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Abstract—The RRAM-based neuromorphic computing system
(NCS) has amassed explosive interests for its superior data
processing capability and energy efficiency than traditional ar-
chitectures, and thus being widely used in many data-centric
applications. The reliability and security issues of the NCS
therefore become an essential problem. In this paper, we sys-
tematically investigated the adversarial threats to the RRAM-
based NCS and observed that the RRAM hardware feature
can be leveraged to strengthen the attack effect, which hasn’t
been granted sufficient attention by previous algorithmic attack
methods. Thus, we proposed two types of hardware-aware attack
methods with respect to different attack scenarios and objectives.
The first is adversarial attack, VADER, which perturbs the
input samples to mislead the prediction of neural networks. The
second is fault injection attack, EFI, which perturbs the network
parameter space such that a specified sample will be classified to
a target label, while maintaining the prediction accuracy on other
samples. Both attack methods leverage the RRAM properties to
improve the performance compared with the conventional attack
methods. Experimental results show that our hardware-aware
attack methods can achieve nearly 100% attack success rate
with extremely low operational cost, while maintaining the attack
stealthiness.

Index Terms—Resistive memory, neuromorphic computing
system, processing in memory, reliability, adversarial attack, fault
injection attack

I. INTRODUCTION

THE neuromorphic computing system (NCS) has attracted
extensive interests as the traditional Von-Neumann archi-

tecture based on the CMOS technology is approaching the
physical limit and facing the challenges of the well-known
“memory wall”. Recent advancements in the neuromorphic
algorithms (i.e., deep neural networks, DNNs) have achieved
tremendous success in the computing vision ([1], [2], [3]) and
natural language processing domains ([4], [5]), driving the de-
velopment of the NCS towards the ultimate goal of emulating
the biologic neural networks. Unfortunately, the neuromorphic
computing system based on the traditional digital hardware
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suffers the degraded performance and power efficiency be-
cause it is impractical to store the synaptic weights of the
deep neural models in the on-chip memory.

Therefore, the emerging non-volatile memory (eNVM) to
implement the NCS has received tremendous attention due
to the merits of representing the synaptic weight with the
cell resistance instead of the electronic charges ([6], [7]).
Amongst the candidate eNVM technologies, the Resistive
Random Access Memory (RRAM), a.k.a. memristor, is one of
the most promising ones as the natural similarity between the
programmable resistance and the variable biological synaptic
strengths. More importantly, an RRAM crossbar is a natu-
ral dot-product engine that can process the most essential
operations for the neural networks in a highly efficient way
([8]). Recent works have reported system-level RRAM-based
NCS platforms ([9], [10], [11], [12], [13]), demonstrating the
powerful capability and flexibility.

On the other hand, the security of the NCS raises a concern
as the DNN models are spreading into the safety-sensitive
scenarios, and previous studies have demonstrated that the
DNN models are vulnerable to the well-designed attacks ([14],
[15], [16], [17]). To fool the neural networks, these attack
methods either perturb the input samples (i.e., adversarial
attack [15], [18]) or manipulate the network parameters (i.e.,
fault injection [16], [17]). By distorting the selected input or
network parameters, the attackers can mislead the network to
make an erroneous prediction.

We observed that the inherent variation of RRAM-based
NCS could be a potential hardware-level threat to the security
of the neural network (detailed in section V-B.), which moti-
vates us to design hardware-aware attacks that incorporate the
hardware information to improve the attack performance. As a
type of nanoscale device, RRAMs suffer from nonideal proper-
ties such as resistance fluctuation, resistance drift, and random
noise ([19], [20]). Though prior works ([20], [21], [22]) have
been proposed to mitigate the negative effect of these hardware
variations to ensure the reliability of the RRAM-based NCS,
it will be a different story when considering the security of
RRAM-based NCS in the presence of the RRAM variation.

In this work, we develop two attack schemes for the RRAM-
based NCS by leveraging the RRAM variation issue and the
programmable cell resistance corresponding to the synapse
weight. To the best of our knowledge, this is the first work that
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comprehensively investigates the security of the RRAM-based
NCS.

Our contribution can be summarized as follows:
• We observed that the intrinsic variations in the RRAM

pose a potential threat for the security of RRAM-
based NCS, and proposed two powerful attack methods,
VADER and EFI, by exploiting the hardware properties of
the RRAM. In specific, the VADER focuses on poisoning
the input samples while EFI targets distorting the DNN
parameters to launch the effective attack on the RRAM-
based NCS.

• In the VADER, we propose a variation amplification
algorithm to locate and perturb the variation-sensitive
pixels in the input sample, which can maximize the
impact of the RRAM variation on the computing results
of the RRAM-based NCS. In the end, VADER effectively
misleads RRAM-based NCS and makes it output the
prediction error.

• In the EFI, we propose a greedy victim parameter selec-
tion algorithm to select and distort the victim parameters.
By exploiting the RRAM variation, EFI can minimize the
required victim parameters for a successful fault injection
attack, significantly saving the operational cost.

• We perform comprehensive experiments to evaluate the
stealthiness, effectiveness and efficiency of our proposed
attack methods on the RRAM-based NCS and compare
our work with the classical attack methods ([16], [17],
[15]). The results show VADER and EFI are more effec-
tive than the comparison counterparts and both achieve
almost 100% attack success rate. Besides, EFI can save
orders of the cost (>95%) for the fault injection, while
maintaining less accuracy degradation compared with
previous fault injection attacks ([16], [17]).

The rest of the paper is organized as follows. In section II,
we introduce the background of the RRAM-based computing
system, an overview of RRAM variation, and discuss the
security concerns of the computing system. Section III and
Section IV present our proposed attack methods for different
attack scenarios in detail. Experimental results and discussion
of the defense techniques for the proposed attacks are provided
in Section V. Finally, Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

A. RRAM-based Neuromorphic Computing System

Features by the non-volatility and programmable resistance
of the device, the RRAM has been studied for establishing
the neuromorphic computing systems ([6], [7]). Besides, the
RRAM-based NCS relies on the crossbar structure to mimic
the heart operation, i.e., matrix-vector multiplication (MVM),
in neural networks, which is expressed as I = V · G in the
analog manner. As illustrated in Figure 1(a), the input voltage
vector is applied on the word line (WL), the conductance
values of the RRAM cells G representing the weight matrix.
The current I through each bit line (BL) is naturally the
multiplication result V · G according to the Kirchhoff’s and
Ohm’s law ([23]). In this way, the RRAM crossbar structure
realizes MVM calculation with a time complexity of only

O(1). Figure 1(b) shows an exemplary implementation of
convolutional NNs (CNNs) on the RRAM crossbar by pro-
gramming the convolutional kernels on the BLs of the crossbar
and unfolding the feature maps into the input vector. Extensive
researches have explored various RRAM-based NCS designs
for a variety of neuromorphic computing models applied in
different application fields ([9], [10], [11], [13]).

B. RRAM Variation

As an emerging nanoscale device, the RRAM suffers from
a variety of variation issues such as manufacturing defect,
resistance variation and random noise due to the immature
manufacture and the intrinsic nature ([20]). For example,
the defect cells in an RRAM crossbar stuck at a certain
resistance state and are not changeable ([22]), while some
RRAM devices’ readout resistance is slightly biased from the
programmed one affected by the resistance variation ([20]).
Therefore, the network model mapped in the practical RRAM-
based NCS is different from the algorithmic model, and will
induce subtle computational error as Figure 1(c) shows. For
simplicity, we denote the cells with significant variation issues
as faults in this work. Extensive studies have investigated the
effect of RRAM variation issues on the reliability of RRAM-
based NCS and proposed various strategies to alleviate this
problem. [19] developed an efficient test scheme for detecting
and locating the position of faults in the RRAM array. With the
fault distribution of the RRAM array, [24] proposed the fault-
resilient training strategy to rescue the accuracy of the neural
network models by exploiting the intrinsic error resilience
of the neural network. [21] remapped the significant weight
neural network model to the RRAM-based architecture by
introducing the redundant hardware. These techniques ensure
robust and practical neural network deployment on RRAM.

Although these fault-tolerance techniques enable robust
neural network deployment on RRAM-based architectures in
practical scenarios, the hardware variations are inevitable and
still exist in these hardware platforms, making the RRAM-
based NCS vulnerable to malicious attacks in safety-sensitive
scenarios.

C. Security Concerns

As NN-based solutions becoming popular for many ap-
plications, NN security arises as a major concern for the
practical deployment of NNs in safety-critical tasks. Lots
of efforts have been devoted to investigating the security of
NNs, especially, the malicious attack approaches ([15], [16],
[17]). The attack object of these attacks is either the input
sample (i.e., adversarial attack) or the neural network weights
(i.e., fault injection attack). The adversarial attack generates
adversarial examples by adding invisible perturbations on the
input images to fool the neural network, and the fault injection
attack poisons the neural network weights via fault injection
ways. In addition, both categories of attack methods are purely
software-level attacks and are white-box attacks, that is, the
attacker is assumed to have the full knowledge of network
model (e.g., model architecture and model parameters, and
the information of the hardware platforms to inject faults).
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Fig. 1. (a)RRAM-based analog dot-product computing; (b) An example for accelerating the neural networks. (c) An simple example for the RRAM variations.

In general, a successful attack shall satisfy the three criteria:
efficiency, effectiveness and stealthiness.

Efficiency: the attack shall be easy to launch without in-
troducing too much overhead during the attack process. The
adversarial attack is naturally efficient than the fault injection
attack since it is easy to add perturbations on the input sample.

Effectiveness: the attack shall effectively fool the neural
network and also be hard to resist. As the fault injection
attack directly distorts the model parameters, it can effectively
manipulate the prediction results of neural networks.

Stealthiness: the attacker shall maintain the model accuracy
for regular images other than the targeted one. For the ad-
versarial attack, the perturbations added on the input should
be human-imperceptible to ensure the attack stealthiness. The
fault injection attack should ensure the model accuracy after
fault injection.

The adversaries have various demands on these metrics
based on the attack scenarios. For instance, the less experi-
enced adversaries can adopt the adversarial attacks, since it is
easy to access and perturb the input samples with sacrificed
effectiveness. While the adversaries with expert knowledge
concern the effectiveness and stealthiness of the attack, they
can manipulate the network prediction for a given image at
will through fault injection techniques while ensuring model
accuracy on other images. Previous studies have demonstrated
that it is practical to launch precise and effective fault injection
attacks on neural networks [16], [17].

In summary, the adversarial attacks focus on the attack
stealthiness and efficiency and the fault injection attacks pur-
sue the attack stealthiness and effectiveness. Here, we briefly
introduce the representative works on the adversarial attack
and fault injection attack, respectively.

1) Adversarial Attack: There is now a sizable body of
works proposing various adversarial attacks which explore
different methods to generate effective perturbations [14], [15],
[18]. The most representative and effective adversarial attack
methods are gradient-based, such as PGD ([15]), FGSM ([14]),
and C&W ([25]). These attack methods utilize the network
gradients with respect to the input to craft the perturbations.
For example, the PGD attack iteratively updates the given
image in the gradient ascent direction to craft the adversarial
examples, and make use of l1 norm to measure the image
distortion.

2) Fault Injection Attack: Previous works have investigated
different ways to locate and perturb the victim parameters to
ensure the stealthiness and efficiency of the fault injection
attack [16], [17]. Single Bias Attack (SBA) and Gradient De-
scent Attack (GDA) are proposed for different attack scenarios
and objectives in [16]. The SBA only modifies one neuron
bias, since the output is linearly dependent on the bias term, to
achieve high attack efficiency with relaxed attack stealthiness.
While GDA applies the gradient descent mechanism to modify
the layer-wise parameters. In contrast to SBA, the GDA focus
on attack stealthiness instead of attack efficiency. The fault
sneaking attack ([17]) formulates the fault injection attack
as an optimization problem with the constraint of accuracy
degradation and parameter modifications, and applies ADMM
(alternating direction method of multipliers) to obtain an
analytical solution for the parameter modification. However,
there are still a large number of parameter modifications in
the fault sneaking attack, which leads to low attack efficiency.
How to achieve high stealthiness and efficiency at the same
time and realize a practical fault injection attack is the main
pursuit of this work.

In this work, we incorporate the hardware information, i.e.,
intrinsic RRAM variations, to improve the performance (i.e.,
effectiveness, stealthiness and efficiency) of the conventional
adversarial attack and fault injection attack.

III. VADER:VARIATION-ORIENTED ADVERSARIAL
ATTACK

In this section, we introduce our VADER whose principle is
exploiting the RRAM variation to launch a powerful adversar-
ial attack, such that VADER can even penetrate the adversarial
defense, i.e., adversarial training ([14]). At the same time, the
attack stealthiness is ensured.

A. Overview

The motivation behind our VADER is that the RRAM
variation poses a stealthy security risk because of the variation-
induced parameter deviations and the resulting subtle com-
puting errors. VADER leverages the RRAM variation to ag-
gravate the computing errors from the RRAM-based NCS by
adding variation-sensitive perturbation on the input sample.
The deviation of the computing result will accumulate layer
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Fig. 2. The Workflow of VADER. AE: Adversarial Example.

TABLE I
NOTATIONS USED IN THIS PAPER.

Notations Descriptions

Wi The i-th layer’s parameters of the variation-free model,
i = 1, 2...

θi The variation-induced parameter deviations in i-th
layer, i = 1, 2...

x The input sample.

yi(
′) The i-th layer’s output of the variation-free (variation-

affected) model, i = 1, 2...

f The Activation functions.

L Loss function of the model.

g(′) The gradients of variation-free (variation-affected)
model with respect to the input.

gd The gradients difference between the variation-free
model and variation-affected model.

by layer and consequently cause an erroneous prediction for
the perturbed input.

Attack Objective: the objective of VADER is to find a valid
variation-sensitive perturbation for the given input sample to
construct the enhanced adversarial example, such that the
negative effect of the intrinsic and slight RRAM variation (e.g.,
parameter deviations and computing errors) can be amplified
to disturb the network prediction result. Effectiveness and
stealthiness are the main optimized goal of our VADER.

Notations. Before presenting our proposed attack methods,
we summarize the notations used in this article in Table I.
The well-trained model is referred to as variation-free before
being deployed on RRAM and variation-affected after being
deployed on RRAM, respectively. The i-th layer’s parameters
of the variation-free model are denoted as Wi, and θi rep-
resents the variation-induced parameter deviations in the i-th
layer from the desired value (Wi) after mapping the variation-
free model on RRAM computing systems.

The overall workflow of VADER is illustrated in Fig. 2.
Given an input sample and a protected network model by the
state-of-the-art defense mechanism (i.e., adversarial training),

we first perform a conventional adversarial attack method
(e.g., PGD [15]) to obtain the basic adversarial example ( 1 ).
To be specific, we feed the specified sample into the model
to compute the gradient, and add the gradient on the origin
image. By repeating this operation several times, the basic
adversarial example is obtained. The basic adversarial example
is currently insufficient to deceive the protected network, so we
take the following actions to enhance the adversarial example
by exploiting the RRAM variation. Next, we can obtain the
RRAM variation-induced parameter deviations (i.e., location
of variation-affected parameters and their corresponding val-
ues, W → W + θ) through the variation detection step [19]
( 2 ), which utilizes the inherent sneak-paths to detect the
faults and variations in crossbar memories. The testing method
provides high fault coverage, and can locate the exact location
of the abnormal RRAM cells. With the parameter deviations,
we can derive the practical variation-affected model, and
perform the variation amplification (detailed in Section III-B)
on it to generate the variation-sensitive perturbation that can
amplify the negative impact of the deviated network parame-
ters on the computing results ( 3 ). Finally, we generated the
enhanced adversarial example by adding the basic adversarial
example with the variation-sensitive perturbation.

By being aware of the RRAM variation, the VADER can
effectively disable the adversarial defense and mislead the
network to produce an erroneous prediction.

B. Variation Amplification

The variation amplification stage locates the variation-
sensitive pixels in the input image that can amplify the negative
effects induced by the RRAM variation, and then determines
the perturbation magnitude for these located variation-sensitive
pixels.

The variation-sensitive perturbation generation procedure
is described in Algorithm 1. The inputs of the algorithm
include the basic adversarial example xadv from conventional
adversarial attack, the network classifier Ĉ that is deployed
on the RRAM-based NCS, the learning rate lr, and the
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ALGORITHM 1: Variation-sensitive Perturbation
Generation

input : The basic adversarial example, xadv ;
Variation affected network, Ĉ(W + θ, ·);
Learning rate, lr;
Maximum number of pixels allowed be
perturbed, Np.

output: Variation-sensitive Perturbation δvsp.

1 δvsp ← zero matrix of the same shape as xadv
2 Sp ← {} // Sp is the coordinate set

of variation-sensitive pixels.
repeat

3 Compute the gradients gd of input xadv + δvsp;
4 Select the pixel on the input with largest gd(i, j)

as the variation-sensitive pixel; // (i,j) is
the pixel coordinate;

5 Np = Np − 1;
6 Insert (i, j) into Sp;
7 repeat
8 δvsp += lr ∗ sign(gd);
9 δvsp(i, j)← 0, for (i, j) /∈ Sp;

10 Compute the gradients gd of input
xadv + δvsp;

11 until ((loss of Ĉ converges) or (the classifier Ĉ
is mislead by xadv + δvsp));

12 until ((Np > 0) and (the classifier Ĉ is mislead by
xadv + δvsp));

maximum number of pixels Np allowed to be perturbed. The
localization of the variation-sensitive pixels and the decision
of their perturbation magnitude is implemented as the nested
loop (Line 3-13). The outer loop firstly computes gd (Line 4),
then locates the most variation-sensitive pixels by selecting the
pixel with the largest gd (Line 5), and add it into the set of
candidate variation-sensitive pixels Sp (Line 6). Here, the gd
refers to the gradient difference between the variation-affected
model (i.e., the network model on RRAM) and the variation-
free model (i.e., the network model on GPU). The inner loop
(Line 8-12) decides the value of these candidate pixels through
a gradient ascent approach. Once the number of pixels in Sp

reaches Np or the prediction of the network is misled (Line
13), the Algorithm 1 will terminate, and the variation-sensitive
perturbation (σvsp) is generated. The defined Np is to limit the
proportion of the perturbed pixels to the total number of input
pixels such that the perturbation will not cause visible attention
and thus ensure stealthiness.

In the following, we will show the effectiveness of gd in
indicating the variation-sensitive pixels of the input image with
a running example.

Running Example. We take a two-layer fully connected
network as an example to theoretically demonstrate the feasi-
bility of the gradient difference gd for locating the variation-
sensitive pixels. The notations used in the following formulas
can refer to Table I. The feedforward flow of the network can
be formulated as:

y1 =W1 ∗ x, (1)

y2 =W2 ∗ f(y1), (2)

loss = L(y2). (3)

The gradients (g and g′) with respect to the input x can be
calculated as:

g =
∂L(y2)
∂y2

×WT
2 �

∂f(y1)

y1
×WT

1 , (4)

g′ =
∂L(y′2)
∂y′2

× (W2 + θ2)
T � ∂f(y′1)

y′1
× (W1 + θ1)

T . (5)

Theoretically, the gradients of the input pixels with respect
to the loss function quantitatively reflect the contribution of
each input pixel on the loss value and the prediction result.
On the other hand, since only few parameters are variation-
affected, the input gradients of the variation-affected model
g′ are almost identical to g, to be specific, the parameter
deviations θi are slight compared to the network parameters
Wi, and thus the computation result of gradients is dominated
by Wi, and therefore it is insufficient to distinguish the
variation-sensitive pixels from the less sensitive pixels in the
input sample by directly using g′. To locate the variation-
sensitive pixels and amplify the impact of RRAM variation,
we subtract the g from g′ and the gradient difference gd is
obtained as Equation 6.

The outputs of the nonlinear activation layers (yi and y′i) are
nearly identical and that their derivatives (∂L(y

′
i)

∂y′
i

and ∂L(yi)
∂yi

) can be viewed as being the same scalar tensor because the
variation-resilient training strategy [24] is adopted to mitigate
the negative impact of RRAM variations on neural networks
(detailed in V-A). Since Equation 6 only comprises the dis-
tributive operations of matrix multiplication and Hadamard
product, it can be approximated and simplified as Equation 7.
Note that each term in Equation 7 is scaled by the parameter
deviations θi. As such, the gradient difference gd not only
reflects the impact of the input pixels on model predictions,
but also indicates their variation sensitivity. To this end, the
pixel with the largest gd has the strongest capability to activate
the negative effects of the RRAM variation, and distort the
network predictions.

IV. EFI: ENHANCED FAULT INJECTION ATTACK

A. Overview

Considering the intrinsic RRAM variation, we develop a
lightweight fault injection attack, EFI, which significantly
reduces the cost for the engineer-expensive fault injection
operation.

Attack Objective: The EFI, as the fault injection attack,
primarily targets achieving high attack efficiency and stealth-
iness. For the attack efficiency, the EFI aims to minimize
required network parameter modifications for a successful
attack by leveraging the information of the RRAM intrinsic
variations, and thus save the fault injection cost. As for the
attack stealthiness, the EFI shall make the network model
predict a specified label with the target input sample while
outputting the correct prediction for other input samples.

The attack flow of EFI is illustrated in Fig 3. Normally,
the subtle variation-induced parameter and computing error
can be tolerated by the error-resilience of neural networks
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gd = g′ − g =
∂L(y′2)
∂y′2

× (W2 + θ2)
T � ∂f(y′1)

y′1
× (W1 + θ1)

T − ∂L(y2)
∂y2

×WT
2 �

∂f(y1)

y1
×WT

1 . (6)

gd ≈
∂L(y′2)
∂y′2

× θT2 �
∂f(y′1)

y′1
×WT

1 +
∂L(y′2)
∂y′2

×WT
2 �

∂f(y′1)

y′1
× θT1 +

∂L(y′2)
∂y′2

× θT2 �
∂f(y′1)

y′1
× θT1 . (7)

Variation-induced Parameter Deviation and Computing Error

Injected Fault

Manipulated Computing Error

Error Propagation

RRAM Crossbar

Correctly Predicted

Manipulated Prediction

Variation Detection

RRAM Variation 
Information Victim Parameter 

Localization
Perturbation 

Magnitude Decision

Greedy Victim Parameter Selection

RRAM Variation

Normal Computing Flow 
before Fault Injection

Manipulated Computing Flow 
after EFI

Fault Resilient

Fig. 3. The Workflow of EFI.

and mitigated by the fault-resilient training strategy, and thus
maintaining prediction accuracy. In the EFI, we inject faults
into the target layers to incorporate with these existing RRAM
variations to tamper the output feature map, and the distorted
output will propagate forward and cooperate with the intrinsic
RRAM variations and injected faults in the following layers to
manipulate the prediction result. The overall workflow of EFI
is similar to the attack paradigm of VADER. Firstly, we ac-
quire the information of variation-affected parameters through
a variation detection process. Next, we perform greedy victim
parameter selection (detailed in Section IV-B) to select and
perturb the desired victim parameters. With these perturbed
parameters, we can easily manipulate the computing flow of
the variation-affected model, and finally change the prediction
result to the target label.

B. Greedy Victim Parameter Selection

The greedy victim parameter selection realizes the objective
that poisoning the minimal number of victim parameters by
incorporating with the existed parameter deviation induced by
the RRAM variations. Algorithm 2 presents the detailed flow
of the victim parameter selection. The inputs of the algorithm
include the specified input sample xs, the target label yt, the
variation-affected network classifier Ĉ, the list of target layers
L to inject fault and the learning rate lr for these layers. The
selection and perturbation for the victim parameters are also
realized by two loops (Line 5-12). These two loops realize
victim parameter localization and perturbation magnitude deci-
sion respectively. In the first loop (Line 5-9), we first compute
the gradient Gi for each target layer Li (Line 6), then, we
apply the greedy strategy that selects the parameter with the
largest gradient value in Gi as the victim parameter for each

ALGORITHM 2: Greedy Victim Parameter Selec-
tion

input : Specified input sample, xs;
Target label, yt
Variation-affected model, Ĉ(W + θ, ·);
List of target layers to inject faults, L
Learning rate of each target layers, lr.

output: The set of victim parameters in the target
layers, vp.

1 for vpi ∈ vp do
2 vpi ← {} ;
3 end
4 repeat
5 for Li ∈ L do
6 Compute the gradients Gi of the target

layers Li with input xs;
7 Select the parameter p with the largest

gradient in Gi as victim parameter;
8 Insert the victim parameter p into vpi.
9 end

10 for vpi ∈ vp do
11 update parameters in vpi in the gradient

ascent direction with learning rate lri until
the loss of Ĉ converges;

12 end
13 until (Ĉ(W + θ, xs) = yt);

target layer (Line 7). In the second loop (line 10-12), we decide
the perturbation magnitude of these victim parameters with
gradient ascent. These two loops will be iterated until the
specified input xs is recognized as the target label yt (Line
13). Note that, the learning rate lri for different target layers
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TABLE II
PERFORMANCE COMPARISON OF MODELS ON DIFFERENT HARDWARE

PLATFORMS. THE ACC AND ACC* DENOTE THE NETWORK ACCURACY ON
THE TESTING EXAMPLES AND ADVERSARIAL EXAMPLES, RESPECTIVELY.

Dataset Network
Architecture Hardware Platform Acc Acc*

MNIST LeNet GPU 98.70% 88.85%
RRAM 98.83% 87.67%

Cifar10 WRN GPU 85.11% 49.68%
RRAM 91.13% 30.90%

should be carefully adjusted to avoid oversized modifications
on the victim parameters and cause significant degradation in
the model performance.

V. EVALUATIONS

A. Experimental Setup

Datasets and Network Architectures. We evaluate
VADER and EFI with two different sizes of networks, i.e.,
LeNet ([26]) and Wide Residual Networks (WRN) ([27]) on
two classification datasets, MNIST and Cifar10, and compare
them with the SOTA attack approaches ([15], [17], [16])
in terms of attack effectiveness, efficiency and stealthiness.
The MNIST is a handwriting digit classification dataset, and
Cifar10 is an RGB image classification dataset. Both datasets
consist of 10 exclusive categories. In the experiments, we
adopt the variation-resilient training method to ensure the
model robustness on RRAM, and both networks are protected
with the adversarial training ([14]) against the adversarial
attack.

Configurations. To precisely simulate the impact of RRAM
variation on the neural networks, we modify the TensorFlow
framework to model the network inference flow on the RRAM-
based NCS, and the RRAM variation modeling (e.g., variation
distribution and their magnitude) is referred from [20]. The
evaluated models are quantized to 8-bit precision such that
can be deployed on RRAM-based NCS. The hyperparameter
Np in Algorithm 1 is set to 10. The performance metrics
are averaged over 10000 random sampled images from the
evaluation dataset.

B. Security Risk of Hardware Variations

In this section, we investigate the potential security risk
of RRAM variations for the neural networks. Specifically,
we evaluate the impact of RRAM variation on the network
adversarial robustness and recognition capacity by comparing
the accuracy of variation-affected model and variation-free
model on the clean testing images and adversarial examples.
As Table II shows, with the variation-resilient training, the
accuracy of the variation-affected models is comparable to,
and even slightly higher than, the variation-free models, while
there is a degradation in the resistance of the adversarial
examples for the variation-affected model (1.08% and 18.78%
on the MNIST and Cifar10, respectively). The results indicate
that although the RRAM variations are harmless to the prac-
tical application of neural networks, they indeed impair the
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Fig. 4. Effectiveness evaluation of VADER. (a) and (b) are evaluated on
MNIST and Cifar10 respectively.

robustness of the model and pose a potential security threat to
the neural network.

C. Performance Evaluation

In the following paragraphs, we will systematically evaluate
the effectiveness, efficiency and stealthiness for our proposed
VADER and EFI.

1) Evaluation for VADER: In this section, we evaluated
the attack effectiveness and stealthiness of VADER on the
MNIST and Cifar10 datasets and a variety of RRAM devices.
Specifically, we use the attack success rate to measure attack
effectiveness, and is defined as:

Attack Success Rate (ASR) =
# of mis-classified samples

# of evaluated samples
.

(8)
As results shown in Figure 4, conventional adversarial

attack, i.e. PGD is resisted by the adversarial defense mecha-
nism, while VADER can achieve nearly 100% attack success
rate, demonstrating its superior effectiveness. Furthermore, to
analyze the benefit of the hardware knowledge in our VADER,
we design an enhanced PGD, denoted as PGD*, which mimic
the variation amplification step in Algorithm 1 by substituting
the gradient difference ga with the gradient of the variation-
free model g. In contrast to VADER, PGD* is unaware of
the hardware platforms and RRAM variation. As the results
show, PGD* achieves slightly higher ASR than PGD, but
is still incomparable to our VADER. Besides, VADER can
maintain effective consistency on different RRAM devices
with different variation distributions. These results indicate
that the hardware information and localization of the variation-
sensitive pixels in variation amplification step can improve the
attack effectiveness.

VADER realizes the objective of stealthy attack by adding
human imperceptible perturbations on the input samples. Here,
we visualize several enhanced adversarial examples from
VADER in Figure 5(a). From top to bottom, the images in
each row are original clean images, adversarial examples from
PGD, enhanced adversarial examples from VADER, and the
difference between these two adversarial examples, respec-
tively. As the figure shows, our VADER adversarial examples
are visually indistinguishable from the PGD adversarial exam-
ples and even the original clean images, except for the several
perturbed pixels. The perturbed pixels are highlighted by the
red circles, which are too slight to cause human notice. This
result guarantees the stealthiness of VADER.
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(a)
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Fig. 5. (a) Visualization of VADER generated enhanced adversarial examples
from Cifar10. (b)(c)(d) Visualizing samples of output feature maps from the
final pooling layer.

Furthermore, to verify that VADER can satisfy our design
principle (i.e. VADER is variation-oriented), we visualize
several activation outputs of the network trained on MNIST
in Figure 5(b)(c)(d). All these feature maps are sampled from
the output of the last pooling layers. Respectively, Figure 5(b)
shows the feature maps from the variation-affected model
with VADER adversarial examples as input. Figure 5(c) shows
the feature maps from the variation-free model with VADER
adversarial examples as input. Figure 5(d) shows the feature
maps from the variation-free model with clean test image
as input. The feature maps in the last two rows are highly
similar, while the feature maps in the first row are visually
different from the other two rows. This observation indicates
that the VADER can only interfere with the computing flow
of the variation-affected model, and thus VADER is variation-
oriented. Besides, the visual difference suggests that VADER
can satisfy our design principle of leveraging the RRAM
variation to lead the activation output to deviate from the
desired output and propagate the computational error forward.
In summary, VADER can facilitate the RRAM variation to im-
prove the attack effectiveness and realize a stealthy adversarial
attack at the same time.

2) Evaluations for EFI: In this section, we evaluate the
efficiency and stealthiness of EFI. We use the number of
the modified network parameters as a proxy measure of the
cost of a fault injection attack. To compute the fault injection
cost, we randomly sampled 100 test images and labels, and
averaged the number of parameter modifications required
for a successful EFI attack. We compare the EFI with the
state-of-the-art fault injection attacks, including Single Bias
Attack (SBA), Gradient Descent Attack (GDA) from [16] and
Fault Sneaking Attack from [17]. The evaluation results are
summarized in Table III. In contrast to the stealthy Fault
Sneaking Attack and GDA, EFI can save >95% fault injection
operations, while maintaining higher classification accuracy
after the fault injection attack. Compared with SBA, EFI
improves the accuracy degradation by a significant margin.
These results demonstrate that EFI can significantly improve
the attack efficiency and stealthiness, and ensure a well balance
between the two metrics.

To understand the EFI better, we perform EFI on the
variation-affected model and the variation-free models to an-
alyze the benefit from the hardware variations. As seen in Ta-

TABLE III
THE PERFORMANCE EVALUATION OF EFI ON RRAM PLATFORM. THE
AD AND MP ARE ABBREVIATION FOR ACCURACY DEGRADATION AND

MODIFIED PARAMETERS.

Attack Method MNIST Cifar10

AD # of MP AD # of MP

SBA - - -24.4% 1
GDA -3.86% 1170 -2.35% 198

Fault Sneaking -0.80% >1026 -1.0% >1026

EFI
(on variation-free model) failed failed

EFI (layer 1, 2) -3.0% 160 -4.1% 30
EFI (layer 3, 4) -0.50% 40 -4.8% 68

EFI (last two layers) -0.50% 40 -0.9% 20

ble III, EFI can not mislead the variation-free model. This in-
dicates that our EFI is also a variation-oriented attack method,
and can exploit these variations to reduce the engineering
cost and improve the stealthy. Furthermore, we perform victim
parameter selection on different layer combinations to inves-
tigate the impact of fault-injected layers. The result shows
that the fault injection on the later layers can achieve better
stealthiness. The reason behind this observation may be that
the latter network layers are closer to the prediction layer, and
have a stronger correlation on the prediction results.

D. Discussion

In this section, we discuss and analyze the characteristic of
VADER and EFI, and finally discuss the defense technique
against them. The fundamental improvement of VADER over
the conventional adversarial attack methods is that our VADER
is hardware aware. Therefore, we attribute the success of
VADER to the insufficiency of adversarial defense techniques.
The adversarial defense techniques are purely software-level,
and unaware of the hardware variations. To protect the network
model against our VADER, it is essential for the defense
mechanism to be hardware-aware. Thus, we suggest an on-
device adversarial training defense method that protects the
model by embedding hardware variation information into the
adversarial training process, and experimental result shows
the hardware-aware defense can resist VADER. Regrading the
defense for EFI, we advise retaining a fault detection routine
as [28], which periodically identifies potential fault injection
attacks using a testing preserved dataset. If the tested predicted
confidence score significantly deviates from the groundtruth
confidence score in the testing set, it is likely that the tested
model has suffered from a fault injection attack. After the fault
injection attack is confirmed, we can compare the parameters
on the device with the backup parameters and reprogram the
different parameters to recover the injected faults.

VI. CONCLUSION

In this paper, we revealed that the intrinsic RRAM variation
poses a security risk for the RRAM-based NCS, and therefore
propose two hardware-aware attack methods, VADER and
EFI, which leverage the RRAM variation to improve the
attack performance metrics, including effectiveness, efficiency
and stealthiness. The experimental results show that both
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improved attack methods can achieve almost 100% attack
success rate with minimized operational cost, demonstrating
superior performance than the conventional algorithmic attack
methods. Besides, the two attack methods are orthogonal
and can be combined to achieve better performance. Finally,
we systematically analyze the proposed attack methods and
discuss the feasible defense mechanism to eliminate the threat
from VADER and EFI.
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