework is 
developed to model a quantum processor based on a Ge QD 
array with a SiGe/Ge heterostructure. We summarize our 
contributions as follows: 
(i) For physical technological computer-aided-design 
simulation of quantum gate device based on holes in Ge, a 
three-dimensional numerical device simulation is developed 
and used to parameterize an analytical model for the tunnel 
coupling strength between the neighboring QDs.  
(ii) We assess the performance potential of a two-qubit quantum 
gate based on Ge holes and the results show that it can achieve 
faster gate operation, smaller device-to-device variability, and 
more relaxed the lithographic size requirement compared to that 
based on Si holes. 
(iii) We develop a bottom-up multiscale simulation method that 
allows encapsulating physical properties obtained from 
numerical device simulation into the simulation of quantum 
circuits for Ge-QD-array-based quantum processors.  
(iv) By applying the multiscale simulation method, we show 
that the Ge QD array processor has the potential to achieve high 
fidelity in preparing the ansatz state in the variational quantum 
eigensolver (VQE) algorithm [17].  

In the rest of the paper, some related backgrounds and 
fundamentals of semiconductor quantum computing are 
discussed in Section II. The structure of the Ge-hole-based 
quantum computing device and the corresponding modeling 
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and simulation are discussed in Section III; the simulation 
results of QDs and the QD array for quantum processor are 
presented in Section IV, and the main conclusions are stated in 
the last section.  

 

II. PRELIMINARIES 
In this section, we briefly review some related backgrounds 

and fundamentals of semiconductor-based quantum computing. 
Among various approaches for hardware realization of quantum 
computing, semiconductor-based approach has the advantage 
of advanced nanofabrication, excellent scalability, and 
integratability with integrated circuits. Both nuclear and 
electron spins, hosted by either semiconductor quantum dots or 
defect and dopant centers, have been investigated for realizing 
quantum gates and memory in a variety of semiconductor 
material systems, including GaAs, Si, Ge, wide-bandgap 
semiconductors [11]. 

Compared to compound semiconductor such as GaAs qubits, 
in group IV semiconductors such as silicon and germanium, 
especially in isotopically purified group IV semiconductors, 
where the nuclear spin is nearly zero, spin coherence times can 
be very long due to weak hyperfine coupling, which is ideal for 
quantum information processing and storage. Furthermore, 
silicon and germanium-based quantum computing can harvest 
and leverage the vast infrastructure and success of the silicon 
chip industry, which promises compatibility with CMOS 
technologies, excellent scalability, low fabrication cost, and 
high integration density. On the other hand, compared to more 
mature quantum computing hardware platforms such as 
superconducting quantum computing, the qubit counts of 
semiconductor quantum chips still lag behind, although the 
semiconductor approach has excellent potential for scalability 
[10]. Both electrons and hole spins in semiconductors have 
been actively explored as quantum information carriers. 

Multiscale quantum computer-aided simulation and design can 
be a powerful tool for exploring the understanding the potential 
and limitations, and optimizing hardware designs for 
semiconductor quantum computing. 

 

III. MULTISCALE SIMULATION APPROACH  
A multiscale simulation approach from numerical device 

simulations to small-scale quantum circuit simulations is 
developed to describe the operation of a hole qubit array. We 
make the assumptions that the single qubit gate is ideal, the 
phase-shifting during the pulsing is calibrated [6], and spin-
orbit interaction (SOI) dephasing is neglected. The flowchart of 
the device simulation is shown in Fig. 1 and described in detail 
in the subsections below. The nominal values of the simulation 
parameters used are listed in Table I The multiscale framework 
is developed for Ge-QD-based quantum gate devices and 
circuits. It can be extended to quantum gate devices and circuits 
based on other semiconductor QDs.  

III. A. Modeled Ge Quantum Processor Device Structure 
Figure 2(a) shows a schematic top view of the modeled 2×2 

QD array, in which the QDs are defined by the plunger gates 
(PGs) and the barriers between the QDs are modulated by the 
barrier gates (BGs). In a recent experiment, a QD array based 
on Ge holes has been demonstrated for four-qubit quantum 
processor operations [8]. Figure 2(b) shows the cross-sectional 
view of any pair of neighboring QDs. In the vertical direction, 
a quantum well is formed in the Ge layer due to heterostructure 
confinement. The confinement is along the [100] direction of a 
Ge layer sandwiched by Si0.2Ge0.8 layers. Vertical confinement 
of the heterostructure results in the lift of degeneracy between 
the bulk heavy hole (HH) and light hole (LH) bands as 
schematically shown in Fig. 2(c). The highest valence subband 
derived from the bulk HH band hosts hole spins for quantum 
computing. The schematic subband profile of two neighboring 

 
Fig. 1. Overview of the proposed multiscale simulation method for Ge hole-based quantum gates and quantum circuits. 
 
Table. I. Nominal values of the material and device parameters for simulation. (* marks the hitting parameter.) 

Ge Luttinger 
parameters [25] Device geometry Relative dielectric constant 

[18], [19], [20]  
Magnetic field 

(Zeeman splitting) Charge noise* 

𝛾! 𝛾" 𝛾# Plunger gate Barrier gate 
length 

Ge 
thickness Ge Si0.2Ge0.8 Al2O3 EZ Δ𝐸$	 〈𝛿𝑡%〉 

13.25 4.20 5.56 20 × 20	nm" (𝐿& − 4)	nm 20 nm 16 15.2 9.8 1.0 meV 0.1 meV 0.24 μeV  
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QDs in the in-plane direction is shown in Fig. 2(d). An 
entangling two-qubit quantum gate can be achieved by either 
creating a detuning potential between QDs or by modulating the 
tunnel coupling [21]. The mechanism of tunnel barrier 
modulation allows the device to operate at the symmetrically 
biased points, in which the impact of charge noise can be 
reduced [22], [23]. We, therefore, focus on modeling tunnel 
coupling modulation here. 

III.B. Device Simulation of Hole-Based Quantum Gate  
Finite-element device simulation: The hole QDs for quantum 
computing are formed on the SiGe/Ge/SiGe heterostructure. 
Low energetic hole states can be described by the anisotropic 
Luttinger-Kohn (LK) Hamiltonian approximation [24][25], 
which is used here for computational efficiency. Atomistic 
simulations, which are computationally much more demanding, 
can be useful for describing atomistic scale features of 
interfaces and defects, which are not treated here. To compute 
the subband profile and charge density in the heterostructure, 
we numerically discretize a 4-band LK 𝑘 ∙ 𝑝 Hamiltonian, 𝐻!", 
in the vertical confinement direction [25], which treats HH and 
LH bands as: 

 

𝐻!" = (

𝐻## −𝑆 𝑅 0
−𝑆∗ 𝐻!# 0 𝑅
𝑅∗ 0 𝐻!# 𝑆
0 𝑅∗ 𝑆∗ 𝐻##

-,  (1) 

where 

𝐻## = −
ℏ%𝑘&%

2𝑚'
(𝛾( − 2𝛾%) 

− ℏ!(+"!,+#!)
%.$

(𝛾( + 𝛾%), 

(2) 
𝐻!# = −

ℏ%𝑘&%

2𝑚'
(𝛾( + 2𝛾%) 

− ℏ!(+"!,+#!)
%.$

(𝛾( − 𝛾%), 

𝑅 = − √0ℏ!

%.$
4−𝛾05𝑘1% − 𝑘2%6 + 2𝑖𝛾%𝑘1𝑘28, 

𝑆 = − √0ℏ!

.$
𝛾05𝑘1 − 𝑖𝑘26𝑘&. 

Here, ℏ  is the reduced Planck constant, and the Luttinger 
parameters that characterize the anisotropic mass of the holes 
are 𝛾( = 13.25, 𝛾% = 4.20, 𝛾0 = 5.56  for Ge, and 	𝛾( =
4.26, 𝛾% = 0.34, 𝛾0 = 1.45 for Si [25]. The interface valence 
band discontinuity is 𝛥𝐸3 ≈ 0.3 eV for a Si1-xGex/Ge/Si1-xGex 
heterostructure, which corresponds to x ≈ 0.8. The LK 
Hamiltonian can be discretized along the z direction to compute 
the heterostructure charge distribution and subbands of the 
quantum well. The heavy hole bands behave like a spin-3/2 
system, i.e., 𝑗& = 𝑚 + 𝑠& = ± 0

%
, where the total z component 

singular momentum 𝑗& is the sum of the orbital component m 
and spin component 𝑠&.  

Strain in the Si1-xGex/Ge/Si1-xGex structure induces a Bir-
Pikus (BP) Hamiltonian term H45 , which results in a total 
Hamiltonian of 𝐻 = 𝐻!" +𝐻67. The BP Hamiltonian can be 
approximated as adding additional diagonal terms to the 
corresponding HH and LH terms in (2), with [26] 

 𝐻##,9 = −𝑎:(𝜖11 + 𝜖22 + 𝜖&&), (3) 
 𝐻!#,9 = − ;%

%
(𝜖11 + 𝜖22 − 2𝜖&&), (4) 

where 𝑎: ≈ 2.0  eV and 𝑏: = −2.3  eV. By taking the strain 
values of 𝜖11 = 𝜖22 ≈ −0.006  and 𝜖&& ≈ 0.0042  [26], the 
major effect of the BP Hamiltonian is to change the HH-LH 
energy split by a constant of ~40 meV. 

To simulate the quantum gate device shown in Fig. 2(b), 
numerical device simulations are first performed by solving a 
3-D Poisson equation with the Schrödinger equation by using 
the finite element method (FEM). The FEM 3-D Poisson solver 
is discretized by using a prism lattice for the device [27]. The 
Schrödinger equation is solved by discretizing the LK 
Hamiltonian for holes in the finite element grid. A mode space 
approach, which first computes the vertical confinement modes 
and uses the mode space as the basis in the vertical direction 
with the discretization of the Hamiltonian in real space for the 
horizontal space, is used to expedite the solution of the 
Schrödinger equation [28][29]. The single-particle wave 
equation and eigen-energies obtained from the FEM 
Schrödinger-Poisson device simulation can be subsequently 
used to parameterize the tunnel coupling and on-site Coulomb 
repulsion terms in the quantum gate Hamiltonian as described 
below. 
Quantum gate Hamiltonian and parameter extraction from 
device simulation: The Hamiltonian of an entangling quantum 
gate between two neighboring QDs, as shown in Figs. 2(b) and 
(d), can be described as follows in the basis set of the HH states 
{|↑↑⟩, |↑↓⟩,|↓↑⟩, |↓↓⟩,	S%', S'%} [30], 

𝐻! =

⎣
⎢
⎢
⎢
⎢
⎡
𝐸" 2⁄ 0 0 0 0 0
0 𝛥𝐸" 2⁄ 0 0 𝑡# 𝑡#
0 0 −𝛥𝐸" 2⁄ 0 −𝑡# −𝑡#
0 0 0 −𝐸" 2⁄ 0 0
0 𝑡# −𝑡# 0 𝑈$ − 𝜖 0
0 𝑡# −𝑡# 0 0 𝑈% + 𝜖⎦

⎥
⎥
⎥
⎥
⎤

, (5) 

where S%'  (S'%)  are doubly occupied singlet states on QD1 
(QD2), the Zeeman splits are 𝐸& ≈ 𝜇6(𝑔(𝐵( + 𝑔%𝐵%), 𝛥𝐸& ≈
𝜇6(𝑔(𝐵( − 𝑔%𝐵%), in which µ4 is the Bohr magneton, 𝐵(,% are 
the static magnetic fields and  𝑔(,% are the effective Ge HH g-
factors [31] of the QDs 1 and 2 respectively, 𝑡< is the tunnel 
coupling, 𝑈(,%  is the on-site Coulomb interaction, 𝜖 =

  

  
Fig. 2. (a) Schematic layout of a 2 × 2 QD array for a quantum 
processor. PGi is the ith plunger gate, and BGi is the ith barrier gate. 
(b) The schematic cross section between 2 neighboring QDs cut at 
the dashed line in (a). (c) Schematic bulk hole band structure with 
HH, LH, and split-off hole (SH) bands. (d) Along x direction, the 
plunger gates are two hole QDs, and the barrier gate modulates the 
tunnel barrier between QDs. 
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−𝑞(𝑉7=( − 𝑉7=%), where q is the elementary electron charge, is 
the detuning energy controlled by the applied detuning voltage, 
which is set to ϵ = 0 for the symmetrically biased point.  

To understand the quantum gate operation on the 
computational basis, the Hamiltonian can be projected to the 
computational basis of {|↑↑⟩, |↑↓⟩, |↓↑⟩, |↓↓⟩}  by using the 
Schrieffer-Wolff transformation. The effective Hamiltonian 
can be expressed as [30],   

 𝐻>?? ≈ 𝜇65𝑔(𝐵(𝑠(,@ + 𝑔%𝐵%𝑠%,@6 + 𝐽 ^𝒔𝟏 ∙ 𝒔𝟐 −
1
4` 

 
≈

⎣
⎢
⎢
⎡
𝐸" 2⁄ 0 0 0
0 𝛥𝐸" 2⁄ − 𝐽/2 𝐽/2 0
0 𝐽/2 −𝛥𝐸" 2 − 𝐽/2⁄ 0
0 0 0 −𝐸" 2⁄ ⎦

⎥
⎥
⎤
 (6) 

where 𝑠(,%  are the spin-1/2 operator on QD1 (QD2), the 
subscript z denotes its z component, and the exchange 
interaction can be expressed as, 

 𝐽 ≈ %C&!(D',D!)
(D'E9)(D!,9)

. (7) 
In the adiabatic approximation, the off-diagonal terms of HFGG 

renormalize the states of {|↑↓⟩, |↓↑⟩}	 to a new basis set 
{|↑↓⟩a , |↓↑⟩}b . By modulating the exchange J through controlling 
the tunnel barrier height, and thereby, the tunnel coupling, the 
energy shift −𝐽/2 of {|↑↓⟩a 	, |↓↑⟩a } with regard to {|↑↑⟩, |↓↓⟩} 
can be used to create two-qubit quantum gates. [8] The 
operation difference between the controlled-phase and 
controlled-Z (CZ) quantum gates is only single qubit operations 
[8], [21]. At the symmetrically biased case, i.e., 𝜖 = 0 , 
modulation of exchange is achieved through modulation of the 
tunnel coupling by the barrier gate voltage. It is important to 
model the dependence of the tunnel coupling on the barrier gate 
voltage accurately.  

The value of the tunnel coupling between the QDs can be 
simulated numerically from the energy levels obtained by using 
the FEM device simulations described earlier. For the 
symmetric double quantum dot (DQD) structure, the lowest 
eigen-energy state is a binding state with energy E4 and the 2nd 
lowest energy state is an anti-binding state with energy EH4. 
[32] The tunnel coupling matrix element can be expressed as 
tI ≈ gh𝜓((𝑟)g𝐻l(𝑟)g𝜓%(𝑟)mg , where ψ((%)  is the ground-state 
wave function of QD1 (QD2) and Hl is the Hamiltonian of the 
DQD system. In the weak tunneling regime, ⟨𝜓(|𝜓%⟩ ≪ 1, the 
binding state wave function is 𝜙6 ≈

(
√%
(𝜓( +𝜓%), and the anti-

binding state wave function is 𝜙J6 ≈
(
√%
(𝜓( −𝜓%). The energy 

difference between the anti-binding state and the binding state 
is |𝐸J6 − 𝐸6| ≈ gh𝜙J6g𝐻lg𝜙J6m − h𝜙6g𝐻lg𝜙6mg ≈ 2𝑡< . The 
tunnel coupling can be computed by numerically simulated EH4 
and 𝐸6, 

 𝑡< = |𝐸J6 − 𝐸6|/2, (8) 
. The on-site Coulomb interaction is calculated by numerical 
integration as:  

 𝑈 = K!

LM9$9(
∫𝑑𝑟(𝑑𝑟%

|O(P⃗')|!|O(P⃗!)|!

|P⃗'EP⃗!|
, (9) 

where ϵ' and ϵR are the vacuum and relative dielectric constant, 
respectively, and 𝜓(𝑟) is the QD wave function when one dot 
is occupied.  

III.C. Modeling of Dephasing Noise and Quantum Gate 
Dynamics 
Charge noise modeling: At the symmetrically biased point, the 
tunnel noise is dominant over the detuning noise, which is 
modeled in [33]. The tunnel noise Hamiltonian in the basis of 
{|↑↓⟩, |↓↑⟩, 𝑆%', 𝑆'%} can be expressed as [34], 

 
𝐻& = 8

0 0 1 1
0 0 −1 −1
1 −1 0 0
1 −1 0 0

:𝛿𝑡#,  (10) 

where 𝛿𝑡<  is the stochastic fluctuation of the tunnel coupling 
due to charge noise. 𝛿𝑡<  is assumed to follow a Gaussian 
distribution with a mean value of 0 and the standard deviation 
of 𝐴S , which characterizes the noise amplitude. In the time 
domain, the noise is assumed to obey the stochastic time 
dynamics of random telegraph noise [35], with a characteristic 
time of 𝜏S. Due to the small size of the QD, only a single or 
small number of two-level fluctuators are expected for each 
qubit [22]. Furthermore, the characteristic time of the charge 
traps is much longer than the quantum gate time of nanoseconds, 
and the charge noise spectrum density is dominantly in the low-
frequency range [36]. The results are insensitive to the exact 
noise spectral distribution.  
Noise due to nuclear spin and spin-orbit interaction: In this 
study, hole spin dephasing due to nuclear spin is assumed to be 
neglected, because the nuclear spin noise in Ge can be removed 
by using isotopically purified Ge. 

For Ge hole spin qubits, all-electric-control of single-qubit 
gates can be achieved based on electric dipole spin resonance 
(EDSR) [37]. Despite noise due to spin-orbit interaction, single 
qubit gates with very high fidelity values have been 
demonstrated [9]. In this work, we focus on two-qubit quantum 
gates, where charge noise is dominant and whose fidelity is 
limiting the overall quantum circuit performance, and neglect 
noise of single-qubit gates. 

Quantum gate dynamics and performance assessment: A 
quantum trajectories method (QTM) is used to simulate the 
time-evolution of quantum gates and quantum circuits in the 
presence of noise. The quantum gate operator is calculated by 
exponentiating the time integral of the Hamiltonian, averaged 
over the stochastic realizations of quantum trajectories in 
Monte-Carlo sampling of the charge noise Hamiltonian [23] 
[38]. Compared to directly solving the master equation, QTM 
reduces the computation of evolution of 𝑂(𝑁%) density matrix 
elements to simpler Monte Carlo simulation of 𝑂(𝑁) quantum 
state space, which helps to improve the time efficiency of 
simulation. Furthermore, the QTM method treats non-
Markovian evolution of the open-quantum system [38]. The 
method is applied to simulate quantum dynamic properties of 
both the two-qubit quantum gates and quantum processor 
circuits consisting of multiple qubits as described in detail 
below in Section III.D. The quantum gate time is measured for 
the CZ quantum gate, with the phase of the target qubit rotated 
by 𝜋.  

III.D. Simulation of QD Array Processor 
To model the implementation of a quantum algorithm on a 

quantum circuit based on Ge QD array, we straightforwardly 
evolve the many-body wave function in the 2T -dimensional 
Fock space by cascading one-qubit and two-qubit quantum 
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gates. A single qubit fidelity of 99.9899% has been 
demonstrated for Ge hole spins[9]. Because of significantly 
higher fidelity and faster gate operation compared to the two-
qubit entangling gate operations, the single-qubit quantum 
gates are not the limiting factor of the quantum circuit fidelity. 
The single-qubit operations are assumed to be ideal. For each 
two-qubit gate operation, the charge noise model described in 
(10) is used. The result, therefore, represents the upper limit of 
the quantum circuit fidelity limited by charge-noise of the two-
qubit quantum gate operations. 

To model dephasing and noise in preparing a quantum state 
by using a quantum processor, the QTM is used to 
stochastically evolve the many-body initial quantum state of 
multiple qubits through Monte Carlo sampling of quantum 
trajectories [38]. The stochastic Schrödinger equations in the 
presence of stochastic noise are solved to determine time-
dependent evolution of quantum states (quantum trajectories),  

 𝜓S,+(𝑡) = 𝑒𝑥𝑝 ^−
𝑖
ℏ 5𝐻' +𝐻S,+6𝑡`𝜓', 

(11) 

where ψ' is the initial wave state and HU,V is the kth Monte-
Carlo realization of the noise Hamiltonian. The method allows 
the system to be modeled by Monte Carlo simulations of 
quantum wave states instead of handling a matrix equation [38]. 
The physical quantities of interest can be obtained from 
expectation values of Monte Carlo samples of the quantum 
trajectories. The fidelity of preparing the quantum state is 
assessed as:  

 ℱ = h𝜓?,WX>YZg𝜌?,Sg𝜓?,WX>YZm, (12) 
where ψG,[\F]^ is the ideal wave function, and the noisy density 
matrix 𝜌?,S = |𝜓?,Smh𝜓?,S|��������������� 𝜓?,S is the noisy wave function of 
the final state, and the average is over quantum trajectories.  

III.E. Limitations of the Multiscale Simulation Method for Ge-
QD Quantum Processor 

The multiscale simulation method provides a framework to 
evaluate Ge-based quantum processors with essential material 
and device physics encapsulated into quantum circuit 
simulations. The capability is especially important for physical 
designs of the quantum processor. It, however, still has the 
following limitations: 
(i) Although the multiscale approach already significantly 
reduced computational cost for bottom-up quantum circuit 
simulations, the simulation is performed in a classical computer, 
which limits the simulation to a quantum processor with a 
relatively small number of qubit counts.  

(ii) The coupling between the quantum dots in the circuit is 
limited to nearest neighbors. The nearest neighbor coupling is 
what was used in state-of-the-art experiments to demonstrate 
simple algorithms [8]. 

Limitation (i) is imposed by the fact that the computational 
cost to simulate an entangled state on a classical computer 
exponentially grows as the qubit counts increase. For limitation 
(ii), an interconnection scheme such as exchange-based 
quantum state transfer only requires nearest neighbor coupling 
[39]. A resonator-based interconnecting scheme for remote 
coupling of semiconductor-based qubits has also been 
experimentally explored [40]. Future studies are needed to 
systematically study and model these quantum interconnection 
schemes. State-of-the-art experimental demonstrations of 
semiconductor-QD-based processors have been limited to four 
qubits with nearest neighbor coupling. Considering the 
limitations, the multiscale simulation method is intended for 
early physical design and exploration of semiconductor-QD 
based processors to discuss device impacts on small-scale 
quantum processor characteristics and performance limits by 
quantum hardware engineering. 

IV. RESULTS FROM MULTISCALE SIMULATIONS OF GE-QD-
BASED QUANTUM PROCESSORS 

IV.A. Heterostructure Simulation for In-Plane Effective Mass  
The tunnel coupling between neighboring quantum dots is 

strongly dependent on the tunneling effective mass. We first 
examine the horizontal in-plane E-k relation. Figure 3(a) and 
(b) show the E-k relation of the highest-HH and LH subbands 
along the in-plane [100] direction. The large subband spacing 
of the Ge layer is beneficial for suppressing of decoherence of 
HH spins due to SOI [37]. The extracted in-plane effective mass 
of HHs is lighter than that of the LHs, which is referred as mass 
reversal. Figure 3(b) plots the in-plane effective mass values for 
Ge and Si structures. The results show that the in-plane 
effective mass is approximately independent of the in-plane 
direction. Furthermore, the very light effective mass of Ge, 
𝑚||,=>
∗ ≈ 0.058 , is nearly 4 times smaller than that of Si, 

𝑚||,_W
∗ ≈ 0.24. In addition, we also vary the semiconductor layer 

thickness between 5 nm and 20 nm, and the extracted in-plane 
effective mass values remains approximately the same.  The 
much smaller effective mass can significantly enhance the 
tunneling coupling and quantum entanglement between 
neighboring spins of the DQD structure for two-qubit quantum 
gates, as discussed below. 

IV. B. Two-qubit Quantum Gate Simulation and Model 
Parameter Extraction 

In a 2D array structure for the QD-based quantum processor 
as shown in Fig. 2(a), two-qubit quantum gate operations can 
be realized between any pairs of neighboring QDs, whose cross 
section is shown in Fig. 2(b). Figure 4(a) shows the simulated 
HH subband profile along the DQD direction (x-direction in 
Fig. 2(b)). The horizontal dashed line shows the simulated 
ground state of the DQD structure. The corresponding wave 
function is shown in Fig. 4(b), which is a symmetric binding 
state between two QDs. The wave function of the next state is 
shown in Fig. 4(c), which is an anti-binding state. The behavior 

Fig. 3. (a) The simulated in-plane E-k relation (solid lines) of the HH 
and LH subbands for the Si1-xGex/Ge/ Si1-xGex heterostructure. The 
dashed lines show parabolic fitting to extract the in-plane effective 
mass values. (b) The extracted in-plane effective mass vs. crystal 
direction of Ge, compared to Si, where 𝜃 is the angle to the horizontal 
[100] crystal direction. The Ge or Si layer thickness is 20 nm. 

(a) (b)
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resembles an H2 molecule, and the tunnel coupling determines 
the energy spacing between the biding and anti-binding states.  

Electrostatic gate modulation of the tunnel coupling plays a 
central role in two-qubit quantum gates. We next examine its 
dependence on the barrier gate voltage and DQD spacing. The 
symbols in Fig. 4(d) show the simulated tunnel coupling vs. the 
dot spacing L`  shown in Fig. 2(b), at different barrier gate 
voltages. We focus on the gate voltage choice and DQD designs 
that produce a tunnel coupling value tI  around the range of 
~1	µeV  to ~100	µeV . Furthermore, the applied barrier gate 
voltage range shall not produce an excessively low barrier so 
that the two QDs are not well confined. The exponential 
sensitivity of the tunnel coupling to the DQD spacing and 
applied voltage is a signature of quantum tunneling behavior.  

To enable efficient simulations of quantum processor, the 
above numerical simulation of tunneling coupling between 
neighboring QDs in the processor is parameterized to a physics-
based analytical model. The tunnel coupling can be described 
by an analytical model from the WKB approximation, which is 
shown by the lines in Fig. 4(d). In the model, the tunnel 
coupling can be approximated as [41], 

 𝑡< = 𝑡'𝑒𝑥𝑝	(−
a%.∗b*

ℏ
𝐿c),  (13) 

where t' is a tunnel coupling parameter independent of Ed and 
Le but dependent on the material such as Si or Ge, m∗ is the in-
plane effective mass, and the barrier height is 

 𝐸; = 𝐸;' − 𝛽𝑞𝑉6=, (14) 
where β is the gating efficiency factor of the barrier gate, Ed' is 
the barrier height constant, and V4f is the barrier gate voltage. 
The model is fitted to the numerical simulation results in Fig. 
4(d) with the fitting values of 𝛽 = 0.5, 𝐸;' = 40 meV, and 
𝑡' = 12 meV and 𝑡' = 2 meV for Ge and Si, respectively. 

Figure 5 plots the exchange interaction vs. the magnitude 
of the barrier gate voltage, compared between Ge hole two-
qubit gates with different DQD spacing and a silicon two-qubit 
gate. The barrier gate effectively modulates the tunnel coupling, 
leading to an average inverse slope of ~20 mV/dec modulation 

of the tunnel coupling for Ge at a DQD spacing of 𝐿c = 30	nm. 
The slope is even steeper as Le increases, which also leads to a 
decrease of the exchange interaction. Benefiting from the 
smaller hole effective mass, Ge achieves a similar switching 
behavior compared to a silicon hole-based quantum gate with 
significantly shorter DQD spacing, which is illustrated by the 
case of 𝐿c = 40	nm for Ge compared to 𝐿c = 16	nm for Si as 
shown in Fig. 5, with a slightly steeper switching slope. 

We next quantify the improvement of the two-qubit quantum 
gate speed of Ge holes, benefiting from the small hole effective 
mass and enhanced tunnel coupling. Figure 6(a) shows the 
quantum gate time Tgh  as a function of the device size. To 
achieve a fast, sub-10 ns CZ gate time, a DQD spacing of 𝐿c <
37	nm is needed for Ge holes. However, the requirement is 
𝐿c < 13	nm for Si holes, which is nearly 3 times more stringent. 
The comparison is done at a similar barrier height between 
DQDs. The gate time is sensitive to the exchange coupling 
determined by the tunnel coupling strength. The smaller 
effective mass of Ge holes facilitates tunnel coupling for faster 
gate operations. The lithographic feature size requirement is 
much less stringent in the Ge system. 

To scale up the qubit count in an integrated quantum system, 
device-to-device variabilities impose significant challenges. 
Semiconductor fabrication process variability can result in 
variations in the QD spacing. The effect can be especially 
important for QD-based quantum processors because the tunnel 

Fig. 6. Quantum gate speed and variability: (a) the gate time vs. the 
DQD spacing 𝐿' for Ge- and Si-hole-based CZ gates. The magnitude 
of the applied barrier gate voltage is fixed at |𝑉()| = 40 mV. (b) 
Histogram distribution of the normalized CZ gate time for Ge hole, 
compared to (c) Si hole, with the DQD spacing 𝐿' variations, which 
has a Gaussian distribution with a standard deviation of 0.5 nm. The 
distribution of the normalized gate time is insensitive to the exact 
value of 	𝐿' . The normalized standard deviation values are 𝛿𝑇*+/
𝑇*+! =0.087 and 0.173 for Ge and Si holes, respectively, where 𝑇*+! 
is the nominal value of the gate time without variation. 

(a) (b)

(c)

Fig. 4. (a) The valence subband profile along x for the two-qubit hole 
quantum gate as shown in Fig. 2(b), where 𝐿' = 40 nm and |𝑉()| = 40 
mV. The Si0.2Ge0.8 top layer thickness is 10 nm. The simulated wave 
function of (b) binding state and (c) anti-binding state. (d) Tunnel 
coupling vs. the DQD spacing at different barrier gate voltage 
magnitudes of |𝑉()| = 0, 20, 40	mV. The lines show the analytical 
model, and the dots show the numerical simulation results. 

(a) (b)

(c) (d)

 
Fig. 5. Exchange interaction 𝐽  vs. the barrier gate voltage 
magnitude for the Ge hole gate with a DQD spacing of 𝐿, =
30	nm(blue solid curve) and 40	nm (green dash curve) and a Si 
hole gate with 𝐿' = 16	nm (red dash-dot curve). 
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coupling, which determines the strength of entanglement 
between neighboring dots, is exponentially sensitive to the QD 
spacing. To explore the device variability, Monte-Carlo 
simulations are performed to sample a Gaussian distribution of 
the DQD spacing, and the simulated distributions of the 
normalized CZ gate time of Ge and Si are shown in Figs. 6(b) 
and (c). The results can be understood by differentiating (13), 

 (
C&
�XC&
X!+
� = a%.∗b*

ℏ
, (15) 

which indicates that the normalized sensitivity of 𝑡<  to 𝐿c  is 
proportional to √𝑚∗. The smaller effective mass of Ge holes 
results in reduced process-induced device-to-device variability.  

Quantum dynamic characteristics of the two-qubit Ge hole 
quantum gate in the presence of charge noise are investigated 
next. We simulate the exchange oscillations in the two-qubit 
CPHASE gate by using the QTM, as shown in Fig. 7(a). The 
modeled Ge device structure has a DQD spacing of 𝐿c = 35 nm 
and a plunger gate size of 20 × 20  nm2, which results in a 
tunnel coupling of 𝑡< ≈ 28.4	µeV	 and on-site Coulomb 
interaction of 𝑈( ≈ 𝑈% ≈ 11  meV. The QTM simulation 
results, as shown in Fig. 7(b), capture non-Markovian dynamics 
of exchange oscillation, in which the envelope of oscillation fits 
to 𝑒𝑥𝑝	(−(𝑡/𝜏)%). The expression is a Kohlrausch-Williams-
Watts (KWW) function with an exponential component 𝛾 = 2, 
which takes the non-Markovian feature of the Rabi oscillation 
decay into consideration and is previously used to extract spin 
dephasing time from experimental data [42]. Furthermore, by 
comparing to the experimental data from [8], the 
phenomenological charge noise magnitude can be extracted as 
〈𝛿𝑡<〉 ≈ 0.24	µeV, which results in a decay time of 𝜏 ≈ 180 ns. 
The long decay time compared to the CZ gate time promises 
high gate fidelity. 

IV.C. Model Ge QD array for Quantum Processor  
A recent experiment has demonstrated the generation of a 

four-qubit entangling Greenberger−Horne−Zeilinger (GHZ) 
state on a 2×2 QD array processor [8]. In a QD array processor, 
a universal set of quantum gates for quantum computing can be 
realized by two-qubit gates discussed above together with one-
qubit rotational gates. Quantum chemistry simulation of a small 
molecule can provide a concrete context to explore and assess 
the potential practical applications of the QD array processor as 
a noisy intermediate-scale quantum (NISQ) hardware [17][43]. 

We next explore the design of a QD array processor for the 
VQE algorithm, which is a widely used algorithm in quantum 
chemistry [17][43]. A key challenge for quantum chemistry 
simulation is to achieve chemical accuracy, for which high 
fidelity of preparing the ansatz state is indispensable. As an 
example of VQE simulation, six qubits are sufficient for 
preparing the ansatz state for simulating the BeH2 molecule, 
with a quantum circuit as shown in Fig. 8(a) [17][44]. The 
subcircuit in the dashed line box needs to be repeated in cascade 
for N times to provide flexibility of parameterizing the ansatz 
state. This ansatz circuit can be efficiently implemented with a 
2×3 QD array, whose schematic top view is shown in Fig. 8(b). 
The six qubits in the quantum circuit in Fig. 8(a) reside in the 
QDs defined by PG1 to PG6 in order. For each CZ gate, it only 
involves two nearest neighbors in the QD array as shown in 
Table. I, which can be achieved by modulating the barrier gate 
between the pair of QDs. The designed QD array, therefore, can 
provide an efficient platform for preparing the ansatz state in 
VQE simulation of a small molecule.  

To assess the fidelity for preparing the ansatz state, we 
simulate the quantum circuit by considering the decoherence 
stemming from each two-qubit quantum gate operation, by 
using the CZ gate device and noise parameters extracted in Fig. 
8. The assessment, therefore, represents the upper limit due to 
the charge noise in each two-quantum gate operation. For the 
VQE circuit parameters used to prepare the ansatz state of BeH2, 
we simulate the fidelity of preparing the quantum ansatz state 
as a function of the number of cascade stages N, as shown in 
Fig. 8(c). The results show the potential to achieve an ansatz 
state preparation fidelity of 𝐹 > 0.99  when the circuit is 
shallow with 𝑁 = 1. To achieve better flexibility of the ansatz 
state, a larger value of N is often required, which results in a 
deeper quantum circuit with decreased fidelity. Even with the 
circuit cascade depth increasing to 𝑁 = 6, the prepared ansatz 
state fidelity is 𝐹 > 0.96. The high fidelity is due to the fast, 
sub-10 ns CZ gate operation compared to the quantum 

Fig. 7. (a) Quantum circuit diagram for simulating exchange 
oscillation in (b). The controlled phase gate 𝑍(𝑡) is realized by the 
DQD device structure and simulated using the QTM as described in 
text. (b) The simulated exchange oscillation (solid line) compared to 
the experimental data of the exchange oscillation envelope extracted 
from Ref. [8] (symbols). The dashed line is an envelope function of 
𝑝-. = exp	(−(𝑡/𝜏)%)  fitted to the simulated oscillation with 𝜏 =
180	𝑛𝑠. 𝑝-. is the spin up probability. 

(a) (b)

Fig. 8. (a) Quantum circuit for preparing a VQE ansatz state in 
simulation a BeH2 molecule. The subcircuit in the cashed box can 
be repeated in cascade for 𝑁 ≥ 1 times. (b) Design of a six-qubit 
quantum processor of a 2D QD array for efficiently implementing 
the quantum circuit in (a). (c) The fidelity of preparing the ansatz 
state vs. the number of repeating stages N as denoted in (a). 
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decoherence time. Furthermore, the non-Markovian dynamics 
results in a slower initial decay of ~𝑒𝑥𝑝	(−(𝑡/𝜏	)%) for fidelity, 
compared to the simple Markovian exponential decay of 
~𝑒𝑥𝑝	(−𝑡/𝜏i). The results indicate the potential of Ge-hole-
based QD array processors in implementing the VQE algorithm 
for quantum chemistry simulations. 

V. CONCLUSIONS 
A multiscale simulation method is developed to model and 

assess the Ge-hole-based QD array for quantum processor. The 
multiscale process takes a bottom-up approach, which allows 
essential device physics to be incorporated in the assessment of 
quantum circuit performance for a Ge-QD-based quantum 
processor. The results show that the Ge hole array provides a 
promising semiconductor platform to enhance entanglement 
between neighboring QDs for two-qubit quantum gate noise. 
Furthermore, a two-qubit quantum gate based on holes in Ge 
can achieve fast gate speed, and smaller device variability 
compared to its Si counterpart. To efficiently simulate the QD 
array for implementing a quantum circuit in the quantum 
processor, a simple analytical model is extracted from 
numerical quantum device simulations to describe the 
dependence of the tunnel coupling on the applied gate voltage 
and device size. Design and multiscale simulation of the Ge QD 
array processor shows its potential to achieve high fidelity in 
preparing the ansatz state of quantum chemistry simulations 
based on VQE. The bottom-up, multiscale method developed 
here can allow physical design and assessment of 
semiconductor-QD-based quantum processors from physical 
properties of quantum gate devices and their underlying 
material properties. 
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