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Abstract—In this paper we revisit the topic of generalizing
proof obligations in bit-level Property Directed Reachability
(PDR). We provide a comprehensive study which (1) determines
the complexity of the problem, (2) thoroughly analyzes limitations
of existing methods, (3) introduces approaches to proof obligation
generalization that have never been used in the context of PDR,
(4) compares the strengths of different methods from a theoretical
point of view, and (5) intensively evaluates the methods on various
benchmarks from Hardware Model Checking as well as from AI
Planning.

I. INTRODUCTION

In 2011, the verification engine PDR resp. IC3 was intro-
duced [1] and is nowadays widely considered as the most
powerful algorithm for Hardware Model Checking. Apart from
Hardware Model Checking, PDR is in use on lots of different
domains, such as Software Model Checking, Hybrid Systems
Model Checking, or AI Planning [2]–[9]. It has been lifted to
SMT on a wide range of theories. However, in this work we
restrict ourselves to bit-level PDR.

The idea of PDR is to avoid the unrolling of the transition
relation as in Bounded Model Checking (BMC) [10] and to
rather replace small numbers of large and hard SAT problems
by many small and easy ones based on a single instance
of the transition relation only. PDR repeatedly strengthens a
proof by removing unreachable predecessors of unsafe states.
Thereby, PDR tries to avoid enumerating single states by
putting a lot of effort in generalizing these predecessors to
preferably expressive state sets. Firstly, PDR generalizes states
which are predecessors of the unsafe states, so called proof
obligations (POs). POs have already been proven to reach
an unsafe state, and should therefore not be reachable from
any initial state for the system to be safe. Furthermore, PDR
also generalizes states which are proven to be unreachable
from the initial states. In this paper we put our focus on the
generalization of POs because PDR’s efficiency relies heavily
on these generalization capabilities [11], [12] and in contrast
to the generalization of unreachable states [1], [13], [14], the
generalization of proof obligations did not receive that much
attention in research lately. Since PDR is in use on such a
great variety of applications, these domains pose different
challenges to the generalization of POs. Exact methods for the
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generalization of POs would amount to pre-image computations
requiring quantifier elimination. Common methods approximate
quantifier elimination and build on transition functions instead
of general transition relations. However, we stress that this is
insufficient for a great deal of problem domains.

We discuss exact and approximative generalization tech-
niques for circuits, reverted circuits, circuits with invariant
constraints and general transition relations. Our contribution is
as follows:

1) We show that generalizing POs in PDR is ΠP
2 -complete in

general. Thus, a non-approximative solution will always
have the same complexity as a 2-QBF problem.

2) We investigate generalization techniques for sequential
circuits (i. e., transition functions) which have not been
used in the context of PDR to the best of our knowledge
and we give a thorough analysis of the detailed reasons
why known techniques do not work for general transition
relations.

3) We discuss which methods are applicable to circuits with
invariant constraints and which transformations can be
used to enable the correct application of all generalization
techniques that are known for circuits.

4) We introduce methods for the general case of transition
relations. This includes approximative as well as exact
methods which are based on QBF and MaxQBF solving.

5) We provide a thorough analysis which methods need
which properties of the transition relation to be correct. In
that way we provide users of PO generalization methods
with a guide telling which methods can be applied in
which context.

6) We provide a thorough comparison of the generalization
strengths of the different methods from a theoretical point
of view.

7) From a practical point of view, we present an intensive
evaluation of the different methods and also combinations
of some of them. We consider HWMCC benchmarks with
and without invariant constraints [15]–[17], as well as
AI Planning benchmarks from the International Planning
Competition (IPC). Our results show that the novel
methods can improve on well-established existing gener-
alization methods. Due to the complementary strengths
of the methods the results can be further improved by
portfolio applications of different methods. Even the most
expensive methods are able to contribute to overall run-
time improvements by providing stronger generalizations.
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Moreover, exact methods are used to analyze the potential
for improvement of approximate methods.

Related work: Since the introduction of PDR [1], there have
been several improvements on the efficiency of the original al-
gorithm. One important insight of [11] was the use of a dynamic
generalization technique for POs by using ternary simulation
(01X simulation) instead of a static cone-of-influence analysis
as performed in [1]. This greatly affected the algorithm’s
efficiency in terms of runtime and memory consumption. The
authors of [18] present a similar generalization technique – to
which we refer as lifting – which uses a SAT solver call instead
of simulation. We consider ternary simulation as well as lifting
as the two most used standard techniques for the generalization
of proof obligations in the context of digital circuits. We
compare them to other in PDR yet unused techniques and
even extend the exposition of [18] by a detailed analysis of
the limitations of lifting.

In [6], [19], limitations of these techniques are also discussed
in the context of spurious POs under abstraction and general-
ization under invariant constraints. The authors of [20], [21]
discuss PO generalization in the context of Reverse PDR. We
however give a general theoretical analysis of the preconditions
for lifting and differentiate between lifting being either incorrect
or unable to find generalizations.

For digital circuits, [22] analyzes two techniques for general-
izing counterexamples in BMC. The lifting approach which is
one of them has been adapted to PDR in [18]. Here we adapt
the other one to PDR as well and call it ‘Implication Graph
Based Generalization’ (IGBG) in this paper.

In the more general context of PDR on top of SAT
modulo theories (SMT), the authors of [3] briefly mention
a cover approach with don’t care values for generalizing
POs. Technically, this is very much related to the SAT-based
cover approach that we discuss for general transition relations.
Furthermore, there are various works which discuss finding
minimal satisfying assignments for CNF formulae [23]–[26],
which relate to the clause cover approaches that we have
incorporated for PDR.

In another field of research, namely circuit testing, finding
minimal test cubes closely relates to finding minimal POs in
PDR. The authors of [27], [28] investigate different techniques
including MaxSAT and MaxQBF wrt. their feasibility and
generalization capabilities. Furthermore, the CEGAR-based
approach of [29] includes a technique similar to [22] in order
to perform automatic test pattern generation in the presence of
unknown values.

Structure of the paper: In Sect. II we give some prelim-
inaries needed for this In Sect. III we begin with discussing
the complexity of the problem of PO generalization in general,
we present a wide range of generalization techniques for
circuits in Sect. IV as well as for general transition relations in
Sect. V. Finally, we analyze the generalization capabilities of
the different techniques from a theoretical point of view and
introduce further improvements in Sect. VI. An experimental
evaluation is given in Sect. VII, and Sect. VIII summarizes the
results with directions for future research.

II. PRELIMINARIES

A. Basics and Notations

We discuss reachability analysis in finite state transition
systems, which has many applications and can be used, e. g.,
for the verification of invariant properties or for finding plans
in AI Planning tasks.

Finite state transition systems M = ({0, 1}m, {0, 1}n, I, T )
describe transitions between states from {0, 1}m under inputs
from {0, 1}n. I ⊆ {0, 1}m is the set of initial states, T ⊆
{0, 1}m × {0, 1}n × {0, 1}m is the transition relation. There
is a transition from state #«σ ∈ {0, 1}m to state #«τ ∈ {0, 1}m
under input #«ι ∈ {0, 1}n iff ( #«σ , #«ι , #«τ ) ∈ T . A trace of M is
a sequence of states ( # «σ0,

# «σ1, . . .) with # «σ0 ∈ I , #«σj ∈ {0, 1}m
and ∃ #«ιj ∈ {0, 1}n with ( #«σj ,

#«ιj ,
#       «σj+1) ∈ T for all j ∈ N.

The ‘reachable states’ of M are the states occurring on
traces. The goal of reachability analysis is to either compute
all reachable states or to decide whether some states from
a given set are reachable. For symbolic representations of
states, sets and relations we introduce (present) state variables
#«s = (s1, . . . , sm), input variables

#«
i = (i1, . . . , in), and next

state variables #«s ′ = (s′1, . . . , s
′
m). States are obtained by

assigning Boolean values to variables #«s , inputs by assigning
Boolean values to variables

#«
i etc.. The transition relation is

then represented by a predicate T ( #«s ,
#«
i ,

#«

s′), the set of initial
states of M is identified with a predicate I( #«s ). For brevity,
we often omit the arguments of the predicates and write them
without parenthesis.

Hardware Model Checking: In the context of sequential
hardware verification, the transition relation T is derived from
a circuit and therefore represents a Boolean function from
{0, 1}m × {0, 1}n to {0, 1}m. The set of unsafe states (in
case of verification of invariant properties) is represented by a
predicate ¬P ( #«s ). Reachability analysis checks whether some
unsafe state is reachable.

AI Planning: We consider planning problems which
implement the propositional STRIPS planning formalism. A
STRIPS planning task P = ( #«s , I,G,A) is defined by a set
of state variables #«s with their next state counterparts

#«

s′ , a
predicate I( #«s ) which identifies the initial states, a predicate
G( #«s ) which identifies the goal states, as well as a set of actions
A. Encoding schemes like from [30] transform planning tasks
into reachability problems on finite state transition systems.
The resulting transition relation is not necessarily a function
but a general transition relation. Reachability analysis checks
whether some goal state is reachable.

A literal represents a Boolean variable or its negation. Cubes
are conjunctions of literals, clauses are disjunctions of literals.
The negation of a cube is a clause and vice versa. A Boolean
formula in Conjunctive Normal Form (CNF) is a conjunction of
clauses. As usual, we often represent a clause as a set of literals
and a CNF as a set of clauses. A cube c = sσ1

i1
∧ . . . ∧ sσk

ik
of

literals over state variables with ij ∈ {1, . . . ,m}, σj ∈ {0, 1},
s0
ij

= ¬sij and s1
ij

= sij represents the set of all states where
sij is assigned to σj for all j = 1, . . . , k. Usually we use letters
c or ĉ to denote cubes of literals over present state variables, d′

or d̂′ to denote cubes of literals over next state variables, and
i to denote cubes of literals over input variables. Sometimes
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1 function Pdr(I , T , P)
2 if BaseCases() = ‘Unsafe’ then return ‘Unsafe’
3 while true do
4 if Strengthen() = ‘Unsafe’ then return ‘Unsafe’
5 N ← N + 1, add new RN ← P /* New time frame. */
6 if Propagate() = ‘Safe’ then return ‘Safe’

Algorithm 1: PDR: main loop.

we write c( #«s ), d′( #«s ′) etc. to emphasize on which variables
the corresponding cubes depend. By minterms (often named
m) we denote cubes containing literals for all state variables.
Minterms represent single states.

We assume that the transition relation T of a finite state
transition system has been translated into CNF by standard
methods like [31]. Modern SAT solvers [32] are able to check
the satisfiability of Boolean formulas in CNF. We denote a
satisfiability check performed by a SAT solver for some formula
F by SAT?[F ]. If the SAT solver terminates, it reports either
‘satisfiable’ or ‘unsatisfiable’. We use the same terminology
for satisfiablity checks of QBF formulas.

Reachability analysis (e. g., by PDR) often makes use of
special properties of the transition relation T . For instance
when T results from a circuit, then it represents a function,
i. e., it is right-unique and left-total. A relation T ( #«s ,

#«
i , #«s ′) is

right-unique iff for all assignments #«σ to #«s and #«ι to
#«
i there

is at most one assignment #«τ to #«s ′ such that ( #«σ , #«ι , #«τ ) ∈ T .
T ( #«s ,

#«
i , #«s ′) is left-total iff for all assignments #«σ to #«s and

#«ι to
#«
i there is at least one assignment #«τ to #«s ′ such that

( #«σ , #«ι , #«τ ) ∈ T . Similarly, T ( #«s ,
#«
i , #«s ′) is left-unique (right-

total) iff for all assignments #«τ to #«s ′ and #«ι to
#«
i there is at most

(at least) one assignment #«σ to #«s such that ( #«σ , #«ι , #«τ ) ∈ T .

B. An Overview of PDR

In this paper we consider Property Directed Reachability
(PDR) [11] (also called IC3 [1]).

Without unrolling the transition relation as in Bounded Model
Checking (BMC) [10], PDR produces sets of clauses for each
time step individually with the ultimate goal of finding an
inductive strengthening of the safety property P (proof of
safety). We call these sets time frames and each time frame k
corresponds to a predicate Rk represented by a set of clauses1.
Hereby, for each time frame k ≥ 1, PDR proceeds with a new
time frame k+1 if the clauses created in Rk are sufficient such
that Rk ∧ T ⇒ P ′. Additionally, PDR maintains the invariant
that all clauses ¬c from Rk+1 are inductive relative to Rk,
i.e. (¬c ∧ Rk ∧ T ) ⇒ ¬c′ for ¬c ∈ Rk+1 which is exactly
the case if ¬c ∧Rk ∧ T ∧ c′ is unsatisfiable. As a result, Rk
over-approximates the set of states which can be reached from
I in up to k steps and thus the state sets represented by the
Ri are monotonically increasing in i (for i ≥ 1). R0 is always
equal to I .

We present the main loop of PDR in Alg. 1. In iteration N ,
PDR basically tries to construct error paths of length N+1 and
starts with checking whether RN ∧ T ⇒ P ′ via a SAT solver
call with SAT?[RN∧T∧¬P ( #«s ′)] in Strengthen() (Alg. 2).

1In the following we often identify predicates Rk with the state sets
represented by them. We further identify the predicate T with the transition
relation it represents.

1 function Strengthen()
2 while SAT?[RN ∧ T ∧ ¬P ′] do /* SAT: error pred. */
3 m← satisfying present state assignment
4 c← SatGeneralization(m)
5 if ResolveRecursively(c,N) = ‘Unsafe’ then return

‘Unsafe’

6 return ‘strengthened’ /* successfully strengthened */

Algorithm 2: PDR: strengthen the trace.

1 function ResolveRecursively(d, k)
2 if k = 0 then /* Proof obligation in frame 0. */
3 return ‘Unsafe’

4 while SAT?[¬d ∧ Rk−1 ∧ T ∧ d′] do /* pred. in Rk−1? */
5 m̂← satisfying present state assignment
6 ĉ← SatGeneralization(m̂)
7 if ResolveRecursively(ĉ, k − 1) = ‘Unsafe’ then return

‘Unsafe’

8 d̂← UnsatGeneralization(d)
9 R1 ← R1 ∧ ¬d̂, . . . , Rk ← Rk ∧ ¬d̂

10 return ‘resolved’

Algorithm 3: PDR: recursively resolve PO (d, k).

If the SAT solver reports ‘satisfiable’, a predecessor minterm m
is extracted from the satisfying assignment, m is ‘generalized’
to a cube c, and thus c represents only predecessor states of
the unsafe states. It has to be proven that there is no path from
the initial states to c. To do so, the ‘proof obligation’ (PO) c
on level N (also called Counterexample To Induction (CTI))
has to be recursively resolved. For POs d on level k in general,
ResolveRecursively (Alg. 3), checks whether the clause
¬d is inductive relative to Rk−1, i.e. ¬d ∧Rk−1 ∧ T ⇒ ¬d′,
leading to new SAT calls SAT?[¬d ∧Rk−1 ∧ T ∧ d′] (Alg. 3,
l. 4).

If this SAT query is unsatisfiable, then d has no predecessor
in Rk−1 and therefore ¬d ∧Rk−1 ∧ T ⇒ ¬d′ holds. After a
possible generalization into d̂ it can be blocked in Ri with
i ∈ {1, . . . , k} by Ri = Ri ∧ ¬d̂ (Alg. 3, l. 9). If the SAT
query is satisfiable, a new predecessor minterm m̂ has been
found and it is generalized using SatGeneralization()
(Alg. 3, l. 6) into a PO ĉ at level k − 1.

If the strengthening of RN is sufficient and therefore the
SAT call from l. 2 in Alg. 2 is unsatisfiable, we conclude that
RN ∧ T ⇒ P ′, increase N by 1, and continue with the next
iteration of PDR in Alg. 1 (l. 5) after trying to propagate all
blocked cubes forward (l. 6).

The procedure stops, if an error path is found (PO on level
0) or if during propagation (Alg. 4) Rk−1 and Rk become
equivalent (l. 6), i. e., an inductive invariant Rk has been found.

The efficiency of the method strongly depends
on the success of the mentioned generalizations in
SatGeneralization() (l. 4 of Alg. 2 and l. 6 of
Alg. 3) and UnsatGeneralization() (l. 8 of Alg. 3).

In this paper we provide a detailed analysis of the general-
ization of POs in SatGeneralization().

Some of the known methods for that purpose assume special
properties of the transition relation T such as the function
property, since it results from a digital circuit. Those properties
do not hold in all application contexts, e. g., they do not
hold for transition relations occurring in AI Planning, for
transition relations resulting from circuits with additional
invariant constraints, or for transition relations in Reverse
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1 function Propagate()
2 for k ∈ {1, . . . , N − 1}, c blocked in Rk do
3 if ¬ SAT?[Rk ∧ T ∧ c′] then
4 Rk+1 ← Rk+1 ∧ ¬c /* UNSAT: push forward */

5 if Rk ≡ Rk+1 then
6 return ‘Safe’ /* Proof of safety. */

7 return ‘propagated’

Algorithm 4: PDR: propagate blocked cubes forward.

PDR [20], [21].
Reverse PDR computes overapproximations RRk of the sets

of states from which ¬P ( #«s ) can be reached in up to k steps.
As already observed in [11] and [13], there is a simple way to
arrive at an implementation of Reverse PDR based on the fact
that there is a path from I( #«s ) to ¬P ( #«s ) using a transition
relation T iff there is a path from ¬P ( #«s ) to I( #«s ) using the
‘reverted transition relation’. Thus, a basic version of Reverse
PDR is obtained just by exchanging I( #«s ) with ¬P ( #«s ) and
interpreting the predicate for T ‘the other way around’.

III. GENERALIZATION OF POS AND ITS COMPLEXITY

Generalization plays a crucial role for the efficiency of
PDR [11], [12]. As explained above, generalization in PDR
takes place, when clauses are learnt as well as when new POs
are created. In this paper we restrict our attention to the latter
type of generalization.

Assume that we try to resolve a PO d by a call SAT?[¬d ∧
Ri−1 ∧ T ∧ d′], but the SAT solver returns a (full) satisfying
assignment with a minterm m representing a single current
state. m is then a new PO, but before trying to resolve this
PO we try to generalize it into a shorter cube c. The question,
whether a given subcube c of m is still a PO with successors
in d, can be formulated as the following problem:

Definition 1: (PO Generalization Problem (POGP)) Given a
transition relation T ( #«s ,

#«
i , #«s ′), a cube c = sσ1

1 ∧. . .∧s
σk

k over
present state variables, and a cube d′ = (s′1)τ1∧. . .∧(s′l)

τl over
next state variables2, decide whether for all (σk+1, . . . , σm) ∈
{0, 1}m−k there is (τl+1, . . . , τm) ∈ {0, 1}m−l and an input
#«ι ∈ {0, 1}n, such that T (σ1, . . . , σm,

#«ι , τ1, . . . , τm) = 1, i. e.,
such that there is a transition from (σ1, . . . , σm) to (τ1, . . . , τm)
under input #«ι .

The problem formulation contains a quantifier alternation
which is already an indicator for the hardness of POGP.

Theorem 1: POGP is ΠP
2 -complete.

Proof: We show that POGP is ΠP
2 -hard by reducing 2-

QBF to POGP. We consider a 2-QBF formula φ = ∀ #«x∃ #«y :
Φ( #«x , #«y ) with #«x = (x1, . . . , xp), #«y = (y1, . . . , yn). Now
define T ( #«s ,

#«
i , #«s ′) := s1 ∧ Φ( #«x , #«y ) ∧ s′1 ∧ . . . ∧ s′p+1 with

#«s := (s1, x1, . . . , xp),
#«
i = #«y , #«s ′ = (s′1, . . . , s

′
p+1). Further

define c = s1 and d′ = s′1∧ . . .∧s′p+1. The defined instance of
POGP asks whether for all σ2, . . . , σp+1 ∈ {0, 1}p there is #«ι ∈
{0, 1}n such that T (1, σ2, . . . , σp+1,

#«ι , 1, . . . , 1) = Φ(σ2, . . . ,
σp+1,

#«ι ) = 1. The answer is yes iff ∀ #«x∃ #«y : Φ( #«x , #«y ) is
satisfiable.

2To simplify notations we assume here w.l.o.g.that the variables not occurring
in c and d′ are at the end of the vector of state variables.

POGP is in ΠP
2 , since its answer is yes iff the 2-QBF

∀sk+1 . . . ∀sm∃i1 . . . ∃in∃s′l+1 . . . ∃s′m : c( #«s )∧T ( #«s ,
#«
i , #«s ′)∧

d′( #«s ′) is satisfiable.
The proof of Theorem 1 shows that POGP can basically be

viewed as a 2-QBF problem. From a different point of view,
POGP asks whether the cube c is an implicant of the Boolean
function Φ( #«s ) := ∃ #«

i ∃ #«s ′ : T ( #«s ,
#«
i , #«s ′) ∧ d′( #«s ′). This point

of view does not change the complexity of the problem and to
take advantage of this view algorithmically, we would have to
perform symbolic elimination of the quantifiers ∃ #«

i and ∃ #«s ′

before considering implicants (or prime implicants to make
the cube c as short as possible).

Due to the high complexity of the problem we first look
into approximate solutions in the next two sections. We start
in Sect. IV with the special case of sequential circuits and
continue with the general case in Sect. V. For the general case
we consider an exact method as well. In Sect. VI we compare
the strengths of the different methods, analyze the effectiveness
of approximate solutions for the special case of left-unique
transition relations (motivated by Reverse PDR), and finally
discuss further improvements.

IV. APPROXIMATIVE PO GENERALIZATION FOR CIRCUITS

For the special case of digital circuits, where the transition
relation represents a function, different approximations of
POGP can be used.

Firstly, we give a short overview of the commonly used
techniques for circuits in Sect. IV-A. These are 01X-simulation
as proposed in [11] as well as the lifting approach proposed
in [18] which is based on a technique of lifting BMC coun-
terexamples from [22]. Besides 01X-simulation and lifting, we
also consider the justification technique which is implemented
as an optional PO generalization technique in ABC’s [33] PDR
implementation a known ‘standard method’.

While it is rather obvious that 01X-simulation of circuits does
not apply for general transition relations, it is more subtle in the
case of the lifting approach. Therefore we thoroughly discuss
the limitations of lifting and additionally discuss extensions
which may improve its generalization capabilities in Sect. IV-B.
We also present two techniques for circuits which have not been
used in the context of PDR yet (to the best of our knowledge):
(1) It is feasible to find a state with the maximum amount of
X-valued state-bits by using a 01X-encoding of the circuit and
a MaxSAT solver (similar to [27], see Sect. IV-D). Note that
[23] and [24] discuss an approximate version of this method
which uses a SAT solver with an appropriate decision heuristics
(see Sect. IV-E). (2) Additionally, for BMC, [22] presents an
alternative to the mentioned lifting technique which is based
on a reverse traversal of the implication graph of a SAT solver.
This method – we call it IGBG – can be adapted to the PDR
case, too (see Sect. IV-C).

Finally, at the end of this section, we consider the case
of circuits with invariant constraints which lead to transition
relations not representing functions (see Sect. IV-F).
A. Standard Methods

1) 01X-Simulation: This approach uses a three-valued logic
with a don’t care value X (the two-valued semantic can be
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extended by (X∧0 = 0), (X∧1 = X), (X∧X = X), (¬X =
X)). We start with a (full) satisfying assignment to ¬d∧Rk−1∧
T ( #«s ,

#«
i , #«s ′) ∧ d′( #«s ′) leading to a PO state m. Now, present

state bits from m are iteratively assigned to X followed by
a simulation of the circuit. If an X propagates to an output
which is asserted by d′( #«s ′), the state bit is necessary in m,
otherwise it is redundant and can be removed from m. The
process is greedily iterated until no more redundant state bits
are found. Apart from the greedy search for redundant state
bits and from the fact that only predecessors of d′ under a fixed
input assignment i are considered, ternary simulation has an
additional source of non-optimality: As an example consider
an AND-gate with output b where both inputs are just the
negation of each other: b↔ (a ∧ ¬a). If a is assigned to X ,
the X will propagate to b using the rules of three-valued logic
even though b is constant–0. Since this method uses ternary
simulation of circuits, it is inherently restricted to transition
relations resulting from circuits (which are transition functions).

2) Justification Based Generalization: A technique strongly
related to 01X-simulation is to apply justification to the circuit.
Given a full assignment m to all present state variables, i to all
primary inputs, and d′ to a subset of the next state variables,
we look for a partial assignment to the present state variables
which is still able to justify resp. imply the assignment d′.

In principle, we traverse the circuit and heuristically deter-
mine the variables of m which are (together with all variables
from i) sufficient to imply d′.

First of all, the circuit is simulated with the assignment
m and i. Second, the literals of all present state variables
which are not included in the syntactical support set of the
next state variables contained in d′ are removed from m. Then,
priorities are assigned to all primary input variables (∞) and
to all variables of the remaining literals in m (arbitrary natural
numbers). We prefer to keep variables with a higher priority in
the assignment. All input literals receive priority ∞, because
i remains untouched and therefore, if a next state assignment
can be justified by an input or a state variable, we will always
prefer to use the input and ignore the state variable. Now an
iterative procedure is started. In a first iteration, the priorities
are forward propagated from the present state variables and
primary inputs towards the next state variables (outputs of the
circuit). The priority of a (circuit input or gate output) variable
v is denoted by prio(v) in the following. By this propagation,
the method implicitly constructs justification paths from the
circuit inputs to the next state variables in d′. Consider a gate
with output z and inputs x, y. If the value at z is only justified
by x and not by y, then prio(x) is propagated to z, since there
is no choice for justification. If the value at z can be justified
by x or by y, then the higher priority is propagated to z, since
we prefer justification paths starting from variables with high
priority. If both values of x and y are needed to justify the
value at z, then the lower priority is propagated to z in order
to remember overall the input with the lowest priority which
is connected to z by a justification path. For an AND-gate
z ↔ x ∧ y, e.g., this leads to the following rules:

1) If z = 0 and x⊕ y = 1, then prio(z) = prio(min(x, y)).
2) If z = 0 and both x = 0 and y = 0, then prio(z) =

max (prio(x), prio(y)).

d′

i

i

n′
2

n′
1

i

n′
3

m̂m̂ ∧ ¬l
m = m̂ ∧ l

Fig. 1: Not right-unique

3) If z is 1, then both x = 1 and y = 1 and therefore
prio(z) = min(prio(x), prio(y)).

After propagating, we pick the lowest priority, say prio(v0),
which arrived at some next state variable from d′. The
propagation of prio(v0) to a next state variable from d′ means
that we could not avoid to include v0 into the implicitly
constructed system of justification paths, although we prefer
variables with high priority. Thus we add the according literal of
v0 from m to our (initially empty) generalized proof obligation
cube ĉ. We now set prio(v0) = ∞, because we already
consider this variable in our generalized cube, and start with
the next forward propagation iteration. We terminate, once
we only observe priorities ∞ at the next state variables after
propagating the current priority assignment. Then we include
all corresponding literals into the partial assignment.

A partial assignment achieved by this method is 01X-simula-
table.

3) Lifting: The authors of [18] propose an approach which
uses an unsatisfiable SAT solver query that reveals a general-
ization of the PO state. Assume a circuit defining a transition
function T . In the original PDR approach a satisfiable query
SAT?[¬d∧Rk−1∧T ∧d′] provides a satisfying minterm m and
some complete assignment i to the primary inputs

#«
i . Since

m ∧ i is a complete assignment to all inputs of the circuit
defining the transition function, it implies a fixed next state in
the cube d′. Thus, the ‘lifting query’ SAT?[m ∧ i ∧ T ∧ ¬d′]
is unsatisfiable by construction. The final conflict clause of
this query yields a generalization of m, because we are now
able to remove all literals from m which are unnecessary for
the unsatisfiability proof. Again results are not necessarily
optimal, since they depend on the order in which the literals
of m propagate during the SAT solving (and since only a
fixed input assignment i is considered). To further increase
the number of removed literals in lifting, [22] proposes to
iteratively omit literals from the unsatisfiable core (revealed
by a final conflict clause) and query the solver again with the
corresponding unsatisfiable lifting call. This procedure is called
literal dropping and trades runtime against more general POs.
For our experiments in Sect. VII-A1 we consider both variants.

B. Limitations and Extensions of Lifting

Here we discuss the preconditions we require for a sound
application of lifting in PDR as well as possible extensions
in order to improve its efficiency. For the lifting approach to
be correct, T has to represent a function (i. e., T is left-total
and right-unique, see Sect. II-A). We now consider those two
properties separately.

Firstly, we assume that T is not right-unique (see Fig. 1).
This means that the assignment m ∧ i does not necessarily
imply one unique successor state. This property could render
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m̂
m̂ ∧ ¬l
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Fig. 2: Not left-total

our lifting query SAT?[m ∧ i ∧ T ∧ ¬d′] satisfiable, since
there could indeed be another transition from m ∧ i to a
state outside d′. Thus, the approach would say that the PO m
cannot be generalized, although this could actually be possible.
Existentially quantifying the input vector

#«
i instead of setting

it to one fixed assignment i would not improve the situation
(but rather make it worse), because this would increase the
probability of having transitions to states outside d′.

Secondly, we assume that T is not left-total (see Fig. 2).
This means that there are present state / input combinations
which do not lead to any successor state at all. We consider
the state m̂ which results from removing literal l from m, i. e.,
m̂ = m \ {l}. Thus in the beginning m̂ ∧ l ∧ i ∧ T ∧ d′ is
satisfiable.

We further assume that m̂ ∧ ¬l has no successor in T at all
(T is not left-total), i. e., m̂ ∧ ¬l ∧ T is already unsatisfiable.
Now m̂∧ i∧T ∧¬d′ is unsatisfiable, such that the lifting query
would remain unsatisfiable when literal l is dropped from m.
However, m̂ is not necessarily a correct PO, since it is not
possible to reach d′ from each point (state) in m̂.

To summarize, while missing right-uniqueness can only lead
to (unnecessarily) failing lifting attempts, it is most crucial to
ensure left-totality, since otherwise lifting could lead to wrong
results in terms of spurious counterexamples.

Finally, we discuss two variants which can potentially speed
up the lifting approach and/or improve its results. We apply
the approximate SAT approach from [12] to lifting in order to
investigate its isolated effect on PO generalization. We further
introduce literal rotation from [34] to bit-level SAT-based PDR.

1) Approximate SAT: If we decide to apply iterative literal
dropping, we can make use of the observation made in [11] that
– in the context of lifting – satisfiable calls of the SAT solver
are much more costly in terms of runtime than unsatisfiable
calls and that the SAT solver usually reports unsatisfiability
after only deciding few variables. The authors of [12] therefore
propose a technique which they call ‘approximate SAT’ and
which considers any SAT call as satisfiable once a certain
number of decisions is made by the SAT solver (in [12] a
constant number of 100 is proposed). Hence, we can avoid
unnecessary computation time in satisfiable SAT solver calls
which would in the end only conclude that we have to keep a
certain literal anyway. On the other hand we could prematurely
conclude that a call is satisfiable and keep a literal even though
it would not have been necessary. Thus there is a trade-off
between runtime and accuracy. In our experimental section we
will analyze whether this technique is worthwhile.

2) Literal Rotation: The authors of [34] propose to addi-
tionally ‘rotate’ literals in order to replace or complement
standard literal dropping. Technically, we provide the cube
m = l1 ∧ . . . ∧ lk ∧ . . . ∧ ln as assumptions to an incremental
SAT solver (in the order l1, . . . , ln). Once a literal lk is

conflicting, the SAT solver will traverse the implication graph
and collect the previously decided assumptions li, . . . , lj
with i, j ∈ {1, . . . , k − 1} which are necessary for the
conflict (unsatisfiable core). lifting without any literal dropping
would conclude that the literals li, . . . , lj , lk are necessary and
subsequently, that we may generalize m to m̂ = li∧. . .∧lj∧lk.
Literal rotation however invokes the SAT solver again on
the reduced set of assumptions m̂ and ‘rotates’ the order of
the assumptions to (lk, li, . . . , lj). As a result a newly found
unsatisfiable core will at most contain all literals of m̂ and will
possibly reveal a more general unsatisfiable core. We remark
that since li, . . . , lj obviously implies ¬lk the call will remain
unsatisfiable. These solver queries are rather inexpensive [34]
and therefore, we can repeat rotating until some literal would
re-appear as the first one in the order. We remark, that even if
we have performed all possible rotations on an initial conflict,
there might still be literals in the resulting cube which can be
removed by further literal dropping [34]. Again, we will discuss
the efficiency of this method in our experimental section.

C. Implication Graph Based Generalization (IGBG)

We can also adapt another method to PO Generalization in
PDR which is inspired from [22] as the aforementioned lifting
method. Having a circuit, applying a full assignment i (for
primary inputs) and m (for state variables) to T , i. e., querying
the SAT solver with SAT?[m ∧ i ∧ T ], the SAT solver will
only require Boolean Constraint Propagation (BCP) to deduce
a satisfying assignment of the formula. Hence it is possible to
just traverse the implication graph in a backward direction and
collect the literals from m which are responsible for implying
the next state valuation d′. Obviously, the method makes use
of the right-uniqueness property of transition functions (since
otherwise BCP would not be sufficient).

Interestingly, a reduced cube ĉ resulting from this method
is exactly 01X-simulatable, i. e., if we apply it as a simulation
pattern with all don’t care literals (which are not contained in
ĉ) set to X , then no X-value will propagate to the next-state
variables included in d′ [22].
D. MaxSAT 01X-encoding

In order to avoid the iterative greedy approach of 01X-
simulation for removing redundant state bits, we introduce a
partial MaxSAT [35]–[37] encoding to find a better approximate
solution to POGP. Partial MaxSAT problems consist of hard
clauses and soft clauses. A MaxSAT solution satisfies all hard
clauses and a maximal number of soft clauses.

For the 01X-encoding of the Boolean circuit for the transition
function we introduce two variables v(0) and v(1) for each
Boolean variable v which represents either an input, an output
or an internal signal, while ((v(0) = 0 ∧ v(1) = 0)↔ v = X)
as well as ((v(0) = 1 ∧ v(1) = 0)↔ v = 0) and ((v(0) = 0 ∧
v(1) = 1)↔ v = 1); we explicitly forbid (v(0) = 1∧v(1) = 1).
All gates are replaced by a two-rail encoding according to [38].
The 01X-encoded circuit simulates information propagation
using 01X-logic. For each state variable si we introduce a new
variable ti and a unit soft clause sci = {ti} accompanied by
the hard clauses representing ti ↔ ((s

(0)
i = 0) ∧ (s

(1)
i = 0)).

Starting with a satisfying solution to SAT?[¬d∧Rk−1∧T ∧d′]
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with d′ = ((d′i1)τ1∧. . .∧(d′ik)τk ) that provides full assignments
m = sσ1

1 ∧ . . . ∧ sσm
m and i = iι11 ∧ . . . ∧ iιnn , we introduce

hard clauses fixing state bits si to X or σi, input bits ij to
ιj , and next state bits d′ij to τj . The other hard clauses of the
considered MaxSAT problem correspond to the 01X-encoding
of T . Maximizing the number of satisfied soft clauses means
maximizing the number of present state bits which are assigned
to X and are thus not included in the resulting subcube c of
m from which all transitions under i lead into d′. We call the
resulting MaxSAT problem MS01X.
E. SAT 01X-encoding

It is also possible to approximate MS01X by using a simple
SAT solver [24]. We compute a 01X-encoding of the circuit like
we do for MS01X, but omit the MaxSAT-specific clauses. Here
the notion of sign-minimality [23] is exploited, which describes
the fact that if a SAT solvers’ decision heuristics only decides
Boolean variables with one polarity (say 0), then the resulting
model has a (locally) maximal number of variables assigned
to this polarity. If we employ the 01X-encoding scheme from
above (which encodes X with (00)) and the SAT solver makes
only decisions to 0, then the resulting model has a (locally)
maximal (but not necessarily globally maximum) number of
state bits assigned to X . In the following, we call this technique
S01X.
F. PO Generalization with Invariant Constraints

It is important to note that even in the context of transition
relations defined by circuits, the transition relation is not
necessarily a function. A common reason for non-left-total
transition relations are invariant constraints (e. g., restricting
the inputs). The AIGER 1.9 standard [39] is a popular example
for this. Here a circuit with transition relation T is restricted
by an invariant constraint C. If some present state / input
combination does not satisfy C, then there is no transition
from this state under this input assignment, i. e., the resulting
transition relation is not left-total. This immediately implies
that the lifting approach to PO generalization may produce
erroneous results (see above) and cannot be used. There are
several options to avoid this problem:

1) One can use PO generalization techniques for general
transition relations that will be discussed in Sect. V. Our
experimental results show however that this leads to sub-
optimal generalizations.

2) One can use IGBG which requires right-uniqueness to be
applicable, but not left-totality.

3) One can use 01X-simulation with the additional require-
ment that it does not produce an X at the output of C.

4) It is possible to transform the transition relation into a
right-unique and left-total transition function.
a) We can maintain the same set of reachable states

by introducing self-loops for each non-admissible
transition. For this, we simply introduce for each state
variable a multiplexer which feeds back the old state
value in case that the invariant constraint is violated.

b) We can introduce a new dead-end state and direct
all non-admissible transitions into this state. To do so,
the tool aigunconstraint from the AIGER-suite [39]
introduces an additional latch for implementing the

dead-end state (doubling the state space and thus
changing the set of reachable states).

5) The original lifting call from Sect. IV-A3 can be changed
to consider the invariant constraints. If we are able to
separate C from T having T = T̂ ∧ C, we can change
SAT?[m∧ i∧T ∧¬d′] into SAT?[m∧ i∧ T̂ ∧ (¬C ∨¬d′)].
By construction, the minterm m satisfies the invariant
constraint and the transition from m under i leads into d′.
Therefore the changed SAT query is unsatisfiable as well.
If the SAT query remains unsatisfiable for some subcube
c of m, then it is of course unsatisfiable for each state
m′ in c, thus each such m′ satisfies C and the transition
from m′ under i leads into d′, i. e., c is a PO.

V. PO GENERALIZATION FOR GENERAL TRANSITION
RELATIONS

Here, we look into methods for PO generalizations that
work without specific assumptions on the transition relation.
We start with approximate techniques and finally consider
exact solutions. First, we describe a new technique called
GeNTR. We have already used a corresponding technique in
the context of SMT-based PDR [34]. Secondly, we adapt well-
known covering approaches and use them in the context of
bit-level PDR. Lastly, we introduce techniques which solve
the underlying 2-QBF problem and remove literals greedily as
well as optimally using MaxQBF. While both QBF approaches
are completely new in the context of PDR, a similar MaxQBF
approach has been used in [27] in the context of test cube
generation.
A. Generalization with Negated Transition Relation (GeNTR)

If T does not represent a function, it is possible to lift m
with a similar formula as in the lifting approach from Sect.
IV-A3. Assume a satisfiable query SAT?[¬d ∧Rk−1 ∧ T ∧ d′].
A SAT solver provides complete assignments m, t′, and i
to state variables #«s , next state variables #«s ′, and additional
variables

#«
i of T . The cube m ∧ i ∧ t′ represents a satisfying

assignment of the predicate T . Hence, this cube renders ¬T
unsatisfiable. Therefore, the query SAT?[m ∧ i ∧ ¬T ∧ t′] is
unsatisfiable and its final conflict clause can be used to obtain
a generalization of m.
B. Covering Approach

Another technique for general transition relations is the
extraction of a minimal satisfying assignment given a complete
satisfying assignment from a SAT solver query. Extracting a
partial assignment which still satisfies all clauses is equivalent
to the Hitting Set problem, a special case of Set Cover [40].
We give the intuition: Given a set of clauses Γ and a full
satisfying assignment A, pick a subset of the elements (literals)
of A which ‘hit’ all clauses in Γ. For brevity, we focus on the
most commonly referenced methods in this context – a greedy
algorithm and an ILP-encoding.

a) Greedy Algorithm: We start with a full satisfying
assignment A to ¬d∧Rk−1∧T ∧d′ and Γ contains the clauses
representing T . Initially, our partial assignment P consists of all
literals in A which are not present state literals. P is removed
from A, and all clauses which are covered by literals from P
are removed from Γ. Then we (1) scan the clauses of Γ for the
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most frequently occurring literal l of A, (2) add l to the partial
assignment P , remove l from A, remove the clauses covered
by l from Γ, and start over with (1) until Γ is the empty set.
Obviously, the greedy algorithm has a polynomial runtime in
the input size. However, the solution is not necessarily optimal
w. r. t. the size of the partial assignment.

b) ILP-encoding: The ILP encoding has a binary ILP-
variable vl for each present state variable si with literal l
occurring in A. It is formulated in a way that in the solution
vl equals 1 iff the corresponding literal l (from A) occurs in
the covering. The optimization goal is to minimize the sum
over all ILP-variables vl.

The two (unate) covering approaches mentioned above start
with complete assignments #«σ , #«τ , and #«ι to state variables #«s ,
next state variables #«s ′, and additional variables

#«
i of T , keep

the assignments #«ι and #«τ fixed and minimize the remaining
assignments in #«σ while still satisfying T . To give the cover
approach a higher degree of freedom, we can also allow to vary
the assignments #«ι to

#«
i and #«τ to #«s ′ as long as #«τ remains

in the next state cube d′. This additional degree of freedom
could be easily integrated into the ILP formulation. However,
with this additional degree of freedom we rather consider an
approximate approach based on a SAT solver.

c) SAT-based Cover: In the spirit of the S01X approach
for circuits from Sect. IV-E we introduce for each present state
variable si two new variables s(0)

i and s
(1)
i . An assignment

of (1, 0), (0, 1), or (0, 0) to (s
(0)
i , s

(1)
i ) means that si is 0, 1

or unassigned (X), resp.. We replace in the CNF for T all
occurrences of si / ¬si by s

(1)
i / s(0)

i as well as we add a
clause {¬s(0)

i ,¬s(1)
i } to rule out the illegal value (1, 1) [23],

[24]. To ensure that si can only be unassigned or equal to
the value σi fixed by m = sσ1

1 ∧ . . . ∧ sσm
m we assign s(1−σi)

i

to 0. Moreover, we assign next state variables to enforce d′.
As already discussed in Sect. IV-E, a SAT solver which only
decides variables to 0 then computes a solution with a locally
maximal number of unassigned present state variables.

C. Solving the QBF Problem

As stated in Sect. III the problem of PO generalization is
inherently a 2-QBF problem, thus for achieving a minimal-
sized PO we have to solve a QBF problem. However, the QBF
formulation is just a decision problem which checks whether
each state in a given cube c has a transition into a cube d′.
Reducing a given minterm m over state variables to a minimal
cube c is an optimization problem for which we consider two
options:

a) Greedily applying a QBF solver: With this approach
we iteratively probe single state literals for don’t cares. Instead
of flipping a variable to X and simulating the circuit, this
generalized approach probes a state variable by universally
quantifying it. Assume that we start with a minterm m which
is a full assignment to the state variables. If we want to check
whether the variables from #«r can be removed from m, leading
to m̂, we give the query SAT?[∀ #«r ∃ #«

k ∃ #«
i ∃ #«s ′ : m̂ ∧ T ∧ d′] to

the QBF solver. Here
#«

k are the variables from #«s remaining
in m̂.

MaxQBF GreedyQBF

Lifting

01X-Simulation
Justification

IGBG
S01X

MS01X

GeNTR
Greedy Cover

ILP Cover

A B B weaker than A
A B B potentially weaker than A
Methods in boldface are applicable to
general transition relations

SAT-based Cover

Fig. 3: Quality relations between generalization methods

b) Applying MaxQBF: To achieve an optimum we even
have to go one step further than pure QBF solving. The notion
of (partial) MaxQBF [28], [41] allows us to add soft clauses to
our problem to find the maximum number of removable literals.
Similar to our MaxSAT approach from above, we introduce a
soft clause per state variable which is a candidate for removal.
The encoding is more complicated though, since we have to
maximize the number of universally quantified state variables.
We adapt a technique from [28] which uses a multiplexer for
each state variable selecting between either the assignment
from m or a universally quantified variable:
• For each state variable si we introduce a variable s∀i as

well as a variable ui.
• We add clauses for C∀i = ui → (si ↔ s∀i ) and Cεi =
¬ui → (si ↔ ε) where ε is the original assignment to si
in m.

• Furthermore we introduce a unit soft clause {ui} for all
si.

• We solve the MaxQBF problem ∃ #«u∀ #«s ∀∃ #«s ∃ #«
i ∃ #«s ′ :

T ( #«s ,
#«
i ,

#«

s′) ∧ d′ ∧
∧n
i=0 C

∀
i ∧

∧n
i=0 C

ε
i ∧

∧n
i=0 ui.

If in the solution to the MaxQBF problem the soft clause {ui}
corresponding to state variable si is satisfied, then si may be
universally quantified and therefore removed from the PO. The
result provides a minimal subcube c of m such that there are
transitions from all states in c to d′.

VI. ANALYSIS AND IMPROVEMENTS

In Sect. VI-A, we show how to categorize the different
approaches we discussed in the preceding sections. Sect. VI-B
analyzes the effects of methods from Sect. V on the special case
of left-unique transition relations. Furthermore, we discuss the
combination of certain techniques in order to achieve stronger
generalization results in Sect. VI-C. Finally, in Sect. VI-D, we
analyze the additional degree of freedom we might achieve by
neglecting the restriction to an initial proof obligation consisting
of a minterm (full satisfying assignment of the state variables).

A. Categorizing Generalization Capabilities

Fig. 3 gives an overview of the methods presented in
Sects. IV and V. The methods in the first line (written in
bold) are suitable for general transition relations, the other
methods need transition functions or at least a property implied
by the function property (such as left-totality for lifting and
right-uniqueness for IGBG). In the following, we classify the
different methods w. r. t. their generalization strength. A solid
arrow from method B to method A means that method B is
weaker than A in the sense that B always computes weaker
(or equivalent) generalizations.

Definition 2 (Weaker Generalization): Consider arbitrary
POGPs consisting of present state minterms (PO states) m,
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transition relations T , and next state cubes d′. Assume that
method A generalizes m to cube cA, whereas method B
generalizes m to cube cB . We consider B weaker than A,
if cA contains always less or equally many literals than cB ,
i.e., cA is more or equally general than cB .

In many cases the relation between two methods A and B
is not that easy to categorize. Methods for PO generalization
often use heuristics (for removing literals in certain orders, e.g.)
and depending on heuristical choices the results are better or
worse - so the methods are often incomparable. Nevertheless we
introduce here the notion of ‘potentially weaker’ (represented
by dashed arrows in Fig. 3 from method B to method A when
B is ‘potentially weaker’ than A). This notion intuitively means
that method B has a conceptual weakness compared to method
A (like 01X-simulation which suffers from the imprecision of
01X-logic, in contrast to lifting). This weakness may or may
not be hidden by different heuristical decisions. For a formal
definition of ‘potentially weaker’ we make use of the fact that
the methods for PO generalization do not need to be started
with minterms, but they can also be started with cubes which
then either cannot be confirmed to be POs or can be confirmed
(and possibly even improved). When B is ‘potentially weaker’
than A, then B may produce more general (better) results than
A (due to different heuristical decisions), but if we apply A to
a result of B, then A will always at least confirm the result
or even improve it. (E.g. lifting started with result cubes of
01X-simulation can always guarantee that those result cubes
are valid POs, but 01X-simulation cannot always give such a
guarantee for cubes computed by lifting due to the imprecision
of 01X-logic.)

Definition 3 (Confirmation of a Generalization Result):
Consider an arbitrary POGP consisting of a PO state m, a
transition relation T , and a next state cube d′. Assume that
m is generalized to a cube cB by method B. Then method
A is able to confirm the generalization result of method B,
if started with cB , T , and d′, it is able to decide that cB is a
valid PO or if it is able to generalize cB even further.

Definition 4 (Potentially Weaker Generalization): If method
A is able to confirm the generalization result of method B for
all POGPs, then B is potentially weaker than A.

We first look into the general methods. Beforehand, we
prove that the GeNTR approach implicitly computes a cover
of the CNF for T .

Theorem 2: GeNTR (implicitly) computes a cover of the
CNF for T .

Proof: GeNTR starts with complete assignments m, t′,
and i to state variables #«s , next state variables #«s ′, and
additional variables

#«
i of T . The query SAT?[m ∧ i ∧ ¬T ∧ t′]

is unsatisfiable. It computes a subcube c of m such that
SAT?[c ∧ i ∧ ¬T ∧ t′] is still unsatisfiable, i. e., each extension
of c∧ i∧ t′ to a full assignment evaluates ¬T to 0 and thus T
to 1. This means, that each such extension satisfies all clauses
in T . This implies that c ∧ i ∧ t′ has to cover all clauses in T .

Thus, GeNTR is equivalent to the greedy cover approach.
Of course, the results may differ, since different heuristics are
used. The ILP cover approach solves the covering problem
in an optimal way and is thus stronger than greedy covering

i1
s1
s2 0 → X

1

1
0 → X

0 → X

s′1

s′2

0 → X

h

Fig. 4: Example 1.

and GeNTR. Nevertheless, it is ‘potentially weaker’ than SAT-
based cover, since SAT-based cover has the freedom to choose
different values for

#«
i variables and #«s ′ variables which are not

fixed by d′. As already discussed in Sect. V-C QBF is exact
as a decision problem, but it is not an optimization method
which is able to compute the reduced cube. Greedy application
of QBF depends on the chosen order and therefore it is only
potentially stronger than all other methods except for MaxQBF.
MaxQBF provides an optimal solution and dominates all other
methods.

Now we look at methods suitable for transition functions.
IGBG, justification, 01X-simulation, and S01X have basically
the same strength, since the results of IGBG and justification
are 01X-simulatable [22] and the result of S01X is only locally
optimal. The four methods may produce different X-values
on present state variables, however. 01X-simulation, IGBG,
justification, and S01X are weaker than MS01X, since MaxSAT
computes an optimal selection of X-values for state bits. All
01X-based methods are ‘potentially weaker’ than lifting. If
X-values on present state variables do not propagate to the
next state bits included in the next state cube d′ for a fixed
assignment to the remaining present state variables and the
primary inputs, then the values assigned to the d′-variables are
implied by this assignment. In other words, this assignment,
the transition relation T and ¬d′ are contradictory, and thus
the present state bits with X-values can be potentially removed
by the lifting method. On the other hand lifting does not suffer
from the known imprecision of ternary logic as discussed in
Sect. IV-A1.

The weaker, covering based methods for general transition
relations (greedy cover, GeNTR, ILP cover) should not be
preferred over circuit-based methods (if they are applicable),
since they have a fundamental weakness as illustrated by the
following example:

Example 1: Consider a transition relation T specified by
the circuit in Fig. 4. The next state cube d′ is given by s′1. We
assume that a SAT solver produces the satisfying assignment
i1 = s′1 = 1, s1 = s2 = s′2 = 0, i. e., we start generalization
with the minterms m = ¬s1 ∧ ¬s2, i = i1. It is easy to see
that 01X-simulation can assign both s1 and s2 to X , leading
to an X at output h of the AND-gate, but keeping the 1 at
the output s′1 of the OR-gate. The lifting approach can remove
the assignments to both s1 and s2 as well. However, covering
the clauses (¬h ∨ s1), (¬h ∨ s2), and (h ∨ ¬s1 ∨ ¬s2) of the
AND-gate can only remove one of the input assignments (¬s1

or ¬s2). In general, clause covering means to find assignments
to the inputs of all gates that justify the assignments at their
outputs. This property largely restricts the potential to remove
input assignments to gates by clause covering approaches.

Of course, apart from theoretical comparisons, an experimen-
tal evaluation (see Sect. VII) is crucial, since the overall effect
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on the PDR algorithm is also influenced by the effectiveness
of heuristics as well as by the runtimes needed to compute
generalizations.

B. The Special Case of Left-unique Transition Relations

All methods described in Sect. V are sound for arbitrary
transition relations and thus also for left-unique transition
relations. Our investigations for the special case of left-unique
transition relations are motivated by Reverse PDR where the
predicate for T is interpreted ‘the other way around’. If the
original transition relation results from a circuit, i. e., if it is
(left-total and) right-unique, then the reverted transition relation
is left-unique. In fact, we can prove that the cover methods from
Sect. V (including GeNTR) do not result in any generalization
of POs for left-unique transition relations. Only the QBF- and
MaxQBF-based methods are able to generalize POs in this case.
Our covering approaches minimize the number of assigned
present state variables and still cover all clauses from T .
Therefore we can assume w.l.o.g. that all variables from

#«
i and

#«s ′ are assigned. Since T is left-unique, a full assignment to the
variables from #«s is then implied, i. e., removing any assignment
of a variable from #«s would render T to be unsatisfied and we
would lose the covering property of the assignment.

Example 2: Assume a very simple left-unique transition
relation s1 = i1 ∧ s′1 with CNF T = (¬s1 ∨ i1)∧ (¬s1 ∨ s′1)∧
(s1 ∨ ¬i1 ∨ ¬s′1). It is easy to see that in each covering of T
s1 is assigned. Assume that the next state cube is s′1. For each
valuation of s1 there is a valuation of i1 such that T ∧ s′1 is
satisfied. Hence, only the QBF approach is able to remove s1

from an initial cube s1 or ¬s1.
Since QBF- and MaxQBF-based methods, which are the

only promising approaches for left-unique transition relations
considered so far, are rather expensive, [20] introduced a
structural approach to PO generalization for Reverse PDR
on circuits. This structural approach basically removes state
variables corresponding to the outputs of non-constant circuit
outputs with disjoint support sets. Since it is only applicable for
Reverse PDR on circuits, we omit a more detailed exposition.

C. Combining State Lifting Methods

Some methods are a good fit for collaboration, e. g., S01X,
01X-simulation, justification, the implication graph based
method IGBG, and the MaxSAT 01X-encoding MS01X. S01X,
01X-simulation, justification, and IGBG (see Sect. IV-C) yield
01X-simulatable generalization results. Thus the result of one
of these methods can be a starting point to MS01X which may
be able to improve the generalization even further. MS01X
introduces a soft clause per state variable which is a candidate
for removal. If we already have found a set of don’t cares while
using another method, we only have to introduce soft clauses
for the remaining state variables. For all other variables we can
introduce the don’t care value as a hard clause or assumption,
heavily decreasing the search space of the MaxSAT solver. In
our experiments we use a heuristics for dynamically combining
MS01X with IGBG. If MS01X is successful and not much slower
than IGBG, we only use MS01X in the future. If MS01X is
much slower and not significantly more successful than IGBG,

we use IGBG only. In all other cases we use the mentioned
combination where MS01X improves on a precomputed result
of IGBG. A similar method could be used with the MaxQBF
approach, only with the difference, that MaxQBF is able to
improve or at least meet every previous result of our different
methods.

D. More Degrees of Freedom?

The PO generalization methods discussed so far look for a
minimal subcube c of a minterm m (resulting from a satisfied
SAT solver call SAT?[¬d ∧Rk−1 ∧ T ∧ d′]) with the property
that m̃ ∧ T ∧ d′ is still satisfiable for all minterms m̃ covered
by c. Thus those methods are restricted by the initial choice
of m and starting from another minterm m̂ could lead to a
much better solution. Some of the optimization based methods
like S01X, MS01X, SAT-based cover, ILP-based cover, greedy
QBF, and MaxQBF offer themselves to let the choice of the
present state variables open in the optimization. One small
additional detail should be considered in this context: In order
to minimize the cube c mentioned above as much as possible,
the methods based on a fixed initial minterm m allow c to
contain states which have already been excluded from Rk−1

before, but c contains at least one new state not yet excluded
from Rk−1 (at least m). (This is the approach used in the
literature on PDR, see e. g., [1], [11]). However, if we let the
choice of the present state variables open and only require that
m̃∧T ∧ d′ is satisfiable for all minterms m̃ covered by c, then
it could happen that c contains only states which have already
been excluded from Rk−1, so it could be useless. Therefore
we now require that m̃ ∧ Rk−1 ∧ T ∧ d′ is satisfiable for all
minterms m̃ covered by c, i. e., we replace T by Rk−1 ∧ T in
those methods.

We call the resulting methods S01Xfree, MS01Xfree etc. to
differentiate them from the methods considered so far which are
now called S01Xfix, MS01Xfix etc. Here we give more details
on how to realize the approaches mentioned in Sect. VI-D
where the choice of the present state variables is open.

1) MS01Xfree and S01Xfree: Compared to MS01Xfix (see
Sect. IV-D) the MaxSAT encoding has to be modified in a
straightforward manner: The soft clauses sci = {ti} and the
corresponding hard clauses representing ti ↔ ((s

(0)
i = 0) ∧

(s
(1)
i = 0)) remain unchanged. We omit the hard clauses

fixing present state bits sj to X or σj . The hard clauses for
primary inputs are now for all 1 ≤ j ≤ n ((i

(0)
j ∨ i

(1)
j ) (only

disallowing X for ij). For all 1 ≤ j ≤ k the hard clauses for
((d
′(0)
ij

= (1 − τj)) ∧ (d
′(1)
ij

= τj)) (fixing d′ij to τj) remain
unchanged. The hard clauses representing an 01X-encoding of
T remain unchanged as well. Finally, we replace in the CNF
Rk−1 each literal si by s(1)

i and each literal ¬si by s(0)
i . We

add the resulting clauses to the MaxSAT problem. In that way
we enforce that the chosen assignments to the present states
are included in of Rk−1.

As for S01Xfix, S01Xfree simply results from MS01Xfree by
omitting the soft clauses sci = {ti} (and their corresponding
hard clauses ti ↔ ((s

(0)
i = 0) ∧ (s

(1)
i = 0))).

2) SATCoverfree: Compared to SATCoverfix (see Sect. V-Bc)
we remove the restriction that present state bits si can only be
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unassigned or equal to the value σi fixed by m = sσ1
1 ∧. . .∧sσm

m ,
i. e., we just have to remove the assignment of s(1−σi)

i to 0.
3) ILPfree: Compared to ILPfix (see Sect. V-Bb) it is also

possible to arrive at ILPfree if we do not confine ourselves
to the assignment A but much rather allow the ILP solver to
choose between both polarities of variables.

For ILPfree we introduce two binary ILP-variables vl and vl̄
for each variable v in ¬d∧Rk−1∧T ∧d′, one ILP variable for
each literal. Γ contains the clauses representing ¬d ∧Rk−1 ∧
T ∧ d′. We introduce a linear constraint

∑n
i=1 vli ≥ 1 for

each clause c = {l1, . . . , ln} of Γ. Now we have to assert
that only one polarity for each variable is used by introducing
the linear constraints vl + vl̄ ≤ 1. As an optimization goal
we minimize the sum over all ILP-variables corresponding
to present state variables. If in the solution to ILPfree both
variables corresponding to literals of a present state variable si
are assigned to 0, then the computed generalized cube c does
not contain a literal for si. The binate covering ILP-problem
now has to solve the original SAT-problem again, but with
an additional optimization component, and is therefore more
complex. Nevertheless it may find a smaller partial assignment.

4) GreedyQBFfree: As GreedyQBFfix (see Sect. V-Ca),
GreedyQBFfree partitions the present state variable into a set of
variables #«r which are removed from the cube representing the
PO and a set of variables

#«

k remaining in the PO. Whereas in
GreedyQBFfix the QBF formula is ∀ #«r ∃ #«

k ∃ #«
i ∃ #«s ′ : m̂∧T ∧ d′,

we remove in GreedyQBFfree the fixing of the
#«

k variables to m̂.
Moreover, we use the formula ¬d∧Rk−1∧T∧d′ as in the origi-
nal SAT problem leading to ∃ #«

k ∀ #«r ∃ #«
i ∃ #«s ′ : ¬d∧Rk−1∧T∧d′.

5) MaxQBFfree: Compared to MaxQBFfix (see Sect. V-Cb),
in MaxQBFfree we introduce a new existentially quantified
variable s∃i for one input of the multiplexer, instead of using
the original assignment ε from m. In such a modified MaxQBF
problem MAXQBFfree we conjoin with

∧n
i=0 C

∃
i instead of∧n

i=0 C
ε
i whereas C∃i = ¬ui → (si ↔ s∃i ).

For MAXQBFfree we use the formula ¬d ∧ Rk−1 ∧ T ∧
d′ as in the original SAT problem, i. e., the MaxQBF query
is ∃ #«u∃ #«s ∃∀ #«s ∀∃ #«s ∃ #«

i ∃ #«s ′ : ¬d ∧ Rk−1 ∧ T ( #«s ,
#«
i ,

#«

s′) ∧ d′ ∧∧n
i=0 C

∀
i ∧

∧n
i=0 C

∃
i ∧

∧n
i=0 ui. This query yields a PO with

a minimal number of state variables (which still satisfies ¬d∧
Rk−1 and) which is not constrained to m as a ‘starting point’.

VII. EXPERIMENTAL RESULTS

We divide the experimental results into two sections. In the
first one, Sect. VII-A, we discuss the results on Hardware
Model Checking Competition (HWMCC) benchmarks, in the
second one, Sect. VII-B, the results on AI Planning benchmarks
of the International Planning Competition (IPC). For each
benchmark, we limited the execution time to 3,600 s and set
a memory limit of 7 GB. We used one core of an Intel Xeon
CPU E5-2650v2 with 2.6 GHz. We provide our binaries and
results under [42].3

3If the paper will be accepted, we will also share the sources of our
implementation with the scientific community to provide a broad basis for
experiments with different PO generalization techniques.

A. Hardware Model Checking

Our PDR implementation is based on ic3ref [43] and
augmented to support Reverse PDR too. Unless the order by
which literals are removed from POs is given by the definition
of the algorithm (as in greedy covering for instance), we
always consider the variable order as implemented in ic3ref,
which uses an activity-based order (literals which could be
removed more often are preferred). Furthermore, we leave
the clause generalization part of ic3ref which uses ctgDown
from [13] completely untouched. All experiments have been
performed on the complete benchmark set of HWMCC’15 [15]
and ’17 [16] excluding the access restricted Intel benchmarks
(730 instances) and on the subset of HWMCC’19 [17] bit-vector
benchmarks containing invariant constraints (231 instances). If
a generalization technique requires a SAT solver, we stick to
MINISAT v2.2.0 [44] as used in ic3ref. As MaxSAT solver we
use Pacose [45] with Glucose 4 [46] and DGPW encoding [47],
as QBF solver DepQBF [48] with incremental solving. The
used MaxQBF solver is quantom, an extension of antom [49]
which is a rather experimental implementation on top of a
search-based QBF solver. Finally, gurobi9.02 [50] is used for
ILP-solving.

Structure of the Section: We structure our experiments on
Hardware Model Checking benchmarks as follows. In a first
set of experiments we considered the original (forward) PDR
without invariant constraints applied to HWMCC benchmarks
(see Sect. VII-A1).
• In the first experiment, we compared the generalization

capabilities of all techniques. To enable a fair evaluation
of all methods by comparing them on exactly the same
problems, we extracted single PO generalization problems
(POGPs) from PDR runs on HWMCC benchmarks (see
Sect. VII-A1a).

• Next, we analyze the different methods within full PDR
runs (see Sect. VII-A1b and Sect. VII-A1c).

In Sect VII-A2, we consider the special case of left-unique
transition relations (see Sect. VI-B) with the example of
Reverse PDR. The experiments refer to full PDR runs.

Finally, in Sect. VII-A3, we examine full forward (standard)
PDR runs on AIGER 1.9 [39] Benchmarks with invariant
constraints that invalidate left-totality.

1) Original PDR:
a) Single PO generalization problems: For comparison,

we considered only POGPs which (a) allow for PO generaliza-
tion and (b) can be solved by all methods (including MaxQBF).
The problems were extracted during a MaxQBF run, i. e., the
cubes of next state POs d′ in SAT?[¬d ∧Rk−1 ∧ T ∧ d′] are
minimal. We randomly picked 258 such POGPs. In Table I
we present both the average reduction ratio and the average
quality of the methods. The reduction ratio for a POGP is the
number of removed state bits divided by the total number of
state bits. The quality of a method for a single POGP relates
its reduction capability to that of MaxQBF which produces
an optimal result, i. e., the quality of a method on a POGP
is just the quotient of the number of removed state bits for
this method and the number of removed state bits for the
optimal MaxQBF (which achieves the optimal quality of 100%
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GeNTR
Greedy
Cover

ILP
Cover

SAT
Cover

01X
sim. S01X MS01X IGBG

Justifi-
cation Lifting

Lifting
+ lit.drop.

Greedy
QBF MaxQBF

fix
Reduction 1.07 1.91 4.36 4.48 10.76 10.54 10.84 9.43 10.76 9.41 11.58 14.73 14.85

Quality 7.7 9.6 39.3 37.2 59.0 55.3 59.2 55.7 59.0 55.5 65.8 99.8 100
fr

ee Reduction - - 6.09 4.03 - 8.68 9.96 - - - - 12.35 12.68
Quality - - 54.0 42.9 - 56.3 67.6 - - - - 97.3 100

TABLE I: Reduction ratio (in %) and quality (in %) for fix and free variants.

by definition). Table I shows average numbers for all 258
random POGPs. In Table I we differentiate between the variants
starting with a fixed minterm m from a satisfying assignment
(called fix variants) and the variants which are not restricted by
the initial choice of m (called free variants, see Sect. VI-D).
Interestingly, the free variants mostly achieve worse results
than their corresponding fix variant. The effect of the restriction
that the resulting PO has to be completely included in Rk−1

in the free variants (see Sect. VI-D) apparently outweighs
the independence from the initial choice of m. For the fix
variants we observe e.g. that the covering approaches are
not very suitable for HWMCC benchmarks (especially greedy
cover and GeNTR). 01X-simulation has a slightly better quality
than lifting (in spite of its theoretical inferiority due to the
imprecision of ternary logic). This is however compensated,
if lifting is extended by literal dropping. The quality of 01X-
based methods, IGBG, and lifting based methods lies between
55 and 66% of the optimal quality of MaxQBF which shows
the potential of more exact methods for PO generalization.
Interestingly, greedy QBF achieves already 99.8% of the
MaxQBF quality.

b) Full PDR runs, overall performance: Note that within
full PDR runs the single POGPs become different due to
different generalization results and runtimes of the generaliza-
tion methods become relevant as well. In Fig. 5 we restrict
the presentation to the methods with the most promising
performance on the set of HWMCC’15/17 Benchmarks (in
particular, we do not show any free variants).

We start with comparing methods from each category to
determine their respective strongest methods. As categories,
we consider lifting with its different configurations, 01X-
based methods (IGBG, 01X-simulation, S01X, MS01X, and
justification), and cover approaches (ILP, SAT cover, greedy
cover, GeNTR).

In the lifting category, we compare standard lifting from
Sec. IV-A3 against variants using additional literal dropping as
well as literal rotation. Since exhaustive literal dropping is very
costly, we additionally try two heuristics to trade reduction
ratio against runtime. Firstly, we use approximate SAT with a
decision limit of 100 – as proposed in [12]. Secondly, we limit
the number of overall attempts to drop a literal to 32 and the
number of failed attempts to 2. After each successful attempt,
we reset the current count of failed attempts to 0 and shuffle the
remaining literals randomly. We copied this strategy from TIP4

[51] and therefore denote it by ‘TIP-like’. Regarding literal
rotation, we also implemented a version which acts ‘TIP-like’.
We consider one attempt of literal rotation as failed, if it has
not been able to remove any literal from the UNSAT core. The
first plot of Fig. 5 (starting at the top) displays all results from

4Downloaded from https://github.com/niklasso/tip, Sept. 2021

the lifting category. Apparently, literal dropping as well as
literal rotation does not pay off when performed exhaustively.
Literal rotation is performing better than literal dropping,
most likely because of the relatively cheap unsatisfiable SAT
solver queries (see Sect. IV-B2). Forcing MINISAT to report
‘satisfiable’ after 100 decisions (approximate SAT), is able to
increase the performance of literal dropping but is still not able
to outperform literal rotation. Imposing hard bounds on the
number of literal dropping attempts (and fails) however, yields
significantly better results. We make the same observation for
literal rotation. The two ‘TIP-like’ configurations of literal
rotation and literal dropping are able to improve the overall
performance of the ‘standard technique’ of lifting.

The second plot of Fig. 5 displays all results of the 01X-
based methods. Interestingly, S01X, the justification approach
from ABC, as well as IGBG and the heuristics based on MS01X
/ IGBG significantly outperform the ‘standard technique’ of
greedy 01X-simulation. IGBG and its combination with MS01X
performs best. Regarding S01X, we also tried to alter the
decision heuristics of MINISAT to decide state variables first.
However, we did not observe any relevant difference with
respect to our results.

The third plot of Fig. 5 displays all results of the cover
approaches. For ILP cover and greedy cover the relation
between quality and computational cost of PO generalization
is apparently not beneficial enough as they perform worse
than doing no PO generalization at all – at least on Hardware
Model Checking problems. A possible reason could be its cost
inefficiency which is discussed in more detail in Sect. VII-A1c.
In the category of cover approaches, PO generalization with
SAT cover solves most instances, followed by GeNTR.

For the results displayed by the plot at the bottom of Fig. 5
we picked the best performing technique from each category.
The heuristics based on MS01X / IGBG outperforms the best
approach based on lifting.

In particular, it is also interesting to observe (by comparing
the different plots) that MS01X / IGBG as well as IGBG
outperform the ‘standard techniques’, i.e., lifting and greedy
01X-simulation. Additionally, our results indicate that we
should always prefer 01X-based or lifting-based methods to
cover approaches – whenever the transition relation’s properties
allow for it.

The different techniques show a great variety of uniquely
solved benchmarks as displayed by the overall ‘virtual best’
at the bottom of Fig. 5 as well as the ‘virtual best’ of each
category. (The ‘virtual best’ approach corresponds to running
all methods in parallel and counting a benchmark as solved as
soon as at least one method solved it.)

We further refer to Table II were we split the results of the
best performing techniques of each category into counterex-
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Fig. 5: Original PDR on all techniques from 1) the lifting, 2) the 01X-based,
and 3) the cover approaches. The last plot displays the best of all three
categories. HWMCC’15/17 Benchmarks.

No
PO-Gen.

SAT
Cover

Lifting
lit.drop. (TIP)

MS01X /
IGBG heur.

SAT (Counterexample) 100 101 113 118
UNSAT (Safe) 246 257 276 280

TABLE II: Detailed results of best performing techniques from Fig. 5.

amples (SAT) and proofs of safety (UNSAT). Apparently, PO
generalization speeds up both SAT and UNSAT. The results
also indicate, that the MS01X / IGBG heuristics is stronger
than the other variants on both benchmark categories.

c) Full PDR runs, execution times, PO reduction ratios,
and number of PO generalization attempts: In Table III
we present the fraction of the overall execution time that
the methods considered in Fig. 5 required during full PDR
runs (i. e., the time required for generalization divided by the
overall execution time). Moreover, we give information on their
reduction ratios, and the number of generalization attempts

during full PDR runs. We report on average and median values,
as well as the standard deviation. For computing the reduction
ratios and generalization attempts we consider only benchmarks
solved by all those methods. It is interesting to correlate the
data in Table III with the overall performance data in Fig. 5.
For instance, ILP cover and greedy cover need a large fraction
of the overall runtime without providing high reduction rates
which explains their poor overall performance. Both lifting
and IGBG are very runtime efficient (their average fractions of
execution times are 2.2 % resp. 2.0 %) with good reduction
rates, whereas the advantage of IGBG can be explained by its
higher PO reduction ratios. Enhancing lifting with restricted
(‘TIP-like’) literal rotation leads to a moderate increase in the
fraction of runtime for PO generalization, but pays-off by an
increased reduction rate (and an improved overall performance
as well). MS01X shows the best average reduction rate (56.5
%), but has high average execution times (60.2 %). For this
reason MS01X does not have the best overall performance as
can be seen in Fig. 5. Using the MS01X / IGBG heuristics
successfully reduces the average fraction of execution time to
20.5 % while keeping a high average reduction ratio of 55.0
%. By this the MS01X / IGBG heuristics ends up with the
best overall performance. In general, lower reduction ratios
seem to significantly increase the total number of required
PO generalization attempts – as can be observed for all cover
approaches in particular. Overall efficiency, however, very much
depends on how costly these PO generalizations are in terms
of runtime. An example would be MS01X which achieves
the lowest number of PO generalization calls (median and
average) due to its strong reduction ratio – since these calls
are very costly though, it is still outperformed by more cost-
efficient techniques. The large standard deviations as well as the
differences between average and median values (especially for
the number of PO generalization calls) show that the HWMCC
benchmark set is pretty diverse. It apparently contains a large
fraction of benchmarks which are easy for PDR, but contains
difficult instances as well.

Note that – compared to the study with single POGPs –
the average reduction ratios arrive at much higher values.
This can be explained by the fact that for single POGPs we
only considered instances which can also be solved by the
MaxQBF approach. High reduction ratios result in a high
number of satisfied MaxQBF soft clauses. A growing number
of such clauses is quite challenging for the incorporated
experimental MaxQBF solver leading to timeouts on many
HWMCC benchmarks.

2) Reverse PDR: We recall from Sect. VI-B that general-
ization of POs in Reverse PDR is only possible with both the
QBF-based methods and the structural method from [20].

a) Full Reverse PDR runs, overall performance: In the
case of Reverse PDR, the structural generalization method
outperforms both MaxQBF and greedy QBF in terms of solved
instances. The structural method even completely dominates
greedy QBF. This can be explained by the large computational
effort invested by the stronger generalization methods. Though
there exist some benchmarks where MaxQBFfree performs
better than the structural approach. Two of them cannot even
be solved within the timeout using the structural approach. For
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Avg. 2.2 9.4 45.1 4.0 24.7 2.0 60.2 20.5 5.1 12.4 46.3 39.6 8.8 79.7 6.3
Median 1.2 3.3 31.7 0.8 7.7 1.2 44.7 20.5 3.4 3.0 5.1 5.8 2.6 84.0 3.5

Std. Dev. 1.9 8.6 29.5 6.5 27.8 19.2 26.0 22.7 8.5 14.5 26.0 11.8 9.2 23.9 6.5

%
R

ed
.

R
at

io

Avg. 50.0 53.5 56.9 54.4 54.4 53.0 56.5 55.0 51.9 54.9 54.9 13.6 9.1 17.3 16.0
Median 58.0 60.7 67.5 62.9 62.9 60.6 66.0 64.5 57.9 62.6 62.7 5.8 1.4 9.6 9.4

Std. Dev. 33.5 34.0 33.8 34.2 34.2 34.4 34.4 34.1 33.2 34.1 34.3 17.9 14.0 19.8 18.2

#C
al

ls Avg. 667.8 676.3 641.2 651.2 651.2 660.1 612.1 649.1 720.9 704.5 667.1 872.6 979.7 931.6 913.5
Median 84 77 64 73 73 62 60 62 70 64 71 168 150 143 158

Std. Dev. 1734.1 1794.4 1960.6 1676.5 1676.5 1757.4 1632.3 1755.1 2131.2 2140.8 2053.0 1889.4 2062.0 2141.8 2046.7

TABLE III: Fraction of overall execution time (in %), reduction ratio (in %), and the total number of generalization attempts. Average, Median, and Standard
Deviation. Original PDR.

Struct. GreedyQBF MaxQBFfree MaxQBFfix

%
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.
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e

Avg. 16.4 96.3 73.2 67.8
Median 1.8 94.7 84.5 69.4

Std. Dev. 8.7 16.0 28.3 33.4

%
R

ed
.

R
at

io

Avg. 8.6 12.8 11.4 12.8
Median 0.5 3.2 3.2 3.2

Std. Dev. 8.0 10.6 9.1 10.5

#C
al

ls Avg. 1481.1 1064.0 1066.0 1057.8
Median 35 25 25 25

Std. Dev. 4996.6 3341.2 3203.7 3302.2

TABLE IV: Fraction of overall execution time (in %), reduction ratio (in
%), and the total number of generalization attempts. Average, Median, and
Standard Deviation. Reverse PDR.
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Fig. 6: MAXQBFfree / Structural [20]

a more detailed comparison of execution times, we refer to
Fig. 6.

b) Full Reverse PDR runs, execution times and PO
reduction ratios: Table IV shows the average fractions of the
overall execution times used by the respective generalization
approaches as well as their reduction ratios. The structural
approach has the smallest reduction ratios, but (as expected)
it requires much less runtime than the QBF / MaxQBF based
methods. We note that reduction ratios with Reverse PDR are
in general significantly smaller than with original PDR. This
can be explained by the limitations of left-unique transition
relations (see Sect. VI-B).

3) Invariant Constraints: For standard ic3ref and
HWMCC’19 benchmarks with invariant constraints we
observed incorrect results5. This can be explained by the
observations on lifting made in Sect. IV-F. So we had to
deactivate lifting for ic3ref to get correct results. In Fig. 7

5For instance: ic3ref reports Unsafe instead of Safe on wolf/2019C/qspiflash
qflexpress divfive- p072.aig or wolf/2019C/qspiflash qflexpress divfive-p077.aig
from HWMCC’19.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  20  40  60  80  100  120  140  160

ti
m

e
 i
n
 s

e
co

n
d

s

problem instances

IGBG
Lifting aigunconstraint
Lifting with self-loops
Lifting extended call
01X-simulation
MS01X
S01X
No Lifting

Fig. 7: HWMCC’19, with invariant constraints.

we compare the execution times of the three lifting variants
from Sect. IV-F against the admissible 01X-techniques
and IGBG as well as to ic3ref with deactivated lifting.
By ‘Lifting extended call’ we denote the extended query
SAT?[m∧ i∧ T̂ ∧ (¬C∨¬d′)] without ‘repairing’ the transition
relation. The lifting variants greatly outperform standard
ic3ref with deactivated lifting. Furthermore, the lifting variants
apparently come with only minimal overhead and similar
execution times, thus lifting outperforms 01X-simulation, S01X
and MS01X. IGBG does not need any changes and achieves
the best performance.

B. AI Planning

We adjusted an existing PDR implementation called
minireachIC3 [52] which has been used for planning tasks [8].
We used 1641 STRIPS benchmarks from past IPC events (from
1998 to 2011). To transform the STRIPS benchmarks into the
input format (DIMSPEC) of minireachIC3 we used the ∃-step
parallel encoding scheme of the SAT-based planner Mp [30] as
found best for minireachIC3 [8]. Since the previous evaluation
on IPC benchmarks from [8] came to the conclusion that
Reverse PDR (for general transition relations, the reverted
direction does not imply left-uniqueness) is the favorable
configuration of minireachIC3, we also use this configuration.

We compared standard minireachIC3 (which does not include
PO generalization) with the three cover approaches, GeNTR,
MaxQBF as well as greedy QBF. We observed that in AI
Planning the QBF-based approaches are much more competitive
than in Hardware Model Checking. However, many of the
planning benchmarks seem to have only little potential for
generalization of POs. The best average reduction ratio –
achieved by MaxQBF – on 695 of 1641 solved IPC benchmarks
is 4.01 %.

Nevertheless, we present the overall performance of the
different PO generalization techniques for the complete set of



15

Technique Solved SAT UNSAT Timeout Memout

SAT Cover 948 934 14 638 55
Greedy Cover 940 926 14 646 55

Standard 939 925 14 643 59

GeNTR 913 899 14 614 114
ILP Cover 900 886 14 722 19
MaxQBF 695 681 14 927 19

GreedyQBF 646 636 10 968 27

TABLE V: minireachIC3 on IPC Benchmarks.

Domain Inst.
Stan-
dard

Max
QBF

Greedy
QBF

Greedy
Cover

Ge-
NTR

ILP
Cover

SAT
Cover

2002-DEPOTS 20 4 8 (4) 6 (2) 4 (0) 4 (0) 4 (0) 4 (1)
2006-PIPESW. 45 6 6 (1) 3 6 (0) 7 (1) 4 (0) 6 (1)

2008-SCANALY. 30 22 16 (0) 15 (0) 22 (2) 23 (2) 23 (1) 23 (3)
2011-BARMAN 20 12 13 (2) 0 14 (3) 12 (0) 7 (2) 10 (6)
2011-FLOORT. 20 17 20 (3) 15 (1) 16 (1) 17 (0) 18 (2) 19 (2)

2011-SCANALY. 20 14 9 (0) 6 (0) 12 (0) 13 (0) 15 (1) 15 (3)

TABLE VI: Solved instances of generalization techniques on selected IPC
domains. The number of uniquely solved instances (w. r. t. Standard) is written
in parentheses.

benchmarks in Table V. Since many of the planning benchmarks
have only little potential for generalization of POs and show
only small average reduction ratios, expensive methods like
MaxQBF result in high cost for many benchmarks, but do
not help much. However, SAT-based cover, which is much
less expensive, is able to consistently improve on standard
minireachIC3. It solves 948 instances overall (compared to
939 instances with standard minireachIC3). On the other hand,
compared to SAT-based cover, the MaxQBF approach is able
to solve 21 unique instances in total and additionally achieves
better execution times on a number of benchmarks.

As presented in Table VI there are planning domains –
that allow significant reduction of POs – for which the
generalization approaches greatly improve the performance
of minireachIC3: Among the cover approaches and GeNTR
(which is implicitly a cover approach as well) SAT-based cover
is the best and clearly outperforms standard minireachIC3.
Furthermore, for those planning domains trading computa-
tion time against generalization capabilities pays off and
MaxQBF performs even better than the cover approaches
on three domains. It dominates standard minireachIC3 on
2002-DEPOTS, 2006-PIPESWORLD, 2011-BARMAN, and
2011-FLOORTILE. Numbers in bold face indicate the best
performance for the respective domain.

For a detailed analysis we chose two examples where
MaxQBF in minireachIC3 had a strong effect and analyze
further why this is the case.

Firstly, we analyze the problem depotprob4398 of the IPC
domain DEPOTS-2002. This could be solved within 51.33 s
by using MaxQBF for PO generalization, finding a plan of
length 13 (longer than the trace, due to PO forward pushing),
whereas standard minireachIC3 ran into timeout (3, 600 s).
With MaxQBF, only 6 time frames were opened, while the
standard version ran into timeout when it was still working on
time frame number 9. The version using MaxQBF had to learn
only 1, 226 clauses with an average size of 17.2, whereas the
standard version had 86, 932 learned clauses with an average
size of 23.0 after 3, 600 s.

Secondly, we consider the problem instance-1 of the IPC
domain BARMAN-2011. With MaxQBF we were able to find a

plan of length 142 after 82.37 s, again standard minireachIC3
ran into timeout (3, 600 s). With MaxQBF, minireachIC3
advanced to time frame 15, without MaxQBF, it had 13 open
time frames within 3, 600 s. The MaxQBF version required
1, 289 learned clauses with an average size of 19.1 literals,
while the standard version reached the timeout with 104, 503
learned clauses having an average size of 20.2 (103, 400 of
them were learned in only two time frames 5 and 6).

VIII. CONCLUSIONS AND FUTURE WORK

We presented a comprehensive study on the generalization
of POs in PDR. We discussed the complexity of the problem
as well as limitations and applicability of various techniques
on different domains. It turned out that techniques which have
not been used in PDR so far as well as new and more exact
techniques based on MaxSAT are able to beat well-known
standard techniques for the generalization of POs like lifting
and 01X-simulation. We expect to be able to improve the
obtained results even more using further improvements of solver
technology like incremental reuse of cardinality constraints
in MaxSAT solvers. An exact solution for general transition
relations could be provided using a reduction to MaxQBF.
Research on MaxQBF solving is still in its infancy and we had
to use a rather immature solver for our experiments. We hope
that with new applications we can stimulate further research
in this direction. We successfully explored the cooperation
between different generalization approaches with a combination
of MS01X and IGBG. We believe that there is room for further
improvements by combining various techniques. One option
is to dynamically switch between different methods based on
their success, another option is to perform first generalizations
with weaker and less expensive methods, followed by stronger
methods building on the results of the former. Moreover,
we assume that our results can be useful for other domains
requiring SMT with theory reasoning.
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