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Abstract— Flow cell arrays (FCAs) concurrently provide
efficient on-chip liquid cooling and electrochemical power gen-
eration. This technology is especially promising for three-
dimensional multi-processor systems-on-chip (3D MPSoCs) real-
ized in deeply scaled technologies, which present very challenging
power and thermal requirements. Indeed, FCAs effectively im-
prove power delivery network (PDN) performance, particularly
if switched capacitor (SC) converters are employed to decouple
the flow cells and the systems-on-chip voltages, allowing each to
operate at their optimal point. Nonetheless, the design of FCA-
based solutions entails non-obvious considerations and trade-offs,
stemming from their dual role in governing both the thermal and
power delivery characteristics of 3D MPSoCs. Showcasing them
in this paper, we explore multiple FCA design configurations and
demonstrate that this technology can decrease the temperature
of a heterogeneous 3D MPSoC by 78°C, and its total power
consumption by 46 %, compared to a high-performance cold-plate
based liquid cooling solution. At the same time, FCAs enable up
to 90% voltage drop recovery across dies, using SC converters
occupying a small fraction of the chip area. Such outcomes pro-
vide an opportunity to boost 3D MPSoC computing performance
by increasing the operating frequency of dies. Leveraging these
results, we introduce a novel temperature and voltage-aware
model predictive control (MPC) strategy that optimizes power
efficiency during run-time. We achieve application-wide speed-
ups of up to 16% on various machine learning (ML), data mining,
and other high-performance benchmarks while keeping the 3D
MPSoC temperature below 83°C and voltage drops below 5%.

Index Terms—3D MPSoC Management, Flow Cell Arrays,
On-Chip Liquid Cooling, On-Chip Power Generation, Online
Frequency Optimization, Model Predictive Control.

I. INTRODUCTION

State of the art artificial intelligence (AI) and Big Data
applications demand high performance, spurring a renewed
interest in complex heterogeneous platforms combining di-
verse memory and computing elements (e.g., CPUs, GPUs).
Additionally, wide communication channels are required to
alleviate the gap between processing and data access speed.
In this context, three-dimensional multi-processor systems-on-
ship (3D MPSoCs) enable high-density computing and pro-
vide ultra-wide communication bandwidth [1]. However, 3D
stacking exacerbates heat dissipation challenges. Indeed, 3D
MPSoC temperatures are difficult to control using traditional
cooling techniques, given the low thermal conductivity of
bonding materials [2]. In addition, 3D integration complicates
power delivery due to the resistive losses in through-silicon-
vias (TSVs) and metal wires. Moreover, the large amount of
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Fig. 1: Design-Time and Run-Time 3D MPSoC Management

power TSVs distributing voltage supplies complicates routing
[3], thus making 3D MPSoC physical design more difficult.
Flow cell array (FCA) technology, introduced in [4], ad-
dresses the aforementioned 3D MPSoC challenges. FCAs
consist of micro-fluidic channels that are etched in the silicon
substrate of dies (Figure 1-b). They provide combined on-
chip liquid cooling and power generation capabilities due
to heat-accelerated electrolyte reactions. When connected to
the power delivery network (PDN), their generated current
partially supplies logic gates. Hence, they help reduce voltage
supply drops, preventing timing violations and system perfor-
mance degradation [5]. FCA-generated power depends on the
voltage between flow cell electrodes, which may differ from
the voltage supply level required by the logic and memory
dies in a 3D MPSoC. To bridge this gap, the authors of [6]
use switched capacitor (SC) voltage converters as an interface
between flow cells and 3D power grids (Figure 1-b). SC
converters allow FCAs to operate in their most efficient voltage
regime and decouple them from PDN disturbances.
Integrated cooling and power delivery solutions based on
FCAs and SC converters are promising avenues to disruptively
increase the performance of 3D MPSoCs. Nonetheless, FCA
technology also exposes a novel and multi-faceted design
space, encompassing inter-dependent thermal and electrical
considerations. In this paper, we investigate it from two
complementary viewpoints. From a design-time perspective
(Figure 1-a), we illustrate a methodology to explore different
configurations of FCAs (varying channel densities and coolant
velocities) and their associated SC converters and evaluate
their thermal and power performance. This analysis serves



to characterize these configurations and highlight the existing
design trade-offs. It also showcases the opportunities for 3D
MPSoC performance improvement that are enabled by FCA
integration. Hence, we explore the demonstrated leeway from a
run-time perspective (Figure 1-c) by introducing a novel strat-
egy for dynamic performance management of 3D MPSoCs,
based on model predictive control (MPC). The proposed MPC
solver uses the previous performance analysis methodology
to calculate the optimal operating frequency boost for 3D
MPSoC components while remaining within safe temperature
and voltage margins.

In summary, the contributions of this paper are as follows:

o Targeting a high-performance, 4-layer 3D MPSoC system,
we illustrate a power and thermal design-time exploration
of multiple 3D MPSoC configurations with integrated FCAs
and SC converters. We use fine-grain modeling to measure
their thermal and power performance, and discuss entailed
trade-offs.

o We show that for such system, FCAs can reduce die tem-
peratures by 78°C, and power consumption by 46%, com-
pared to a high-performance cold plate-based liquid cooling.
Moreover, FCA-generated power can recover between 70%
and 90% of voltage drop, using SC converters occupying
less than 3% of the total chip area.

« We introduce a novel thermal and voltage-aware MPC
strategy to optimize the operation frequency of processing
cores during run-time, by exploiting the additional FCA
power without compromising their timing and temperature.

+ We demonstrate that our MPC approach enables up to 25%
faster clock frequencies when optimizing the execution of
data-intensive and compute-intensive benchmarks. It can
speed-up workloads by 16% on the central processing unit
(CPU) for a utilization rate of 82%, and by 13% on the
graphics processing unit (GPU) for an average of 92%
utilization percentage.

The rest of the paper proceeds as follows. Section II
summarizes the state of the art of 3D MPSoC management, as
well as related works in FCA technology. Section III presents
an overview of the target 3D MPSoC used as experimental
vehicle. Section IV discusses the 3D MPSoC design-time
performance analysis and trade-offs. Section V presents the
novel 3D MPSoC thermal and voltage-aware MPC optimiza-
tion strategy. Finally, Section VI shows the achieved speed-up
of real high-performance benchmarks.

II. BACKGROUND ON 3D MPSOC THERMAL AND POWER
MANAGEMENT

A. 3D MPSoC Design Challenges and Thermal/Power Man-
agement Strategies

3D stacking of dies interconnected using through silicon
vias (TSVs) allows to integrate heterogeneous components,
possibly realized in different technologies, while achieving
minimal inter-layer interconnect delays and very high band-
widths [1]. However, TSV-based 3D integration presents crit-
ical thermal and power management challenges, limiting its
viability in modern high-performance 3D MPSoCs.

1) Thermal Management: Power density increases with the
number of stacked dies, generating large amounts of heat,
which is very difficult to dissipate due to the low thermal
conductivity of silicon and bonding materials [2]. This issue is
exacerbated in modern CMOS technologies by high transistor
densities and leakage currents. In this regard, several design-
time solutions address the heat extraction problem in 3D ICs.
Authors in [7] propose an algorithm to place thermal TSVs
throughout the silicon bulk during floorplanning stages. Their
approach, however, requires a significant area footprint and
limits inter-layer communication bandwidth. Conversely, [8]
discusses the non-homogeneous placement of TSVs for ther-
mal balancing and control, using minimal percentages of TSVs
in strategic positions. They also use specific glue materials
for a more effective thermal distribution. Then, authors in [9]
advocate for the integration of novel technologies, such as
resistive random access memories (RRAM). This methodology
significantly impacts heat generation but is not generic as it
relies on specific technologies. As fan-based cooling struggles
to maintain 3D MPSoC temperatures at acceptable levels, a
high-performance direct liquid cooling solution using a cold
plate has been proposed [10]. Nonetheless, such an approach
requires large cold plate dimensions, low coolant temperatures,
and costly materials to extract the high amount of heat
generated by 3D MPSoCs [11]. Similar to FCA technology,
inter-tier liquid cooling employs micro-channels etched in the
silicon substrate of 3D MPSoC dies, through which a liquid is
pumped, which absorbs the generated heat [12]. As opposed
to FCAs, the coolants employed in this scenario are inert, and
no electrical power is generated.

2) Power Management: High leakage and power density
greatly complicate power delivery in 3D MPSoCs [5]. The
need for power TSVs increases with the number of stacked
dies. Those TSVs and the power delivery metal lines must
supply very high currents, potentially incurring voltage drops
throughout the 3D power grids. In turn, voltage drops affect
the latency of logic and memory, possibly leading to timing
failures [3]. Addressing these 3D MPSoC power-related is-
sues, authors in [13] use an active interposer, which reduces
the power density of large-scale heterogeneous chiplet-based
systems using on-chip power management and energy-efficient
3D plugs for communication. However, this technique does
not exploit the high bandwidth capabilities of TSV-based 3D
integration and presents challenges related to long-distance
communication. In contrast, [14] proposes a technique to plan
power delivery TSVs by co-optimizing their location, number,
and size. This approach aims for a minimum voltage drop
while satisfying TSV area constraints. Similarly, [15] proposes
a routing algorithm to minimize the power dissipation and wire
delays of TSV-based 3D ICs. However, the techniques in [14]
and [15] deploy a large number of power TSVs, at the expense
of inter-tier communication, thus creating a trade-off between
power delivery and communication bandwidth.

3) Flow Cell Array Technology with Integrated Voltage
Regulators: FCA technology is a novel solution to both power
and thermal challenges of 3D MPSoCs, providing combined
on-chip liquid cooling and electrochemical power generation
[5]. FCAs use a technology similar to inter-tier liquid cooling
[12]. However, the micro-channels used in this case are filled
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Fig. 2: FCA Technology

with an electrolytic liquid flow that produces an electrical
current to supply logic gates, as illustrated in Figure 2. High
channel temperatures increase the electrochemical reaction
rate, effectively transforming heat into available power for
high-performance 3D MPSoCs. As shown in [5] and [11],
FCA-generated current can recover up to 20% voltage drop
when augmenting an existing PDN. Alternatively, FCAs can
also be employed to reduce the density of power delivery
components (e.g., power TSVs) for a traditional PDN while
abiding by a given voltage drop constraint.

Although directly connecting FCAs to 3D MPSoC PDNs
shows substantial improvements in power efficiency, their
power generation capabilities are sub-optimal when operating
at the V4 level of high-performance systems, typically over
0.7V. Peak power generation for vanadium-based redox flows
(used in this work) is achieved around 0.6V [6]. Therefore,
voltage regulation must be employed to ensure full exploitation
of their power generation potential. In this context, authors
in [6] use on-chip voltage converters implemented employing
a switched capacitor (SC) topology. These devices use the
electrical field in a capacitor as the main medium for energy
conversion [16], as illustrated in Figure 3, allowing FCAs
to operate at their most efficient regime. Additionally, they
decouple the FCAs from logic circuits in case of transient load
changes, and the PDN from voltage fluctuations at the elec-
trode contacts. SC converters achieve over 80% voltage con-
version efficiency, they are easy to integrate, and occupy a low
area [17]. These characteristics make them ideal components
for interfacing FCAs to 3D PDNs. The SC converter topology
proposed in [6], as well as its equivalent circuit model, are
presented in Figure 3. The model is employed to calculate the
SC converter performance in different operating conditions.
The authors highlight that the optimal design point for a given
output voltage may not exhibit the best performance when
slightly varying the operating conditions. Hence, they propose
an algorithm to explore the design parameters (e.g., transistor
and capacitor sizes) and evaluate the resulting performance
(e.g., area, conversion efficiency).

FCAs paired with SC converters enable efficient cooling
and additional power for high-performance 3D MPSoCs, but
their cooling and power supply capabilities contrast each other
[18]. In this regard, Section IV proposes a methodology to
configure FCAs with their associated SC converters, to achieve
the desired performance of a target system.
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Fig. 3: SC converter circuit (left) and circuit model (right) [19]

B. Run-Time Thermal and Power Management of 3D MPSoCs

The previous design-time cooling and power management
techniques must ensure that temperature and voltage con-
straints are met under worst-case conditions. However, oper-
ating conditions are generally application-dependent. Hence,
continually adopting worst-case assumptions can lead to
under-utilizing computational components (e.g., overly reduc-
ing their frequency to limit heat generation) or over-utilizing
cooling and power resources.

To overcome this pitfall, several run-time thermal and power
management techniques have been proposed. For instance, the
authors of [20] use a thermal-aware mapping algorithm and
perform workload migration between hot and cool layers dur-
ing run-time, based on temperature information of the stack.
The authors in [21] also propose an adaptive algorithm for
multi-application 3D-NoC mapping to reduce latency and total
system power under temperature constraints. Furthermore,
[22] introduces a temperature-constrained power management
scheme for 3D-MPSoCs, accounting for the activity of pro-
cessing elements, their positions, and temperature margins.

Few run-time management strategies specifically target 3D
MPSoCs with inter-tier liquid cooling. The authors in [23]
analyze the effect of various dynamic thermal management
(DTM) methods and design a controller for energy-efficient
thermal management with minimal performance degradation.
Their approach combines flow rate adjustment, DVFS, and
task scheduling to decrease cooling and computational power.
Similarly, the authors in [24] couple liquid cooling control with
several DTM policies to achieve reduction and balancing of
temperature and increase the system lifetime and performance.
They use a job scheduling strategy and dynamically adjust
liquid flux to achieve a uniform temperature distribution. In
[25], authors propose a methodology to find the best thermal
sensor locations, providing temperature information used by
their thermal management policy. DVFS is used along with a
variable-flow liquid cooling to enable system power reduction
and performance loss minimization.

The previous 3D MPSoC run-time management policies
only deal with thermal and power regulation. To the best
of our knowledge, no existing policies exploit both cooling
and power generation capabilities of FCAs, or analyze the
performance boosts applicable in this scenario. Our work aims
to fill this gap, proposing a novel run-time thermal and power
management policy, which we illustrate in Section V.
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III. TARGET 3D MPSOC WITH INTEGRATED FCAS AND
SC CONVERTERS

To exemplify the efficiency of our proposed design-time ex-
ploration and run-time management strategy for 3D MPSoCs
with integrated FCAs and SC converters, we employ as a target
system a high-performance four-layer stack, shown in Figure
4. We base the architecture on a state-of-the-art CPU-GPU
platform for high-performance computing [26]. We consider
its implementation in 3D, anticipating a next-generation 3D
MPSoC. The stack comprises the following layers:

o The first (bottom) layer is modeled after AMD’s Ex-
treme Performance Yield Computing (EPYC) microproces-
sor, based on the Zen micro-architecture and fabricated
using a 14nm FinFET process [27], with a total area of
757mm?2. Figure 5 presents the EPYC processor layout. It
contains 32 high-performance cores, arranged as 4 Ryzen
8-cores clusters sharing one L3 cache. The cores operate
at a base frequency of 2GHz and can be boosted up to
2.55GHz (all cores simultaneously) and 3GHz (one core
only). The processor’s maximal total power consumption is
180W, and its maximal supported temperature is 81°C.

o The second layer contains an 8-channel DDR4-2666W [28],
supported by the EPYC processor. The memory is fabricated
using an 18nm 3-metal layer DRAM process. Each of the
eight 16Gb DDRs occupies a total size of 81.28mm?.

o The third layer is based on the NVIDIA V100 [29], a data
center GPU designed to accelerate Al, HPC, and graphics.
The NVIDIA V100 is composed of 640 Tensor cores
and 5120 CUDA cores, arranged as 6 graphics processing
clusters (GPCs) with 14 streaming multiprocessors (SMs),
as illustrated in Figure 6. This layer is fabricated using
TSMC’s 12nm FFT CMOS process and occupies a total
size of 815mm?2. It consumes up to 300 and operates at
a maximal temperature of 85°C. The GPU core frequency
ranges between 1230M Hz and 1380M H .

o The fourth (top) layer is composed of four 2" generation
HBM memories with 4 DRAM layers each, providing the
bandwidth requirement of the NVIDIA V100 GPU. Each
HBM memory has a base size of 71mm?2, fabricated using
the 29nm DRAM process. The maximal power consumption
of each HBM2 memory is 15W [30].

Our target 3D MPSoC employs a combination of two state-
of-the-art 3D integration technologies, namely: chiplet-based
integration and chip-on-chip bonding through fine-pitched
micro-bumps. The first one enables stacking multiple HBMs
on a base logic die (top layer). The latter enables logic-on-
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logic integration and is used to stack the four 3D MPSoC
layers, including the HBM active interposer and the package.

Similarly to [6], FCAs of 50um width and 100um height
are etched in the silicon substrate of the 3D MPSoC dies,
with a pitch of 50um. Each 200um-long flow cell section
is connected to a single SC converter, which is in turn
connected to the power grid of the corresponding die. TSVs
are arranged in groups (TSV islands), each delivering power
to an independent power domain. Their diameter and pitch are
both fixed to 5um.

In Section IV and V, we model this 3D MPSoC in fine-
grain to evaluate both its thermal and electrical performances.
In particular, we use 3D-ICE [31] to evaluate its thermal
behavior under different load scenarios. Then, we use HSPICE
to measure its PDN performance, as described in [5]. To do
so, we include a compact FCA model and a converter circuit
model (Figure 3) to perform electrical simulations. Both the
flow cells and SC converters are modeled in Verilog-A. Hence,
we evaluate the FCA power generation and SC converter
efficiency, allowing us to retrieve the voltage and temperature
distributions of dies. As in [6], we use cell dimensions of
200 x 100um? and 50 x 50pm? for the thermal and electrical
simulations, respectively.

We characterize the workloads employed to evaluate our
run-time management strategy (described in Section V) by
running benchmarks in a real system containing the same
components as the above target 3D MPSoC, and incorporating
a traditional fan-based cooling system. We use performance
counters to measure benchmark usage statistics. These statis-
tics serve to guide the experimental evaluation in Section VI.

IV. DESIGN-TIME TEMPERATURE/VOLTAGE ANALYSIS
AND CHARACTERIZATION OF 3D MPS0Cs wiTH FCASs
AND SC CONVERTERS

In this section, we present a design-time 3D MPSoC
characterization through thermal/power performance analysis,
illustrated in Figure 7. The proposed flow explores multiple
FCA configurations targeting the 3D MPSoC described in
Section III, and performs fine-grain analysis considering target
application requirements and 3D MPSoC design constraints.
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The design configuration considers FCA-related parameters,
namely the FCA placement in the 3D MPSoC layers and
electrolytic liquid flow speed (Section IV-Al), and the SC
converter design (Section IV-A2). It has to be noted that some
design choices not pertaining to FCAs, such as the placement
of dies and that of TSVs, also have an influence on 3D
MPSoCs thermal characteristics and those of their PDNs [32]
[33]. However, our simulations indicate that micro-channels
thermally isolate different dies. Hence, die placement only has
a minor influence on a 3D stack thermal behavior when FCAs
are used. Furthermore, prior art indicates that placing TSVs
near power hotspots is the best choice to minimize voltage
drops [5]. Thus, we here adopt this solution without further
exploring this aspect.

Hence, the performance evaluation in Section IV-B uses
fine-grain thermal and electrical simulations (described in
Section III) to assess 3D MPSoC performance under different
FCA configurations. It analyses the temperature and power
reduction capabilities of FCAs, and their ability to recover
voltage drop using SC converters.

A. FCA and SC Converter Configuration

1) FCA Placement and Flow Rate: FCA-based cooling and
power generation interact in a non-obvious way. In fact, higher
cooling efficiency decreases temperature, limiting the total
chip leakage (hence power consumption) but also lowering
the power generated by FCAs. Conversely, lower cooling
increases the electrolyte reaction rate, allowing to generate
more electrical power. To investigate these trade-offs and
identify the configuration that performs best under specific
voltage/temperature constraints, detailed thermal and power
analyses are needed. As candidate solutions, we consider
the configurations shown in Figure 8 (Al to B4). These
configurations are selected as follow:

o The configuration groups A and B represent the number
of FCAs that supply each computing die. Only one FCA
supplies the CPU/GPU in configurations A, while in
configuration B, two FCAs supply it. This is achieved by
electrically connecting the computing dies using TSVs to
the FCAs etched in the dies themselves and via TSVs and
micro-bumps to the FCAs etched in the above memory
dies. As the memories consume considerably less power,
we do not supply them with FCA power.
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Fig. 8: 3D MPSoC Configurations

o In terms of FCA flow rate, we consider the full-flow rate
value (216ml/min, as in [18]) for both cases (Al and B1).
Then, we consider the lowest flow rate that complies with
temperature constraints (B4).

o Then, to highlight the existing trade-offs between FCA
cooling and power generation, we consider other config-
urations with similar cooling performances but different
numbers of FCAs (for example, Al and B2, A2 and B3).

For comparison, we also characterize a state-of-the-art cold-
plate based liquid cooling for ultra-high-performance MPSoCs
[10] (configuration CP). The performances, in terms of on-
chip cooling and power generation, of each configuration are
qualitatively represented in Figure 8. For 3D MPSoC configu-
rations with integrated FCAs, on-chip cooling depends on the
amount of liquid pumped in the channels per unit of time,
which linearly increases with the number of FCA channels
in the dies and the inlet speed. Hence, configuration B1 has
the highest on-chip cooling efficiency, while configurations Al
and B2 achieve half this efficiency due to a reduced number of
FCAs and a slower liquid traversal, respectively. On the other
hand, configuration CP has the lowest cooling efficiency due to
the low 3D MPSoC inter-layer heat dissipation. On-chip power
generation depends instead on the number of FCAs and the
coolant temperature. Accordingly, configuration Al generates
half the amount of power compared to configuration B2 for
the same cooling performance. Then, configuration B4 has
the highest power generation efficiency as the coolant heats
the most compared to other configurations, accelerating the
electrochemical reactions inside the channels.

We quantitatively assess these intuitions in Section IV-B,
where we present the outcome of fine-grain thermal and
electrical simulations, according to the methodology outlined
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in Section III.

2) SC Converter Design: A trade-off exists between SC
conversion efficiency, area, and output power [6]. Moreover,
the amount of extracted FCA power and the SC converter
efficiency should not be considered in isolation, as both
influence the power delivered to the PDN. To illustrate this
aspect, let’s consider FCAs operating at their optimal voltage
(0.6V in [6]) and SC converters that adapt this input voltage to
the level required by the 3D MPSoC dies (0.9 V). According
to the SC converter design-space exploration introduced in
[6], the optimal design point achieves a relatively low voltage
conversion rate. Indeed, as illustrated in Figure 9, the total
power output in this scenario is similar to the case when no
converter is placed between FCAs and 3D power grids, and
FCAs operate at the same voltage as the rest of the chip.

Conversely, maximal PDN efficiency is achieved when the
overall power delivery system encompassing FCAs and SC
converters is most efficient, resulting in the maximal converter
output power. This condition is achieved when the voltage at
the FCA electrodes (i.e., the SC converter input voltage) is
set to a lower level of 0.5V. According to the SC design-
space optimization methodology in [6], optimal SC converters
achieve in these conditions on average over 82% voltage
conversion efficiency. Thus, they lead to 19% higher FCA
power generation than directly connecting FCA electrodes to
the PDN. Furthermore, these SC converters require less than
3% of the total chip area (34200 are placed, each occupying
0.00071mm?). Therefore, the optimal SC converter design in
this scenario is selected for the remainder of this work.

To quantify the system-wide benefits of this design, Figure
10 presents the voltage drop maps of the CPU and GPU
dies in 3D MPSoC configuration B4 and in case of maximal
power consumption, corresponding to their thermal design
point (TDP). This scenario is chosen to perform worst-case
circuit analysis, as it represents extreme operating conditions.
First, we show the voltage drop when FCAs are only used to
cool down the die (inter-tier liquid cooling). In this scenario,
the voltage drop reaches over 78mV (8.6% Vy,) for the CPU,
and over 100mV (11% V,4) for the GPU. Thus, for both dies,
the voltage drop violates the typical 5% constraint of high-
performance ICs. Then, we show the voltage drop map when
FCAs are directly connected to the power delivery grid of dies.
In this case, the voltage drop decreases by 60mV for the CPU
and 70mV for the GPU. Finally, Figure 10 presents the voltage
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drop when SC converters are placed between FCAs and 3D
power grids, and FCAs operate at 0.5V. The figure shows that
with respect to using unregulated FCAs, using SC converters
effectively achieves a further reduction of the voltage drop
across both dies, limiting them to 2% V4 for the GPU and
almost eliminating them for the case of the CPU.

B. Thermal and Power Performance Evaluation of 3DMPSoC
with FCAs and SC Converters

We herein evaluate in detail the 3D MPSoC thermal and
power performances in the different configurations described
in IV-A1l, assuming the use of the SC converter identified in
Section IV-A2. We compare them to the cold plate-based liquid
cooling strategy (configuration CP in Figure 8). Across exper-
iments, we consider a maximal usage scenario for both the
CPU and GPU, representing worst-case operating conditions.
We report dynamic and leakage power figures, where dynamic
power is calculated by subtracting the leakage corresponding
to the maximal die temperature from the TDP (as indicated
by the dies specifications in Section III). Leakage maps when
dies are cooled using FCAs or CP cooling are calculated based
on computed temperature maps (the details of leakage map
estimation are found in Section V-B).
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1) Temperature and Total Power Consumption: Figure 11
shows the CPU temperature map when cooled using the CP
solution [10], compared to the one in configuration B4, which
has the lowest FCA cooling capacity. The figure showcases
that FCAs vastly outperform cold plate-based liquid cooling.
Additionally, we measure the total power consumption of
the CPU and GPU dies at maximal usage and present the
results in Figure 12 and Figure 13, respectively. The figures
indicate that temperature-dependent leakage is a significant
contributor to power budgets in the CP case. FCA cooling can
effectively reduce leakage power by up to 86% compared to
the CP strategy in the CPU case and up to 82% in the GPU
case. The peak temperature difference between the CP and
B4 configurations are 78°C and 75°C for the CPU and GPU
dies, respectively. Additionally, the configuration with the
highest cooling capability (B1) outperforms the configuration
with the lowest cooling capability (B4) in terms of leakage
reduction, by 8% for the CPU and 14% for the GPU. However,
configuration B1 has the lowest power generation capacity
among all configurations, as detailed in the following.

2) Voltage Drop Recovery: Maximal voltage drop values
for the CPU and GPU dies are presented in Figure 14 and
Figure 15 (respectively). We include all the considered FCA
configurations and the CP one. In configurations Al to B4,
the voltage drop is measured in three scenarios: when FCAs
are only used for their cooling capabilities (inter-tier liquid
cooling), when they are directly connected to the power grids,
and when SC converters are used. For both dies, the use
of FCAs decreases voltage drop by over 90mV (10% Vg4q)
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Fig. 15: GPU Voltage Drop with FCAs and SC Converters

compared to the CP cooling strategy and up to 78mV (8.6%
Vaq) compared to inter-tier liquid cooling. In particular, the
configurations with the highest coolant speed lead to a lower
die temperature, overall power consumption, and voltage drop.
However, the increased reaction rate of FCAs with temperature
enables more power generation. Moreover, the on-chip power
generation is uniform across dies, whereas leakage is highest
at the hotspots. Therefore, FCA power generation capabilities
have a higher impact on voltage drop recovery than their cool-
ing in the case of non-uniform 3D MPSoC power distributions.
In this context, FCAs and SC converters recover a higher
percentage of voltage drop in configuration A2 compared
to configuration Al, for both the CPU and GPU (Figure
14 and Figure 15). A similar observation is done between
configuration B1 and B4, where FCA power generation is
significantly higher. Additionally, the configurations with the
highest number of flow cells present the highest voltage drop
recovery percentage. In particular, configuration B3 generates
double the amount of power with respect to configuration
A2 for the same 3D MPSoC cooling capacity. Consequently,
FCAs and SC converters decrease the voltage drop of the GPU
by 84mv, compared to when no power is extracted from FCAs.
In the CPU case, the voltage drop is almost eliminated in
configuration B4 due to a high FCA power extraction. We
conclude that the use of FCAs and SC converters improves
3D MPSoC power performance with respect to cold plate
cooling in all cases. In particular, FCAs significantly decrease
PDN losses in configuration B4, which has the slowest liquid



traversal in the channels, and therefore highest on-chip power
generation.

The FCA'’s ability to decrease temperature and voltage drop
presents an added leeway, which can be exploited in two
different ways. From a physical design perspective, FCAs
enable to relax the power grid requirements for each die (i.e.,
number and size of power delivery lines) while still achieving
acceptable voltage levels. From a performance perspective,
FCAs enable to increase the power consumption of dies by
boosting their operating frequency. This work focuses on the
second alternative. Indeed, Section V describes a run-time
3D MPSoC performance optimization methodology, using the
described temperature and voltage analysis framework. The
optimization solver computes the applicable frequency boosts
without violating voltage and temperature constraints. It is
then evaluated on various state-of-the-art high-performance
benchmarks in Section VI.

V. RUN-TIME PERFORMANCE OPTIMIZATION OF 3D
MPS0OCSs WITH FCAS AND SC CONVERTERS

As outlined in Section IV, the integration of FCAs and
SC converters in 3D MPSoC PDNs provides opportunities to
increase the load of dies without violating temperature and
voltage drop constraints. To harness them, we introduce an
online approach to enhance the performance of 3D MPSoC
computing dies based on specific workload requirements.
In particular, we design a model predictive control (MPC)
algorithm to boost the operation frequency of the different
CPU and GPU cores during run-time, whose block scheme is
illustrated in Figure 16. MPC is an optimal control method to
maximize a set of performance metrics for a dynamic system
(e.g., 3D MPSoC operation frequencies) while respecting a
particular set of constraints (e.g., temperature, voltage drop,
and timing). The MPC process provides feedback control
actions that define the settings for the subsequent time periods
[34]. MPCs can be implemented implicitly, embedding a
solver that performs the optimization process in real-time,
and computes the settings to apply to the system over the
next period. Alternatively, the optimization outputs can be pre-
computed offline and accessed by a control module through a
look-up table (LUT). This second approach is referred to as
an explicit MPC solver. It is an appropriate strategy for the
proposed real-time 3D MPSoC frequency optimization, as it
enables a smooth thermal control with minimal computation
costs and delays. The details of the proposed MPC implemen-
tation and frequency optimization algorithm are presented in
Sections V-A and V-B, respectively.

A. Explicit MPC Implementation

Generally, the inter-layer thermal dissipation creates a cor-
relation between 3D MPSoC temperature and power consump-
tion levels. Hence, to compute the optimal frequency of dies, it
is necessary to analyze layers simultaneously and consider all
their activity levels. Unfortunately, this implies a large set of
inputs in an explicit MPC implementation and an impractical
characterization effort. However, as outlined in IV, the heat
absorption capabilities of FCAs greatly limit heat exchanges
among dies, especially given the distance between the two
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Fig. 16: Explicit MPC Implementation

most power-consuming dies in our target 3D MPSoC (i.e., the
CPU and GPU).

This observation allows performing the frequency optimiza-
tion of the GPU and the CPU independently by the MPC
explicit solver. To further decrease the number of simulation
points, we pessimistically assume that memories are in full
utilization at all times, as their power consumption has a
negligible impact on the 3D MPSoC thermal performance.

A high-level view of the implemented explicit MPC is
shown in figure 16. The MPC module periodically receives
utilization data from the CPU and GPU performance counters.
Mainly, it takes as inputs the utilization percentage of CPU
cores, the utilization percentage of CPU last-level caches
(LLCs), the measured total GPU power, and the GPU tem-
perature from embedded sensors. This data is used to estimate
the available temperature and timing leeway and, completing
the optimization loop, accordingly set the clock frequencies
for the CPU cores and the GPU.

B. Temperature and Voltage-Aware 3D MPSoC Frequency
Optimization Algorithm

To fill the LUTs of the explicit MPC implementation
we introduce a frequency optimization algorithm performed
offline to determine the applicable frequency boost under
different 3D MPSoC utilization scenarios. First, the algorithm
receives as input the power being generated in each die (for
the experiments in Section VI-B, power values are derived
from performance counters, as detailed in Section III). Then,
it evaluates the frequency increase that can be applied in the
modeled 3D MPSoC for different degrees of utilization (hence,
generated power). Next, the algorithm calculates temperatures
for different utilization levels given the geometry of the 3D
MPSoC, the FCA topology, and coolant flow. Moreover, it
also accounts for the effect of voltage drops in the CPU and
GPU timing characteristics, again depending on utilization and
FCA and SC converters characteristics. It then dictates clock
frequencies of CPU and GPU cores for different conditions,
such that temperature and timing violations are avoided, and
performance is maximized.

The detailed steps performed by the MPC solver are de-
scribed in the following.
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Fig. 17: Frequency Optimization Loop (MPC Explicit Solver)

In all the equations throughout these sections, the vectors
and matrices are denoted by capital letters, and the scalar
values are indicated by lower case letters.

1) Initialization: As a starting point, the algorithm esti-
mates the initial dynamic power maps Py, ini¢ of the 3D MP-
SoC dies, based on the different utilization metrics extracted
from the performance counters. As the CPU and GPU include
performance counters measuring different metrics, Py, init 15
calculated in a different manner for the two dies, as well as
their respective memories. In case of the CPU, the number of
executed instructions directly reflects on the utilization level
of a core p.ore. Similarly, the number of LLC and DDR
accesses reflect on their utilization level p.qcne and pppr.
Hence, The power consumption of the core (pgyy, (core)), LLC
(Payn(LLC)), and DRAM (pgyn(DDR)) are calculated as
follows:

pdyn(COTB) = Pcore * Pmax,core (D
pdyn(LLC) = PLLC * Pmazx,LLC (2)
Pdyn(DDR) = ppDR * Pmaz,DDR 3)

The cores and LLC dynamic power consumption values
are then mapped to the CPU layout to construct the dynamic
power map (Figure 5). Then, the DDR power consumption is
mapped to its area, assuming a uniform data access pattern.

In case of the GPU, the dynamic power value
Pdyn,init(GPU) is extracted from the initial total
POWEr Piotalinit(GPU) by subtracting the total leakage

Dieak,init(GPU). The leakage at the initial temperature
tapu,init 18 estimated according to the leakage per transistor
gate width ¢,ry, the effective transistor gate width weyy,
the transistor density pirqns, and the total die area A.
The transistors are typically sized to achieve 10nA/um
leakage per gate width for low and medium performance,
and 20nA/um leakage per gate width for high performance
[35], at the reference temperature of 25°C. Then, this value
increases exponentially with temperature [11]. Hence, the
total leakage power of the GPU die for a temperature tgpy
is calculated as follows:

pleak,init(GPU) = ioff (tGPU,init) * Weff * Ptrans * A (4)
pdyn,init(GPU) = ptotal,init(GPU) - pleak,init(GPU) )

The initial dynamic power of the GPU is then mapped to
the floorplan in Figure 6, according to the power consumption
percentage of the different components [36], to construct the
initial dynamic power map Py, init (GPU):

den,init (GPU) = Pdyn,init (GPU)/pmam,GPU * Pmam,GPU (6)

Finally, the initial dynamic power map of the four HBM
memories is estimated according to the GPU memory uti-
lization percentage pgpas extracted from the performance
counters. As in the case of the DDR, we assume a uniform
data access pattern:

Piyn(HBM) = pupm * Praz HBM @)

2) Optimization Loop (Explicit Solver): After estimating
the initial dynamic power maps of the 3D MPSoC dies,
the following series of steps is performed recursively until
convergence, as shown in Figure 17. In this figure, all the
variables that are estimated during the MPC solver flow are
in bold. The optimization loop searches for the maximal
applicable frequency increase ratios, which achieve the desired
timing and temperature of the computing dies. The detailed
steps of the optimization loop are presented in the following,
using the order and numbering in Figure 17, and performed
similarly for all 3D MPSoC computing dies:

(i) Dynamic power map estimation:
In this first step, the dynamic power map of each one of
the computing dies (CPU and GPU) is scaled according
to its frequency increase ratio a. To do so, we use a
quadratic frequency-power relationship, generally appli-
cable for many-core ICs [37]:

dean2 3

Hence, the dynamic power map of each die when the
frequency f = (1 4 &) finst is calculated as:

den = (]- + a)2den,init (9)

During the first iteration to, we assume that no frequency
boost is applied. Hence ci,=0.

Thermal simulation:

In this step, we evaluate the temperature of each die
when the power consumption profiles of the 3D MPSoC
computing dies correspond to the previously calculated
power maps. Furthermore, we pessimistically consider a
maximal power consumption of the memory dies, as they

(ii)



(iii)

(iv)

)

are not bottlenecks for the thermal behaviour of the stack.
Hence, we use 3D-ICE, a compact thermal simulator for
liquid-cooled 3D ICs [31]. 3D-ICE generates a 3D model
containing multiple layers of thermal cells, then solves
transient heat flow equations and outputs the fine-grain
temperature map of each target die 7.

If the maximal temperature max(7T') of any die exceeds
the constraint value 7),,., its frequency increase ratio
is adjusted according to the temperature error €, =
maz(T) — Trnaw:

a=oa-+ P *e (10)

The algorithm then iterates back to step (i).

If no temperature violation occurs, the algorithm proceeds
to the next step (iii).

Leakage map estimation:

Next, we determine the leakage map P, of each 3D
MPSoC die according to its thermal map 7. Similarly
to Equation 4, the leakage value Pleaki’j of a cell with
coordinates (i, ) is estimated as:

(1)

The total 3D MPSoC die power map is then calculated
for a given frequency increase « as:

Piotar = den + Pleak

Pleaki’j = Z.off (Ti’j) * Weff * Ptrans * Acell

(12)

In fact, we have not included the idle power as the
frequency boost is not applied in case of core inactivity.
Additionally, idle components never represent thermal or
voltage hotspots, and they do not influence the tempera-
ture and voltage level at the hotspots.

Voltage analysis:

After computing the total power maps of the dies. We
build the fine-grain 3D MPSoC electrical model [5] with
the FCAs and SC converters, as described in Section
III. We simulate our model using HSPICE to obtain the
voltage map of the target dies. For each die, we then
extract the critical voltage drop value Av,,q.

Critical path timing estimation:

In this step, we estimate the timing of the most critical
path of the target 3D MPSoC die, with respect to its
clock period (or frequency). This step indicates if timing
violations can potentially occur and compromise the chip
operation. Hence, we devise the critical path depending
on voltage drop and thermal conditions. We characterize
this relationship based on a canary circuit (a 64-bit
full adder, implemented in a 28nm CMOS technology).
Results of this exploration are shown in Figure 18.
In this figure, vgg is normalized to its value for the
technology library, and the timing is normalized to its
value at the maximum temperature and minimal voltage
when the die is cooled using a high-performance cold
plate-based liquid cooling solution [10], in an equivalent
2D system. This value represents the nominal operation
frequency, assuming the signal integrity of the circuit
in this scenario. Therefore, we extract for each of our
target 3D MPSoC die the critical path timing 7,,,,. We
pessimistically assume that it corresponds to the power
and thermal hotspot of the die (highest voltage drop
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AvUpq, and temperature max(T)), representing worst-
case operation conditions. We then compare the critical
path timing 7,4 to the current clock period ((1+a)f)~*
and compute the frequency (or timing) error ey:

ef=(14+a)f - 1

If the timing error is positive (i.e., no timing violation
is present) and it is below a certain threshold e,,,,, the
optimization loop is interrupted. The optimal operation
frequency of the die given the required workload utiliza-
tion rate is set to the value:

fopt - (]- + Oé)f

Frequency update:

If the timing error is negative (i.e., a timing violation is
possible), or is higher than the threshold e, (indicating
an overly conservative clock frequency), the optimization
process proceeds by updating the candidate frequency
value using a gradient descent methodology. The next
frequency increase ratio is calculated with respect to the
timing error as follows:

13)

Tma:p

(14)
(vi)

15)

The algorithm then iterates back to step (i). At the end of
the optimization loop, the closest value is selected from
the range of supported operating frequencies.

o= o+ fBrey

C. MPC Look-Up-Table

As indicated previously, the optimal CPU and GPU fre-
quencies are pre-computed for a set of possible input values
and stored in two separate LUTs. Subsets of the LUTs are
presented in Table I, where the utilization of the CPU is
uniform between all the cores.

Results indicate that our thermal and timing-aware optimiza-
tion methodology enables us to speed up the CPU operation
by up to 25% (configuration B1 in Figure 8) when it is utilized
50% of the time, thanks to FCA cooling and power generation.
For a CPU utilization percentage of 80%, FCAs enable up
to 22% frequency boost, as the power consumption in this
scenario is higher and the voltage drop and temperature are
more critical. In all the scenarios (3D MPSoC configurations
and core utilization rates), the temperature of the CPU die is
maintained below 75°C.



TABLE I: Frequency Optimization Results (Reduced MPC Look-Up Table)

Al A2 Bl B2 B3 B4
Util. T’Lnit 5f Tmaz 5f Tmaz 6f Tmaz 5f Tmaz 6f Tmaz 6f Tmaz
CPU  50% - 1997%  45.77°C  19.85% 59°C 2429%  37.5°C 23.87% 455°C 2334% 59.9°C 23.08% 68.1°C
80% - 1542%  47.7°C  15.44% 62.1°C  21.25% 39.2°C 21.84% 48.2°C 22.46% 64.3°C 22.78% 74.4°C
GPU  50%  40°C 13.1%  48.8°C 12.6% 62.8°C 18.9% 40°C 19.36% 49°C 19.79%  65.1°C  19.64%  74.4°C
50%  70°C  18.64% 47.7°C  18.38%  58.56°C 24% 38°C 23.8%  45.8°C  23.34% 60°C 23.09%  68.2°C
80%  40°C 4.73% 54°C 4.16% 69°C 10% 42.9°C  10.53%  53.4°C 10% 72.1°C  9.63% 82.6°C
80%  70°C 8.84% 50.7°C 8.7% 66°C 1436% 41.4°C  1498% 51.2°C 1546% 68.9°C 12.22%  81.6°C

In the GPU case, the frequency can be boosted between 12%
and 19% for the different 3D MPSoC configurations, when its
initial power consumption corresponds to 50% of its thermal
design power (TDP), and its initial temperature is 40°C. For
an initial temperature of 70°C, the possible frequency boost
is between 18% and 23%. The initial leakage, in this case,
is higher, and FCA cooling helps to reduce it, offering more
opportunities to boost the dynamic power consumption.

In general, 3D MPSoC configurations with a high FCA
cooling capability, such as B1, enable a high-frequency boost
while achieving lower temperatures (up to 42°C and 39°C for
the GPU and CPU, respectively). For this configuration, the
speed-up is possible thanks to the FCA capacity to reduce
leakage, enabling considerably higher dynamic power con-
sumption. In contrast, 3D MPSoC configurations with lower
FCA cooling capacity achieve higher temperatures (up to 82°C
in configuration B4) but comparable frequency boost ratios. In
these configurations, FCAs produce more power due to higher
temperatures. Therefore, they enable more computing capacity
without additional stress on the power delivery grid, further
voltage drop across the dies, and with lower cooling cost.

VI. RUN-TIME BENCHMARK SPEED-UP ON 3D MPS0Cs
WITH FCAS AND SC CONVERTERS

A. Target Benchmarks characterization on the CPU and GPU

We explore a range of state-of-the-art benchmarks targeting
high-performance multi-core platforms to evaluate our pro-
posed run-time frequency optimization strategy under diverse
3D MPSoC usage scenarios. These benchmarks are selected
as they represent different power consumption profiles. To
characterize them on the CPU and the GPU, we run them in a
2D platform equivalent to the target 3D MPSoC, as indicated
in Section III.

A brief description of these benchmarks is presented as
follows:

Inception V3 (I3): is a very deep Convolutional Neural
Network (CNN) architecture used for image recognition ap-
plications. We use TensorFlow to train an I3 model on the
GPU using the ImageNet data set [38].

Inception V4 (I4): is a deeper and more uniform version
of Inception V3 [39]. We train an 14 model on the GPU using
the ImageNet data set.

Resnet (RN): is a computer vision deep CNN that we train
on the GPU using the ImageNet data set [40].

Deep Speech (DS): is an end-to-end Deep Neural Network
(DNN) used in automatic speech recognition (ASR) [41]. We
train a DS model on the GPU, using a large-scale dataset of
English readings.

Fairseq (FS): is a sequence modeling neural network used
for translation, language modeling, error correction, and other

text generation tasks [42]. We train it on the GPU for a dataset
of spoken language translation.

Rodinia: is a benchmark suite for heterogeneous computing
[43]. It includes applications that target multi-core CPU and
GPU platforms such as:

- Needleman-Wunsch (NW): a non-linear global opti-
mization method for DNA sequence alignment. We run
this application on both the multi-core CPU and GPU.

- K-means (Km): a clustering algorithm used in data
mining applications. We evaluate it on the multi-core
CPU, taking advantage of multi-threading capabilities.

- K-nearest neighbors (Knn): a machine learning algo-
rithm used to solve classification and regression prob-
lems. We evaluate it on the GPU.

SPEC: is a benchmark package containing standardized
CPU-intensive applications stressing a system’s processor and
memory sub-system [44]. Such applications include:

- Weather Research and Forecasting Model (wrf): a
weather prediction system designed to serve both opera-
tional forecasting and atmospheric research needs.

- Cactus Computational Framework (Ca): a physics
benchmark consisting of a set of differential equations
used to model black holes and gravitational waves.

- NAMD: a parallel program used to simulate large bio-
molecular systems.

- Parallel Ocean Program (pop2): a highly parallel pro-
gram for simulating the earth’s climate system.

- ImageMagick (IM): a software suite to create, edit,
compose and convert bitmap images.

- Lattice Boltzmann Method (Ibm): a program to simu-
late fluids in 3D.

Our benchmark characterization results on the CPU and
GPU are presented in Figure 19 and Figure 20, respectively.
For the AMD EPYC CPU case, we measure the cores and
last-level cache (LLC) utilization percentages, using time
steps of 100ms. These metrics serve to estimate the dynamic
power consumption of each CPU component. The average
benchmarks utilization rates are represented in Figure 19,
ordered from high to low. A high CPU utilization characterizes
compute-intensive benchmarks such as Cactus (Ca), weather
forecasting (wrf), and ImageMagik (IM). Intuitively, they
present a better opportunity for overall speed-up on the CPU,
as the MPC frequency boost affects computing time but does
not improve memory access speed.

For the case of the NVIDIA V100 GPU, we measure the
total power consumption (including leakage) and the temper-
ature of the chip, allowing us to estimate the dynamic power
map of the GPU. In addition, we also measure the utilization
of the GPU, which indicates the percentage of time when
kernels are being executed on the board. Figure 20 presents the
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average usage metrics of various benchmarks, ordered by GPU
utilization level. Similarly to the CPU case, benchmarks with
the highest utilization, such as Resnet (RN) and Inception4
(I4), can benefit the most from overall speed-up on the GPU
using the proposed MPC frequency optimization strategy.

B. Benchmark Speed-up Results on the 3D MPSoC with FCAs
and SC converters

We simulate the explicit MPC from Section V-A when
running the benchmarks in Section VI-A on the 3D MPSoC.
Results are shown for the configuration B4, as it enables high
frequency boost values while having a low cooling cost.

To estimate the execution of the benchmarks using our
proposed MPC strategy, we first record the execution traces
in the equivalent 2D system in sampling windows of 100ms
(the minimal value dictated by the sensors and counters
used to gather our experimental data). Then, we simulate the
execution on the 3D MPSoC by compressing the original
traces according to the speed-up rates determined by the MPC.
To do so, we pessimistically assume that the frequency boost
only applies to the computing dies and that the 3D MPSoC
has the same memory bandwidth as the original 2D system.
Hence, we consider that the same task schedule is executed.
This way, only the computing time is compressed for each
sampling step, as illustrated in Figure 21. The operation is
repeated until the completion of the workload, allowing us to
compute the achieved speed-up using the proposed MPC.

For comparison, we also measured workload speed-up when
applying a fixed frequency boost throughout the execution.
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Fig. 21: Workload Speed-up at Run-Time

Hence, we considered two scenarios: prior knowledge of
workload requirements and no knowledge of workload require-
ments. In the first scenario, the frequency boost is selected
based on the peak power/utilization of the workload (fixed
freq. boost in Figures 22 and 23). In the second scenario,
the minimal frequency boost is selected, which corresponds to
100% utilization (min. freq. boost in Figures 22 and 23). The
selected frequency boosts ensure that no constraint violations
occur during the full workload execution in both cases.

1) Benchmark Speed-up on the CPU: The total achieved
workload speed-ups on the CPU are shown in Figure 22,
ordered by core utilization percentage. For most benchmarks,
the MPC enables on average 23% faster CPU operation, as
indicated in Table I (configuration B4). However, compute-
intensive benchmarks present the highest overall speed-up
due to their high utilization percentage. For instance, the
SPEC Cactus framework (Ca) achieves 16% execution speed-
up, at 83% average cores utilization. In contrast, the core
frequency acceleration does not significantly improve the total
execution time of least compute-intensive benchmarks, as it is
dominated by memory access time. For example, the SPEC
pop2 benchmark achieves only 6% total execution speed-up
with an average core utilization percentage of 28%.

Compared to the proposed MPC, the alternative strategies
achieve lower but comparable workload speed-up results, as
the optimal frequency boost in all CPU utilization scenarios
is between 20% and 24% (Table I). In particular, a maximum
difference of 3% and 2% are observed in terms of average
frequency boost and total speed-up, respectively.

2) Benchmark Speed-up on the GPU: In the case of the
GPU, the achieved benchmark speed-up values are shown in
Figure 23, ordered by utilization level. The GPU runs on
average between 16% and 23% faster using the proposed
MPC. Typically, the benchmarks with a high GPU utilization
rate and dynamic power consumption (Figure 20) are less
eligible for a high frequency boost. This is because they can
otherwise overly heat the GPU and exhibit critical voltage
drops. Particularly, the Resnet (RN) CNN training, which
has a peak dynamic power requirement of 230W on the
NVIDIA V100, can run on average with 16% faster clock
in a 3D system with FCAs and SC converters, compared to
other benchmarks that enable 20% or higher speed-up rates.
However, the RN training benefits from the highest overall
workload speed-up. This is because its percentage of comput-
ing time versus memory access time (GPU utilization rate) is
the largest of all GPU benchmarks. Conversely, benchmarks
with a low GPU utilization rate, such as Needleman-Wunsch
(NW) or K-nearest-neighbours (Knn), can run at the highest
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frequency (with up to 23% boost). Still, their total execution
speed-up is lower than 6%.

Compared to the proposed MPC, the alternative strategies
achieve lower speed-up results, as the optimal frequency boost
can be anywhere from 3% to 24%. Hence, for workloads
with high utilization peaks (RN, I4, DS), the highest peak
dictates the fixed frequency boost, therefore decreasing by up
to 15% the average frequency compared to MPC. In the case of
workloads with a lower utilization (I3, FS, NW, Knn), the fixed
frequency boost achieves comparable speed-ups because their
highest utilization peaks still enable high frequency boosts.
However, the minimal frequency boost strategy limits the
overall speed-ups, as it accounts for the maximum possible
workload utilization, which is never reached in practice.

In conclusion, our simulations indicate that the computation
time can be accelerated by up to 23% for both the CPU
and the GPU, using the proposed MPC. This is particularly
effective for compute-intensive workloads, which benefit the
most from the online frequency optimization. Furthermore,
the 3D MPSoC speed-up is achieved without optimizing the
software, or the architecture of the memories and logic dies.
Performance improvements are only due to the increased
leeway in terms of power and thermal budget made available

by FCAs and SC converters, which allow enhancing the power
performance of 3D MPSoCs.

C. Comparison with State-of-the-art DTM Policies

We emulate the workloads execution when applying a
baseline DTM policy with DVFS and task migration [23] to
the target 3D MPSoC using cold-plate-based cooling (CP in
Figure 8). To reduce the power consumption and abide by
temperature constraints, DVFS gradually lowers the voltage
and frequency settings, down to 50% [45]. For workloads
requiring a high utilization percentage (e.g., Ca and RN),
some cores frequently reach their peak temperature. Thus, their
assigned tasks are migrated to other colder cores, incurring
in a migration cost of 100ms [23]. Adopting this policy, we
measured a slowdown of up to 25% and 40% for the CPU and
GPU, respectively. Our approach leveraging FCAs and fre-
quency control, instead, enables tangible run-time gains with
respect to nominal conditions, as discussed in the previous
Section.

VII. CONCLUSION

This paper has proposed a thermal and power performance
management methodology for 3D MPSoCs with integrated



FCAs and SC converters. We have shown that, by coupling
design-time characterization and run-time optimization, we
can leverage the cooling and power supply capabilities of
FCAs to accelerate workloads execution on 3D MPSoCs.
At design time, we showcased how fine-grained thermal and
power modeling can be employed to evaluate different FCA
placements in the 3D stack, liquid flow rates, and SC con-
verter designs to increase overall power efficiency. Moreover,
FCAs could decrease the temperature, power consumption, and
voltage drop of heterogeneous 3D platforms. These improve-
ments can be harnessed to boost 3D MPSoC computation.
To this end, we introduced a novel temperature and timing-
aware MPC strategy to throttle the operation frequency of
computing dies at run-time. We attained speed-ups up to 16%
on a vast collection of benchmarks while satisfying design
constraints. Our proposed performance management strategy
can be generally applied to 3D platforms containing multiple
high-performance computing dies, regardless of their architec-
ture and technology. Our results demonstrate the potential of
FCAs to achieve power-efficient 3D MPSoCs targeting modern
high-performance applications. Furthermore, they open the
door to extend the benefits of FCAs using strategies such
as dynamic flow-rate adjustment to achieve optimal cooling,
power generation, and FCA cost.
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