
Accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. DOI: 10.1109/TCAD.2022.3212645

AdaPT: Fast Emulation of Approximate DNN
Accelerators in PyTorch

Dimitrios Danopoulos, Georgios Zervakis, Kostas Siozios, Senior Member, IEEE,,
Dimitrios Soudris, Member, IEEE, and Jörg Henkel, Fellow, IEEE

Abstract—Current state-of-the-art employs approximate mul-
tipliers to address the highly increased power demands of DNN
accelerators. However, evaluating the accuracy of approximate
DNNs is cumbersome due to the lack of adequate support for
approximate arithmetic in DNN frameworks. We address this
inefficiency by presenting AdaPT, a fast emulation framework
that extends PyTorch to support approximate inference as well
as approximation-aware retraining. AdaPT can be seamlessly
deployed and is compatible with the most DNNs. We eval-
uate the framework on several DNN models and application
fields including CNNs, LSTMs, and GANs for a number of
approximate multipliers with distinct bitwidth values. The results
show substantial error recovery from approximate retraining and
reduced inference time up to 53.9× with respect to the baseline
approximate implementation.

Index Terms—Approximate Computing, Accelerator, DNN,
PyTorch, Quantization

I. INTRODUCTION

Deep Learning (DL) based methods have achieved great
success in a large number of applications such as image
processing as they have been among the most powerful and
accurate used techniques. For example, Deep Neural Networks
(DNNs) can achieve high accuracy and performance on visual
recognition or complex regression algorithms. However, in
Neural Networks a large number of multiply-accumulate op-
erations operations (MACs) and memory accesses are needed
for the model’s inference which is very energy-costly and time
consuming [1]. This computational complexity combined with
the inherent error resilience of DL led to a remarkable research
in approximate DNN accelerators [2].

The aim of approximate computing is to achieve signif-
icant savings in computational resources and memory. It
involves reducing the model parameters or activations to a
lower numerical precision using fixed-point arithmetic in-
stead of the standard 32-bit floating point. Previous work
has shown that an optimum bitwidth for the model’s MAC
operations can introduce negligible error [3] while many

Manuscript received April 9, 2022, revised July 10, 2022, accepted
21 September, 2022. (Corresponding author: Dimitrios Danopoulos, e-
mail:dimdano@microlab.ntua.gr).

This work has been supported in parts by the E.C. funded program
SERRANO under H2020 Grant Agreement No: 101017168 and in parts by
the German Research Foundation (DFG) project “ACCROSS” HE 2343/16-1.

D. Danopoulos and D. Soudris are with the School of Electrical and
Computer Engineering, National Technical University of Athens, Athens
15780, Greece.

K. Siozios is with the Department of Physics, Aristotle University of
Thessaloniki, Thessaloniki 54124, Greece.

G. Zervakis and J. Henkel are with the Chair for Embedded Systems at
Karlsruhe Institute of Technology, Karlsruhe 76131, Germany.

accelerators use integer quantization [4] (i.e. INT8). Then,
on the hardware side, performing approximate MAC oper-
ations (which mainly use integer arithmetic as well) can
lead to high performance, power, and energy gains [5]. For
example, 35% to 81% energy savings are reported for less
than 1% accuracy loss [5]. The diverse and vast space of
approximate arithmetic units (e.g., [6], [7]) and their non
trivial impact on the DNN accuracy, exacerbates the design
complexity and, thus, the need for an approximate emulation
framework becomes apparent. Moreover, as DNNs become
deeper, they become more sensitive to approximation [8] and
hence, approximation-aware DNN fine-tuning is required to
recover the error introduced by naive approximation (i.e. by
just replacing exact multipliers with approximate ones) and
achieve high inference accuracy [5]. Popular DNN frameworks
do not support approximate arithmetic because only libraries
of accurate mathematical functions are inherently supported,
thus emulation becomes extremely slow.

In this paper, we present AdaPT1, a fast emulation of
approximate DNN accelerators in PyTorch that utilizes AVX
intrinsics and multithreading. AdaPT aims to simplify and ac-
celerate the process of simulating AI models for approximate
hardware. It acts as a seamless PyTorch plugin that can be
enabled for the majority of AI models such as Convolutional
neural networks (CNNs), Variational autoencoders (VAEs),
Long short-term memories (LSTM) and Generative adversarial
networks (GANs). This is a novel emulation platform, first
time enabling support for PyTorch whose ecosystem has
been known for taking over AI researchers [9]. AdaPT can
also perform approximate inference on any size of bitwidth
representation supporting mixed precision as well. For the
model quantization state-of-the-art techniques are used while
approximate re-training or fine-tuning is also supported for
further accuracy improvement.

II. RELATED WORK

Popular frameworks for DNNs such as Caffe or TensorFlow
have been extensively investigated by the community for
approximate CNN simulation [7], [10] on image recognition.
However, in the last years PyTorch has become the standard
for DNN training or inference and to the best of our knowledge
no previous work has shown support on this framework for ap-
proximate DNN emulation. Also, most of the previous works
focus on 8-bit quantized CNNs only for image recognition
simulation while AdaPT can support any bitwidth (e.g., 4bit,

1AdaPT is available on the github repo: github.com/dimdano/adapt

ar
X

iv
:2

20
3.

04
07

1v
2 

 [
cs

.L
G

] 
 1

1 
O

ct
 2

02
2



2

8bit, 12bit, etc.) for many kinds of DNNs and applications such
as CNNs for image recognition, LSTMs for text classification
or VAEs and GANs for image reconstruction including support
for approximation-aware re-training.

Many pre-RTL simulation frameworks have been developed
for approximate DNNs such as AxDNN [11] and TypeCNN
[12]. TypeCNN is evaluated on 2 Neural Networks (NNs)
based on the Lenet architecture on a custom C++ framework
while no CPU optimizations were employed. AxDNN com-
bines precision-scaling and pruning methods with simulation
of approximate hardware and it states 20× simulation speed
up from the default RTL simulation for power analysis only.
Other frameworks such Ristretto [13] can evaluate various
bitwidth representations but do not support approximate arith-
metic. Additionally, ALWANN [7] and TFApprox [10] imple-
mented different variations of ResNets using approximate units
with 8-bit weights. ALWANN reported a very high simulation
time (∼ 1 hour for ResNet50). Last, TFApprox similarly with
ProxSiM [14] emulated the evaluation on a GPU achieving
low inference time on Tensorflow framework but only limited
to 8-bit inference. ProxSiM also had re-training capabilities
for 8-bit multipliers but didn’t show results on popular DNNs.

III. APPROXIMATE COMPUTING IN ADAPT
We designed AdaPT framework for fast cross-layer DNN

approximation emulation packaged as a PyTorch plugin which
can be enabled by the user (or disabled if the PyTorch default
flow is needed). A plethora of layers and model architectures
is seamlessly supported. We support two major techniques for
accuracy improvement; post training quantization using state-
of-the-art calibration and approximate-aware retraining. Also,
the user can arbitrarily choose an approximate compute unit
(ACU) to import in AdaPT as a black box or use the default
accurate flow. In addition, AdaPT supports mixed precision
and mixed approximation (i.e., different ACU) in between lay-
ers. Though, more fine-grained approximation (e.g., per filter)
is not yet supported. Last, the approximate DNN emulation
is accelerated using OpenMP threads and vectorization with
Intel AVX2 intrinsics which are advanced vector extensions.

A. Optimized quantization
In order to simulate approximate compute units we need

first to perform an efficient quantization scheme that eliminates
the error impact as much as possible. Previous work focused
on 8-bit quantization [10], [14] but in AdaPT we implement a
generic bitwidth quantizer based on Nvidia’s TensorRT toolkit
[15] that can support lower or higher precision as well. For
example, this can important for simulating higher precision
ACUs for a variety of DNNs which do not have much error
resilience, such as compact CNNs [5], [16], [17]. We used this
method as it is open-source and state-of-the-art, and proposing
a new quantization method is out of the scope of the paper.
Our quantizer maps a real number to an integer and can be
applied on both weights and activations which are usually part
of a Convolution or Linear layer. The mapping between real
and quantized values must be affine, meaning they must follow
the equation real value = A× quantized value+B where
A is the scale and B is the zero point (often set to zero).

Fig. 1. Quantization & approximation-aware retraining flow before inference

1) Parameter calibration: In order to choose optimal quan-
tization parameters for the scale values we used the cal-
ibrator class from TensorRT to collect data statistics. We
implemented the histogram calibrator for a 99.9% percentile
in our quantization modules as we saw it performed the best
overall but other methods can be transparently used such as
MSE (Mean Squared Error) or entropy. So, instead of simply
finding the max absolute number of our values, our calibrator
learns offline calib max, the absolute maximum input value
representable in the quantized space for a 99.9% percentile.
Last, weight ranges are per channel while activation ranges
are per tensor as previous work has also shown it performs
well [16]. Then, by only processing one batch of images our
learnable calib max can be configured optimally for most
cases of DNNs (i.e. ~0.1% error for most 8-bit CNNs).

2) Retraining: Optionally, after post-training quantization
we can perform Quantization Aware Training (QAT) by contin-
uing training the calibrated model based on Straight Through
Estimator (STE) derivative approximation. The process is
illustrated in Figure 1. AdaPT mitigates the effects of approx-
imation during training by placing fake quantization modules
which work with quantized floating point values to simulate
the rounding effects brought by true integer quantization, thus
computing effectively the layer gradients. Last, during QAT
the model performs propagation through our ACUs usually
for 10% of the default training schedule making the retraining
approximation-aware.

B. Approximate units

In AdaPT, the user can select in the definition of each DNN
layer whether it is accurate or approximate. Any arbitrary
ACU can be specified for each layer (or all layers) as long as
the multiplier’s output is deterministic. This section presents
the most common layers that we re-designed and adapted for
approximation.

1) Convolution Layer: Usually for 2D convolution cases
which often apply on CNNs we have an input of tensor X
and shape (N,Cin, Hin,Win), where N is the batch size, C is
the number of channels, H is the height and W is the width,
and an output of a tensor Y of shape (N,Cout, Hout,Wout).
We expanded the filters into a 2-D matrix and the input
matrix into another so that multiplying these 2 matrices would
compute the same dot product as the original 2D convolution.
The aim of this transformation is to allow a more efficient
implementation for acceleration of AdaPT’s emulation by
simply computing a matrix multiplication. Our layer supports



3

all kinds of input dimensions, kernel sizes, padding, striding
and groups which enabled us to simulate many kinds of DNNs.

2) Separable convolution: For separable convolution the
main idea here is to transform it into a two-step calculation,
depthwise and pointwise 2D convolution as in the equation:

y = Conv2D(Cin, Cin, Hin,Win, groups = Cin)(x)

out = Conv2D(Cin, Cout, H
′
in,W

′
in, groups = 1)(y)

(1)

The first equation comprises the depthwise convolution
which is equivalent to a Conv2D with groups equal to Cin

channels. Next the output is fed to the pointwise convolution
which is same as Conv2D with 1× 1 kernel size.

3) Linear Layer: Linear Layer is often found in MLPs, in
the last layers of DNNs or even in GANs and VAEs. Similarly
with 2D convolution, the PyTorch equivalent layer is a matrix
multiplication of y = xAT + b. The input matrix is multiplied
with the weight matrix plus an optional bias vector.

4) RNN Layer: Recurrent Neural Network (RNN) layers
are typically used for temporal related tasks such as text
classification or speech recognition. We implemented the
feedback loop in the recurrent layer so that it maintains
information in ‘memory’ over time following an approach that
is mathematically equivalent with the vanilla Pytorch RNN
layer. It also utilizes our custom Linear layer thus making it
approximation compatible as well. Similarly, for Long short-
term memory (LSTM) and Gated recurrent unit (GRU) layers
we included the so called “memory cell” that can maintain
information in memory for long periods of time.

C. Framework operation

AdaPT framework operation is shown in Figure 2. First,
the user sets the desired DNN model with the quantization
parameters needed such as precision used, calibrator, etc.
Then, they define the approximate module to use from the
library along with the dataset of the DNN models. It’s worth
mentioning that for the train dataset only a representative
subset is needed which can be around 10% of the original
training set for the purposes of calibration. Then, AdaPT
finds the supported layers in the DNN and fetches from
its layer library the appropriate layer class. Next, for the
approximate multiplier, the corresponding LUT is produced
from AdaPT’s Look-up Table (LUT) generator in a cache-
line aligned C-array which enables CPU cores to fetch data
from the same cache chunk. Also, a tool similar to our
previous work [18] is used to translate a hardware description
to a C function. In case of large bitwidth where LUTs can
increase substantially AdaPT can always substitute the LUT-
based multiplication with functional-based multiplication (in
which the approximate multiplier is alternatively described in
C-code). This approach can alleviate the problem of memory
in large LUTs (>15bit) but can introduce overhead in the DNN
execution time. It’s worth mentioning that both approaches
provide a 1-1 representation of the ACU at high-level thus the
results would be the same in the quantization or re-training.
Generally, AdaPT tries to populate the CPU cores cache with
the LUTs as much as possible in order to minimize cache

Fig. 2. AdaPT framework operation

misses. Last, just in time (JIT) compilation loads the layer
extension on the fly using Ninja build system which builds
the sources. The produced inference and retrain engines are
linked with the final approximate DNN layers which will
substitute for the corresponding vanilla PyTorch layers using
a graph re-transform tool. The tool analyses the layers and
recursively changes the PyTorch layers with the approximate
equivalents. Finally, user can optionally fine-tune the model
using the provided train subset in order to achieve even higher
accuracy or just proceed with the approximate evaluation.

IV. ACCELERATED EMULATION IN ADAPT

The most computationally intensive part of the implemented
layers is based on matrix multiplications. For example, the
original 2D convolution is transformed to matrix multipli-
cation. To this end, in order to support approximate units
we had to implement the inner multiplications between each
input and filter values using a LUT. Thus, we would compute
any approximate unit without the need to implement its
corresponding function directly (except for the cases of large
LUT sizes as mentioned earlier). Then, the table look-ups are
parallelized in a hybrid model of parallel programming using
OpenMP threads and CPU vectorization.

A. Thread Parallelism

In AdaPT we created an efficient batched Conv2D im-
plementation which scales with input size and does not
suffer from memory errors using the thread parallelism of
OpenMP. It enabled us to perform loop-based parallelism
shared between batches and achieve almost linear scaling when
input data size grows. The main goal of the aforementioned
approach is to unify the usage of gradual parallelism through
a common interface and ease the application development.



4

Fig. 3. 2D convolution to matrix multiplication with vectorized LUT override

B. Vector Parallelism

The second level of parallelism is introduced on each
thread’s execution which relates to the implementation of
parallel table lookup using Single Instruction Multiple Data
(SIMD) instructions. The aim is to accelerate the gather
operation of the look-up table data which is the process of
the data taken from disjoint locations in memory and stored
in continuous memory. Towards allowing efficient loads from
memory, all values of the SIMD need to be in contiguous
memory which is the case for our AdaPT tensors. The indices
which are the activations combined with the weights are
packed into vector registers. The AVX2 instruction set can be
then utilized to implement the gather instruction and vectorize
the task by gathering the memory locations from the LUT
into the destination vector register. We chose to use AVX2
intrinsics due to their broad support in Intel CPUs shipped in
2013 and later and their support in AMD CPUs as well. In
Figure 3 we illustrate the process of using vectorized loads in
a 2D convolution scenario.

V. EVALUATION AND RESULTS

In this section we present the evaluation of AdaPT regard-
ing several DNN networks with their respective quantization
calibration, approximation-aware training and simulation time.
The experiments were conducted on Intel Xeon Gold 6138
CPU at 2.00GHz and 64GB RAM. We evaluated different
scenarios of applications such as image classification with
CNNs on Cifar10 and ImageNet datasets, text classification
with LSTM on IMDB dataset, and last image reconstruction
with GAN and VAE on Fashion MNIST and MNIST dataset
respectively. Below, in Table I, we summarize the specifica-
tions for each model used in the experiments regarding the
corresponding type, the dataset used for evaluation/retraining,
number of model parameters (Params) and operations (OPs).

A. Quantization and retraining

Five metrics are evaluated for each model: the accuracy in
the default FP32 models, quantized models (with and without
calibration), approximate models, and the models taken after
approximate-aware re-training. Towards post-quantization cal-
ibration we used only two batches of images which we set
as 128 in order to collect the histograms (based on a 99.9%

TABLE I
SPECIFICATIONS FOR EACH DNN USED IN OUR EXPERIMENTS

DNN Type Dataset Params OPs
ResNet50 CNN CIFAR10 23.52M 0.33G
DenseNet121 CNN CIFAR10 6.96M 0.23G
VGG19 CNN CIFAR10 38.86M 0.42G
Fashion-GAN GAN Fashion MNIST 0.28M 0.29M
VAE-MNIST VAE MNIST 0.65M 0.66M
LSTM-IMDB LSTM IMDB 0.58M 0.55G
Inceptionv3 CNN ImageNet 27.16M 2.85G
SqueezeNet CNN ImageNet 1.24M 0.36G
ShuffleNet CNN ImageNet 2.28M 0.15G

TABLE II
ACCURACY AND RETRAIN TIME EVALUATION ON VARIOUS DNNS

mul8s 1L2H MAE: 0.081 %, MRE: 4.41 %, power: 0.301mW1

DNN FP32 8bit 8bit calib. 8bit approx. retrain3 time
ResNet50 93.65% 93.55% 93.59% 82.69 % 93.44% 763s
VGG19 93.95% 93.80% 93.82% 90.7% 93.56% 318s
VAE-MNIST 99.99% 99.95% 99.96% 93.12% 99.88% 9.28s
LSTM-IMDB 83.10% 82.90% 82.95% 79.9% 82.63% 710s
SqueezeNet 80.6% 79.01% 80.16% 62.01% 76.21% 620s
mul12s 2KM MAE: 1.2e-6 %, MRE: 4.7e-4 %, power: 1.205mW2

DNN FP32 12bit 12bit calib. 12bit approx. retrain3 time
ResNet50 93.65% 93.60% 93.61% 93.52% 90.54% 798s
VGG19 93.95% 93.80% 93.81% 93.81% 93.71% 359s
VAE-MNIST 99.99% 99.98% 99.98% 99.98% 99.99% 10.11s
LSTM-IMDB 83.10% 82.94% 82.96% 82.96% 83.12% 1040s
SqueezeNet 80.6% 80.11% 80.3% 80.35% 80.50% 623s

1power of 8bit exact: 0.425mW. 2power of 12bit exact: 1.210mW.
3 approx. multiplier & approximation-aware retrain.

percentile method). We retrained the DNNs through Stochastic
Gradient Descent (SGD) with a learning rate of 1e-4 and a
batch size of 128. For the retrain subset we used 10% of the
corresponding training datasets which was adequate to fine-
tune our models. For demonstration of the retraining, we used
five representative DNNs for image recognition (ResNet50,
VGG19, SqueezeNet), text classification (LSTM-IMDB) and
image reconstruction (VAE-MNIST) tasks. The aforemen-
tioned DNNs were tested with two approximate multipliers
(but any can be used since they are all implemented as LUTs)
with distinct Mean Relative Error (MRE) and Mean Absolute
Error (MAE) values taken from EvoApprox library [6]. One
with 8-bit precision and low power consumption but higher
MRE and one with 12-bit precision with lower MRE but higher
power consumption. Last, top-1 accuracy metric was used in
general except for ImageNet models which used top-5.

The aforementioned results, observed in Table II, show that
post-training quantization attains low accuracy error from the
original FP32 models (∼ 0.1%) due to calibration. Generally,
calibration is important for moden neural networks especially
larger ones. More information regarding the impact of calibra-
tion can be found in [19]. With our approximate-aware retrain-
ing we can adapt DNNs to the custom approximate backward
engine in order to deliver higher accuracy to the approximated
DNN. According to previous work [20], we also retrained most
of the models for a single epoch (i.e. SqueezeNet was trained
for 14 as typically Imagenet models require more epochs)
achieving significant performance. Also, the effectiveness of
AdaPT’s retrain engine can be evident from the substantial
error recovery of approximation, especially in the 8bit ACU



5

TABLE III
INFERENCE EMULATION TIME FOR DIFFERENT DNNS

DNN Native CPU Baseline
Approx.

AdaPT
(w/ func.)

AdaPT
(w/ LUT)

AdaPT
vs Baseline

ResNet50 0.5 min 76.5 min 104 min 1.7 min 45x
DenseNet121 0.48 min 53.2 min 72 min 1.6 min 33.2x
VGG19 0.2 min 91.7 min 125 min 1.7 min 53.9x
Fashion-GAN 0.003 min 0.02 min 1.1 min 0.012 min 1.7x
VAE-MNIST 0.015 min 0.1 min 1.2 min 0.02 min 5x
LSTM-IMDB 1.36 min 48.5 min 449 min 7.6 min 6.4x
Inceptionv3 22.1 min 2909 min 4560 min 83 min 35.1x
SqueezeNet 11.6 min 443 min 576 min 20.6 min 21.5x
ShuffleNet 11.4 min 163 min 251 min 22.4 min 7.3x

TABLE IV
QUALITATIVE COMPARISON WITH STATE-OF-THE-ART

Tool Support AdaPT [10] [14] [7] [12]
Framework PyTorch TF1 TF TF C++
Backend CPU GPU GPU CPU CPU
Varying DNN types2 3 7 7 7 7

Arbitrary ACU 3 7 7 7 3

Quantization calibration 3 7 7 3 7

Approximate-aware retraining 3 7 3 3 3
1TF: Tensorflow. 2For example: CNN, LSTM, GAN, etc.

(∼ 7.5% increase on average). The error can be reduced but
very slightly by more fine-tuning with learning rate annealing.

B. Inference emulation

In this section we summarize the emulation time for each
approximate DNN on Table III. Additionally, performing
quantization and dequantization in each layer introduces some
overhead around 10% for the optimized approximate solution.
The inference comparison is done on 8-bit in accordance with
the related work for unbiased comparison (the approximate
module can be arbitrary since all are implemented as LUTs).
However, the inference time is lower when using small LUTs
due to better cache usage (also we observed a ∼ 2.1× increase
in time on average when expanding the LUT bitwidth by two).
Last, we compare AdaPT with PyTorch native FP32 optimized
implementation, the baseline unoptimized approximate simu-
lation which uses LUTs but omits our optimizations and with
the functional C-implementation of the ACU (mul8s_1L2H).

In Table III we can observe the computation time for AdaPT
was greatly reduced compared with the baseline approach.
When compared with the state-of-the-art, it is significantly
lower than ALWANN [7] which runs also on a Xeon CPU
(1.7min vs 54.5min on ResNet50). TypeCNN [12] which runs
on CPU does not report inference results while it runs on a cus-
tom C++ framework. Next, when compared with ProxSim [14]
the execution time is very similar (20.6min vs 17.5min on
SqueezeNet) despite running on a GPU. TFApprox [10] runs
faster on a GPU with ResNet50 (1.7min vs 0.26min) but
the authors only examine/support ResNets on 8-bit inference
for image recognition. The diversity of AdaPT features such
as supporting a variety of model architectures, application
domains, approximations or approximation-aware retraining
compose a very robust framework. A comparison of AdaPT’s
functionalities with state-of-the-art is shown in Table IV.

VI. CONCLUSION AND PERSPECTIVE

In this paper we presented AdaPT, an end-to-end framework
for fast cross-layer evaluation and re-training of approximate
DNNs based on the popular PyTorch library. AdaPT simplifies
and accelerates the process of DNN simulation using multi-
threading and vectorization while at the same time it can
support a wide range of DNN topologies for various deep
learning tasks such as image recognition, text classification
and image reconstruction. Through diverse experiments, we
demonstrated the adaptivity of our framework with various
DNNs, ACUs, and application domains and paved the way to
new approximate DNN accelerators first time for PyTorch.

REFERENCES

[1] D. Danopoulos, C. Kachris, and D. Soudris, “Utilizing cloud fpgas
towards the open neural network standard,” Sustainable Computing:
Informatics and Systems, vol. 30, p. 100520, 2021.

[2] S. Venkataramani et al., “Efficient ai system design with cross-layer
approximate computing,” Proceedings of the IEEE, vol. 108, no. 12, pp.
2232–2250, 2020.

[3] D. T. Nguyen, T. N. Nguyen, H. Kim, and H.-J. Lee, “A high-
throughput and power-efficient fpga implementation of yolo cnn for
object detection,” IEEE Trans. VLSI Syst., vol. 27, no. 8, pp. 1861–
1873, 2019.

[4] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in Int. Symp. Computer Architecture, 2017, pp. 1–12.

[5] G. Armeniakos, G. Zervakis, D. Soudris, and J. Henkel, “Hardware
approximate techniques for deep neural network accelerators: A survey,”
ACM Comput. Surv., mar 2022.

[6] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina, “Evoapprox8b:
Library of approximate adders and multipliers for circuit design and
benchmarking of approximation methods,” in Design, Automation Test
in Europe Conference Exhibition, 2017, pp. 258–261.

[7] V. Mrazek, Z. Vasicek, L. Sekanina, M. Hanif, and M. Shafique,
“Alwann: Automatic layer-wise approximation of deep neural network
accelerators without retraining,” in Int. Conf. Computer-Aided Design,
11 2019, pp. 1–8.

[8] Z. G. Tasoulas, G. Zervakis, I. Anagnostopoulos, H. Amrouch, and
J. Henkel, “Weight-oriented approximation for energy-efficient neural
network inference accelerators,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 67, pp. 4670–4683, 12 2020.

[9] N. Benaich and I. Hogarth, “State of ai report 2020,” 2020.
[10] F. Vaverka, V. Mrazek, Z. Vasicek, and L. Sekanina, “Tfapprox: Towards

a fast emulation of dnn approximate hardware accelerators on gpu,” in
Design, Automation Test in Europe Conference Exhibition, 2020.

[11] Y. Fan, X. Wu, J. Dong, and Z. Qi, “Axdnn: Towards the cross-
layer design of approximate dnns,” in Asia and South Pacific Design
Automation Conference, 2019, p. 317–322.

[12] P. Rek and L. Sekanina, “Typecnn: Cnn development framework with
flexible data types,” in Design, Automation Test in Europe Conference
Exhibition, 2019, pp. 292–295.

[13] P. Gysel, “Ristretto: Hardware-oriented approximation of convolutional
neural networks,” ArXiv, vol. abs/1605.06402, 2016.

[14] C. De la Parra, A. Guntoro, and A. Kumar, “Proxsim: Gpu-based
simulation framework for cross-layer approximate dnn optimization,”
in Design, Automation Test in Europe Conference Exhibition, 2020.

[15] NVIDIA, “Pytorch-quantization’s documentation,” https:
//docs.nvidia.com/deeplearning/tensorrt/pytorch-quantization-toolkit/
docs/userguide.html, 2021.

[16] R. Krishnamoorthi, “Quantizing deep convolutional networks for effi-
cient inference: A whitepaper,” ArXiv, vol. abs/1806.08342, 2018.

[17] P. K. Gadosey, Y. Li, and P. T. Yamak, “On pruned, quantized and
compact cnn architectures for vision applications: An empirical study,”
in Int. Conf. Artificial Intelligence, Information Processing and Cloud
Computing, 2019.

[18] G. Zervakis, H. Amrouch, and J. Henkel, “Design automation of ap-
proximate circuits with runtime reconfigurable accuracy,” IEEE Access,
vol. 8, pp. 53 522–53 538, 2020.

[19] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of
modern neural networks,” https://arxiv.org/abs/1706.04599, 2017.

[20] A. Komatsuzaki, “One epoch is all you need,” CoRR, vol.
abs/1906.06669, 2019.

https://docs.nvidia.com/deeplearning/tensorrt/pytorch-quantization-toolkit/docs/userguide.html
https://docs.nvidia.com/deeplearning/tensorrt/pytorch-quantization-toolkit/docs/userguide.html
https://docs.nvidia.com/deeplearning/tensorrt/pytorch-quantization-toolkit/docs/userguide.html
https://arxiv.org/abs/1706.04599

	I Introduction
	II Related Work
	III Approximate computing in AdaPT
	III-A Optimized quantization
	III-A1 Parameter calibration
	III-A2 Retraining

	III-B Approximate units
	III-B1 Convolution Layer
	III-B2 Separable convolution
	III-B3 Linear Layer
	III-B4 RNN Layer

	III-C Framework operation

	IV Accelerated emulation in AdaPT
	IV-A Thread Parallelism
	IV-B Vector Parallelism

	V Evaluation and Results
	V-A Quantization and retraining
	V-B Inference emulation

	VI Conclusion and Perspective
	References

