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Abstract—To avoid race conditions and ensure data integrity,
resource synchronization protocols have been widely studied in
real-time systems for decades, providing systematical policies to
guarantee a bound on priority inversion-induced blocking time
and the avoidance of deadlocks. However, the corresponding real-
ization is often based on assumed abstractions and necessary
adaptions in a real-time operating system, by which the theoret-
ically proven properties of such a protocol may not be delivered,
leading to potential mismatches. To prevent such mismatches,
in this work, we propose to contract the obligations of involved
primitives and operations, and apply the deductive verification
on a corresponding implementation. To this end, we present a
modularized verification framework and demonstrate its appli-
cability by verifying the official implementation of the immediate
ceiling priority protocol (ICPP) and the multiprocessor resource
sharing protocol (MrsP) in RTEMS, resulting in the discovery of
long-stayed mismatches for both synchronization protocols. To
resolve them, we provide a possible remedy for the ICPP and an
additional precondition regarding nested locking for the MrsP.

Index Terms—Formal verification, real-time operating system
(RTOSe), resource synchronization protocol.

I. INTRODUCTION

IN REAL-TIME systems, concurrent tasks may access
shared resources, such as shared data, files, and memory.

The code segment that a task executes while accessing the
shared resource(s) is called critical section, which is protected
by binary semaphores or mutex locks provided by the operat-
ing system (OS). To prevent race conditions, accesses to shared
resources are mutually exclusive. In the presence of critical
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sections, some problems might break the timeliness, leading
to unbounded worst-case response time (WCRT): 1) priority
inversion happens when a job with higher priority is blocked
(indirectly) by one or multiple other jobs with lower priority,
among which the job with the lowest priority has obtained the
same requested shared resource earlier and 2) deadlock can
happen when two tasks request the same (at least) two shared
resources in a different order simultaneously, and are therefore
waiting for each other circularly.

To prevent the above problems, resource synchronization
protocols have been widely studied since the 1990 s. In
uniprocessor real-time systems, the priority inheritance pro-
tocol (PIP) and the priority ceiling protocol (PCP) were
proposed by Sha et al. [37] and the stack resource policy
(SRP) was proposed by Baker [8]. The immediate ceiling pri-
ority protocol (ICPP), has been widely applied in real-time
systems, e.g., in Ada as ceiling locking and POSIX as prior-
ity protect protocol. Along with the demand of computational
power, several multiprocessor resource synchronization pro-
tocols also have been proposed, such as the distributed PCP
(DPCP) [36], the multiprocessor PCP (MPCP) [35], the mul-
tiprocessor resource sharing protocol (MrsP) [13], and the
dependency graph approach (DGA) [18], [38].

Such a protocol can be formally described as a set of rules
that are composed of abstracted system models, under cer-
tain assumptions at the OS level. However, these abstractions
and assumptions may not always hold while realizing a pro-
tocol. For example, some OSes may not allow multiple tasks
with the same priority, where the inherited ceiling priority,
e.g., in ICPP, has to be compensated by setting ceiling pri-
orities differently and excluding these priorities from regular
priorities that have been assigned to other tasks [31]. Some
additional components, i.e., the helper mechanism in MrsP
and the busy waiting inside a FIFO-queue, require appropri-
ate data structures and operations in the target OS [16]. Any
necessary adaption due to the constraint imposed by the OS in
practice may lead to a mismatch to the original specifications,
resulting in unexpected consequences.

To this end, several prominent works have been proposed
to formally verify the real-time OSs (RTOSes). The seL4 is
proposed as a high-assurance and high-performance microker-
nel [30], which has been entirely formally verified against its
abstracted specifications. Gu et al. [28] proposed CertiKOS,
where an architecture for concurrent OS kernel is verified
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layer-wisely from the bottom up. An automatic verification
approach is also proposed, by checking all possibly reachable
states of registers and memory automatically [34]. However,
most approaches only study the verification of RTOSes, whilst
how to verify the implementations of resource synchronization
protocols still lacks research.

Our Contribution: In this work, we focus on the formal
verification of synchronization protocols implemented in an
RTOS by assuming the underlying functionalities are correct.
The contributions in a nutshell are as follows.

1) We propose to contract the obligations of involved primi-
tives and operations, and apply the deductive verification
on the corresponding implementation of a protocol in a
targeted OS (see Section III).

2) We present a framework for formally verifying the prop-
erties of the synchronization protocol implementations
in a given OS (see Section IV).

3) We provide two case studies to verify ICPP (Section V)
and MrsP (Section VI), implemented in the official
RTEMS. In consequence, we discover long-stayed mis-
matches and provide possible remedies for both proto-
cols. The corresponding source code can be reviewed
in [4].

II. BASIC RULES OF SYNCHRONIZATION PROTOCOLS

Resource synchronization protocols are defined as a set of
rules that each task has to follow during resource accesses. In
the following, we show their basic rules.

Scheduling Algorithms: A synchronization protocol has
to define the supported scheduling algorithms, either earli-
est deadline first (EDF) or fixed priority (FP). When EDF
is applied, the job with the earliest absolute deadline has
the highest priority, whereas the priorities for all tasks are
predefined when FP is applied. For multiprocessor systems,
under global schedule, all tasks are dispatched dynamically
over different processors. In contrast, each task is assigned
statically on a certain processor in advance under partitioned
schedule, no migration is allowed.

Request Ordering: The order of concurrent requests for the
same shared resource also has to be determined. When two or
more tasks are blocked by the same shared resource, the wait-
ing queue of these tasks has to be sequenced by a certain pol-
icy. Two common policies are FIFO queue and priority-based
queue. In a FIFO queue, tasks are ordered by the request-
ing time, the task with earlier requesting time can acquire the
corresponding shared resource earlier, which bounds the max-
imum waiting time for each task. In a priority-based queue,
tasks are ordered by their current priorities, which are nor-
mally the tasks’ scheduling priorities. Additionally, there is a
third policy which is introduced by Shi et al. [38], where the
access order for each shared resource is predefined in a job
level for all tasks within one hyper period. Therefore, the wait
queue is sequenced by the predefined access order.

Waiting Mechanism: The semantic, i.e., how a task is wait-
ing for an occupied resource, has to be identified. Under a
suspension-based synchronization protocol, a task that is wait-
ing for accessing to a currently unavailable shared resource is

suspended by adding itself into a wait queue. Under a spin-
based protocol, the task does not give up its privilege on the
current processor. It executes a spinning loop and continuously
checks if the requested resource is available until it can access
to the requested resource and start its critical section.

Bound Measure: The measure to bound the maximum
blocking time and prevent unbounded priority inversions has to
be set up. Under nonpreemptive execution, once a task starts
its critical section, it cannot be preempted by any of other
tasks in this processor regardless of their priorities and dead-
lines. Similarly, priority boosting allocates a boosted priority
to each critical section, which is higher than the highest regu-
lar priority for scheduling of all tasks. However, under priority
boosting, a critical section can still be potentially preempted
by another critical section with higher boosted priority. The
other promising approach is priority ceiling: When a task exe-
cutes its critical section, the priority can be prompted to the
corresponding resource’s ceiling priority, where the ceiling pri-
ority can be determined either statically or dynamically. When
the ceiling priority of a shared resource is defined statically,
it simply equals to the highest priority of any task that may
request the resource. If dynamic ceiling priority is applied, the
ceiling priority is defined as the highest priority of all tasks
that are currently locking or will lock the shared resource, i.e.,
tasks in the corresponding waiting queue.

Execution Place: Different to the protocols for uni-processor
systems, the places where to execute the critical sections of
a task have to be determined for a multiprocessor resource
synchronization protocol, either locally or remotely. For the
former, the critical sections of a task can be executed along
with its noncritical sections on the processor where the task is
currently assigned. For the latter, critical sections are executed
on specified processor(s) where the corresponding resources
are assigned on. In some protocols, the local executed criti-
cal sections can also be executed remotely. For example, the
help mechanism in MrsP allows the current resource owner to
execute its preempted critical section on a remote processor,
where a task is spin waiting for the same resource.

III. DEDUCTIVE VERIFICATION VIA CONTRACTS

Although each protocol contains several rules that can be
implemented, the combination of these rules is complicated
when all the details have to be considered, e.g., the order of
priority modifications, the queue-based operations, and illegal
inputs checking. One approach is to test sufficient inputs and
validates the derived outputs. However, a sufficient test set
that covers all possible situations is difficult to be derived,
especially for multiprocessor systems. The execution of a test
case can only validate the behavior of the whole systems,
including primitives from the OS’s kernel, hardware-specific
code, and the employed hardware or simulation platform. Any
observed error can also be caused by the interplay of these low
leveled components. Hence, it is difficult to pinpoint the real
issues in the implementation of the protocol itself.

In fact, the formal descriptions of a protocol are based on
abstracting from OS- or hardware-specific details. Instead of
validation, all the properties that are desired to be achieved by
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Listing 1. One implementation of the function absDiv.

a resource synchronization protocol can be formally proven
(so-called verification) based on its formal descriptions. One
approach is based on model checking. The considered system
is first modeled in a formal language where all the required
properties are specified in logic formulas, by which a model
checker can be applied to automatically check the prop-
erty specifications. However, the system model is difficult
to be specified and there is no guarantee of correctness.
To overcome the drawbacks of above approaches, Deductive
Verification [24], [29] is applied in this work to verify the prop-
erties of a given implementation for a resource synchronization
protocol directly.

A. Hoare Triple and Weakest Precondition

To specify a certain property of a program, a Hoare Triple
of the form {Pre}program{Post} is formulated, where the post-
condition Post holds if the program is executed with fulfilled
precondition Pre. If a postcondition is supposed to hold in
any possible case, the precondition is just true. To check such
a property against a program, its weakest precondition (wp)
that is required to satisfy the postcondition is derived. If the
defined precondition Pre implies the derived wp, the property
is proven to hold for the analyzed program. The development
of the wp is often performed backward through the code by
iteratively transforming the postcondition based on the code
statements using the rules defined by Garoche [26].

We provide an example, considering a function
absDiv(x,y) that divides |x| by |y| in Listing 1.
Since a division by zero is illegal (function returns −1), the
desired behavior (Property) can be formulated as follows,
where \res is the value returned by absDiv:

{y �= 0}absDiv{\res = |x|/|y|}. (1)

Furthermore, the result is expected to be non-negative since
both divisor and dividend are with non-negative values.
Therefore, a new Property can be formulated

{y �= 0}absDiv{\res ≥ 0}. (2)

Statement 3 based on a implementation in Listing 1 concludes
the derivation of the wp for Property 1

x ≥ 0 ⇒
[(

y > 0 ⇒ x

y
= |x|

|y|
)

∧
(

y < 0 ⇒ x

−y
= |x|

|y|
)

∧
(

y = 0 ⇒ −1 = |x|
|y|

)]
∧

x < 0 ⇒
[(

y > 0 ⇒ −x

y
= |x|

|y|
)

∧
(

y < 0 ⇒ −x

−y
= |x|

|y|
)

∧
(

y = 0 ⇒ −1 = |x|
|y|

)]
. (3)

Listing 2. Example of ACSL function contract using predicates, logic
functions, and builtin functions (\abs).

By replacing the = (|x|/|y|) with ≥ 0, the wp for Property 2
can be obtained as well.

B. ACSL Function Contracts and Frama-C

To verify a function’s specification consisting of Hoare-
triples, also called function contract, against the source code
of the implementation of a targeted protocol, Frama-C can be
applied [2]. The plugin wp of Frama-C provides the capabil-
ities for static analysis and deductive verification of source
code. The contracts are formulated by using the ANSI/ISO
C specification language (ACSL) [10]. It allows to formally
specify the behavior(s) of a function as a function contract in
the form of annotations to its source code enclosed in special
comments, i.e., //@ or /*@· · · */.

Contracts can consist of different behaviors, each of which
ensures a set of postconditions depending on different precon-
ditions or assumptions and may be declared to be complete or
disjoint. To ease the formulation of a specification, constructs
like predicates, logic functions, and assertions are provided.
A predicate evaluates received parameters to either true or
false. Predicates can be used within assertions, function
contracts, or other predicates. Logic functions can have any
return type and perform assignments or computations. An
ACSL function contract for the previous example is given in
Listing 2. It describes the Properties 1 and 2. The behaviors
are declared to be disjoint, i.e., no two behaviors can occur as
a consequence of one set of inputs. When Frama-C is invoked
and given the annotated code of a function, the contract can
be verified against the implementation with wp.

Another ACSL concept, i.e., ghost code, enables the use
of C code within annotations, which is helpful when specify-
ing more complex behaviors, e.g., loops. Ghost code makes
implicit information explicitly visible and addressable in func-
tion contracts without affecting the behavior of the original
source code under analysis [11]. In this work, ghost code is
applied to transfer stateful information along a call hierarchy
(in Listing 6) and to abstract from low-level OS mechanisms
(in Listing 9).

A memory model is employed to map the analyzed high-
level memory concepts of types and pointers to a mathematical
representation. An example is wp‘s default typed memory
model. To aid the abstraction, memory locations and pointers
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can be annotated with several terms and predicates predefined
in ACSL. A valid pointer p that can be safely derefer-
enced, is declared by \valid(p). All the modified memory
locations are listed in the assigns clause within the con-
tract. A function or its behavior that has no side effects and
assigns no nonlocal memory can be annotated with assigns
\nothing [10]. In addition, the ACSL annotations are pre-
processed and integrated into the abstract syntax tree (AST),
which is built using a modified form of the C intermediate
language (CIL). It specifies the transformation of C pro-
grams into a reduced subset of C, which abstracts from
low-level language concepts, supports compiler-specific exten-
sions, and facilitates automatic analyzes. Furthermore, the
program is type-checked during the transformation. Afterward,
several syntactical transformations are performed, e.g., a uni-
fied representation for loops and conditional branches and the
removal of “syntactic sugar” like the convenience operator for
dereferencing pointers [21], [22], [33].

Analyzes with wp are launched either for a complete func-
tion contract or for its properties individually. For the selected
properties, proof obligations are generated in a wp-own syntax
that describe the goals to be proven based on the first order
logic representation of the analyzed code and its annotations.
These obligations are simplified by the builtin Qed engine,
by either fully resolving them or adding further conditions
facilitating the proof [20]. If they are not resolvable by Qed,
obligations are forwarded to an automatic SMT prover in the
form of a Why3 script [12]. If existing provers are not suffi-
cient, interactive proof assistants such as Coq [3] can also be
utilized to complete the verification [9].

IV. VERIFICATION FRAMEWORK

In this section, the framework for formally verifying the
resource synchronization protocols is presented. We first show
the common assumption that is made for our framework.
Afterward, the workflow of deductive verification used in this
work is illustrated. At the end, the necessary preprocessing for
the RTOS source code is discussed.

A. Common Assumption

In this work, only the implementation of a protocol is
verified. The proposed framework is applied to verify the
correctness of the implementation for all the specified proper-
ties from a given protocol, i.e., function contracts. Any other
components that are not specified in the protocol definition
are assumed to be functionally correct, which is shown in
Fig. 1. More precisely, the proposed framework assumes that
an implemented resource synchronization protocol is based on
a correct underlying OS.

In order to verify the implementation layer separately from
its underlying layers with deductive program verification, sev-
eral abstractions have to be applied. First of all, the verification
scope does not include the basic locking and scheduling
operations, e.g., mutexes, queues, and threads. The mutually
exclusive execution of critical sections is considered as a part
of the dependencies which are assumed to be correctly imple-
mented. Furthermore, no notion of time is considered. Due

Fig. 1. Abstracted layers of the verification concept within an RTOS.

to the verification perspective and the assumptions on under-
lying OS concepts, temporal properties are not necessary to
verify the protocol specifications. Thus, if all the determined
properties of a protocol have been verified to be implemented
correctly, the protocol in the OS is formally verified.

B. Workflow of Deductive Verification

Verifying the implementation can be clarified as neither ver-
ifying its compiled, i.e., compiler- and architecture-specific
results, nor its behavior in execution. Instead, the source code
of the corresponding implementation should be verified with
formal specifications of all required properties of the resource
synchronization protocol. This can be achieved by deductive
program verification, which proves whether a program fulfills
a set of postconditions when assuming a set of preconditions.

When the deductive verification approach is applied, the
implementation under verification can be written in high-level
programming languages. Additionally, to allow for the separa-
tion of protocol-specific code and relied-upon OS primitives,
the analysis should be performed in a modular way. That is, a
set of conditions for a function body should be verified based
on its statements, and for further called functions, based on
their formal specification only. These called functions either
need to be verified if they are specified by the protocol or
can be assumed to be correct if they are provided by the
RTOS. Hence, the verification can be conducted within a cer-
tain level. The protocol-specific code that is to be verified and
its dependencies have to be distinguished clearly. Precisely,
the workflow of our framework can be described as follows.

1) Identify the subset of the targeted OS’s source code that
represents the protocol implementation.

2) Identify the resource synchronization protocol’s proper-
ties and rules, e.g., the request and release of resources.

3) Design specifications consisting of Hoare-triples for the
behavior of all utilized OS primitives.

4) Design specifications consisting of Hoare-triples for the
protocol implementation based on the formal specifica-
tion of the protocol.
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5) Verify the specification of the implementation against its
source code with deductive program verification, aided
by appropriate software.

C. Preprocessing the Source Code

To apply Frama-C for verification, the proposed framework
only needs to utilize the cross-compilation toolchain without
building or executing the OS code. However, the source code
of the targeted RTOS needs to be preprocessed to resolve
the inclusion dependencies and gain meta information from
macros and customized data types [21]. In order to describe the
customized data types in the memory model, information on
the bit width is also required. Furthermore, some header files
are architecture-dependent. These headers may come with the
cross-compilation toolchain or be generated during the source
configuration.

To analyze the implementations in RTEMS, a separate
source configuration is generated for uni- and a multiprocessor
configurations, respectively. To avoid compatibility problems,
32-bit PowerPC is chosen as the target architecture for the
toolchain, which comes with SMP support in RTEMS and is
supported by Frama-C as well [21]. Building the toolchain
yields the required header stddef.h. Please note that the
term thread used in RTEMS is the same as task in this work
and also in the literature of real-time systems.

V. VERIFICATION OF ICPP IN RTEMS

In this section, we adopt the proposed verification
framework to verify the ICPP officially implemented in
RTEMS [14], which is a well-known synchronization proto-
col for uniprocessor real-time systems [15]. It is commonly
considered as an advanced variant of the PCP [37], as it has
the same upper bound on the blocking time but less con-
text switches. However, what is the standard implementation
of ICPP has never been discussed. Any mismatch between
the implementation and the formally proved properties can
potentially lead to an error, e.g., deadlock.

Throughout our verification framework, we find out that the
current implementation is in fact not deadlock free. To reach
this serious conclusion, in the following we present how we
declare the function contracts for ICPP to employ our verifi-
cation framework, and give a concrete example to elaborate
how the deadlock can happen under the current implementa-
tion. The verified functions are listed in Table I, where the
_CORE_ceiling_mutex is the common prefix of all func-
tion names in the table. All the required properties of ICPP
are as follows.

1) For a resource Rj, the priority ceiling is defined as
�(Rj) = max{π(τi)|τi requests Rj}, where π(τi) is the
priority of task τi.

2) The set of the resources’ priority ceilings that a
task τi holds at time t is denoted as Cτi,t =
{�(Rj)|τi holds Rj at time t}.

3) At any time t, a task runs at the highest priority among
its base priority and the priority ceilings of its held
resources: π(τi, t) = max{π(τi), Cτi,t}.

TABLE I
FUNCTIONS FOR ACQUIRING AND RELEASING A RESOURCE UNDER ICPP

4) Whenever a task τi requests a resource Rj at time t, it is
granted access and it immediately inherits Rj’s priority
ceiling: Cτi,t = Cτi,t−1 ∪ {�(Rj)}. Task τi executes its
critical section with the priority following rule 3.

5) When task τi releases a resource Rj at time t, its priority
ceiling is revoked from the set, i.e., Cτ,t = Cτ,t−1 \
{�(Rj)}. Afterward, task τi is executed with its original
priority if there is no following critical section, or it is
executed for its next critical section with the priority
derived by following rule 3.

In the ICPP implementation of RTEMS, after a task suc-
cessfully locks the semaphore,1 then the priority of the task
is elevated to the ceiling priority if the original priority is
lower than the ceiling priority. When a task or thread waits
on a semaphore, it is added into a data structure, named as
thread_queue. The priority queuing discipline just orders
the threads according to their current priority and in FIFO
order in case of equal priorities.

A. Preprocessing

Before the verification, we decouple the implementation of
ICPP into two parts: 1) the protocol-specific parts that will
be analyzed and 2) the employed nonspecific OS function-
alities. To lock and unlock a resource, the RTEMS Classic
API exposes the functions rtems_semaphore_obtain
and rtems_semaphore_release. These functions lock
an actual semaphore object from the passed system-wide
ID and perform the demanded actions depending on its
type. For a semaphore controlled by ICPP, the corre-
sponding functions _CORE_ceiling_mutex_Seize and
_CORE_ceiling_mutex_Surrender are called, where
mutex locks are applied as binary semaphores to protect
shared resources. Besides, another protocol-specific function
is _CORE_ceiling_mutex_Set_owner. The remaining
functions are lower-level primitives, which provide operations
to update a thread’s priority, achieve basic mutual exclusion
for data consistency or access the underlying nonprotocol Core
Mutexes and queues, are assumed to be implemented correctly.

Since the implementation of a protocol may be spread across
the source base, two header files are created to bundle these
functions’ specifications: 1) fc_common_stubs.h is used
for all implemented protocols and 2) fc_icpp_stubs.h
contains the ICPP-specific stub definitions.

1The locking protocols are originally for mutex, but they are realized by
binary semaphores in RTEMS, which are technically as mutex locks. Here,
we stick to the terminology of locking protocol to “lock” a semaphore.



4162 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

Listing 3. Bypassing of a system utility function.

Listing 4. System utility function adds a priority node to a thread.

B. Abstractions and Function Contracts

The OS utilities are treated in two different ways when they
are annotated to declare their (intended) behavior in the anal-
ysis. On the one hand, functions that have no effect in the
analyzed situation, are “bypassed”. That is, the annotations do
not declare their behavior, but assert their invocation has no
side effects and can be ignored during verification. Listing 3
shows an example for bypassing calls for basic locking pairs,
where the interrupt has already been disabled when the func-
tion is called in a uniprocessor system. On the other hand,
OS functions that perform actions that are not considered as
a part of the protocol analysis but are critical to the ICPP
implementation, have to be annotated with a description of
their intended (and considered correct) behavior. The example
in Listing 4 shows a contract that ensures the thread’s priority
either remains the same or corresponds to the passed priority
node after its execution.

C. Contracts for ICPP-Seize

Once all necessary OS functions have been provided with
contracts, the actual behaviors of the protocol operations seize
and surrender can be specified. The following two properties
are verified for seize in a pure ICPP.

1) A task requesting a resource is granted the resource.
2) After a resource is granted, the task runs on the highest

ceiling priority of all currently held resources.
The implementation in RTEMS considers and checks more

possible cases, which are not formally described by the pro-
tocol specifications. Overall, these additional scenarios lead to
further properties.

1) Acquiring a resource fails, if its priority ceiling is lower
than the acquiring thread’s base priority.

2) Resources may be acquired again by the holding thread
before release. The level of self-nested access is tracked.

Listing 5. Contract declaring the ICPP functionality for the seize operation.

3) Acquiring a locked resource enqueues the thread into the
resource’s priority-based waiting queue. Such a request
operation can be either successful by obtaining the
resource eventually or failed if the request times out.

The check of the acquiring task’s base priority is a
legitimately safe measure to compensate incorrectly priority
ceilings setting or unallowed resource accesses. Locking an
already locked resource does not affect the ICPP. The last
case happens only if a task suspends while holding a resource.
This behavior is not considered in the definition of ICPP and
would break the property. Toward this, the precondition is nec-
essary that the requested resource is either available or locked
by the current requesting task (Listing 5, ll. 4 and 5), which
matches the formal property of ICPP, i.e., once a task starts
its execution, all required resources must be available [14].
Therefore, the third case in the list is excluded in the anal-
ysis, which makes annotations for the responsible function
_CORE_mutex_Seize_slow unnecessary.

These collected properties can be formulated as a function
contract for the function _CORE_ceiling_mutex_Seize,
shown in Listing 5. The preconditions in lines 2 and 3
require that the pointers to the mutex and the executing
thread are valid, i.e., dereferenceable, and their memory
regions do not overlapped. The precondition in lines 4 and 5
expresses the invariant for a seize operation under ICPP,
that the requested resource is free, and adds the situation
that the shared resource has been acquired by the requesting
task already. The default behavior of a successful acqui-
sition, behavior seize_successful, ensures that the
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Listing 6. Predicate PriorityInherited checks priority inheritance.

Listing 7. Contract for the _Set_owner function.

resource is locked by the requesting thread and the resource’s
ceiling priority is inherited. To ensure that, the inheritance is
performed from the acquired resource to the requesting thread,
the predicate PriorityInherited (Listing 6) is intro-
duced. It checks if the passed thread and priority are the same
as those set in the contract of _Thread_Priority_add
(Listing 4) and whether the priority of the thread is updated
after the change of the priority aggregation. The inheritance
does not necessarily lead to a priority raise, since the thread
may already hold a resource with a higher ceiling.

Within the seize function, the second relevant protocol-
specific function from Table I is the _Set_owner function
in Listing 7. It performs the check of the resource ceiling. If
valid, the executing thread inherits the acquired resource’s pri-
ority ceiling and is set as the resource owner. If the resource
ceiling is violated due to the thread’s priority, the operation
fails. The conditions for the ceiling and the ceiling priority
inheritance are known from the invoking seize function.

D. Contracts for ICPP-Surrender

The contract for the ICPP surrender function, i.e.,
_CORE_ceiling_mutex_Surrender, can be designed
in a similar sense. Since the ICPP does not allow threads to be
enqueued and waiting for the shared resource, the contract is
constructed with a precondition that the resource’s queue has
to be empty. The revocation of the formerly inherited priority
is guaranteed by another predicate, i.e., PriorityRevoked.
The thread’s dynamic priority after surrendering the resource

Listing 8. Proposed correction for the priority ceiling check.

is either lower than before or remains the same if another
resource with the same ceiling is still held.

E. Verification and Mismatch

Due to the modular analysis, the seize function can
be analyzed without inspecting the code of the called
_CORE_ceiling_mutex_Set_owner. Instead, only its
contract is used. Once the function under analysis fulfills that
contract’s preconditions, its postconditions are assumed to be
fulfilled. This analysis successfully proves all stated proper-
ties. However, when attempting to verify the called set owner
function, the verification fails to prove the ceiling check and
parts of the successful acquisition. The reason for the incapa-
bility to fulfill the conditions can be tracked down with further
annotations.

After a successful ceiling check, the task’s base priority
is assumed to be lower or equal to the resource’s ceiling.
However, this assertion cannot be verified. We note that the
resource’s ceiling is not checked against the thread’s base pri-
ority, but against its current dynamic priority derived from the
task’s priority aggregation. However, a resource’s ceiling is
required to be set as the highest base priority of all tasks
that are requesting it. This mismatch may lead to a dead-
lock by erroneously denying legitimate nested resource access
if resources are requested with descending order of priority
ceilings. We give an example to elaborate such a case.

Consider two tasks τ1 and τ2 with π(τ1) > π(τ2) and two
resources R1 (used by both tasks) and R2 (used by τ2 only)
with �(R1) = π(τ1) and �(R2) = π(τ2). If τ2 acquires R1,
it inherits its priority ceiling and executes with the promoted
dynamic priority π(τ1). If it requests the second resource R2,
its dynamic priority is higher than �(R2), which leads to
a denial of the resource access by the implemented ceiling
check. The consequence of this is a deadlock, i.e., τ2 holds R1
but cannot successfully lock semaphore R2 due to the imple-
mented ceiling check, whilst τ1 cannot enter the critical section
guarded by R1. Such execution behavior with a deadlock can
also be demonstrated by a running example in RTEMS, which
will be released on Github. An acquisition in the opposite order
would be accepted.

To correct the mismatch, an adaption to the priority ceil-
ing check is proposed in Listing 8 for coremuteximpl.h.
Instead of checking the potentially already increased dynamic
priority, it uses the thread’s base priority for the comparison to
the newly requested resource’s priority ceiling. After applying
the correction, all stated properties are successfully verified.
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TABLE II
FUNCTIONS FOR ACQUIRING AND RELEASING A

RESOURCE UNDER MRSP

VI. VERIFICATION OF MRSP IN RTEMS

In this section, we verify the MrsP [13] officially imple-
mented in RTEMS, which is designed for semi-partitioned FP
task systems on multiprocessors. We adopt our verification
framework to ensure whether the corresponding implementa-
tion derives the specified properties of the MrsP. One highlight
of the MrsP is the help mechanism that employs a spin-waiting
task to progress the execution of the current blocked task
which holds the resource. However, a seize operation can be
performed while being scheduled in the presence of the help
mechanism. This requires the priority ceiling of the seized
resource to be determined with a caution, which is of key
interest in this work.

The protocol functions that are going to be verified are listed
in Table II, where _MRSP is the common prefix of all function
names in the table. From the verification perspective, similar
preprocessing in Section V-A is necessarily operated for the
implementation of MrsP as well. The help mechanism can be
assumed to be implemented correctly as other OS utilities, as
long as dynamic priorities and ceilings are managed correctly.
In addition, the verification is based on one arbitrary thread
that performs the analyzed operation. Any other threads which
might interact with it are assumed to behave correctly. A suc-
cessful verification implies that this assumption holds as well.
The properties of the original MrsP are as follows.

1) Each task τi is assigned to a specified processor Pm,
and critical sections are executed locally, unless the help
mechanism is applied.

2) Each resource Rj has one local priority ceiling for each
processor Pm, which is defined by the highest priority
of every task assigned to Pm that requests the resource:
�(Rj, Pm) = max{π(τi) | τi requests Rj on Pm}.

3) For local resources that are not shared between proces-
sors, the ICPP rules are applied.

4) For global resources, the ICPP inheritance mechanism is
applied with their local priority ceilings. If the requested
global resource is not available, the requesting tasks
spin-wait on their own processor in a FIFO order.

5) Help mechanism: a spin-waiting task for accessing to a
resource must be able to help (by offering its computa-
tion time to) the current owner of the resource in case
the owner is preempted within the critical section.

Listing 9. Abstraction of the function that returns a thread’s home node.

In fact, the help mechanism in the original design of the MrsP
by Burns and Wellings [13] can cause additional local block-
ing, since threads are allowed to acquire priority-promoting
resources while being helped on other processors, which
may preempt threads dispatched on their home processors.
Garrido et al. [27] suggested to resolve this issue by post-
poning the effect of inherited priorities to the time when the
thread returns to its home processor. The verified implemen-
tation coincidentally realizes the same concept by dispatching
idle threads to run subsidiary for threads that migrate to seek
help by Catellani et al. [16].

A. Abstractions and Function Contracts

The multiprocessor setup requires further abstractions and
adaptions. While some OS utilities’ stub contracts designed
for the verification of ICPP can be reused, the others need to
be wrapped with a new contract. For example, the function
in Listing 9 retrieves a thread’s home node, i.e., the sched-
uler node for its original processor. However, it is retrieved
as a chain element via several nested function calls and then
extracted by a macro. This macro is expanded over multiple
definitions and is eventually based on a compiler-specific offset
function, which is not able to be formulated in ACSL contracts
or logic functions.

Since the derivation reaches deeply into the OS specific
functions, it becomes a target for abstraction. Instead of tracing
the complete call and macro hierarchy, we declare a global
ghost pointer g_homenode of the type Scheduler_Node
to represent the executing thread’s home scheduler node in the
context of the verification. The getter function is specified
by an ACSL contract to return a reference to that scheduler
node in Listing 9. The ghost object is then said to be valid by
the preconditions of the verified functions, which ensures the
validity of dereferencing and access to its fields. Therefore,
we consider the ghost object is equivalent to a scheduler node
retrieved by the original utility function.

We also need to abstract the local resource priority ceil-
ings for each processor. A task has to raise its priority to the
local priority ceiling of the resource that is requested. From
the verification perspective, the task’s assigned processor may
be arbitrary, but fixed, and can be modeled by another ghost
variable const int g_core. The maximum number of
processors configured in the architecture-specific cpu.h files
is 32, which can be formulated as a constraint for the vari-
able g_core. It also defines the amount of valid entries for
a resource’s local ceilings. The detailed function contract is
omitted here due to the space limitations.
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The inheritance and revocation of priorities are mod-
eled by the predicates PriorityInherited and
PriorityRevoked similarly to the verification of
ICPP.

B. Contracts for MrsP-Seize

When designing the contracts for the seize operation and its
corresponding functions, a ceiling check similar to the func-
tion, i.e., _CORE_ceiling_mutex_Set_owner in ICPP
is detected. Inside _MRSP_Raise_priority, the priority
of the executing thread is checked against the local ceiling of
the requested resource. The comparison is performed with the
current scheduler node’s dynamic priority rather than with the
thread’s base priority. As a result, the current implementation
of the seize operation of MrsP in RTEMS does not allow an
arbitrary sequence of resource requests if they are not prop-
erly nested. However, the implementation is valid only under
one assumption: a thread acquiring nested resources always
requests them in a nondescending order of priority ceilings.
The assumption is translated to a precondition in the successful
behaviors of the affected functions.

A resource that is additionally acquired while being helped
by a waiting thread does not necessarily have a priority ceiling
for the foreign processor to which the thread has migrated.
Instead, the migrated thread always inherits the resource’s
local ceiling stored for its home processor and does not affect
the priority of the helping thread. This feature indicates that
the ceiling check correction in Section V-E could be applied
for multiprocessor systems as well. As long as the thread still
holds the resource it is helped with, it stays in the migrated-to
processor and runs at a legitimate priority. The inheritance of
a new ceiling becomes effective as soon as the thread returns
back to its home scheduler.

C. Contracts for MrsP-Surrender

The surrender operation for MrsP has to be handled care-
fully due to possible waiting threads. The contract is shown
in Listing 10, where the possible waiting tasks can revoke
the surrendered resource’s priority ceiling. Threads waiting
for the resource spin in the corresponding FIFO queue.
Therefore, based on the contents of that queue, we can
distinguish the behavior with the assistance of the predi-
cate MrsPThreadsWaiting in Listing 11. In case there
is no waiting thread, the resource owner (which corre-
sponds to the queue owner) is simply reset to NULL. On
the other hand, if the waiting queue is not empty, the first
thread is set to be the succeeding owner. These operations
are ensured by the stub contract for the queue’s surren-
der function _Thread_queue_Surrender_sticky in
Listing 12. This function ensures that the ownership is passed
to the next thread and the affected tasks’ priorities are updated.
The thread as the new resource owner can be abstracted by the
ghost variable g_new_owner. In both cases, the surrendering
thread loses the inherited priority.

The actual transfer of the ownership happens in the counter-
part during the waiting thread’s seize operation, by the queue
function _Thread_queue_Enqueue_sticky. When the

Listing 10. Function contract of the MrsP surrender operation.

Listing 11. Helper predicate to determine if a resource wait queue is empty.

Listing 12. Stub contract for the surrender operation on a queue for MrsP.

function is called successfully, the calling thread is guaran-
teed to receive the ownership of the queue. Furthermore, the
waiting thread is expected to have raised its priority to the
resource’s local priority ceiling as expressed by the annota-
tions of the seize operation. Therefore, the surrendering thread
does not have to take care of priority manipulations for other
tasks.

D. Verification With Frama-C

As explained earlier, the official implementation of the
seize operation of MrsP in RTEMS does not allow an arbi-
trary sequence of resource requests if they are not properly
nested. We have to additionally introduce an assumption, i.e.,
a thread acquiring nested resources always requests them in
a nondescending order of priority ceilings, together with the
derived function contracts. After applying the remedy of ICPP
and the introduced assumption, all the implemented functions
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TABLE III
DERIVED PROOF GOALS AND REQUIRED TIME OF THE

VERIFICATION OF ICPP AND MRSP

are successfully verified with Frama-C and wp, i.e., satisfy-
ing the original definition of MrsP. We also ensure that the
help mechanism conforms to the suggestions proposed by
Garrido et al. [27]. In case the implementation of the ceiling
check and the priority retrieval are changed, the annotations
can be adapted and the verification can be reattempted.

VII. OVERHEAD AND DISCUSSION

In this section, we report the required overhead of veri-
fying ICPP and MrsP supported in RTEMS. Afterward, we
discuss the challenges of verifying synchronization protocols
and extensibility of the proposed framework.

A. Annotation and Runtime

To verify the protocol-specific functions, we annotate every
encountered function, together with appropriate abstractions
from the OS’s details. The annotations for the protocols and
OS utilities comprise 318 lines in total which subdivide into
123 lines for ICPP, 186 lines for MrsP, and 9 lines for com-
monly used annotations. These numbers only count ACSL
annotations, excluding copied function declarations, blank
lines, and lines containing only opening/closing symbols for
comments. The corresponding source code can be reviewed
in [4]. Please note that the verification framework does not
build or execute the annotated source code, so the annotation
is only for the verification purpose.

To determine the required time for performing the verifica-
tion, we executed Frama-C without GUI and verify the proto-
col functions by passing them via the argument -wp-fct
f1,f2,..., fn to Frama-C. The process was executed
single-threaded on an Intel Core i5-4200U CPU with 12 GB
of main memory. The computation time was captured by the
time command and includes preprocessing, transformation,
and normalization of the protocol implementation, the gener-
ation and simplification of proof obligations as well as the
delegation of selected proofs to Alt-Ergo [1]. The results for
derived proof goals and required time of the verification of
ICPP and MrsP are listed in Table III.

B. Discussion

Although there are corresponding functions for the acquire
and release operations in both ICPP and MrsP protocols
with ..._Seize and ..._Surrender, the distinction of
protocol-specific functions is still challenging. In RTEMS, the
implementations of the protocol rules are spread over vari-
ous subfunctions. Furthermore, the implementation includes

several additional checks and actions, which are not formally
described by the protocol specifications.

For ICPP, several additional check mechanisms are added.
1) Check the correctness of setting the resource’s priority

ceiling.
2) Check if the task reclaims an already locked resource or

claims a locked resource by enqueueing.
3) Check if the task is allowed to access the resource.
4) The resource owner actively switches its state to

blocked, i.e., self-suspending.
For MrsP, the priority ceiling check is included as well, along
with an extension which runs idle tasks to substitute helped
tasks during their migration phase to improve nested resource
access.

These rules above have to be split across the function con-
tracts, where a called function has to be one part of the caller’s
function contract. The call for one function can generate a call
chain of protocol-specific functions. A leaf function’s precon-
ditions have to be ensured by the calling functions. In turn,
its ensured postconditions can be relevant to the root function
along with its contract.

Our case studies show that a protocol is not necessarily
implemented exactly as specified. In practice, the implemen-
tation has to cover a broad variety of possible configurations,
e.g., a task requests a self-locked resource or the resource
owner is self-suspending. The approach to handle such dif-
ference in this work is to require ICPP’s invariant as a
precondition. Then the protocol-conforming subset of the
actual implementation can be verified efficiently.

With the introduced techniques, further properties could
be verified. For example, the basic locking which was not
considered as part of the verification could be included. A
possible approach is to introduce a boolean ghost status vari-
able for each locking level, e.g., for the thread-, mutex-, and
MrsP-queues. Since the analyzed functions are called from
an API function, the state of the locks at the time of the
call must be included in the preconditions of the called func-
tions. The contracts of the locking primitives that are currently
bypassed could be changed to ensure the correct state of their
affected locks in the postcondition. The contracts of the proto-
col functions could then express the properties of the locks by
referring to the ghost variables’ states. To complete the specifi-
cation of memory assignments, some top-level functions, e.g.,
_MRSP_Seize and _MRSP_Surrender would have to be
complemented with assigns clauses in order to make sure
that they have no unspecified side effects. Such annotations
become important if these functions are included in a possible
verification of the invoking API functions.

The proposed verification framework can also be applied
on other OSes, with the assumption that all the low-layer
functions are implemented correctly in the targeted OS, e.g.,
mutexes, queues, and threads. For each targeted OS, the defi-
nitions of the used helper predicates and logic functions have
to be adapted. Once the necessary OS utilities are abstracted,
these basis can be used to verify the implementations of
multiple protocols. For each implemented protocol, the prop-
erties derived from the formal definition for the seize and
the surrender operation should be portable to the targeted
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OS with reasonable effort. In the end, the function con-
tracts for the detailed implementation of a dedicated resource
synchronization protocol can be designed and verified.

VIII. RELATED WORK

In this section, related work on formal verification (in gen-
eral, for RTOSes, and for specific programs) is presented to
position the contribution of this work.

A. Formal Verification

Frama-C has been widely used for various applications. For
example, Efremov et al. [23] proposed a method for the deduc-
tive verification of Linux kernel functions, where a new plugin
was developed due to the incompatibilities of Frama-C and
certain kernel constructs. A similar approach to deductive ver-
ification, the verifier for concurrent C (VCC), was developed
by Cohen et al. [19]. The program correctness is verified to
hold for every possible concurrent execution of threads dur-
ing runtime, which is enabled by tracking the ownership of
(nonvolatile) data. VCC has been applied to partially verify
Microsoft’s Hyper-V Hypervisor [32] and a small exemplar-
ily implemented Hypervisor [5]. Deductive verification is also
applied for further languages aside from C. An example is the
Prusti project [7], which enables deductive program verifica-
tion for Rust by function contracts similar to those adopted in
this article.

B. Formal Verification of Operating Systems

Several approaches have been developed and evaluated that
only focus on the formal verification of OSs. One concept aims
at designing and implementing OS kernels with complete for-
mal verification from the beginning, instead of attempting to
verify existing kernels. A concrete example is seL4, which is
presented by Klein et al. [30]. The microkernel is verified via
refinement steps from the abstract specification represented
by a Haskell prototype over the executable specification in
Isabelle/HOL to a manually optimized C version. Every layer
below the verified source code of the microkernel, from the
compiler to the hardware, is assumed correct and not target
of the verification. Gu et al. [28] presented an architecture for
concurrent OS kernels consisting of multiple layers. The code
of each system layer is verified with Coq. As a demonstration
of the architecture, the kernel mC2 was developed for mul-
tiprocessor x86 computers, supporting fine-grained locking,
threads with suspension, and serving as a hypervisor.

An approach that targets RTEMS has been presented by
Gadia et al. [25]. In order to verify the implementation of
the PIP with a software model checker, it was remodeled
in Java along with the relevant associated scheduling mecha-
nisms. PIP- and race-condition-related safety properties were
included as assertions and the resulting model was investigated
with Java Pathfinder. During the evaluation, an implementa-
tion error related to nested resource sharing was confirmed and
fixed. Additionally, Almatary et al. [6] proposed an approach
to reduce the kernel calls when implementing ICPP in POSIX,
where the implementation is verified by using model checking.

Recently, Nicole et al. [34] has proposed an approach to
automatically verify two properties of a given OS: the absence
of runtime errors (ARTE) and privilege escalation (APE). The
verification target is represented by the binary executable. An
abstract interpreter was developed to process the executable
and determine all possibly reachable states of registers and
memory. Based on this, ARTE and APE can be verified auto-
matically. Compared to verifying source code, this approach is
highly specific to the instruction set architecture for which the
image was built, and the verification is restricted to critical,
but fixed low-level properties.

C. Formal Verification of Real-Time Programs

There are some works focusing on verifying specific real-
time programs that utilize locks as well. Chaki et al. [17]
proposed an approach to verify safety and deadlock free-
dom of programs with PIP locks. Their approach is based on
sequentialization. That is, a periodic program is converted into
an equivalent (nondeterministic) sequential program at first.
Afterward, a model checker is applied for verifying the cor-
rectness. In addition, Suresh et al. [39] proposed a technique
that can statically detect data races in periodic real-time pro-
grams with locks on uni-processor systems. Their approach
is based on a small set of rules that exploit the priority,
periodicity, locking, and timing information of tasks in the
program.

They focused on verifying specific programs that use locks
with concrete multiple tasks and resources. However, in this
work, we proposed a framework that can be applied to verify
whether the properties of the targeted resource synchroniza-
tion protocol are fulfilled in the corresponding implementation,
which is independent from specific use cases.

IX. CONCLUSION

In real-time systems, various resource synchronization pro-
tocols have been proposed since the 1990 s for concurrent
tasks that share resources. Most of the studies focus on the
worst-case timing analysis in theory. Only a few work dis-
cusses the realization details and pitfalls in practice. Although
many protocols are nowadays supported in different RTOSes,
how to ensure the implemented protocols (e.g., often from
many contributors) can always comply the proved properties
is a challenging problem to the community.

In this work, we present a pragmatic framework to verify
the existing protocol implementations in RTOSes. We pro-
pose to specify the intended behaviors of the implementation
in the form of function contracts. The deductive verification
is applied to verify whether each implemented component
matches its formally described properties under the assump-
tion that the underlying primitives are implemented correctly.
We propose a verification framework to enable modular for-
mal verification of functional components. The analysis target
is defined and isolated from its dependencies, so that the work-
flow of the proposed framework is conceptually independent
to the platform.

The case studies for ICPP and MrsP implemented in
RTEMS show the applicability of the proposed verification
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framework to an actual RTOS. Moreover, the discovery of the
mismatches in the RTEMS implementations shows its func-
tionality. After a proposed correction, the implementations of
ICPP and MrsP (under one additional assumption) can be suc-
cessfully verified. With the success of verifying the protocols,
we plan to verify other system software in different RTOSes
for future work.
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