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Abstract—Spiking Neural Networks (SNNs) compute in an
event-based matter to achieve a more efficient computation
than standard Neural Networks. In SNNs, neuronal outputs
(i.e. activations) are not encoded with real-valued activations
but with sequences of binary spikes. The motivation of using
SNNs over conventional neural networks is rooted in the special
computational aspects of spike based processing, especially the
very high degree of sparsity of neural output activations. Well
established architectures for conventional Convolutional Neural
Networks (CNNs) feature large spatial arrays of Processing
Elements (PEs) that remain highly underutilized in the face
of activation sparsity. We propose a novel architecture that is
optimized for the processing of Convolutional SNNs (CSNNs) that
feature a high degree of activation sparsity. In our architecture,
the main strategy is to use less but highly utilized PEs. The
PE array used to perform the convolution is only as large as the
kernel size, allowing all PEs to be active as long as there are spikes
to process. This constant flow of spikes is ensured by compressing
the feature maps (i.e. the activations) into queues that can then be
processed spike by spike. This compression is performed in run-
time using dedicated circuitry, leading to a self-timed scheduling.
This allows the processing time to scale directly with the number
of spikes. A novel memory organization scheme called memory
interlacing is used to efficiently store and retrieve the membrane
potentials of the individual neurons using multiple small parallel
on-chip RAMs. Each RAM is hardwired to its PE, reducing
switching circuitry and allowing RAMs to be located in close
proximity to the respective PE. We implemented the proposed
architecture on an FPGA and achieved a significant speedup
compared to other implementations while needing less hardware
resources and maintaining a lower energy consumption.

Index Terms—Spiking Convolutional Neural Networks
(SNN), Hardware Acceleration, Event-Based Processing,
Field-Programmable Gate Array (FPGA).

I. INTRODUCTION

Artificial Neural Networks (ANNs) have become the go-
to solution for many machine learning problems [1], [2].
Generally, ANNs start to outperform conventional machine
learning approaches when large amounts of training data are
available [2]. However, this performance comes at a significant
computational cost. For example, the ANN model ResNet-50
requires a total 3.9·109 operations to process a single 224×224
image [3]. Generally, a trend can be observed that ANNs
increase in size as their classification accuracy improves and
the task at hand gets more complex [3]. This places a heavy
load on the underlying compute resources in terms on memory,
memory bandwidth and processing power. To satisfy non-
functional requirements such as power, throughput and latency,
careful co-design of the underlying algorithms and the respec-
tive processing hardware is necessary [4], [5]. To find more
efficient processing systems, inspiration may come from the
most efficient cognitive system known to mankind: the human
brain. An emerging trend is to implement dedicated hardware
to process biologically inspired Spiking Neural Networks
(SNNs) [6]–[12]. The term SNN refers to a large set of models
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that share one property: the outputs of the neurons (activations)
are not encoded with real-valued scalars like in standard NNs,
but with sequences of binary events called spikes. What makes
SNNs interesting from a computational perspective is their
inherent event-driven processing: computations need to be
performed only when spikes, i.e., events, occur [13], [14].
To actually achieve a performance advantage compared to
standard NNs, three aspects are crucial:

• The neural code determines how information is encoded
with binary spikes. The length of the encoding window
and the number of spikes required to encode neuronal
activations are the most important determinants of the
SNN’s inference speed and efficiency [15], [16]. In gen-
eral, the higher the spike sparsity, the better.

• In general, high sparsity in the neuronal output activations
requires less computations that need to be performed
during inference. While spike sparsity is a nice theoretical
property, it is actually very difficult to exploit with stan-
dard computer architectures, due to the irregular dataflow
associated with it [17].

• The output of a spiking neuron does not depend only on
its input but also on its internal state called membrane
potential. The real-valued membrane potentials need to
be stored and thus increase memory requirements which
are already very high to begin with. Strategies have to be
deployed to multiplex the membrane potential memory
to decrease the overall memory footprint.

To achieve state-of-the-art classification performance on
computer vision tasks, established methods from standard NNs
have to be adapted to SNNs. These methods are primarily:
convolutional layers and pooling layers. To accelerate such
Convolutional Spiking Neural Networks (CSNNs) using spe-
cialized hardware, most authors propose large spatial arrays of
Processing Elements (PEs) [9], [18], [19]. Spatial architectures
couple PEs in such away that they can exchange intermediate
results without having to access a central memory [5]. Typical
implementations use either fixed data path connections be-
tween the individual PEs (Systolic Arrays) [10] or Network-
on-Chips (NoCs) that feature a highly flexible packet-based
interconnect [9], [11]. Systolic arrays are excellent for per-
forming convolutions in cases where dataflow is easily pre-
dictable, i.e., in low sparsity situations [20]. NoCs are better
at handling unpredictable dataflows since they allow balancing
the workload over the different PEs. This comes at the cost of
the more expensive NoC communication infrastructure for im-
plementing routers and control circuitry. The major downside
of such spatial architectures is that most PEs are left idle if
highly sparse activations have to be processed. However, idle
PEs still consume power due to leakage and clock switching
(the latter only applies for synchronous implementations).
Furthermore, idle PEs are not contributing to the end result and
are thus wasting chip area. This is complicated by the fact that
activation sparsity and the associated irregular dataflow cannot
be predicted a priori [4], [21]. Consequently, the non-trivial
task of mapping neural operations to PEs must be performed at
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run-time. The main contributions of this paper are as follows:
• A non-spatial hardware architecture optimized for sparse

event-based spike processing using a highly efficient
neural code.

• A sequential processing scheme that allows the memory
for storing the membrane potentials to be multiplexed,
keeping the memory footprint low.

• The introduction of a novel memory mapping scheme
called memory interlacing that allows a highly parallel,
fine grained and high-bandwidth distribution of on-chip
RAM.

• A queue-based self-timed processing to enable a maximal
utilization of PEs, because skipping zero-activations is
inherent to the dataflow of the architecture. This allows
the execution time to scale directly with the number
of spikes. The core idea is to employ less PEs but to
maximize their utilization.

II. BACKGROUND ON SPIKING NEURAL NETWORKS

The large variety of SNN-models has arisen due to trade-
offs between biological plausibility and model complexity. In
this work, we use the integrate-and-fire (IF)-model [22]. The
(IF)-model has the least neuro-computational features of real
neurons but is very efficient in its implementation [22]. Recent
advances have shown the classification performance of SNNs
deploying the simple IF-model to be on par with state of the
art non-spiking NNs implementations [23], [24]. For example,
Sengupta et al. report an error increment of only 0.15% on
the CIFAR-10 dataset and an error increment of 0.38% on the
difficult ImageNet dataset when using an SNN over a standard
NN [23].

A. The Integrate-and-Fire model
Mathematically, the time discrete IF-model is described as

follows: A binary spike from the previous layer l−1 arrives at
the synapse i of a neuron j and is weighted with the synaptic
weight wi. The weighted spike is then integrated (i.e. added)
into the neurons membrane potential V l

mj
. When a membrane

potential Vm exceeds the threshold Vt, then the neuron fires a
spike itself and Vm is reset to 0. The membrane potential of
a neuron j at layer l at each time step t is described as:

V l
mj

(t) =

{
0 if V l

mj
(t− 1) > Vt

V l
mj

(t− 1) +
∑

i wi,j · xl−1
i (t− 1) otherwise

(1)
The neuron output x is defined by an all-or-nothing threshold
activation function:

xlj(t) =

{
1 if V l

mj
(t) > Vt

0 otherwise
(2)

Eqns. (2) and (1) have the following implications:
• SNNs are inherently temporal. Their internal state and

thus their output is dependent on the time steps t.
• SNNs operate in an event driven manner. They update

their internal state Vm only when an event (i.e. a spike)
is presented to them.

• The all-or-nothing thresholding leads to a high degree of
spike sparsity. That means that the occurrence of spikes
is a rare event.

The motivation to use SNNs over standard NNs is rooted in
the special computational aspects of spike-based processing:

• No multiplications. The spikes that encode neuron ac-
tivations are binary in nature. Weighting the binary ac-
tivations ∈ {1, 0} does not require an actual multipli-
cation, as the multiplication reduces to: 1 · w = w and

0 · w = 0. Thus, only adders are required to integrate
the weighted spikes on the membrane potential. Adders
require significantly less chip area and power compared
to multipliers [24].

• Less compute operations. The output activations of
SNNs are significantly sparser then those of standard
ANNs [25]. This sparsity increases in deeper layers of the
SNN. Ultimately, this potentially results in less compute
operations and thus faster and more energy efficient
inference.

• Less memory accesses. Even more important than re-
ducing the number of operations is the reduction of
memory accesses [26]. Here, SNNs have an advantage
since activations are binary and activations are highly
sparse, resulting in less data movement.

Despite the interesting properties of SNNs, there are also some
problematic aspects that need to be considered when building
specialized hardware:

• Storage of membrane potentials. Apart from weights
and neuron activations, SNNs require an additional data
structure: the real-valued membrane potentials of the
individual neurons need to be stored and modified during
inference.

• Irregular dataflow. Activation sparsity cannot be pre-
dicted a priori and thus needs to be handled during run-
time.

• Multiple forward passes. To perform inference on a
single sample (e.g. an input image), the entire SNN has
to run its forward pass multiple times. This is because
it takes multiple time steps for the spikes to propagate
through the SNN. How many steps are required depends
on (a) the network depth, (b) the neural code and (c) the
neuron model.

B. Information Encoding with Binary Spikes
Since spikes are identical to the logical value 1, information

is not represented by spike size. Instead, the activation strength
is encoded by the timing and/or the amount of the spikes. A
lot of effort has been put into researching neural encoding
schemes (called neural code) since they are one of the major
determinants of an SNNs performance [8], [14], [16], [27],
[28]. Rate coding is the most used encoding scheme. Here,
the activation strength is encoded by the firing rate of the
neuron [16]. A high firing rate represents a high activation
and vice versa. A neuron decodes an incoming sequence of
spikes by performing temporal averaging over a time window
to estimate the mean firing rate. With a longer time window, a
larger sample size is obtained, resulting in a more accurate fire
rate estimate. This makes rate coding a very time consuming
process since it takes a considerable amount of time until
the estimated mean firing rate has settled to an accurate
value [16], [27]. Time-To-First-Spike (TTFS) encoding was
initially proposed because rate coding could not explain the
fast processing in the visual cortex [27]. In TTFS coding,
information is encoded in the precise firing times of individual
spikes. For this, the time to first spike is measured, i.e. the
time that has passed between the arrival of a stimulus and
the emission of the spike. A large activation is encoded as an
earlier spike transmission and vice versa. TTFS coding enables
fast processing since neuronal activations can be encoded with
a single spike [29]. Section IV provides a detailed discussion
of the neural coded we implemented.

C. Convolutional SNNs
For computer vision tasks, well established techniques like

pooling and convolutional layers can be adapted from standard
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Fig. 1: Max-pooling in SNNs, here with a 2× 2 window size.

NNs to SNNs. The general principle is well known from image
processing: a 2D-kernel with dimensions Rl×Rl is convolved
over a, typically much larger, 2D input with dimensions
Hl × Wl for each layer l. For simplicity, we consider only
quadratic kernels and standard convolutional layers; the basic
principles discussed here can be generalized to other kernel
shapes or depthwise convolutional layers. The entries of the
kernel are the trainable weights. Each output of a neuron (i.e.
activation) is a pixel of the resulting 2D output image called a
feature map (fmap). A convolutional layer l typically generates
a number of Cl output fmaps called channels which can be
interpreted as a third dimension. The channels of the input
fmap Cl−1 dictate the number of channels of each kernel Kl.
The number of kernels kl determine the number of output
channels Cl, i.e. Cl = kl. For standard spiking convolutional
layers, the binary input fmap Xl−1(t) ∈ BHl−1×Wl−1×Cl−1 is
convolved with a a number of kl kernels Kl ∈ RRl×Rl×Cl−1

to which the bias b ∈ RCl is added to get the update to the
membrane potentials Ul(t) ∈ RHl×Wl×Cl . The update to the
membrane potential Ul(t) is added to the membrane potentials
Vm,l(t− 1) ∈ RHl×Wl×Cl . The membrane potentialVm,l(t)
is then thresholded with Vt ∈ R to get the resulting output
fmap Xl(t) ∈ BHl×Wl×Cl . This results in the following
equations, with ∗ denoting the convolution operation:

Vm,l(t) = Xl−1(t) ∗Kl + bl︸ ︷︷ ︸
Ul(t)

+Vm,l(t− 1) (3)

Xl(t) =

{
1 if Vm,l(t) > Vt
0 otherwise

(4)

Pooling can be interpreted as a down-sampling technique to
reduce the size of the fmaps. For SNNs, max-pooling is the
most used pooling function, due to its simplicity. The pooling
operation is performed window-wise in a non-overlapping
fashion. Typical window sizes are 2 × 2 and 3 × 3. The
implementation of max-pooling for binary fmaps is much
simpler than for real-valued fmaps: searching and selecting
the maximum in the pooling window is reduced to combining
all elements in the pooling window with an or-gate (see
Fig. 1). While solutions to perform average pooling have been
proposed, they are much more costly to implement and tend
to reduce the classification performance of the SNN [24].

III. RELATED WORK

Davies et al. [9] propose the Intel Loihi, an asynchronous
Application Specific Integrated Circuit (ASIC). It features
a NoC that interconnects 128 PEs called neurocores. Each
neurocore has its own memory and processing unit for im-
plementing 1024 spiking neurons as well as an interface to
access the NoC. If a neuron emits a spike, the source neuron
puts a packet on the NoC which is then routed to the target
neuron. The NoC supports only unicast spike communica-
tion, i.e. a neuron can only send a spike to a single target
neuron. While the communication itself is asynchronous, the

neuronal operations are still conducted in a time discrete (thus
synchronous) way. This requires the neurocores to constantly
exchange synchronization massages to ensure that they are all
in the same algorithmic time step. The NoC allows maximum
flexibility in the SNN’s connectivity architecture, but it hin-
ders the exploitation of the characteristic dataflow present in
pooling- or convolutional-layers. It also lacks the ability to
explicitly multicast spike packets. The NoC itself is expensive
as it requires a network interface for each neurocore and
multiple routers that have to route the packets while preventing
collisions and deadlocks.

Wang et al. [18] propose SIES, an FPGA-based accel-
erator with a 2D systolic array for efficiently calculating
convolutions. The core idea of systolic arrays is to read data
from memory once, but reuse it in multiple PEs so that less
memory accesses are required. SIES uses this highly parallel
2D systolic array only to calculate the update of the membrane
potential (Ul(t) as per Equation 3). This increment is then
added to the membrane potential of each neuron in a sequential
way, which appears to be a major bottleneck. The systolic
array architecture does not harvest the high degree of spike
sparsity, leaving PEs idle.

Kang et al. [19] propose ASIE, an asynchronous ASIC-
based convolutional SNN accelerator that implements event-
based processing using the Address Event Representation
(AER) protocol. While a 2D fmap in SNNs is basically a (0,1)-
matrix M, it is represented in AER by a list of all addresses
(i, j) for which Mi,j = 1. The 2D array of PEs is ideally as
large as the fmap to be processed because each PE implements
a physical neuron. For each address event, only the number
PEs defined by the kernel size are actually utilized, leaving
most PEs idle. E.g. a 30×30 PE array only utilizes 9 PEs for
processing a layer with a 3× 3 kernel.

Fang et al. [8] use a technique called High Level Synthesis
(HLS) to describe the SNNs dataflow as a network of recursive
filters and automatically synthesize it to an FPGA implemen-
tation. The convolution operations themselves are performed
using a standard, Multiply-Accumulate-based matrix multi-
plication unit. A deployment of a temporal, non-rate based
neural code is deployed to achieve a very energy efficient
implementation.

IV. SPIKING NEURAL NETWORK DESIGN

This chapter provides the basis for the hardware imple-
mentation of the SNN. The deployment of SNNs is a multi-
objective hardware-software co-design effort: the SNN should
provide a satisfactory classification result while allowing for
fast and energy-efficient processing. An important factor deter-
mining the computational performance of SNNs is the neural
code. Since recent research suggests TTFS-coding to be the
most efficient coding scheme [14], [16], it will be used in this
work. To implement TTFS-coding, Rueckauer et al. propose
a neuron model where each neuron can fire only a single
spike [14]. This is implemented such that a neuron that has
already fired cannot fire again. Note that inference on a single
sample requires multiple forward passes of the SNN. After
inference on a sample is is done, the entire SNN is reset so that
all neurons are able to fire again. This only-spike-once scheme
requires a new neuron model since a single spike has to be
enough to push a neurons membrane potential above firing
threshold. The main modification is the introduction of the
membrane potential slope µm. This results in a the following
system, illustrated in Fig. 2:

µl
mj

(t) = µl
mj

(t− 1) +
∑
i

wi,j · xl−1
i (t− 1) (5)
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V l
mj

(t) = µl
mj

(t− 1) + V l
mj

(t− 1) (6)

A neuron output activation x evaluates to 1 if the threshold
Vt is crossed and the last time step that a spike as been fired
tspike is at 0 indicating that no spike has been emitted so far.

xlj(t) =

{
1 if V l

mj
(t) > Vt and tspike = 0
0 otherwise

(7)

While this only-spike-once methodology results in a very
high spike sparsity, it has two inherent downsides:

• The real-valued membrane potential slope has to be
stored for each neuron, effectively doubling the memory
requirements of the SNN.

• While µm must only be updated when spikes occur, Vm
of every neuron that has received a spike must be updated
every algorithmic time step as a function of µm.

These downsides eliminate a lot of advantages of TTFS
encoding. To mitigate this, Han and Roy [28] propose a
modified TTFS scheme (further referred to as m-TTFS) that
gets rid of µm at the cost of a few more spikes. The idea
of m-TTFS is that once a neuron has exceeded Vt , it emits
a spike every algorithmic time step. After a sample has been
processed for T time steps, the entire SNN is reset and all
neurons can fire again. The m-TTFS code leads to the same
number of addition operation as the standard TTFS code,
but has the advantage that µm is not required anymore [28].
While this m-TTFS encoding reduces spike sparsity compared
to standard TTFS-encoding, it is still much more efficient
than rate coding because it reduces the number of forward
passes that are required for a single inference by orders of
magnitude [28].

Spikes are inherently discontinuous and non-differentiable.
This renders the well established gradient-based backpropa-
gation learning approach used for standard NNs impossible.
The training of SNNs is still a very active research are with
no established “best practice”. Three major approaches can be
identified:

• Spike Timing Dependent Plasticity: STDP describes
a large set of bio-inspired learning rules that share one
property: the synaptic weights are adapted depending on
the firing time difference between neurons in layer l and
its preceding layer l − 1. The basic principle is that the
connection strength (=weight) of neurons is increased
when they fire together, and that the connection strength
is decreased when the time difference between spikes is
large [30]. The standard STDP algorithm is unsupervised,
i.e. no labeled training data is required.

• Backpropagation: this class of approaches try to over-
come the non-differentiable nature of SNNs in order
to enable spike-based backpropagation. Most approaches
(a) try to approximate the derivatives to make gradient
learning possible [25], (b) employ differentiable surrogate
activations to replace the non-differentiable threshold
operation [31] or (c) use a tandem approach where a SNN
is performing the prediction and an equivalent standard
NN is adapting the weights using backpropagation [32].

• Conversion: here the idea is to circumvent the back-
propagation problem by training a standard ANN and
reusing the trained weights for the SNN. This has the
major advantage that the already very mature techniques
and toolchains established for standard NNs can be used
for training. Deep SNNs trained with conversion methods
show the best classification accuracy of all methods
discussed here [23], [24].

Here, we use a conversion approach to train the CSNN (see
Section VII for details).

Fig. 2: Behavior of a TTFS encoded IF-neuron over time. The
neuron integrates the weighted input spikes on the membrane
potential slope µm. This slope dictates the rise or fall of the
membrane potential Vm over time. When Vm reaches the firing
threshold Vt and no spike has been emitted previously, the
neuron emits a spike. Due to µm, this neuron can spike even
from a single input spike.

V. HARDWARE DESIGN

The main observation is that existing implementations em-
ploy large arrays of PEs that are then highly underutilized due
to spike sparsity. Another common problem is determining the
number of PEs for a CNN accelerator (be it spiking or non-
spiking). Most implementations like SIES [18] or ASIE [19]
deploy a PE array where its ideal size is the size of the
2D fmap that has to be processed. However, the fmap sizes
in CNNs change from model to model and from layer to
layer. This fact makes maximizing the efficiency of such PE
arrays very difficult. This problem of diminishing dimensions
is discussed in more detail by Chen et al. [20]. We argue
that one dimension is fixed for the most parts of established
CNN architectures: the kernel size. Szegedy et al. argue that
convolutions with filters sizes larger than 3× 3 “might not be
generally useful as they can always be reduced into a sequence
of 3 × 3 filters” [33]. Simonyan and Zisserman [34] argue
that, for example, two 3 × 3 convolutional layer have more
discriminative power than a single 5 × 5 layer as the former
incorporates two non-linearities while the latter only includes
one. Thus, it comes with no surprise that established, well
performing architectures like ResNet [35], Inception-V3 [33]
or MobileNet [36] all deploy 3 × 3 kernels for the vast
majority of their architecture. For this reason, the proposed
architecture is optimized for 3 × 3 kernels while 1 × 1
kernels for pointwise layers are also possible. Nevertheless,
the techniques discussed here can also be generalized to other
kernel sizes. The core idea of this architecture is to employ
less PEs but to constantly keep them busy. To ensure that
the PEs run at maximum capacity, spikes are represented
as address events that are compressed into queues. As soon
as all spikes of a queue are processed, the next queue is
selected. This allows the processing time to scale with the
number of spike events and results in self-timed execution of
the SNN. We start by providing a top-level overview of the
hardware architecture and then proceed to show how it can be
implemented efficiently on either FPGAs or ASICs.

A. Top-level overview
The goal is to maximize the utilization of PEs while

minimizing the number of PEs. To achieve this, the individual
fmaps are stored in a compressed format. This compressed
format is a queue of all spikes in a fmap whereby the spikes
are not represented by a logical 1 but by their Address Event
Representation (AER). The AER of a spike is simply the
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Fig. 3: Top-level architecture that shows the data flow between
the different units. The AEQ stores the address events that are
read by the convolution core. The convolution core updates
the MemPot memory depending on the address events. The
thresholding unit adds the bias to the neurons stored in
MemPot. Also, the thresholding unit thresholds the neurons
to generate the address event that are stored in the AEQ. The
classification unit performs implements an Fully Connected
layer and performs the final classification.

spike’s (i, j) coordinates in the 2D fmap (see Fig 4 for a
visual example). To process an fmap, the Address Event Queue
(AEQ) must be processed, which has the advantage that the
number of processing steps scales directly with the number of
spikes. The architecture proposed here consists of six distinct
units:

• The AEQ that stores the address events.
• The Membrane Potential memory (MemPot) for storing

the Vm of the neurons.
• The convolution unit that receives the address events from

the AEQ and updates MemPot.
• The thresholding unit that perform multiple tasks:

1) Threshold the MemPot and write the resulting ad-
dress events to the AEQ.

2) Perform max-pooling if required.
3) Apply the bias to neurons in MemPot and set them

back to 0 if required.
• The Read Only Memory (ROM) for storing the kernel

weights K and biases b.
• The classification unit performs the final classification

using a small fully connected layer. Its functionality
will be omitted here as the focus of this work is on
accelerating the convolutional layers.

Fig. 3 provides an overview over the dataflow of the architec-
ture.

B. Performing convolution with address events
Performing convolution with address events requires re-

thinking the well-known sliding window frame-based con-
volution. For this, Morales et al. [37] propose an algorithm
for event-based convolution. To process an address event at
position (i, j), all neurons affected by this address event
have to be updated with the respective kernel weights. The
affected neurons are determined by the neighbourhood of the
convolution kernel. A 3×3 kernel requires updating the neuron
potentials at position (i, j) and all 8 neighboring membrane
potentials. To get the same result as with standard sliding-
window based convolution, the respective weights of the kernel
can be added to the neuron potentials by rotating the kernel by
180◦. This is further explained in Fig. 4 and in [37]. Note that
this leads to the same result as performing standard sliding
window based convolution. However, with this principle, only
additions are needed and the number of operations scales with
the number of address events in the AEQ.
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Fig. 4: Convolution with address events. A 2D input fmap is
stored as a queue of address events (the AEQ). To perform
convolution, the AEQ is processed sequentially. Two address
events allow convolution to be performed in two successive
steps, whereas sliding window based convolution in this ex-
ample would require 4 × 4 = 16 steps, one step for each
pixel position in the input fmap. For each address event, 9
neurons (highlighted in white) can be updated in parallel, due
to the 3× 3 neighbourhood of the kernel. In Vm, step 1 it is
easy to see how the membrane potentials are updated with the
kernel contents rotated by updated by 180◦. This rotation is
necessary to achieve the same result as with sliding-window
based convolution (see [37]). Note that Vm is initialized with
zeroes. Also, note that only the AEQ is used to store spikes, the
2D Input fmap is only shown to allow for an easy interpretation
of the AEQ’s content.

Because all spike events are located inside the AEQ, the
clock cycles required to perform the convolution scale directly
with the number of spikes, i.e., one clock cycle per event. Due
to a high degree of spike sparsity, this leads to a significant
speed-up. All 9 neuron membrane potentials can be updated in
parallel because there is no data dependency. Thus, a total of 9
PEs are required in the convolution unit. Each PE implements
an adder that receives a membrane potential and a kernel
K[·] and returns an updated membrane potential. Note that K
refers to all kernels of the SNN, thus for each convolution the
correct kernel must be selected depending on the current layer
l, the current input channel cin and output channel cout. We use
the following notation to indicate the selection of the correct
kernel for the current convolution: K[cout, cin, l]. Additional
adders are required to calculate the addresses of the affected
neurons.

C. Thresholding Unit
The thresholding unit performs three distinct tasks: max-

pooling, thresholding and the addition of the bias. Like the
convolution unit, the thresholding unit operates in a 3 × 3
neighborhood and thus processes 9 inputs in parallel. The
thresholding unit does not operate in an event-based manner
because all neurons need to be visited in order to threshold
them and to add the bias to them. The processing sequence of
the thresholding unit is as follows (also illustrated in Fig. 5):

1) Add the scalar bias b to all neuron potentials in the
current 3× 3 window.

2) Threshold all neuron potentials in the 3 × 3 window
with Vt:
No Max-pool: Write the addresses of the neurons in

the current window to the AEQ if they exceed the
threshold value Vt.

Max-pool enabled: If any neuron potential in the win-
dow crossed Vt, write the max-pooled address to the
AEQ. How the max-pooled address can be calculated
will be described later.

3) The 3 × 3 window is moved with a stride of 3, i.e. it
moves 3 pixels ahead.
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Fig. 5: Functionality of the thresholding unit at the example
of a single channel. Nine parallel adders add the bias and 9
parallel comparators do the thresholding in the 3× 3 window.
The window is moved with a step size of three over all
neurons. How max-pooling with address events works will be
discussed in more detail later.

4) Repeat until all neurons of the current channel have been
thresholded.

D. Scheduling strategy

The convolution unit can only perform convolution on a
single channel. To process a multichannel convolutional NN
with mutiple layers, the convolution unit must be applied
to all channels and all layers in the correct order. This is
a complex scheduling problem: which kernels and biases
need to be applied to which address events in which order.
The naive solution to this scheduling problem would be to
implement as many convolution units as required to perform
all operations in parallel. This is not a feasible solution because
hardware and memory resources are limited. The goal of the
processing strategies proposed here is to keep the required
memory resources as low as possible. There are three types
of data structures in SNNs:

• The membrane potentials Vm stored in MemPot are not
sparse and require significant memory resources.

• The sparse output activations are stored in the AEQ as
address events.

• The weights and biases are stored in uncompressed form.
The key to reducing memory requirements is to reuse, i.e.

multiplex, the MemPot memory for each channel. Consider
the following example: a layer has 32 channels. Each channel
requires 10 kb to store the membrane potentials. Thus, 320 kb
of memory are required. However, if each channel is processed
one after the other, only 10 kb are required in total. Here,
an SNN is processed layer by layer. Each layer of an SNN
needs to be simulated for multiple time steps T . To maximize
the reuse of MemPot, processing is done in a channel-wise
fashion. Each output channel of a layer is simulated for all
time steps t, one channel after the other.

The output fmap of each channel is represented by its own
AEQ. These AEQs can be implemented in a single dual-port
RAM since each individual AEQ is processed sequentially.
Algorithm 1 shows the dataflow1 of the processing scheme
where the output address events of a layer l− 1 are processed
to get the output address events of l. We use Cl−1 and Cl

to denote the number of input and output channels of the
current layer l. The memory MemPot for storing Vm is only
large enough for a single channel. MemPot is reused for every
output channel in order to keep the memory requirements low.

1The dataflow for standard convolution is shown. The scheme can easily
be adapted to support depthwise convolution as well. For didactic reasons and
lack of space, we refrain from showing this.

Algorithm 1 Schematic dataflow for processing a layer l
1: for cout ← 0 to Cl do
2: Vm ← 0 . reuse for each output channel cout
3: for t← 0 to T do . Simulate layer for all time steps T
4: for cin ← 0 to Cl−1 do

. Update Vm using the address events from the AEQ
5: Vm ← ConvolutionUnit(AEQ[cin, l − 1, t],

K[cout, cin, l], Vm)
6: end for

. Save the address events from the thresholding unit
7: AEQ[cout, l, t] ← ThreshUnit(b[cout], Vt, Vm)
8: end for
9: end for

VI. IMPLEMENTATION

This section shows how the top-level architecture described
in the previous chapter can be mapped to actual hardware.
The top-level architecture poses one essential challenge that
needs to be addressed: the membrane potential Vm is stored in
a single memory (MemPot). However, to perform convolution
or thresholding, 3×3 membrane potentials need to be accessed
in parallel. Dual-port RAMs (such as BRAMs present on
most FPGA chips) typically only supports one write and one
read access per clock cycle, rendering 9 parallel read/write
operations impossible. To solve this problem, a novel memory
distribution strategy called memory interlacing is presented
here. The idea of memory interlacing is to distribute all
elements of MemPot over 9 different RAMs called columns,
such that 9 concurrent read/write operations are possible. The
elements of the membrane potential need to be placed into the
9 memory columns in a certain fashion: regardless on which
position (i, j) the 3×3 window is placed, all 9 elements must
come from one memory column each. This memory interlacing
scheme is further explained in Fig 6. Each element is addressed
uniquely by its address (i, j) and its column s ∈ (0, ..., 8).
For a more compact notation, (i, j)[s] is used to define the
unique address of a neuron. The memory interlacing scheme
has multiple positive effects:

• Instead of of one large monolithic memory, Vm is
distributed to 9 smaller RAMs. Smaller RAMs tend to
be faster and more energy efficient.

• The multiple small RAMs can be distributed closer to the
PEs, which further increases speed and energy efficiency.

• The interlaced processing effectively prevents data-
hazards.

In the following, we will discuss the hardware implementation
of the different modules in detail.

A. Address Event Queue (AEQ)
The AEQ has to store the address events in queues. This is

done in an interlacing fashion (see Fig. 7). The AEQ is not
only a data structure but also features two independent circuits:
one for writing and one for reading the queue columns. The
thresholding unit writes the address events and the convolution
unit reads them.

Write Logic: The queues in the 9 columns can be filled
in parallel. The 9 parallel write accesses are necessary since
thresholding is performed in a 3× 3 window. The write logic
features 9 write counters, one for each column. An address
event is only written to a queue if the respective write enable
is set.

Read Logic: Since the address events are processed one
after the other, the queues are read sequentially, from queue
0 to 8. Therefore, one read counter and the column-select
counter ∈ (0, .., 8) to select the correct queue is required. Each
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to understand visualization of the AEQ’s contents.

entry in the queue not only contains the address event but also
two extra bits: the valid bit and the end-of-queue bit. This valid
bit indicates if an address event is valid. The valid bit is used
to indicate empty queues. The end-of-queue bit indicates the
last element of the queue and leads to an increment of the
column-select counter. If one queue columns is completely
empty, then one clock cycle is wasted by reading an invalid
address event and incrementing the column-select counter.

B. Convolution Unit
The functionality of the convolution unit can be split into

multiple sub-units: address calculation, kernel permutation,
MemPot update calculation and data hazard detection. The
circuit of the convolution unit is pipelined into four stages
S1 to S4. The general data flow in the convolution unit is as
follows:
Start Receive address event: When the AEQ receives a read-

enable signal, it starts to read out the 9 queues sequen-
tially from a given offset. The convolution unit receives
the input address event (i, j)[s]in to uniquely identify the
location of an incoming spike.

S1 Calculate addresses: The convolution unit calculates the
addresses of all affected neurons in the 3 × 3 neighbor-
hood.

S2 Read MemPot: The convolution unit reads the 9 mem-
brane potentials from the calculated addresses. Also, the
permutated kernel will be selected here.

Address
calcula�on

[8][0]

d_out d_out

d_in d_in

[0] [8]

w_addr w_addr

S1 S2 S3 S4

r_addr

forward

r_addr

𝑖,𝑗 [0]mem

𝑖,𝑗 [8]mem

Fig. 8: Pipelined architecture of the convolution unit. The
convolution unit is setup in four stages. The core is operating
on 9 membrane potentials (green) and 9 kernel weights (or-
ange) in parallel. In S1, the read addresses of all 9 membrane
potentials is calculated. These read addresses get passed along
the pipeline and become the write addresses in S4. In S2, the
read addresses are delivered to the memory columns. It takes
one clock cycle for the MemPot memory to deliver the output
data. Also, the 9 kernel elements (orange) are sorted in the
right order and transported to the PEs in S3. The adders in
S3 then update the membrane potentials. In S4, the updated
membrane potentials are written back. Note how each PE is
permanently connected to the respective memory column of
MemPot. For better visibility, only the logic and data paths of
two PEs are displayed, the dots · · · indicate the existence of
the missing 7 data paths.

S3 Calculate update: The convolution unit adds the respective
kernel weights to the 9 membrane potentials.

S4 Write back MemPot: The 9 updated membrane potentials
are written back to MemPot to the same addresses cal-
culated in S1.

Pipelining increases the parallelism inside the convolution unit
because all four stages are executing their respective task
in parallel (see Fig. 8). This ensures that all parts of the
convolution unit are busy. For example, S3 is updating the
membrane potentials of an address event while S2 is already
fetching all membrane potentials for the next address event.
Furthermore, since the combinational parts of the circuit are
divided into four stages, a much higher clock frequency can
be achieved. However, pipelining also has some downsides.
At the start, it takes four address events until the pipeline is
completely filled (wind-up). Only a full pipeline can deliver
maximum efficiency. It is therefore important that a constant
flow of address events is provided so that the pipeline stages
are always saturated. This constant supply can be provided
since the address events of a channel are compressed into a
queue that is read event by event. A downside of pipelining is
the occurrence of data hazards caused by data dependencies.

Address calculation: The convolution unit receives an input
address event (i, j)[s]in from the AEQ. The address calculation
logic must then compute what the addresses of the nine
affected membrane potentials in the kernel neighbourhood are
so that they can be fetched from MemPot. Here, we use the
subscript “in” to refer to the components of the input address
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Fig. 9: Example for the address calculation scheme with inter-
laced memory. Blue kernel: the input address event (0, 0)[5]in
comes from sin = 5, which defines the center of the kernel.
To calculate the address imem for smem = 0, Eqn. (8) is used to
get imem = iin + 1 = 1. Purple kernel: the input address event
is (0, 1)[1]in, defining the center of the kernel. To calculate the
imem for smem = 0, Eqn. (8) is used to get imem = iin = 0 since
sin = 1 is not 2 or 5 or 8.

events and “mem” to refer to the components of a neuron’s
address in MemPot. Nine different addresses (i, j)mem need
to be calculated for each of the 9 MemPot memory columns:
(i, j)[0]mem, ..., (i, j)[8]mem. Consider the following example:
an input address event has the address (i, j)[s]in. For sim-
plicity, consider only the (i, j)mem addresses for column 0
((i, j)[0]mem). If the input address event comes from column
sin ∈ {2, 5, 8} of the AEQ, then imem = iin + 1 otherwise
imem = iin as described in Eqn. (8). Similarly, Eqn. (9)
describes how jmem can be calculated. For the remaining
columns smem, the address calculation logic can be constructed
in a similar fashion, which we refrain from showing here due
to spacial limitations.

imem =

{
iin + 1, if sin ∈ {2, 5, 8}
iin, otherwise

, for smem = 0 (8)

jmem =

{
jin + 1, if sin ∈ {6, 7, 8}
jin, otherwise

, for smem = 0 (9)

This example for imem is described visually in Fig. 9. Four
adders are needed to calculate i + 1, i − 1, j + 1, j − 1 and
9 comparators are required to check from which of the 9
columns in the AEQ the address event came from. Parts of
the kernel can be out of bounds of the fmap when the kernel
center is directly at the fmap’s edge. To avoid errors, this out-
of-bound condition must be detected so that no membrane
potential updates occur for the parts in question. Out-of-
bounds detection is performed by detecting under/overflows
in the address calculation logic. For example, an address
event at (0, 0)[0] would cause MemPot column smem = 8
to be addressed with (−1,−1). Since the address calculation
logic only supports non-negative integers, this would cause
an underflow that can be detected with very little hardware
overhead.

Kernel permutation: Each of the 9 PEs is essentially an
adder, performing the updates of the membrane potentials is
connected to one of the 9 memory columns of MemPot. Each
PE receives on of the nine kernel elements K[0] to K[8] and a
membrane potential as an input. While a channel is processed,
the kernel itself does not change. However, the mapping of the
9 kernel elements K[·] to the 9 PEs changes depending on the

location of the input column sin = 5 that the address event
came from. Reconsider the example in Fig. 9. For the blue
kernel, the top left kernel element (K[0], assuming that the
kernel is already flipped by 180◦) has to be mapped to the PE
of MemPot column smem = 1. For the purple kernel however,
K[0] has to be mapped the PE of smem = 6. Since there are
9 memory columns there are 9 different permutations of the
kernels weights. All 9 possible permutations are calculated in
parallel in S2. The correct permutation is then selected with
a multiplexer for each PE (see Fig. 8). The hardware cost is
relatively low: a total of nine 9-to-1 multiplexers are needed.

Update calculation: During the calculation of the mem-
brane potential update, arithmetic overflows or underflows
might occur. When an overflow occurs, a large membrane po-
tential overflows and becomes a negative membrane potential.
Underflows are even more critical because strongly negative
membrane potentials become very large membrane potentials,
generating erroneous spikes. The obvious solution to this
problem would be to adapt the bit widths of all data paths
so that over/underflows are impossible. However, this would
significantly increase the required hardware resources. Instead,
saturation arithmetic is used here. If the result of an addition
is larger than the maximum, it is clamped to the maximum
representable value. In a similar fashion, too small values are
clamped to the minimum representable value. Saturation works
well for SNNs with m-TTFS coding: A further decrease of
an already very negative membrane potential has no effect
on the output of the neuron. Similarly, further increasing the
membrane potential when it is well above firing threshold
does not change the neurons output. To implement saturation
arithmetic in hardware, over/underflow detection is required.
Over/underflow detection only requires checking a single bit
and thus is cheap to implement.

Data hazard mitigation: In this architecture, Read Af-
ter Write (RAW) data hazards can occur when an updated
membrane potential is read from memory that has not yet
been calculated or written back. When the RAW-hazard is
not handled, the update of an membrane potential will be
overwritten. There are two situations where a RAW-hazard can
occur: between S2-S4 and between S2-S3. In the case of S2-
S4, S2 reads from the same address that S4 is currently writing
to. Writing to the memory takes one clock cycle and thus S2
receives an outdated membrane potential. Resolving the S2-
S4 hazard is cheap because the updated membrane potential
has already been calculated, just not written back yet. The
updated membrane potential must only be forwarded directly
to S3, bypassing MemPot (see Fig. 8). The S2-S3 hazard
occurs when S2 is reading from a memory address for which
S3 is currently calculating an update. In this case, forwarding
does not work because the update has not yet been calculated.
The solution is to stall S2, S1 and the AEQ for one clock
cycle so that S3 can finish the calculation. The S2-S3 hazard
is then a S2-S4 hazard that can be resolved by forwarding. To
implement hazard detection, 9 comparators are required for S3
and 9 comparators are required in S4. The forwarding logic
is cheap to implement: only 9 2-to-1 multiplexer are required,
one for each PE.

S2-S4 hazards are not a problem because they can be
resolved by forwarding. S2-S3 hazards should be avoided
because they require parts of the pipeline to be stalled. This re-
duces throughput and leaves parts of the pipeline unoccupied.
The probability of S2-S3 hazards is greatly reduced due to the
design of the AEQ interlaced memory. S2-S3 hazards occur
when two immediately successive addressing events access
overlapping membrane potentials. See for example Fig. 9. If
the address event 0,1 column 1 (purple) is processed directly
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after event 0,0 column 5 (blue) then a S2-S3 hazard would
occur for column 7 and 8 (where the kernels overlap). This
cannot happen with the AEQ design because all address events
from memory columns 2, 3 and 4 are processed first. Apart
from that, the address events are read from the AEQ column-
wise, i.e. first all address events from column 0 are read,
then column 1 and so on. This is a major advantage because
address events from the same column index will never access
overlapping membrane potentials. Processing address events
from the same column will never result in data hazards. Data
hazards can only occur on switching from one column to
another.

C. Thresholding Unit
The thresholding unit has to visit every membrane potential

in the MemPot. It does so by sliding a 3 × 3 window
over the membrane potential with a stride of 3. The general
architecture shows some similarities to the convolution unit.
The thresholding unit starts its operation as soon as its clock
enable signal is set to 1. A pipelined design with five stages
S1 to S5 deployed:
S1 Calculate addresses: The thresholding unit calculates the

addresses of all 9 membrane potentials in the 3 × 3
window that is currently processed.

S2 Read MemPot: The thresholding unit reads the 9 mem-
brane potentials form MemPot.

S3 Add Bias: The scalar bias is added to all 9 membrane
potentials.

S4 Threshold: The updated membrane potentials are com-
pared to the threshold Vt to determine if they fire a spike.

S5 Write MemPot and AEQ: The updated membrane poten-
tials are written back to MemPot. If a spike is gener-
ated in S4, then the respective AEQ-column is written.
Also,when enabled, max-pooling is performed here.

It is important to note that no data hazards can occur in the
thresholding unit. This is because each membrane potential is
read out only once. Fig. 10 gives a schematic overview of the
thresholding unit.

It is important to note that no data hazards can occur in the
thresholding unit. This is because each membrane potential is
read out only once.

Address Calculation: Address calculation is very simple,
thanks to the interlaced memory. Only two counters are
required, one for the imem coordinate and one for the jmem
coordinate. Addressing all memory columns of MemPot with
the same (i, j)mem address accesses a 3×3 window by design
(see for example Fig. 11 where all membrane potentials with
the coordinate (0,0) are located in a 3× 3 window).

Bias update: The scalar bias is used as an input for all 9 PE
(as illustrated in Fig. 5). Saturation arithmetic is used to avoid
underflows and overflows, akin to that of the convolution unit.

Thresholding: Thresholding is performed by 9 parallel
comparators. Due to m-TTFS encoding, each neuron that has
fired already needs to fire again. This is implemented with
a spike indicator bit that is stored together with the neurons
membrane potential in the MemPot memory. The comparators
check two conditions: if the firing threshold is crossed and if
the spike indicator is set. If any of these two condition is true,
then the spike indicator bit of the respective neuron is set to
1. It is only set back to 0 if a new sample has to be processed.

Writing the AEQ: How the generated address events (indi-
cated with a “out” subscript) are written to the AEQ depends
on whether max-pooling is enabled or not. The simplest case is
when max-pooling is disabled. In this case, the address event
(i, j)[s]out of a spiking neuron is simply its MemPot address

Algorithm 2 Calculate max-pooled address event
1: sout,i ← 0 . Counts in the sequence 0,1,2,0,1,2,...
2: sout,j ← 0 . Counts in the sequence 0,3,6,0,3,6,...
3: iout ← 0
4: jout ← 0
5: for jmem ← 0 to jmax do
6: for imem ← 0 to imax do
7: if imem = imax then
8: sout,i ← 0
9: iout ← 0

10: if sout,j = 6 then
11: sout,j ← 0
12: jout ← jout + 1
13: else
14: sout,j ← sout,j + 3
15: end if
16: else
17: if sout,i = 2 then
18: sout,i ← 0
19: iout ← iout + 1
20: else
21: sout,i ← sout,i + 1
22: end if
23: end if
24: sout = sout,i + sout,j . Max-pooled column
25: end for
26: end for

(i, j)[s]mem. With 3 × 3 max-pooling enabled, the resulting
address event (i, j)[s]out has to be calculated. Consider the
example in Fig. 11. For example, all spikes from the addresses
(0, 1)[0]mem to (0, 1)[8]mem have to be mapped to a single
address event (0, 0)[3]out. The calculation of this mapping
is inexpensive to implement in hardware with four counters
that run along with the address calculation logic. To avoid
expensive division operations, a sequential circuit can be
constructed using only adders to perform the address and
column index calculation. An algorithmic representation is
can be seen in Algorithm 2. The counters imem, jmem are used
to calculated the addresses of the 3 × 3 window applied to
MemPot. The counters sout,i and sout,j are used to calculate the
sout of the max-pooled address event. To save power, the clock
enable of the max-pooling calculation logic can be turned off.

VII. EXPERIMENTS AND EVALUATION

To evaluate the effectiveness of the proposed architecture,
we first trained a small CSNN on the MNIST2 and the
more difficult Fashion-MNIST3 dataset. Training was per-
formed with a conventional CNN using Tensorflow Keras4 the
clamped ReLU activation function (as described by Rueckauer
et al. [14]). In preparation for the deployment in hardware,
the CNN was then retrained using quantization-aware train-
ing [38]. The weights of the CNN were then converted using
the SNN-Toolbox5 proposed by Rueckauer et al. [14], [24]
and quantized to 8 and 16 bit. The CSNN has a structure
of (28× 28-32C3-32C3-P3-10C3-F10). The notation is as
follows. Convolutional layers: <#channels>C<kernel size>,
Max-pooling layers: P<window size>, Fully-connected lay-
ers: F<#neurons>. Experimentally, it was found that simu-
lating this m-TTFS encoded CSNN for T = 5 time steps
yielded the best classification accuracy. The input frames
consist of integer pixels that need to be binarized before
processing in order to get input spikes that are then fed to the
CSNN. The binarization can be achieved by thresholding the

2http://yann.lecun.com/exdb/mnist/
3https://github.com/zalandoresearch/fashion-mnist
4https://keras.io/about/
5https://snntoolbox.readthedocs.io/en/latest/

http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
https://keras.io/about/
https://snntoolbox.readthedocs.io/en/latest/
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performed. Also, the result of the bias update is written back. For max-pooling, a 9-to-1 or-gate combines all outputs of
the comparators. In S5, the results of the thresholding are written to the AEQ columns. If max-pooling is enabled, then the
max-pooled address is forwarded to the data ports of the AEQ columns. The calculated max-pool column is used to select
the correct AEQ column’s write enable. If max-pooling is disabled, the MemPot addresses (i, j)mem are connected to all data
ports. Also, each comparator is connected to its AEQ column via the write enable. Thus, 9 address events can be written in
parallel. Signals related to max-pooling are indicated by dashed lines.
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Fig. 11: Max-pooling with interlacing memory columns re-
quires the calculation of the address (i, j)[s]out and the re-
spective memory column. For example, all spikes that are
generated from address (0, 1)[0]mem to (0, 1)[8]mem are pooled
to a single address event with the address (0, 0)[3]out.

individual frames. For a simple dataset like MNIST where the
background is clearly separated from the object, applying only
a single threshold is sufficient. However, this inevitably leads
to a loss of information and we thus propose to convert the
input frame into binary spikes by a applying a set of thresholds
P = (p1, p2, ..., pT−1). An important property of P is that it
is a strictly increasing set to mimic m-TTFS encoding.

The proposed architecture was synthesized for the Xilinx
Zynq UltraScale+ XCZU7EV FPGA. The power estimation is
performed with the Vivado Power Estimator tool. The general
architecture of the accelerator is very compact, therefore
the parallelism and thus the latency can be improved by
implementing multiple units in parallel. We tested our imple-
mentation with multiple degrees of parallelization, referring

to the number of AEQs, MemPot memories, Kernel and Bias
ROMs, thresholding units and convolution units. We found that
for this CSNN, a parallelization of ×8 yielded the best energy
efficiency (see Table I). Table II provides detailed synthesis
and utilization results (in terms of LUTs, Flip-Flops (FFs),
Block-RAM (BRAM) and dedicated DSPs) and compares
them to related work. To evaluate the effectiveness of the
proposed approach, we compared the input activation sparsity
for each layer with the PE utilization in Table III. Sparsity
refers to the number of non-zero activations in relation to
all activations. PE utilization measures the clock cycles in
which the PEs receive valid address events relative to all
clock cycles required to process the CSNN. Note that the
PE utilization does not take into account that there might
be zero weights that do not lead to and update to MemPot.
Table V shows the performance statistics of the architecture
proposed here and compares them to other CSNN MNIST
implementations. Table IV compares the accuracy on the
Fashion-MNIST dataset with related work. Direct quantitative
comparisons should be made with caution because the different
approaches do not use identical SCNN architectures for their
experiments. Nonetheless, the SCNN sizes are comparable
enough (all contain three to four trainable layers) to allow
for a meaningful qualitative comparison. Fig. 12 provides an
overview over how may hardware resources are consumed by
the individual units.

VIII. CONCLUSIONS

The SNN hardware implementation strategy developed in
this work allows for low-latency and power efficient process-
ing of convolutional SNNs. It supports state of the art SNN
architectures thanks to the hardware implementation of max-
pooling and neuronal biases. This allows the deployed SNNs
to achieve a competitive classification accuracy.
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Fig. 12: Utilization if the different FPGA resources. “Others” includes the control unit, the classification unit and the bias
ROM. Due to space limitations, units such as the classification unit that implements the final fully connected layer could not
be described here. Note that the MemPot memory rows were too small to map efficiently to BRAM, so they were implemented
as distributed LUT-RAM.

TABLE I: Performance of different degrees of parallelism,
here for the 8 bit implementation. Here, parallelism refers to
the number of parallel convolution cores, AEQs, thresholding
units, etc.

Parallelization ×1 ×2 ×4 ×8 ×16
Throughput [FPS] 3,077 5,908 10,987 21,446 33,292
Efficiency [FPS/W] 3,149 5,006 7,474 10,163 9,148

TABLE II: FPGA Synthesis Results, compared to other FPGA-
based SNN implementations.

Frequency
[MHz] LUT FF BRAM

[Mb] DSP

This work (8 bit) 333 19 k 12 k 2.1 32
This work (16 bit) 333 33 k 21 k 3.9 64
Fang et al. [8] 125 115 k 233 k 9.1 1.7 k
Guo et al. [10] 100 53 k 100 k 2.3
SIES [18] 200 302 k 421 k 6.9

TABLE III: Sparsity of each layers input activations compared
to the PE utilization for each convolutional layer. Here for the
very first sample of the MNIST validation dataset.

Convolutional Layer Layer 1 Layer 2 Layer 3

Input activation sparsity 93% 98% 98%
PE utilization 72% 58% 56%

TABLE IV: Accuracy on the Fashion-MNIST dataset com-
pared to other works.

Work This work Guo et al. [10] Fang et al. [8]

Accuracy [%] 88.9 87.5 89.2
Quantization [bits] 16 32 16

To reduce the memory cost of the membrane potentials,
a scheme for neuron multiplexing was introduced. In this
scheme, only a small part of the SNN is simulated and only
the sparse output spikes of this partial simulation are stored.
To achieve a high performance, a novel memory distribution
scheme called memory interlacing was introduced. Memory
interlacing allows for a highly-parallel fine-grained distribution
of memory units close to the PEs. To exploit the high degree
of sparsity, the spike events are compressed into queues.
As a result, the processing time scales with the number of
occurring spikes. Queue-based processing ensures that PEs are
utilized as much as possible, even though there still is room
to further improve the PE utilization. We found that in our

CSNN, there were multiple channels inside the convolutional
layers that never generated spikes. Thus, pruning such “dead”
layers could lead to further improvements. The PEs are highly
pipelined to achieve a high clock frequency and to improve
parallelism. In contrast HLS-based approaches like the one
of Fang et al. [8] or S2N2 [39], our approach is agnostic
to the CSNN’s architecture and can thus be implemented on
an ASIC as well. As the hardware utilization of a single
convolution unit is so small, mutliple convolution units can be
implemented in parallel, allowing easy scaling of throughput.
The prototype developed in this work shows a very promising
performance, however, the target SNN used here is relatively
small, developed for a relatively simple benchmarking dataset.
In the future we plan to implement larger SNNs and also
compare our results to non-spiking implementations.
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