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Abstract

The Quantum State Preparation problem aims to prepare an n-qubit quantum state |ψv〉 =
∑2n−1

k=0 vk |k〉
from the initial state |0〉⊗n, for a given unit vector v = (v0, v1, v2, . . . , v2n−1)T ∈ C2n

with ‖v‖2 = 1.

The problem is of fundamental importance in quantum algorithm design, Hamiltonian simulation

and quantum machine learning, yet its circuit depth complexity remains open when ancillary qubits

are available. In this paper, we study quantum circuits when there are m ancillary qubits available.

We construct, for any m, circuits that can prepare |ψv〉 in depth Õ
(

2n

m+n
+ n
)

and size O(2n), achieving

the optimal value for both measures simultaneously. These results also imply a depth complexity of

Θ
(

4n

m+n

)

for quantum circuits implementing a general n-qubit unitary for any m ≤ O(2n/n) number

of ancillary qubits. This resolves the depth complexity for circuits without ancillary qubits. And

for circuits with exponentially many ancillary qubits, our result quadratically improves the currently

best upper bound of O(4n) to Θ̃(2n).

Our circuits are deterministic, prepare the state and carry out the unitary precisely, utilize the

ancillary qubits tightly and the depths are optimal in a wide parameter regime. The results can be

viewed as (optimal) time-space trade-off bounds, which are not only theoretically interesting, but

also practically relevant in the current trend that the number of qubits starts to take off, by showing

a way to use a large number of qubits to compensate the short qubit lifetime.

1 Introduction

Quantum computers provide a great potential of solving certain important information processing tasks

that are believed to be intractable for classical computers. In recent years, quantum machine learning [1]

and Hamiltonian simulation [2–5] have also been extensively investigated, including quantum principal

component analysis (QPCA) [6], quantum recommendation systems [7], quantum singular value decom-

position [8], quantum linear system algorithm [9, 10], quantum clustering [11, 12] and quantum support

vector machine (QSVM) [13]. One of the challenges to fully exploit quantum algorithms for these tasks,

however, is to efficiently prepare a starting state1, which is usually the first step of those algorithms. This

raises the fundamental question about the complexity of the quantum state preparation (QSP) problem.

The QSP problem can be formulated as follows. Suppose we have a vector v = (v0, v1, v2, . . . , v2n−1)T ∈
C

2n

with unit ℓ2-norm, i.e.

√
∑2n−1

k=0 |vk |2 = 1. The task is to generate a corresponding n-qubit quantum

*Email:{sunxiaoming, tianguojing, yangshuai21b}@ict.ac.cn
†Email: {peiyuan, shengyzhang}@tencent.com
1These starting states (for example, those in [9, 10]) are very generic. Indeed, the lower bound argument in our later

Theorem 3 applies to the generation of these states as well.
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state

|ψv〉 =
2n−1∑

k=0

vk |k〉,

by a quantum circuit from the initial state |0〉⊗n, where {|k〉 : k = 0, 1, . . . , 2n − 1} is the computational

basis of the quantum system.

Different cost measures can be studied for quantum circuits: Size, depth, and number of qubits are

among the most prominent ones. For a quantum circuit, the depth corresponds to the time for executing

the quantum circuit, and the number of qubits used to its space cost. Apart from minimizing each cost

measure individually, it is of particular interest to study a time-space trade-off for quantum circuits.

The reason is that in the past decade, we have witnessed a rapid development in qubit number and in

qubit lifetime2, but it seems hard to significantly improve both on the same chip. Looking into the near

future, big players such as IBM and Google announced their roadmaps of designing and manufacturing

quantum chips with about 1,000,000 superconducting qubits by 2026 and 2029, respectively, rocketing

from 50-100 today [20,21]. This raises a natural question for quantum algorithm design: How to utilize

the fast-growing number of qubits to overcome the relatively limited decoherence time? This seems

especially relevant in the near future when we have 104 − 105 qubits, which are expected to run certain

quantum simulation algorithms for chemistry problems, but are not sufficient for the full quantum error

correction to fight the decoherence. Or put in a computational complexity language, how to efficiently

trade space for time in a quantum circuit? In this paper, we will address this question in the fundamental

tasks of quantum state preparation and general unitary circuit synthesis.

Let us first fix a proper circuit model. If we aim to generate the target state |ψv〉 or perform the target

unitary precisely, then a finite universal gate set is not enough. A natural choice is the set of circuits that

consist of arbitrary single-qubit gates and CNOT gates, which is expressive enough to generate arbitrary

states |ψv〉 precisely with certainty. We will study the optimal depth for this class of circuits3.

The study of QSP dates back to 2002, when Grover and Rudolph gave an algorithm for QSP for the

special case of efficiently integrable probability density functions [22]. Their circuit has n stages, and

each stage j has 2 j−1 layers, with each layer being a rotation on last qubit conditioned on the first j − 1

qubits being certain computational basis state. This type of multiple-controlled (2 × 2)-unitary can be

implemented in depth O(n) without ancillary qubit4, yielding a depth upper bound of O(n2n) for the QSP

problem. In [25], Bergholm et al. gave an upper bound of 2n+1 − 2n − 2 for the number of CNOT gates,

with depth also of order O(2n). The number of CNOT gates is improved to 23
24

2n − 2
n
2
+1 + 5

3
for even

n, and 115
96

2n for odd n by Plesch and Brukner [26], based on a universal gate decomposition technique

in [27]. The same paper [25] also gives a depth upper bound of 23
48

2n for even n and 115
192

2n for odd n. All

these results are about the exact quantum state preparation without ancillary qubits.

With ancillary qubits, Zhang et al. [28] proposed circuits which involve measurements and can

generate the target state in O(n2) depth but only with certain success probability, which is at least

Ω(1/(maxi |vi|22n)), but in the worst case can be an exponentially small order of O(1/2n). In addi-

tion, they need O(4n) ancillary qubits to achieve this depth. In a different paper [29], the authors showed

that for ǫ ≤ 2−Ω(n), an n-qubit quantum state |ψ′v〉 can be implemented by an O(n3)-depth quantum circuit

with sufficiently many ancillary qubits5, where ‖|ψ′v〉 − |ψv〉‖ ≤ ǫ. Though QSP is only used as a tool for

their main topic of parallel quantum walk, their concluding section did call for studies on the trade-off

between the circuit depth and the number of ancillary qubits for better parallel quantum algorithms.

Another related study is [30], which considers to prepare a state not in the binary encoding
∑2n−1

k=0 vk |k〉,
2Take superconducting qubits, for example, the qubit number jumped from 5 in 2014 to 127 in 2021 [14–19] .
3Since two-qubit gates are usually harder to implement, one may also like to consider CNOT depth, the number of layers

with at least one CNOT gate. But note that between two CNOT layers, consecutive single-qubit gates on the same qubit can

be compressed to one single-qubit gate, and single-qubit gates on different qubits can be paralleled to within one layer, we can

always assume that the circuit has alternative single-qubit gate layers and CNOT gate layers. Therefore the circuit depth is at

most twice of the CNOT depth, making the two measures the same up to a factor of 2.
4The standard method [23] gives a depth upper bound of O(n2) without ancillary qubit and O(n) with sufficiently many

ancillary qubits. The first bound can be improved to O(n) by the method in [24].
5No explicit bound on the ancillary qubits is given.
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but in the unary encoding
∑2n−1

k=0 vk |ek〉, where ei ∈ {0, 1}2
n

is the vector with the k-th bit being 1 and

all other bits being 0. The paper shows that the unary encoding QSP can be carried out by a quantum

circuit of depth O(n) and size O(2n). Note that the unary encoding itself takes 2n qubits, as opposed to

n qubits in the binary encoding. The binary encoding is the most efficient one in terms of the number of

qubits needed for the resulting state, and indeed in most quantum machine learning tasks the quantum

speedup depends crucially on this encoding efficiency at the first place [7, 9, 31–34]. In [30] the authors

also extended this by using a d-dimensional tensor (k1, k2, . . . , kd) to encode k, which needs d2n/d qubits

to encode and a circuit of depth O( n
d
2n−n/d) to prepare. When d = n the encoding coincides with the

binary encoding, but their depth bound is O(2n), which is not optimal.

In this paper, we tightly characterize the depth and size complexities of the quantum state preparation

problem by constructing optimal quantum circuits. Our circuits generate the target state precisely, with

certainty, and use an optimal number of ancillary qubits. We present our results on QSP first, where a

general number m of ancillary qubits are available.

Theorem 1. For any m ≥ 2n, any n-qubit quantum state |ψv〉 can be generated by a circuit with m

ancillary qubits, using single-qubit gates and CNOT gates, of size O(2n) and depth





O
(

2n

m+n

)

, if m ∈ [2n,O( 2n

n log n
)],

O
(
n log n

)
, if m ∈ [ω( 2n

n log n
), o(2n)],

O (n) , if m = Ω(2n).

These depth bounds improve the depth of O(2n) in [25,26] by a factor of m for any m ∈ [2n,O( 2n

n log n
)],

and the result shows that more ancillary qubits can indeed provide more help in shortening the depth for

QSP. Compared with the result in [28] which needs O(4n) ancillary qubits to achieve depth O(n2), ours

needs only m = O(2n/n2) qubits to reach the same depth. In addition, our circuit is deterministic and

generates the state with certainty, and the only two-qubit gates used are the CNOT gates.

The above construction needs at least 2n ancillary qubits. Next we show an optimal depth construc-

tion of circuits without ancillary qubits.

Theorem 2. Any n-qubit quantum state |ψv〉 can be generated by a quantum circuit, using single-qubit

gates and CNOT gates, of depth O(2n/n) and size O(2n), without using ancillary qubits.

These two theorems combined give asymptotically optimal bounds for depth and size complexity.

Indeed, a lower bound of Ω(2n) for size is known [26], and the same paper also presents a depth lower

bound of Ω(2n/n) for quantum circuits without ancillary qubits. This can be extended to a lower bound

ofΩ
(

2n

n+m

)

for circuits with m ancillary qubits. This bound deteriorates to 0 as m grows to infinity. In [35],

the authors gave a depth lower bound of Ω(log n) for circuit with arbitrarily many ancillary qubits. We

note that it can be improved to Ω(n) for any m, as stated in the next theorem as well as independently

discovered in [28].

Theorem 3. Given m ancillary qubits, there exist n-qubit quantum states which can only be prepared by

quantum circuits of depth at least Ω
(

max
{

n, 2n

m+n

})

, for circuits using arbitrary single-qubit and 2-qubit

gates.

The proof of Theorem 3 is shown in Appendix A.

Putting the above results together, we can tightly characterize the size and depth complexity of QSP,

except for a logarithmic factor gap over a small parameter regime for m. It is interesting to note that

our circuits achieve the optimal depth and size simultaneously. Our results are summarized in the next

Corollary 4 and illustrated in Figure 1.

Corollary 4. For a circuit preparing an n-qubit quantum state with m ancillary qubits, the minimum

size is Θ(2n), and the minimum depth DQSP(n,m) for different ranges of m are characterized as follows.





Θ
(

2n

m+n

)

, if m = O
(

2n

n log n

)

,
[

Ω(n),O(n log n)
]

, if m ∈ [ω
(

2n

n log n

)

, o
(

2n
)

],

Θ(n), if m = Ω
(
2n) .
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♯ ancillary qubits / O(·)0 2n

n log n
2n

n
2n

n

2n

n

n log n

2n

n2n

optimal depth

Θ( 2n

n+m
)

depth

O(n log n)

Ω(n)

optimal depth

Θ(n)

depth / O(·)

Upper bound in [25–27]

Upper bound in [22]

Our upper bound

Our lower bound

Upper bound in [30]

Figure 1: Circuit depth upper and lower bound for n-qubit quantum state preparation. m denote the

number of ancillary qubits. If m = O( 2n

n log n
) and Ω(2n), our circuit depths are Θ

(
2n

n+m

)

and Θ(n), which

are asymptotically optimal. When m ∈ [ω( 2n

n log n
), o(2n)], the gap between our depth upper and lower

bound is at most logarithmic.

Now we give two applications of the result, the first of which is general unitary synthesis. Given

a unitary matrix, a fundamental question is to find a circuit implementing it in optimal depth or size.

Previous studies on this problem focus on circuits without ancillary qubits. Barenco et al. [36] gave

an upper bound O(n34n) for the number of CNOT gates for arbitrary n-qubit unitary matrix. Knill

[37] improved the upper bound to O(n4n). Vartiainen et al. [38] constructed a quantum circuit for an

n-qubit unitary matrix with O(4n) CNOT gates. Mottonen and Vartiainen [27] designed a quantum

circuit of depth O(4n) using 23
48

4n CNOT gates. The best known lower bound for number of CNOT

gates is
⌈

1
4
(4n − 3n − 1)

⌉

[39], which also implies a depth lower bound of Ω(4n/n). In a nutshell, the

previous work put the optimal depth to within the range of [Ω(4n/n),O(4n)] for general n-qubit circuit

compression without ancillary qubits.

Our results on QSP can be applied to close this gap, by showing a circuit of depth O(4n/n). And this

is actually a special case of the next theorem which handles a general number m of ancillary qubits.

Theorem 5. Any unitary matrix U ∈ C2n×2n

can be implemented by a quantum circuit of size O(4n) and

depth O
(

n2n + 4n

m+n

)

with m ≤ 2n ancillary qubits.

The second application of our QSP result is approximate QSP, for which one can obtain the following

bound for circuit with a finite set of gates such as {CNOT,H, S , T } using a variant of the Solovay–Kitaev

theorem.

Corollary 6. For any n-qubit target state |ψv〉, one can prepare a state |ψ′v〉 which is ǫ-close to |ψv〉 in

ℓ2-distance, by a circuit consisting of {CNOT,H, S , T } gates of depth






O
(

2n log(2n/ǫ)
m+n

)

, if m = O
(

2n

n log n

)

,

O(n log n log(2n/ǫ)), if m ∈ [ω
(

2n

n log n

)

, o(2n)],

O(n log(2n/ǫ)), if m = Ω(2n),

using m ancillary qubits.

Proof techniques We give a brief account of the proof techniques used in our circuit constructions.

We first reduce the problem to implementing diagonal unitary matrices. Making a phase shift for each

computational basis state costs at least Ω(n2n)-size, which is unnecessarily high. We make the shift in
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Fourier basis, and carefully use ancillary qubits to parallelize the process. With ancillary qubits, we can

first make some copies of the computational basis variables xi, then partition {0, 1}n into some parts of

equal size, and use the ancillary qubits to handle different parts in parallel. We define the partition via

a Gray code to minimize the update cost. Gray codes were also used in [40] to minimize the circuit

size. They only need to minimize the difference between adjacent two words, so the defining property

of Gray Code is enough. In our construction, however, we also need to make sure that the changed bits

in different parts of the Gray code are evenly distributed.

When no ancillary qubits are available, designing efficient circuit needs more ideas. Since there is

no ancillary qubit available, all phase shifts need be made inside the input register. We divide the input

register into two parts, control register and target register, and make phase shifts in the latter. As we

only have a small space, we cannot use it to enumerate all 2rt − 1 suffixes as in the previous case, where

rt ≈ n/2 is the length of suffixes. But we can enumerate them in many stages, by which we pay the price

of time to compensate for the shortage of space. We need to make a transition between two consecutive

stages. It turns out that the transition can be realized by a low-depth circuit if the suffixes enumerated in

each stage are linearly independent as vectors over F2. Thus we need carefully divide the set of suffixes

into sets of linearly independent vectors to facilitate the efficient update. Some other parts need special

treatment as well. One is that we need to reset the suffix to the original input variables after going along

a Gray code path. Another one is that the all-zero suffix cannot be handled in the same way for some

singularity reason, for which we will use a recursion to solve the issue. It turns out that the overall depth

and size obtained this way are asymptotically optimal.

The above constructions work well when m is relatively small, but do not give a tight bound when

m = Ω(2n/n2), for which we use another method. As we mentioned earlier, [30] shows that unary-

encoded QSP can be made in O(n) depth and O(2n) size. Though the resulting state uses an exponentially

long unary encoding, we can transform it to a binary encoding. A direct parallelization for this transform

takes O(n2n) ancillary qubits, which can be improved to the O(2n) by first transforming it to a 2n/2+1-

long matrix encoding |ei〉 → |es〉 |et〉, and then to the binary encoding. This gives the optimal depth and

size for the regime m ≥ 2n. For m ∈ [ω(2n/n2), o(2n)], the ancillary qubits only suffice for conducting

the above for the first log2 m qubits of the target state. For the rest ≤ 2 log2 n qubits, we invoke our first

construction to complete the generation. This gives the optimal depth if m ∈ [ω(2n/n2),O(2n/(n log n))],

the overall depth is asymptotically optimal, leaving a gap [Ω(n),O(n log n)] only when m is in a small

range [ω(2n/(n log n), o(2n)].

Other related work Besides the standard QSP, researchers have also studied some relaxed versions.

Araujo et al. [41] have given a depth upper bound of O(n2) to prepare a state
∑2n−1

k=0 vk |k〉|garbagek〉, where

|garbagek〉 is O(2n)-qubit state entangled with the target state register. Note that there is no generic way

to remove the entangled garbage, this cannot be directly used to solve the standard QSP problem.

One may also consider to approximately prepare quantum states by quantum circuits made of

{H, S , T,CNOT } gates to generate |ψ′v〉 satisfying
∥
∥
∥|ψ′v〉 − |ψv〉

∥
∥
∥ ≤ ǫ for various distance measures ‖ · ‖.

Previous attention was paid to minimizing the number and depth of T gates [42, 43], which is non-

Clifford and usually thought to be hard to realize experimentally [42]. They have applied ancillary

qubits to implement a circuit such that the number of T gates can be optimized to 2n

λ + λ log2 2nλ
ǫ [42],

where λ ∈ [1,O(
√

2n)]. We shall show that our construction can be adapted to this gate set and the

circuit depth increases only by O(n + log(1/ǫ)).

Subsequent work After this work appeared on arXiv [44], Rosenthal [45] constructed a QSP circuit

of depth O(n), using O(n2n) ancillary qubits, as opposed to ours that only uses O(2n) ancillary qubits.

Rosenthal also presented a circuit for general unitary synthesis of depth Õ(2n/2) using Õ(4n) ancillary

qubits. This year, Zhang et al. [46] presented yet another QSP circuit of depth O(n) using Θ(2n) ancillary

qubits, which is a special cases of our results.

5



Organization The rest of this paper is organized as follows. In Section 2, we will review notations

and a framework of quantum state preparation. Then we will present how to decompose the uniformly

controlled gate to diagonal unitary matrices and show the depth of quantum state preparation when the

number of ancillary qubits m = O(2n/n2) in Section 3. Next we will show two quantum circuit for

diagonal unitary matrices used in previous section, with and without ancillary qubits in Section 4 and

Section 5, respectively. Furthermore, we present a new circuit framework for quantum state preparation

when m = Ω
(

2n/n2
)

in Section 6. In Section 7, we will show some extensions and implications of the

above bounds. Finally we conclude in Section 8.

2 Preliminaries

In this section, we will introduce some basic concepts and notation.

Notation Let [n] denote the set {1, 2, · · · , n}. All logarithms log(·) are base 2 in this paper. Let In ∈
R

2n×2n

be the n-qubit identity operator. Denote by F2 the field with 2 elements, with multiplication · and

addition ⊕, which can be overloaded to vectors: x⊕ y = (x1 ⊕ y1, x2 ⊕ y2 · · · , xn ⊕ yn)T for any x, y ∈ Fn
2
.

The inner product of two vectors s, x ∈ Fn
2

is 〈s, x〉 := ⊕n
i=1

si · xi in which the addition and multiplication

are over F2. We use 0n and 1n for the all-zero and all-one vectors of length n, respectively. Vector ei

is the vector where the i-th element is 1 and all other elements are 0. The multiplication · is sometimes

dropped if no confusion is caused. For t, k ≥ 1 and U1, . . . ,Uk ∈ Ct×t, diag(U1,U2, . . . ,Uk) is defined

as

diag(U1, . . . ,Uk)
def
=





U1

. . .

Uk





∈ Ckt×kt.

Elementary gates We will use the following Ry(θ), Rz(θ) and R(θ) to denote 1-qubit rotation (about

Y-axis, Z-axis) gates and phase-shift gate, i.e.,

Ry(θ) =





cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)



 , Rz(θ) =





e−i(θ/2)

ei(θ/2)



 , R(θ) =





1

eiθ



 ,

where θ ∈ R is a parameter. All blank elements denote zero throughout this paper. Three important and

special cases are the π/8 gate T , the phase gate S and the Hadamard gate H,

T =





1

eiπ/4



 , S =





1

i



 , H =
1
√

2





1 1

1 −1



 .

The 2-qubit controlled-NOT gate is

CNOT =





1

1

1

1





.

The gate flips the target qubit conditioned that the control qubit is |1〉.

Single-qubit gate decomposition Any single-qubit operator U ∈ C2×2 can be decomposed as

U = eiαRz(β)Ry(γ)Rz(δ)

for some α, β, γ, δ ∈ R [23]. It is not hard to verify that the Y-axis rotation Ry(γ) ∈ R2×2 can be

decomposed as Ry(γ) = S HRz(γ)HS †, for any γ ∈ R. Putting these two facts together, we know that for

a single-qubit operation U, there exist α, β, γ, δ ∈ R such that

U = eiαRz(β)S HRz(γ)HS †Rz(δ). (1)
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Gray code A Gray code path is an ordering of all n-bit strings {0, 1}n in which any two adjacent strings

differ by exactly one bit [47–49], and the first and the last string differ by one bit. That is, a Gray code

path/cycle is a Hamiltonian path/cycle on the Boolean hypercube graph. Gray code paths/cycles are not

unique, and a common one, called reflected binary code (RBC) or Lucal code, is as follows. Denote the

ordering of n-bit strings by x1, x2, . . . , x2n

and we will construct them one by one. Take x1 = 0n. For

each i = 1, 2, . . . , 2n − 1, the next string xi+1 is obtained from xi by flipping the ζ(i)-th bit, where the

Ruler function ζ(i) is defined as ζ(i) = max{k : 2k−1|i}. In other words, ζ(i) is 1 plus the exponent of 2 in

the prime factorization of i. The following fact is easily verified.

Lemma 7. The reflected binary code defined above is a Gray code cycle.

Note that in the above construction, if we list all the bits changed between circularly adjacent strings,

we will get a list of length 2n. For instance, when n = 4, the list is: 1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,4. In

general, bit 1 appears 2n−1 times, bit 2 appears 2n−2 times, ..., bit n − 1 appears twice, and bit n appears

twice as well. If we regard the code as a path, i.e. ignore the change of bit from the last string to the first

string, then bit n appears once.

By circularly shifting the bits, we can also construct Gray code cycle such that bit 2 appears 2n−1

times, ..., bit n and bit 1 appear twice. In general, for any k ∈ [n], we can make each bit k, k +

1, . . . , n, 1, 2, . . . , k − 1 to appear 2n, 2n−1, 2n−2, . . . , 22, 2, 2 times, respectively. Let us call this con-

struction (k, n)-Gray code path/cycle, or simply the k-Gray code path/cycle if n is clear from context.

3 Quantum state preparation with O(2n/n2) ancillary qubits

In this section, we will review a natural framework of algorithm for quantum state preparation, first

appeared in [22]. Our results presented in Section 4 and 5, which achieve the optimal circuit depth, also

fall into this framework. The framework to prepare an n-qubit quantum state is depicted in Figure 2(a),

where each qubit j is handled by the circuit V j. The task for V j is to apply a single-qubit unitary on the

last qubit conditioned on the basis state of the first j − 1 qubits. In a matrix form, V j is a block-diagonal

operator

V j = diag(U1,U2, . . . ,U2 j−1) ∈ C2 j×2 j

, (2)

where each Ui is a 2 × 2 unitary matrix. There are different ways to implement V j, and the most natural

one, which is also the one suggested in [22], is in Figure 2(b): it includes 2 j−1 layers, and each layer

is a controlled gate, which conditions on every possible computational basis state of the previous j − 1

qubits and operates on the current qubit j. This is why sometimes V j is called uniformly controlled gate

(UCG). We give a specific example for illustration in Appendix B.

|0〉 V1 ···

|0〉 V2 ···

|0〉 V3 ···

...
···

|0〉 ··· Vn

(a)

• ... •
• ... •

= ... •
... •

V j U1 U2 U3 ... U
2 j−1

(b)

Figure 2: (a) A quantum circuit to prepare an n-qubit quantum state. Every V j ( j ∈ [n]) is a j-qubit

uniformly controlled gate, where the first j − 1 qubits are controlled qubits and the last one qubit is the

target qubit. (b) A j-qubit uniformly controlled gate.

Thus the depth of the circuit for quantum state preparation in the above framework crucially depends

on the circuit depth of the implementation of V j’s.
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Lemma 8. If each V j can be implemented by a quantum circuit of depth d j, then the quantum state can

be prepared by a circuit of depth
∑n

j=1 d j.

As mentioned in Section 1, if we implement each V j directly as in [22], then the whole QSP circuit

has a depth of Θ(n2n), which is sub-optimal compared to our bound of Θ(2n/n) in Theorem 2. More

importantly, the method in [22] cannot well utilize ancillary qubits to reduce the circuit depth. In this

section, we will give a framework of efficient implementation of UCGs with the help of m = O(2n/n2)

ancillary qubits. The case when more ancillary qubits are available, i.e. m = Ω(2n/n2), is handled by a

different framework in Section 6.

To overcome these drawbacks, we will first reduce the implementation of UCG to that of diagonal

operators of the following form:

Λn = diag(1, eiθ1 , eiθ2 , . . . , eiθ2n−1) ∈ C2n×2n

. (3)

Lemma 9. If one can implement Λn in Eq. (3) by a circuit of depth D(n) and size S (n) using m ≥ 0

ancillary qubits, then any n-qubit quantum state can be prepared by a circuit of depth 3
∑n

k=1 D(k)+2n+1

and size 3
∑n

k=1 S (k) + 2n + 1.

Proof. According to Eq. (1), each unitary matrix Uk ∈ C2×2 can be decomposed as

Uk = eiαk Rz(βk)S HRz(γk)HS †Rz(δk).

Then the UCG Vn can thus be decomposed to

Vn = diag(eiα1 , · · · , eiα
2n−1 ) ⊗ I1

︸                            ︷︷                            ︸

A1

· diag(Rz(β1), · · · ,Rz(β2n−1))
︸                             ︷︷                             ︸

A2

· In−1 ⊗ (S H)
︸        ︷︷        ︸

A3

· diag(Rz(γ1), · · · ,Rz(γ2n−1 ))
︸                             ︷︷                             ︸

A4

· In−1 ⊗ (HS †)
︸          ︷︷          ︸

A5

· diag(Rz(δ1), · · · ,Rz(δ2n−1))
︸                            ︷︷                            ︸

A6

. (4)

Note that the unitary matrix A3 can be implemented by a Hadamard gate H and a phase gate S

operating on the last qubit, and similarly for A5. The rest matrices, A1, A2, A4, and A6 are all n-

qubit diagonal unitary matrices. Since a global phase can be easily implemented by a rotation on any

one qubit, we can focus on implementing diagonal matrices of the form as in Eq. (3). If Λn can be

implemented by a circuit of depth D(n) and size S (n), so will be QSP by a circuit of depth and size
∑n

k=1(3D(k) + 2) + 1 = 3
∑n

k=1 D(k) + 2n + 1 and
∑n

k=1(3S (k) + 2) + 1 = 3
∑n

k=1 S (k) + 2n + 1, where the

terms “3D(k)” and “3S (k)” are for diagonal matrices A1, A2, A4 and A6, the term “2” is for A3 and A5,

and the term “1” is for the global phase. �

Thus we only need to consider how to implement diagonal operators as in Eq. (3). We will prove

the following lemmas in Section 4 and Section 5.

Lemma 10. For any m ∈ [2n, 2n/n], any diagonal unitary matrix Λn ∈ C2n×2n

as in Eq. (3) can be

implemented by a quantum circuit of depth O
(

log m + 2n

m

)

and size O(2n), with m ancillary qubits.

Lemma 11. Any diagonal unitary matrix Λn ∈ C2n×2n

as in Eq. (3) can be implemented by a quantum

circuit of depth O
(

2n

n

)

and size O
(

2n
)

without ancillary qubits.

Lemmas 10 and 11 imply Lemma 12.

Lemma 12. For m ≥ 0, any uniformly controlled gate Vn ∈ C2n×2n

as in Eq. (2) can be implemented by

a quantum circuit of depth O
(

n + 2n

n+m

)

and size O(2n) with m ancillary qubits.

Proof. According to Eq. (4), every Vn can be decomposed into 3 n-qubit diagonal unitary matrices and

4 single-qubit gates. Combining with Lemma 10 and 11, Vn can be realized by a quantum circuit of

depth O
(

n + 2n

n+m

)

and size O(2n) with m ancillary qubits. �
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Once we prove these two lemmas, we will be able to prove Theorems 1 and 2. Indeed, we can apply

the next Lemma 13 to prove Theorem 2 (m = 0) and the m = O(2n/n2) part of Theorem 1. The other

part m = Ω(2n/n2) of Theorem 1 is the same as Corollary 30 and will be treated in Section 6.

Lemma 13. For any m ≥ 0, any n-qubit quantum state |ψv〉 can be generated by a quantum circuit with

m ancillary qubits, using single-qubit gates and CNOT gates, of size O(2n) and depth O
(

n2 + 2n

m+n

)

.

Proof. We prove the case m = 0 first. Plugging Lemma 11 into Lemma 9, we get a circuit solving QSP

in size
∑n

j=1 O(2 j) + 2n + 1 = O(2n) and depth O
(∑n

j=1
2 j

j
+ n
)

= O
(∑n−⌈log n⌉

j=1
2 j

j
+
∑n

j=n−⌈log n⌉+1
2 j

j

)

=

O
(∑n−⌈log n⌉

j=1
2 j +
∑n

j=n−⌈log n⌉+1
2 j

n−⌈log n⌉+1

)

= O
(

2n

n

)

, as desired.

Now we prove the case m > 0. If 1 ≤ m < 2n, we will not use the ancillary qubits—we just invoke

Theorem 2 to obtain a circuit of depth O(2n/n). If 2n ≤ m ≤ 2n/n2(≤ 2n/n), we can combine Lemma 9

and Lemma 10 to give a circuit of size 3
∑n

j=1 O(2 j)+2n+1 = O(2n) and depth O
(∑n

j=1

(

log m+ 2 j

m

)

+n
)

=

O
(

n2 + 2n

m

)

. If m > 2n/n2, we only use the first 2n/n2 ancillary qubits, then the above equality gives a

circuit of depth O(n2). Putting these three cases together, we obtain the claimed size upper bound of

O(2n) and depth upper bound of O
(

n2 + 2n

m+n

)

. �

Next let us consider how to efficiently implement Λn, which essentially makes a phase shift on each

computational basis state. Again, if we do this on each basis state, it takes at least Ω(2n) rounds, with

each round implementing an n-qubit controlled phase shift. One way of avoiding sequential applications

of (n − 1)-qubit controlled unitaries is to make rotations on its Fourier basis. Indeed, there are several

pieces of work to synthesis a diagonal unitary matrix, and a common approach is generating all the linear

functions of variables and adding corresponding rotation R(θ) gate when a new combination generated

[40, 50, 51]. In [40] the authors use Gray code to adjust the order of combinations so the size and depth

of the circuit are O(2n). With ancillary qubits, we can actually achieve this with much smaller depth

by carefully parallelizing the operations (Section 4). Interestingly, this approach turns out to inspire our

construction for circuits without ancillary qubits (Section 5), to achieve the optimal depth complexity as

in Theorem 2.

We now give more details. Suppose we can accomplish the following two tasks:

1. For every s ∈ {0, 1}n − {0n}, make a phase shift of αs on each basis |x〉 when 〈s, x〉 = 1 (recall that

〈·, ·〉 is over F2), i.e.

|x〉 → eiαs〈s,x〉 |x〉 . (5)

2. Find {αs : s ∈ {0, 1}n − {0n}} s.t.

∑

s∈{0,1}n−{0n}
αs〈x, s〉 = θ(x), ∀x ∈ {0, 1}n − {0n}. (6)

Then we get

|x〉 →
∏

s∈{0,1}n−{0n}
eiαs〈s,x〉 |x〉 = eiΣsαs〈s,x〉 |x〉 = eiθ(x) |x〉 ,

as required in Λn. For notational convenience, we define α0n = 0.

The implementations of above two tasks in Eq. (5) and Eq. (6) are accomplished in Appendix C.

4 Diagonal unitary implementation with ancillary qubits

In this section, we prove Lemma 10. That is, for any m ∈ [2n, 2n/n], any diagonal unitary matrix

Λn ∈ C2n×2n

as in Eq. (3) can be implemented by a quantum circuit of depth O
(

log m + 2n

m

)

and size

O(2n) with m ancillary qubits. Let us first give a high-level explanation of the circuit. We divide the

ancillary qubits into two registers: One is used to make multiple copies of basis input bits to help on

parallelization, and the other is used to generate all n-bit strings and apply the rotation gates. State
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|〈s, x〉〉 will be generated for all s ∈ {0, 1}n − {0n}. To reduce the depth of the circuit, these strings are

split as equally as possible, and we use Gray Code to minimize the cost of generating a new n-bit string

from an old one. A quantum circuit to implement Λ4 by using 8 ancillary qubits is shown in Appendix

D.

We will show how to implement Λn with m ancillary qubits. Let us assume m to be an even number

to save some floor or ceiling notation without affecting the bound. The framework is shown in Figure 3.

Our framework consists of three registers and five stages. The first n qubits labeled as x1, x2, · · · , xn form

the input register, the next m
2

qubits are the copy register, and the last m
2

qubits are the phase register.

The linear functions 〈s, x〉 of the input variables x = x1 . . . xn are generated in the phase register. We use

the copy register to make copies of x for parallelizing the circuit later. Partition s into a prefix s1 and

a suffix s2. We then generate a specific function 〈s10 · · · 0, x〉 on each qubit in the phase register, and

iterate other non-zero suffixes s2 in the order of a Gray code and generate 〈s1s2, x〉. All qubits in the

copy and phase registers are initialized to |0〉.

|x1〉

Prefix Copy
Stage

Gray Initial
Stage

Suffix Copy
Stage

Gray Path
Stage

Inverse
Stage

...
|xn〉

|0〉
...
|0〉

|0〉
...
|0〉

Figure 3: Framework for the circuit of Λn with m ancillary qubits. The first n qubits |x1 · · · xn〉 form the

input register, the next m
2

qubits the copy register and the last m
2

qubits the phase register. The framework

consists of five stages: Prefix Copy, Gray Initial, Suffix Copy, Gray Path and Inverse. The depth of the

five stages are O(log m), O(log m), O(log m), O
(

2n

m

)

and O
(

log m + 2n

m

)

, respectively.

Stage 1: Prefix Copy In this stage, we make
⌊

m
2t

⌋

copies of each qubit x1, x2, · · · , xt in the input regis-

ter, where t =
⌊

log m
2

⌋

< n. More formally, the circuit implements the unitary Ucopy,1 which operates on

the input and copy registers only. Its effect is

|x〉 |0m/2〉
Ucopy,1

−−−−−→ |x〉 |xpre〉 (7)

where the two parts in the ket notation are for the input and copy register, respectively, and

|x〉 = |x1x2 · · · xn〉 ,

|xpre〉 =
m/2 qubits

︷                                         ︸︸                                         ︷

| x1 · · · x1
︸   ︷︷   ︸
⌊

m
2t

⌋

qubits

x2 · · · x2
︸   ︷︷   ︸
⌊

m
2t

⌋

qubits

· · · xt · · · xt
︸  ︷︷  ︸
⌊

m
2t

⌋

qubits

0 · · · 0〉.

The next lemma says that this operation can be carried out by a circuit of small depth.

Lemma 14. We can make
⌊

m
2t

⌋

copies of each qubit x1, x2, · · · , xt in the input register and the copy

register, by an (m/2)-size circuit Ucopy,1 of CNOT gates only, in depth at most log m.

Proof. First, we make 1 copy of each xi in the input register to a qubit in the copy register by applying

a CNOT gate. Note that the CNOT gates for different xi’s are applied on different pairs of qubits, thus

they can be implemented in parallel in depth 1. Next, we utilize the xi in the input register and the xi in

10



the copy register (that we just obtained) to make two more copies of xi in the copy register, and again all

these 2t CNOT gates can be implemented in depth 1. We continue this until we get ⌊m/(2t)⌋ copies of

each qubit x1, x2, · · · , xt in the copy register. The depth of this Copy stage is
⌈

log
⌊

m/2t
⌋⌉

≤ log m. And

the size of this stage is m/2, since each qubit in copy register is used as the target qubit of CNOT gate

only once. �

Stage 2: Gray Initial In this stage, the circuit includes two steps. The first step U1 implements m/2

linear functions f j1(x) = 〈s( j, 1), x〉 for some n-bit strings s( j, 1), one for each qubit j in the phase

register. The second step implements some rotations in the phase registers. To elaborate on which

strings are implemented in the first step, we need the following lemma and notation. Recall that we are

in the parameter regime m ∈ [2n, 2n/n].

Lemma 15. Let t = ⌊log m
2
⌋ and ℓ = 2t. The set {0, 1}n can be partitioned into a 2-dimensional array

{s( j, k) : j ∈ [ℓ], k ∈ [2n/ℓ]} of n-bit strings, satisfying that

1. Strings in the first column {s( j, 1) : j ∈ [ℓ]} have the last (n − t) bits being all 0, and strings in

each row {s( j, k) : k ∈ [2n/ℓ]} share the same first t bits.

2. ∀ j ∈ [ℓ],∀k ∈ [2n/ℓ − 1], s( j, k) and s( j, k + 1) differ by 1 bit.

3. For any fixed k ∈ [2n/ℓ − 1], and any t′ ∈ {t + 1, ..., n}, there are at most
(

m
2(n−t)

+ 1
)

many j ∈ [ℓ]

s.t. s( j, k) and s( j, k + 1) differ by the t′-th bit.

The proof of Lemma 15 is shown in Appendix E.

Let us denote by t jk the index of the bit that s( j, k) and s( j, k+ 1) differ by. We can now describe this

stage in more details.

1. The first step U1 aims to let each qubit j in the phase register have the state | f j1(x)〉 at the end of

this step, where f j1(x) = 〈s( j, 1), x〉.

2. The second step applies the rotation R j,1
def
= R(αs( j,1)) on each qubit j in the phase register. That

is, the state is rotated by an phase angle of αs( j,1) if 〈x, s( j, 1)〉 = 1, and left untouched otherwise.

Put R1 = ⊗ j∈[ℓ]R j,1.

The next lemma gives the cost and effect of this stage.

Lemma 16. The Gray Initial Stage can be implemented in depth at most 2 log m and in size at most
(n+1)m

2
such that its unitary UGrayInit satisfies

|x〉 |xpre〉 |0m/2〉
UGrayInit

−−−−−−→ ei
∑

j∈[ℓ] f j,1(x)αs( j,1) |x〉 |xpre〉 | f[ℓ],1〉 , (8)

where | f[ℓ],1〉 = ⊗ j∈[ℓ] | f j,1(x)〉.

Proof. We will show how to implement the first step U1 such that all ℓ = 2t = 2

⌊

log m
2

⌋

linear functions of

the prefix variables x1, . . . , xt are implemented, namely after U1, the states of the 2t qubits in the phase

register are exactly {a1x1 ⊕ · · · ⊕ at xt : a1, . . . , at ∈ {0, 1}}. The implementation makes each qubit j in the

phase register have state | f j,1(x)〉. Then in the second step, each qubit j adds a phase of f j,1(x) · αs( j,1) to

|x〉 |xpre〉 |0m/2〉. We thus have

|x〉 |xpre〉 |0m/2〉
U1−−→ |x〉 |xpre〉 | f[ℓ],1〉 , (9)

R1−−→ ei
∑

j∈[ℓ] f j,1(x)αs( j,1) |x〉 |xpre〉 | f[ℓ],1〉 . (10)

Now let us construct a shallow circuit for the first step U1. Recall that we have ℓ = 2t qubits j

each with a corresponding linear function in variables x1, . . . , xt. Since ℓ ≤ m/2, the phase register has
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enough qubits to hold these linear functions. For a qubit j in the phase register with corresponding linear

function xi1 ⊕ · · · ⊕ xit′ (t′ ≤ t), we will use CNOT gates to copy the qubits xi1 , ..., xit′ from the work

and the copy registers to qubit j. We just need to allocate these CNOT gates evenly to make the overall

depth small. This step can be divided into
⌈

2t

t⌊m/(2t)⌋

⌉

mini-steps, each mini-step handling t
⌊

m
2t

⌋

qubits

j by assigning the state | 〈s( j, 1), x〉 〉 to it. Since we have ℓ = 2t qubits to handle, it needs
⌈

2t

t⌊m/(2t)⌋

⌉

mini-steps.

For all positions i ∈ [t] with s( j, 1)i = 1, we use CNOT to copy xi to qubit j. We have t variables

x1, . . . , xt, each with ⌊m/(2t)⌋ copies. To utilize these copies for parallelization, we break the t⌊m/(2t)⌋
target qubits into t blocks of size ⌊m/(2t)⌋ each. Each mini-step gives all needed variables for t(⌊m

2t
⌋+ 1)

qubits j, in depth t. In the first layer, we use the ⌊m
2t
⌋ copies of x1 as control qubits in CNOT to copy x1

to the first block of target qubits j, use the ⌊m
2t
⌋ copies of x2 for the second block of target qubits, and so

on, to xt for the t-th block. Then in the second layer, we repeat the above process with a circular shift:

Copy x1 to block 2, x2 to block 3, ..., xt−1 to block t, and xt to block 1. Repeat this and we can complete

this mini-step in depth t, such that t⌊m
2t
⌋ many qubits j get their needed variables.

Since there are
⌈

2t

t⌊m/(2t)⌋

⌉

mini-steps, each of depth t, the total depth for U1 is
⌈

2t

t⌊m/(2t)⌋

⌉

·t ≤ m/2
m/(2t)

+t =

2t = 2⌊log(m/2)⌋ ≤ 2 log m − 2.

The rotations in the second step are on different qubits and thus can be put into one layer, thus the

overall depth for Gray Initial Stage is at most 2 log m.

The size of this stage is at most (n + 1)m/2, because each qubit in the phase register has at most n

CNOT gates and one Rz gate on it. �

Stage 3: Suffix Copy In this stage, we first undo Ucopy,1, and then make
⌊

m
2(n−t)

⌋

copies for each of the

suffix variables, namely xt+1, ..., xn. The next lemma is similar to Lemma 14 and we omit the proof.

Lemma 17. We can make

⌊

m
2(n−t)

⌋

copies of each qubit xt+1, xt+2, · · · , xn in the input register and the

copy register, by applying on |x〉 |0m/2〉 an m-size circuit Ucopy,2 of CNOT gates only, in depth at most

log m.

Define

|xsu f 〉
def
= |

m/2 qubits
︷                                    ︸︸                                    ︷

xt+1 · · · xt+1
︸        ︷︷        ︸
⌊

m
2(n−t)

⌋

qubits

· · · xn · · · xn
︸   ︷︷   ︸
⌊

m
2(n−t)

⌋

qubits

0 · · · 0〉,

then the effect of Ucopy,2 is

|x〉 |0m/2〉
Ucopy,2

−−−−−→ |x〉 |xsu f 〉 .

The operator of this stage is Ucopy,2U
†
copy,1, and the depth is at most 2 log m and the size is at most m.

The effect of this stage Ucopy,2U
†
copy,1

is

|x〉 |xpre〉
U
†
copy,1

−−−−−→ |x〉 |0m/2〉
Ucopy,2

−−−−−→ |x〉 |xsu f 〉 . (11)

Stage 4: Gray Path This stage contains 2n/ℓ − 1 phases, indexed by k = 2, 3, . . . , 2n/ℓ. The previous

Gray Initial Stage can be also viewed as the phase k = 1. We single it out as a stage because it implements

linear functions from scratch, while each phase in the Gray Path Stage implements linear functions only

by a small update from the previous phase.

In each phase k in this stage, the circuit has two steps:

1. Step k.1 is a unitary circuit Uk that applies a CNOT gate on each qubit j ∈ [ℓ] in the phase register,

controlled by xt j,(k−1)
, the bit where s( j, k − 1) and s( j, k) differ.

2. Step k.2 applies the rotation gate R(αs( j,k)) on qubit j. Put Rk = ⊗ j∈[ℓ]R(αs( j,k)).
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Lemma 18. The phase k of the Gray Path Stage implements

|x〉 |xsu f 〉 | f[ℓ],k−1〉
Uk−−→ |x〉 |xsu f 〉 | f[ℓ],k〉

Rk−−→ ei
∑

j∈[ℓ] f j,k(x)αs( j,k) |x〉 |xsu f 〉 | f[ℓ],k〉 , (12)

where f j,k(x) = 〈s( j, k), x〉 and | f[ℓ],k〉 = ⊗ j∈[ℓ] | f j,k(x)〉. The depth and size of the whole Gray Path Stage

are at most 2 · 2n/ℓ and 2n+1.

Proof. The operation can be easily seen in a similar way as that for Lemma 16. Next we show the depth

bound. The Gray Path stage repeats step k.1-k.2 for 2n/ℓ − 1 times. Since s( j, k − 1) and s( j, k) differ by

only 1 bit by Lemma 15, one CNOT gate suffices to implement the function 〈x, s( j, k)〉 from 〈x, s( j, k−1)〉
in the previous phase: The control qubit is xt j,(k−1)

and the target qubit is j. Moreover, the third property

in Lemma 15 shows that each variables xi is used as a control qubit for at most
(⌊

m
2(n−t)

⌋

+ 1
)

different

j ∈ [ℓ]. Since we have
(⌊

m
2(n−t)

⌋

+ 1
)

copies in the input register and the copy register, these CNOT gates

in step k.1 can be implemented in depth 1.

The step k.2 consists of only single qubit gates, which can be all paralleled in depth 1. Thus the total

depth of Gray Path stage is at most 2n/ℓ · (1 + 1) ≤ 2 · 2n/ℓ.

The size of this stage is 2n+1 since each linear combination of input variables is generated once and

applied single-qubit phase-shift gates Rk. The number of linear combinations of input variables is 2n ,

so the size is 2n+1. �

Stage 5: Inverse In this stage, the circuit applies U
†
copy,1

U
†
1
Ucopy,1U

†
copy,2

U
†
2
· · ·U†

2n/ℓ
.

Lemma 19. The depth and size of the Inverse Stage are at most O(log m+ 2n/m) and m
2
+ nm

2
+m+ 2n =

2n + 3m+nm
2

. The effect of this stage is

|x〉 |xsu f 〉 | f[ℓ],2n/ℓ〉
UInverse−−−−−→ |x〉 |0m/2〉 |0m/2〉 . (13)

The proof of Lemma 19 is shown in Appendix F.

Putting things together After explaining all the five stages, we are ready to put them together to see

the overall depth and operation of the circuit.

Lemma 20. The circuit implements the operation in Eq. (3) in depth O(log m + 2n/m) and in size

3 · 2n + nm + 7
2
m.

The proof of Lemma 20 is shown in Appendix G. In summary, Λn can be implemented in O
(

log m+

2n

m

)

depth and size 3 · 2n + nm + 7
2
m with m ∈ [2n, 2n/n] ancillary qubits, proving Lemma 10.

5 Diagonal unitary implementation without ancillary qubits

In this section, we prove Lemma 11. That is, any diagonal unitary Λn ∈ C2n×2n

as in Eq. (3) can be

implemented by a quantum circuit of depth O
(
2n/n
)

and size O(2n) without ancillary qubits. In Section

5.1, we present the framework of our circuit and the functionalities of the operators inside. We then

prove the correctness and analyze the depth of our circuit in Section 5.2. Finally, we give the detailed

construction of some operators in Section 5.3.

5.1 Framework and functionalities

The framework of our circuit implementing Λn is a recursive procedure shown in Figure 4.

The n-qubit work register is divided into two registers: A control register consisting of the first rc

qubits, and a target register consisting of the last rt qubits. The circuit has the following components.
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|x1〉

Λn G1 G2

...

Gℓ

Λrc

|x2〉 ...

...
...

|xrc 〉 ...

|xrc+1〉 = ...

R
|xrc+2〉 ...

...
...

|xn〉 ...

Figure 4: A circuit framework to implement an n-qubit unitary diagonal matrix Λn, where rt = ⌊n/2⌋,
rc = n − rt = ⌈n/2⌉ and ℓ ≤ 2rt+2

rt+1
− 1. The first rc qubits are control register and the last rt qubits are

target register. The depth of the operator Gk is O(2rc ) for each k ∈ [ℓ] and the depth of the operator R is

O(rt/ log rt)

. The rc-qubit diagonal unitary matrix Λrc
is implemented recursively.

1. A sequence of n-qubit unitary operators G1, . . . ,Gℓ, the detailed construction of which will be

given in Section 5.3.

2. An rt-qubit unitary operator R, which resets the state in the target register to the input value

|xrc+1, . . . , xn〉.

3. An rc-qubit diagonal unitary operator Λrc
, which is implemented recursively.

The parameters are set as follows: rt = ⌊n/2⌋ ≈ n/2, rc = n − rt ≈ n/2, and ℓ ≤ 2rt+2

rt+1
− 1 ≈ 2n/2+3

n
.

Next we describe the function of each operator in Figure 4, for which it suffices to specify their

effects on an arbitrary computational basis state

|x〉 = |x1x2 · · · xrc
xrc+1 · · · xn〉 = |xcontrol

︸ ︷︷ ︸

rc qubits

〉 |xtarget
︸︷︷︸

rt qubits

〉 ,

where x ∈ {0, 1}n. Let us first highlight some key similarities and differences between this circuit and the

one presented in the previous section. Recall that in Section 4, an n-bit string s ∈ {0, 1}n − {0n} is broken

into two parts, a
⌊

log(m
2

)
⌋

-bit prefix and an
(

n − ⌊log(m
2

)⌋
)

-bit suffix. In the Gray Initial Stage there, we

use 2⌊log(m/2)⌋ qubits in the phase register to enumerate all possible ⌊log(m/2)⌋-bit prefixes, one prefix on

each phase qubit j. Then on each such qubit j we enumerate all (n− ⌊log(m/2)⌋)-bit suffixes in the Gray

Path Stage. In this section, we again break s into a prefix and a suffix, and enumerate all prefixes and

all suffixes to run over all n-bit strings. However, due to the lack of the ancillary qubits, the circuit here

differs from the last one in the following two aspects.

1. In Section 4, s ∈ {0, 1}n − {0n} is generated in the phase register, which is initialized to |0〉. In

this section, s = ct, in which c is the rc-bit prefix and t is the rt-bit suffix. The state |〈s, x〉〉 is

generated in target register, whose initial state is |x j〉 for some j ∈ {rc + 1, rc + 2, . . . , rn}. Hence,

we enumerate s recursively in this section. That is, we first generate s = ct for t , 0rt and then

generate c0rt recursively.

2. In Section 4, there are 2⌊log(m/2)⌋ (≤ m
2

) prefixes which can be enumerated in m
2

qubits in phase

register exactly. In this section, 2rt − 1 (≈ 2n/2) suffixes should be generated in rt qubits in target

register. As we only have rt qubits, the small space is insufficient to enumerate all 2rt − 1 suffixes.

Thus we need to enumerate them in many stages, and rt suffixes in each stage; in other words,

we pay the price of time to compensate the shortage of space. It turns out that the transition

from one stage to another can be made in a low depth if the suffixes enumerated in each stage
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are linearly independent as vectors in {0, 1}rt . Thus we need carefully divide 2rt − 1 suffixes into

ℓ sets T (1), . . . , T (ℓ) with T (k) = {t(k)

1
, t(k)

2
, . . . , t(k)

rt
} each t

(k)
a , 0rt for a ∈ [rt] and k ∈ [ℓ], and the

strings in each T (k) linearly independent. We allow overlap between these sets, but maintain the

total number ℓ of sets only a constant times of (2rt − 1)/rt, so that the overall depth is still under

the control. As the sets have overlaps, a suffix may appear more than once, so we need to note this

and avoid repeatedly applying rotation when the suffix appears multiple times.

We now show how to implement the above high-level ideas. We will need to find sets T (1), T (2), . . . , T (ℓ)

satisfying the following two key properties.

1. For each k ∈ [ℓ], the set T (k) =
{

t
(k)

1
, t(k)

2
, . . . , t(k)

rt

}

contains rt vectors from {0, 1}rt that are linearly

independent over the field F2.

2. The collection of these sets covers all the rt-bit strings except for 0rt , i.e.
⋃

k∈[ℓ] T (k) = {0, 1}rt −
{0rt }.

The constructions of sets T (1), . . . , T (ℓ) are shown in Appendix H. For each k ∈ [ℓ] ∪ {0}, define an

rt-qubit state

|y(k)〉 = |y(k)

1
y

(k)

2
· · · y(k)

rt
〉 , where y

(k)

j
=






xrc+ j if k = 0,

〈0rc t
(k)
j
, x〉 if k ∈ [ℓ].

(14)

Namely, y(0) is the same as xtarget (the suffix of x), and other y
(k)

j
are linear functions of variables in xtarget

with coefficients given by t
(k)

j
. Next, let us define disjoint families F1, . . . , Fℓ which apply the rotation

when a suffix appears for the first time.

F1 =
{

ct : t ∈ T (1), c ∈ {0, 1}rc

}

,

Fk =
{

ct : t ∈ T (k), c ∈ {0, 1}rc

}

−
⋃

d∈[k−1]

Fd, 2 ≤ k ≤ ℓ. (15)

These families of sets F1, F2, · · · , Fℓ satisfy Fi ∩ F j = ∅ for all i , j ∈ [ℓ] and

⋃

k∈[ℓ]
Fk = {0, 1}rc ×

⋃

k∈[ℓ]
T (k) = {0, 1}rc × ({0, 1}rt − {0rt }) = {0, 1}n − {c0rt : c ∈ {0, 1}rc}. (16)

With the above concepts, we can now show the desired effect of the operators Gk, R and Λrc
.

1. For k ∈ [ℓ],

Gk |xcontrol〉 |y(k−1)〉 = e
i
∑

s∈Fk

〈s,x〉αs

|xcontrol〉 |y(k)〉 , (17)

where αs is determined by Eq. (6). In words, Gk has two effects: (1) It puts a phase and (2) it

transits from the stage k − 1 to the stage k.

2. The transformation R acts on the target register and resets the suffix state as follows

R |y(ℓ)〉 = |y(0)〉 . (18)

As a map on {0, 1}rt (instead of {|x〉 : x ∈ {0, 1}rt }), R is an invertible linear transformation over F2.

3. The operator Λrc
is an rc-qubit diagonal matrix satisfying that

Λrc
|xcontrol〉 = e

i
∑

c∈{0,1}rc−{0rc }
〈c0rt ,x〉αc0rt

|xcontrol〉 , (19)

and will be implemented recursively.

We will define these operators and show these properties in Section 5.3.
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5.2 Correctness and depth

In this section, we will prove the correctness and analyze the depth of the circuit. We will need a

fact about the depth of invertible linear transformation from [52] (Theorem 1). The original version

says that any CNOT circuit, a circuit consisting of only CNOT gates, on n qubits can be compressed

into O(n/ log n) depth. But note that any n-dimensional invertible linear transformation over F2 can be

implemented by a CNOT circuit [53]. We thus have the following result.

Lemma 21. Suppose that U ∈ Fn×n
2

is an invertible linear transformation over F2. Then as a 2n × 2n

unitary matrix which permutes computational basis {|x〉 : x ∈ {0, 1}n}, the map U can be realized by a

CNOT circuit of depth at most O( n
log n

) and size at most O( n2

log n
) without ancillary qubits.

As mentioned in Section 5.1, R is an invertible linear transformation on the computational basis

variables, thus the above lemma immediately implies the following depth upper bounds for R.

Lemma 22. The operator R can be realized by an O( rt

log rt
)-depth and O(

r2
t

log rt
)-size CNOT circuit without

ancillary qubits.

The depth of Gk will be easily seen from its construction in Section 5.3.

Lemma 23. The operator Gk can be realized by an O(2rc)-depth and O(rc2rc+1)-size quantum circuit

using single-qubit and CNOT gates without ancillary qubits.

Now we are ready to prove the correctness and depth of the whole circuit. The correctness of the

circuit framework in Figure 4 is shown in Appendix I.

Lemma 24. Any diagonal unitary matrixΛn can be realized by the quantum circuit (Λrc
⊗R)GℓGℓ−1 · · · G1

as in Figure 4, which has depth O(2n/n) and size 2n+3 + O
(

n2

log n

)

and uses no ancillary qubits.

Proof. We prove that the circuit has depth D(n) = O(2n/n). Lemma 23 shows Gk can be realized in

depth at most λ1 · 2rc for a constant λ1 > 0 and Lemma 22 shows R can be implemented in depth at

most λ2 · rt

log rt
without ancillary qubits for a constant λ2 > 0. Therefore, D(n) satisfies the following

recurrence
D(n) ≤ max

{

D(rc), λ2 · rt

log rt

}

+ λ1 · 2rc · ℓ
≤ D(⌈n/2⌉) + λ2⌈n/2⌉

log⌈n/2⌉ + λ12⌈n/2⌉
(

2⌊n/2⌋+2

⌊n/2⌋+1
− 1
)

= D(⌈n/2⌉) + O(2n/n).

Solving the above recursive relation, we obtain the bound D(n) = O(2n/n) as desired. The size of this

circuit S (n) satisfies S (n) ≤ S (n/2) + (2n+3 − 2n/2+3) + O
(

n2

log n

)

≤ 2n+3 + O
(

n2

log n

)

. �

5.3 Construction of Gk and R

In this section, we will show how to construct operator Gk, which consists of two stages: Generate Stage

and Gray Path Stage, see Figure 5. Along the way, we will also show the construction of R.

Gray Path
Stage




Control register
rc qubits

Generate
Stage




Target register
rt qubits

Figure 5: Implementation of operator Gk, which consists of Generate Stage and Gray Path Stage. The

depth of Generate Stage is O

(

rt

log rt

)

and the depth of Gray Path Stage is O(2rc).
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Generate Stage In this stage, we implement operator U
(k)

Gen
, such that

|y(k−1)〉
U

(k)
Gen−−−−→ |y(k)〉 , k ∈ [ℓ], (20)

where y(k−1) and y(k) are defined in Eq. (14) and determined by T (k−1) and T (k), respectively. For k ∈ [ℓ],

recall that T (k) = {t(k)

1
, · · · , t(k)

rt
}. Fix this ordering, view each t

(k)

i
as a column vector, and define a matrix

T̂ (k) = [t
(k)

1
, · · · , t(k)

rt
]T ∈ {0, 1}rt×rt for k ∈ [ℓ], with special case T̂ (0) def

= Irt
. Then the vectors y(k) can be

rewritten as

y(k) = T̂ (k) xtarget, ∀k ∈ [rt] ∪ {0}. (21)

Since t
(k)

1
, t(k)

2
, · · · , t(k)

rt
are linearly independent over F2, T̂ (k) is an invertible linear transformation over

F2. Now define a unitary U
(k)

Gen
by U

(k)

Gen
|y〉 = |T̂ (k)(T̂ (k−1))−1y〉, where the matrix-vector multiplication at

the right hand side is over F2. From Eq. (21), we see that

U
(k)
Gen
|y(k−1)〉 = |T̂ (k)(T̂ (k−1))−1y(k−1)〉 = |T̂ (k) xtarget〉 = |y(k)〉

satisfying Eq. (20). Also note that when viewed as a linear transformation over F2, U
(k)
Gen

is invertible.

Thus according to Lemma 21, the following depth upper bound applies.

Lemma 25. The Generate Stage unitary U
(k)
Gen

can be realized by an O
(

rt

log rt

)

-depth and O
(

r2
t

log rt

)

-size

CNOT circuit without ancillary qubits.

Similar to the discussion of U
(k)
Gen

, operator R can be defined by R |y〉 = |(T̂ (ℓ))−1y〉 , then R |y(ℓ)〉 =
|(T̂ (ℓ))−1y(ℓ)〉 = |xtarget〉 = |y(0)〉 . Thus R can be also viewed an invertible linear transformation over F2.

Applying Lemma 21 gives the bound in Lemma 22.

Gray Path Stage This stage implements the following operator

|xcontrol〉 |y(k)〉
UGrayPath

−−−−−−−→ e
i
∑

s∈Fk

〈s,x〉αs

|xcontrol〉 |y(k)〉 , (22)

where k ∈ [ℓ] and Fk is defined in Eq. (15). The Gray Path Stage in this section is similar to the Gray

Path Stage in Section 4, though we need to use a Gray code cycle here instead of a Gray code path. For

every i ∈ [rt], let ci
1
, ci

2
, · · · , ci

2rc−1
, ci

2rc denote the i-Gray code of rc bits starting at ci
1
= 0rc for i ∈ [rt].

Let hi j denote the index of the bit that ci
j−1

and ci
j

differ for each j ∈ {2, 3, . . . , 2rc} and hi1 the index of

the bit that ci
1

and ci
2rc differ. For the i-Gray code cycle of rc bits,

hi j =






(rc + i − 2 mod rc) + 1, if j = 1

(ζ( j − 1) + i − 2 mod rc) + 1, if j , 1
(23)

The exact form of hi j is not crucial; the important fact to be used later is that the indices h1p, h2p, . . . , hrt p

are all different.

This stage consists of 2rc + 1 phases.

1. In phase 1, circuit C1 applies a rotation R(α
0rc t

(k)

i

) on the i-th qubit in the target register for all

i ∈ [rt] if the string 0rc t
(k)

i
∈ Fk, where α

0rc t
(k)
i

is defined in Eq. (6).

2. In phase p ∈ {2, . . . , 2rc}, circuit Cp consists of 2 steps:

(a) Step p.1 is a unitary that, for all i ∈ [rt], applies a CNOT gate on the i-th qubit in target

register, controlled by the hip-th qubit in control register.

(b) Step p.2 is a unitary that, for all i ∈ [rt], applies a rotation R(α
ci

pt
(k)
i

) on the i-th qubit in target

register if ci
pt

(k)

i
∈ Fk, where α

ci
pt

(k)
i

is defined in Eq. (6).
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3. In phase 2rc + 1, circuit C2rc+1 implements a unitary that, for all i ∈ [rt], applies a CNOT gate on

the i-th qubit in target register, controlled by the hi1-th qubit in control register .

The next lemma gives the correctness and depth of this constructed circuit. The proof of Lemma 26 is

shown in Appendix J.

Lemma 26. The quantum circuit defined above is of depth O(2rc) and size O(rc2rc+1), and implements

Gray Path Stage UGrayPath in Eq. (22).

According to Lemma 25 and Lemma 26, operator Gk can be implemented in depth O(2rc )+O( rt

log rt
) =

O(2rc ). And the size of the circuit is at most O( n2

log n
) + rc2rc+1 = O(rc2rc+1). This completes the proof of

Lemma 23.

6 Quantum state preparation with Ω(2n/n2) ancillary qubits

In this section, we will introduce a different framework that can improve the upper bound in Section 4

when the number of ancillary qubits m = Ω(2n/n2). In Section 6.1, we will present the framework, and

in Section 6.2, we will give implementation details with the depth and correctness analyzed.

In the following, we will use ei ∈ {0, 1}2
n

to denote the vector where the i-th bit is 1 and all other bits

are 0. It is a unary encoding of i ∈ {0, 1, . . . , 2n−1}, and |ei〉 is the corresponding 2n-qubit state. We use n-

qubit state |i〉 = |i0i1 · · · in−1〉 ∈ ({|0〉 , |1〉})⊗n to denote the binary encoding of i, where i0, · · · , in−1 ∈ {0, 1}
and i =

∑n−1
j=0 i j · 2 j.

6.1 New framework for quantum state preparation

|0〉

QS P

· · ·
|0〉 · · ·
...

· · ·
|0〉 · · ·
|0〉 Vt+1 · · ·
...

· · ·





t qubits





n−t qubits

|0〉 · · · Vn

Figure 6: A new circuit framework to prepare an n-qubit quantum state |ψv〉 with m ∈ [Ω(2n/n2), 3 · 2n].

Let t =
⌊
log(m/3)

⌋
. The first t-qubit unitary QS P implement the same transformation as the first t UCGs

in Figure 2(a). The last n − t UCGs in are the same as the last n − t UCGs in Figure 2(a).

The quantum circuit in Section 2 for quantum state preparation consists of n UCGs V1,V2, . . . ,Vn

(Figure 2(a)). In Section 4, we showed that any j-qubit UCG V j can be implemented by a quantum

circuit of depth O
(

j+ 2 j

m+ j

)

with m ancillary qubits. Summing this up over j ∈ [n] gives the O(n2+2n/m)

upper bound for QSP, and this quadratic term seems hard to be improved within the framework of [22].

In the new framework, we first generate the quantum state in the unary encoding
∑

i vi |ei〉 using the

result in [30], and then make an encoding transform |ei〉 → |i〉, from the unary encoding to the binary

encoding.

Two issues need to be handled here. The first one is the need to design an encoding transform circuit

that has small depth and size, using ancillary qubits efficiently. We will give an optimal construction

in Section 6.2. The second issue is that the unary encoding itself needs 2n qubits, and the encoding

transform also needs O(2n) qubits, which may be beyond m, the number of ancillary qubits that are

available in the first place. To handle this, we will use a hybrid method. We break the generation into a

prefix part and a suffix part, where the length of the prefix is whatever m can support. We prepare the
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prefix part by unary QSP construction in [30] and our encoding transformation, and then employ the

methods in Section 4 for the suffix part.

Our new circuit framework for QSP in the parameter regime m = Ω(2n/n2) is shown in Figure 6. Let

t = ⌊log(m/3)⌋. In previous framework, the first t UCGs are a QSP circuit to prepare a t-qubit quantum

state |ψ(t)
v 〉 =

∑2t

k=0 v′
k
|k〉 , where v′

k
=

√
∑2n−t−1

j=0 |v2n−tk+ j|2. In the new framework, we introduce a new

t-qubit QSP circuit to replace the first t UCGs. The new QSP circuit consists of the following steps.

1. Generate a 2t-qubit quantum state |ψ′v〉 =
∑2t−1

k=0 v′
k
|ek〉, where ek ∈ {0, 1}2

t

and by the quantum

circuit in [30].

2. Applying Ut to |ψ′v〉, we can obtain |ψ(t)
v 〉 with 2m/3 ancillary qubits, where Ut is the unitary

transformation Ut : |ei〉 → |i〉 |02t−t〉 for all i ∈ {0} ∪ [2t − 1].

3. Realize the last n − t UCGs by Eq. (4) and Lemma 10.

6.2 Implementation and analysis

Now we give a more detailed implementation and analyze the correctness and cost of the algorithm.

First, in [30] it is shown that QSP with the unary encoding can be implemented efficiently.

Lemma 27. Given a vector v = (v0, v1, . . . , v2n−1)T ∈ C2n

with unit ℓ2-norm, any 2n-qubit quantum state

|ψ′v〉 =
∑2n−1

k=0 vk |ek〉 can be prepared from the initial state |0〉⊗2n

by a quantum circuit using single-qubit

gates and CNOT gates of depth O(n) and size O(2n) without ancillary qubits.

Next we consider the encoding transformation.

Lemma 28. The following unitary transformation on 2n qubits

|ei〉 → |i〉 |02n−n〉 ,∀i ∈ {0} ∪ [2n − 1], ei ∈ {0, 1}2
n

, (24)

can be implemented by a quantum circuit using single-qubit gates and CNOT gate with 2n+1 ancillary

qubits, of depth O(n) and size O(2n).

The proof of Lemma 28 is shown in Appendix K. Now we are ready to give the hybrid algorithm

and cost analysis.

Lemma 29. For any m ∈ [Ω(2n/n2), 3 · 2n], any n-qubit quantum state |ψv〉 can be generated by a

quantum circuit, using single-qubit gates and CNOT gates, of depth O
(

n(n− log(m/3)+1)+ 2n

m

)

and size

O(2n) with m ancillary qubits.

Proof. Let t = ⌊log m
3

)⌋. Define a quantum state |ψ(t)
v 〉 =

∑2t−1
i=0 v′

i
|i〉, where v′

i
=

√
∑2n−t−1

j=0 |vi·2n−t+ j|2.

Note that |ψ(t)
v 〉 = VtVt−1 · · ·V1 |0〉⊗n, the state after we apply the first t UCGs in Figure 2(a).

According to Lemma 27, given the unit vector v′ = (v′
0
, . . . , v′

2t−1
), we can prepare a 2t-qubit quantum

state |ψ′v〉 =
∑2t−1

i=0 v′
i
|ei〉 by a quantum circuit of depth O(t) = O(n) and size O(2t) = O(2n). The resulting

state is on 2t qubits. Then we apply the unitary transform Eq. (24) in Lemma 28 to transform the unary

encoding to a binary encoding and obtain |ψ(t)
v 〉 =

∑2t−1
i=0 v′

i
|i〉. This transformation has depth O(t) and

size O(2t), and need 2t+1 ancillary qubits. The whole process can be carried out in a work space of

2t + 2t+1 ≤ m qubits.

To change |ψ(t)
v 〉 to the final target state |ψv〉, what is left is to apply Vt+1, . . . ,Vn to |ψ(t)

v 〉. By Lemma

12, each V j can be implemented by a circuit of depth O( j + 2 j

m
) and size O(2 j) by m ancillary qubits.

Hence Vn · · ·Vt+1 can be realized by a quantum circuit of depth
∑n

j=t+1 O
(

j+ 2 j

m

)

= O
(

n(n−⌊log(m/3)⌋)+
2n

m

)

, and size
∑n

j=t+1 O(2 j) = O(2n), with m ancillary qubits.

Combining the two steps, we see that the total depth and size of this quantum state preparation circuit

are O
(

n(n − log(m/3) + 1) + 2n

m

)

and O(2n), respectively. �
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Note that when m = 3 · 2n, the depth bound becomes O(n). And if m is even larger, then we can

choose to only use 3·2n of them. Thus we have the following result, which is Theorem 1 in the parameter

regime m = Ω(2n/n2).

Corollary 30. For a circuit preparing an n-qubit quantum state with m = Ω(2n/n2) ancillary qubits, the

minimum depth DQSP(n,m) for different ranges of m are characterized as follows:






O(2n/m), if m ∈ [Ω(2n/n2),O(2n/(n log n))],

O(n log n), if m ∈ [ω(2n/(n log n)), o(2n)],

O(n), if m = Ω(2n).

7 Extensions and implications

7.1 Implications on optimality of unitary depth compression

In this section, we will show that our results for QSP can be applied to general unitary synthesis. The

proofs of Theorem 31 and Corollary 32 are shown in Appendix L.

Theorem 31. Any unitary matrix U ∈ C2n×2n

can be implemented by a quantum circuit of depth O
(

n2n+

4n

m+n

)

and size O(4n) with m ≤ 2n ancillary qubits.

In [39], it was shown that one needs at least Ω
(
4n) CNOT gates to implement an arbitrary n-qubit

unitary matrix without ancillary qubits. In the proof, the authors first put the circuit in a form that all

single-qubit gates are immediately before either a CNOT gate or the output. It is known that such a

CNOT gate together with its two single-qubit incoming neighbor gates can be specified by 4 free real

parameters, and that each single-qubit gate right before the output has 3 free real parameters. Thus

overall the circuit has 4k + 3n parameters where k is the number of CNOT gates. To generate all n-qubit

states, the set of which is known to have dimension 4n − 1, we need 4k + 3n ≥ 4n − 1. Thus the bound

follows. This argument basically applies to quantum circuits with ancillary qubits as well, as stated in the

next corollary, which shows that our circuit construction for general unitary matrices is asymptotically

optimal for m = O(2n/n).

Corollary 32. The minimum circuit depth DUnitary(n,m) for an arbitrary n-qubit unitary with m ancil-

lary qubits satisfies





DUnitary(n,m) = Θ
(

4n

m+n

)

, if m = O(2n/n),

DUnitary(n,m) ∈ [Ω(n),O(n2n)
]
, if m = ω(2n/n).

7.2 Decomposition with Clifford + T gate set

The quantum gate set {CNOT ,H, S , T }, sometimes called Clifford+T gate set, is a universal gate set in

that any unitary matrix can be approximately implemented using these gates only. The gates in this set

all have a fault-tolerant implementation, thus the gate set is considered as one of the most promising

candidates for practical quantum computing. In this section we consider the circuits using only the gates

in this set.

Definition 33 (ǫ-approximation). For any ǫ > 0, a unitary matrix U is ǫ-approximated by another

unitary matrix V if

‖U − V‖2
def
= max
‖|ψ〉‖2=1

‖(U − V)|ψ〉‖2 < ǫ.

We can extend our results on the exact implementations of state preparation and unitary to their

approximate versions.

The following two corollaries are circuit implementations for quantum state preparation (Corollary

34) and unitary synthesis (Corollary 35). The Corollary 34 is a restatement of Corollary 6. The proofs

are shown in Appendix M.
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Corollary 34. For any n-qubit target state |ψv〉 and ǫ > 0, one can prepare a state |ψ′v〉 which is ǫ-close

to |ψv〉 in ℓ2-distance, by a quantum circuit consisting of {CNOT,H, S , T } gates of depth






O
(

2n log(2n/ǫ)
m+n

)

if m = O(2n/(n log n)),

O(n log n log(2n/ǫ)) if m ∈ [ω(2n/(n log n), o(2n)],

O(n log(2n/ǫ)) if m = Ω(2n),

where m is the number of ancillary qubits.

The following is an implementation of a unitary matrix.

Corollary 35. Any n-qubit general unitary matrix can be implemented by a circuit, using the {CNOT,H, S , T }
gate set, of depth O

(

n2n +
4n log(4n/ǫ)

m+n

)

with m ancillary qubits.

Remark. Our circuits for general states can be also extended to circuits for sparse states. See details in

Appendix N.

8 Conclusion

In this paper, we have shown that an arbitrary n-qubit quantum state can be prepared by a quantum

circuit consisting of single-qubit gates and CNOT gates with m = O(2n) ancillary qubits, of depth

O
(

n log n + 2n

n+m

)

and size O(2n). The bound is improved to O(n) if we have more ancillary qubits, and

all these bounds are tight (up to a logarithmic factor in a small range of m). These results can be applied

to reduce the depth of the circuit of general unitary to O
(

n2n + 4n

m+n

)

with m ancillary qubits, which is

optimal when m = O(2n/n). The results can be extended to approximate state preparation by circuit

using the Clifford+T gate set.

Many questions are left open for future studies. An immediate one is to close the gap for unitary

synthesis for large m in Corollary 32. One can also put more practical restrictions into consideration. For

instance, we assume that two-qubit gates can be applied on any two qubits. Though this all-to-all con-

nection is indeed the case for certain quantum computer implementations (such qubits made of trapped

ions), some others (such as superconducting qubits) can only support nearest neighbor interactions, and

it is interesting to study QSP for that case. Another direction is to take various noises into account,

and see how much that affects the complexity. We call for more studies of state preparation and circuit

synthesis, and hope that methods and techniques developed in this paper can be used to design efficient

circuits in those extended models.
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A Circuit depth lower bound

In this section we prove Theorem 3. In [26], the authors presented a depth lower bound of Ω
(

2n

n

)

for

quantum circuits without ancillary qubits. This can be extended to a lower bound of Ω
(

2n

n+m

)

for circuits

with m ancillary qubits. Next we prove the linear lower bound.

Lemma 36. Almost all n-qubit quantum states need a quantum circuit of depth at least n − log n −O(1)

to prepare, even if the circuit uses arbitrary single- and double-qubit gates, regardless of the number of

ancillary qubits.
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Proof. As two adjacent single-qubit gates on the same qubit can be compressed into one, we can assume

that a circuit with minimum depth has double-qubit gates and single-qubit gates appearing in alternative

layers. Without loss of generality, assume that the odd layers contain only double-qubit gates and the

even layers contain only single-qubit gates. Suppose the circuit depth is D, i.e. it has D layers of gates.

Note that a single- or double-qubit gate can be represented by O(1) real parameters.

Consider a time-space directed graph G = (V, E) with D + 1 layers L1, . . . , LD+1 of nodes, corre-

sponding to the D + 1 time steps separated by the D layers U1, . . . ,UD of gates. There are n + m nodes

in each layer of G, corresponding to the n + m qubits in the circuit with n input qubits and m ancillary

qubits. Edges appear only between nodes in adjacent layers Li, Li+1, and two nodes (vi, vi+1) ∈ E if

vi ∈ Li, vi+1 ∈ Li+1, and the two corresponding qubits of vi and vi+1 are among the input and output

qubits for some gate in Ui, the i-th layer of gates in the circuit. (Thus each single-qubit gate induces one

edge, and each double-qubit gate induces 4 edges.) All edges are in the direction from input to output of

the gate.

Since the circuit generates the state, we have U |0n+m〉 = |ψ〉 ⊗ |φ〉, where |ψ〉 is the target n-qubit

state. Define the light cone of |ψ〉 to be the nodes in G that can reach, by walking along the directed

edges, the nodes in LD+1 corresponding to the qubits in |ψ〉. Intuitively, only gates within this region

contributes to the generation of |ψ〉. Indeed, we can remove gates outside the light cone, from the last

layer to the first, one by one. Each removal of a gate U is equivalent to applying U† at the end, which

only affects |φ〉 (and |ψ〉 remains unchanged.) Thus we can remove all gates outside the light cone yet

the remaining circuit still generates |ψ〉.
As each node vi+1 in the graph G connects to at most 2 nodes in the previous layer Li, the region

contains at most O(n · 2D) nodes, thereby also at most O(n · 2D) gates in the circuit. As each gate can be

fully specified by O(1) real parameters, the circuit has at most O(n·2D) parameters. If D ≤ n−log n−ω(1),

the number of parameters is strictly smaller than 2n − 1, the dimension of unit sphere S for all possible

|ψ〉. Then the circuit as a map from the parameters to the generated state, has its image a measure-zero

subset of S . Since there are only finitely many layouts in a D-layer circuit, the union of these images

still has measure 0, thus almost all n-qubit quantum states cannot be generated by circuits of depth

n − log n − ω(1). �

B Quantum state preparation via Binary search tree

The framework of quantum state preparation is illustrated by a vector

ν =
(√

0.03,
√

0.07,
√

0.15,
√

0.05,
√

0.1,
√

0.3,
√

0.2,
√

0.1
)T

∈ C8.

The corresponding quantum state is a 3-qubit quantum state

|ψν〉 =
√

0.03|000〉 +
√

0.07|001〉 +
√

0.15|010〉 +
√

0.05|011〉

+
√

0.1|100〉 +
√

0.3|101〉 +
√

0.2|110〉 +
√

0.1|111〉.

The amplitudes of |ψv〉 are stored in the leaf nodes of the corresponding Binary Search Tree. Every

internal node stores the square root of sum of squares of its child nodes. The root node stores the

ℓ2-norm of the vector.

Based on the Binary Search Tree in Figure 7(a), the QSP circuit can be designed layer-by-layer and

branch-by-branch, as in Figure 7(b).

C Implementations of tasks in Eq. (5) and Eq. (6)

The first task (Eq. (5)) can be completed by the combination of the circuit in Figure 8, a fact formalized

as Lemma 37, which can be easily verified.
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1

√
0.3

√
0.1

√
0.03
√

0.07

√
0.2

√
0.15
√

0.05

√
0.7

√
0.4

√
0.1
√

0.3

√
0.3

√
0.2
√

0.1

(a)

|0〉 U0 • • •

|0〉 U1 U2 • •

|0〉 U3 U4 U5 U6

(b)

Figure 7: (a) Binanry search tree for vector ν =
(√

0.03,
√

0.07,
√

0.15,
√

0.05,
√

0.1,
√

0.3,
√

0.2,
√

0.1
)T
∈

C
8. (b) The quantum circuit to prepare the 3-qubit state |ψν〉. The single-qubit gates used in this cir-

cuit are defined as Ui = Ry(2θi) for i ∈ {0, 1, . . . , 6}. The value of θi is shown as follow :

θ0 = arccos
(√

0.3/1
)

, θ1 = arccos
(√

0.1/0.3
)

, θ2 = arccos
(√

0.4/0.7
)

, θ3 = arccos
(√

0.03/0.1
)

,

θ4 = arccos
(√

0.15/0.2
)

, θ5 = arccos
(√

0.1/0.4
)

, θ6 = arccos
(√

0.2/0.3
)

.

Lemma 37. Let x = x1x2 . . . xn, s = s1s2...sn ∈ {0, 1}n, and S = {i1, . . . , ik} = {i : si = 1} ⊆ [n]. The

circuits in Figure 8 realize the following transformation:

|x1x2 · · · xn〉 → ei〈s,x〉α |x1x2 · · · xn〉 .

The second task (Eq. (6)) is accomplished as follows. Based on Lemma 37, one can implement

transformation Eq. (5) by using 2n − 1 circuits with parameters αs for all s ∈ {0, 1}n − {0n} in Figure 8.

To determine parameters αs in Eq. (6), the second task is essentially asking whether the (2n−1)×(2n−1)

matrix A defined by

A(x, s) = 〈x, s〉, x, s ∈ {0, 1}n − {0n} (25)

is invertible. The answer is affirmative and the inverse is given by the following lemma, which can be

easily verified [51].

Lemma 38. The matrix A defined as in Eq. (25) is invertible, and its inverse is 21−n(2A − J), where

J ∈ R(2n−1)×(2n−1) is the all-one matrix.

This gives a way to compute the parameters αs efficiently on a classical computer.

Lemma 39. For QSP problem, given a unit vector v = (v0, v1, · · · , v2n−1)T ∈ C2n

, the values of {αs : s ∈
{0, 1}n − {0n}} in Eq. (6) can be calculated on a classical computer using O(n2n) time and O(n2n) space.

Proof. We calculate these αs in three steps.

1. Our QSP circuit consists of n UCGs V1,V2, · · · ,Vn as in Figure 2(a). We calculate all parameters

of V1, . . . ,Vn in time O(2n) and in space O(2n) using binary trees [7, 22].
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|x1〉
...
|xi1
〉 • •

...
|xi2
〉 • •

...
|xik
〉 • •

...
|xn〉 ··· ··· ··· ···
|0〉 R(α)

(a)

|x1〉
...
|xi1
〉 • •

...
|xi j
〉

···
R(α)

···

...
··· ···

|xik
〉 • •

...
|xn〉

(b)

Figure 8: A quantum circuit to implement transformation |x1x2 · · · xn〉 → ei〈s,x〉α |x1x2 · · · xn〉 with string

s = s1s2 · · · sn ∈ {0, 1}n being the indicator vector of set S = {i1, . . . , ik} ⊆ [n], i.e. s j = 1 if j ∈ S

and s j = 0 otherwise. (a) A quantum circuit with an ancillary qubit initialized as |0〉. The index set

of controlled qubit of CNOT gates is S . (b) A quantum circuit without ancillary qubits, where i j is an

arbitrary element in S . The index set of the controlled qubit of CNOT gates is S − {i j} and the index of

target qubit is i j.

2. Secondly, we decompose all UCGs into diagonal unitary matrices and some single-qubit opera-

tions according to Eq. (4). As in the proof of Lemma 9, we decompose every single-qubit gate in

V j into Rz gates, S gates and H gates in time O(1) and space O(1), and UCG V j can be decom-

posed into 3 diagonal unitary matrices and two H gates and S gates in time O(2 j) and space O(2 j).

Hence, the total time and space of this step are
∑n

j=1 O(2 j) = O(2n).

3. Thirdly, for every diagonal unitary matrix Λ j with diagonal element eiθ(x) for all x ∈ {0, 1} j − {0 j},
we calculate parameters αs in Eq. (6). Let

α
def
= (α0···01, α0···10, . . . , α1···11)T ∈ R2n−1,

θ
def
= (θ(0 · · · 01), θ(0 · · · 10), . . . , θ(1 · · · 11))T ∈ R2n−1.

Based on Eq. (6) and lemma 38, we have α = 21−n(2A − J)θ. Notice that (2A − J)θ is just the

Walsh-Hadamard transform on θ. Thus the vector α can be calculated by fast Walsh-Hadamard

transform algorithm [54], which costs O(n2n) time and O(n2n) space.

Adding these costs up, we see that the values of αs can be calculated in O(n2n) time and O(n2n) space.

�

D Warm-up example: Implement Λ4 using 8 ancillary qubits

In this section, we will show how to implement Λ4 with 8 ancillary qubits based on a Gray code, which

can help to understand the general case. Our construction of quantum circuit for Λ4 is shown in Figure

9. All the parameters αs for s ∈ {0, 1}4 are defined in Eq. (6). In Figure 9, the first four qubits initialized

as |x〉 := |x1x2x3x4〉 constitute the input register; the next four qubits form the copy register; and the last

four qubits form the phase register. All qubits in the copy and the phase register are initialized to |0〉.
For any 4-bit string s = s1s2s3s4 ∈ {0, 1}4, s1s2 is the prefix and s3s4 is the suffix. In Step 1-2, we

make two copies of prefix |x1〉 , |x2〉 into the copy register, i.e.,

|x1x2x3x4〉
︸      ︷︷      ︸

input register

|0000〉
︸ ︷︷ ︸

copy register

→ |x1x2x3x4〉 |x1x2x1x2〉 .(Step 1-2)
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15 16
|x1〉 • •

Inverse

Stage

|x2〉 • •
|x3〉 •
|x4〉 •
|0〉 • • • • • • • •
|0〉 • • • • • • •
|0〉 • • •
|0〉 • • • •
|0〉 R(α0010) R(α0011) R(α0001)

|0〉 R(α1000) R(α1010) R(α1011) R(α1001)

|0〉 R(α0100) R(α0101) R(α0111) R(α0110)

|0〉 R(α1100) R(α1101) R(α1111) R(α1110)

Figure 9: Implementation of Λ4 with 8 ancillary qubits. The first 4 qubits form the input register, the

next 4 qubits form the copy register and the last 4 qubits form the phase register. Step 1-2 are Prefix

Copy Stage; Step 3-5 are Gray Initial Stage; Step 6-9 are Suffix Copy Stage; Step 10-15 are Gray Path

Stage; Step 16 is Inverse stage. All parameters αs of phase gate R(αs) for s ∈ {0, 1}4 are determined by

Eq. (6). Step 16 consists of inverse quantum circuits of Step 14,12,10,9,8,7,6,4,3,2 and 1 in that order.

Step 1-15 are quantum circuits of depth 1 and Step 16 is quantum circuits of depth 11.

In Step 3-5, we generate all 4-bit strings whose suffixes are all 00 in the phase register by CNOT gates.

Namely, we realize the following transformation

input register
︷      ︸︸      ︷

|x1x2x3x4〉
copy register
︷      ︸︸      ︷

|x1x2x1x2〉
phase register
︷ ︸︸ ︷

|0000〉
→ |x1x2x3x4〉 |x1x2x1x2〉
|〈0000, x〉, 〈1000, x〉, 〈0100, x〉, 〈1100, x〉〉 (Step 3-4)

→e
i
∑

s∈{0,1}2 〈s00,x〉αs00 |x1x2x3x4〉 |x1x2x1x2〉
|〈0000, x〉, 〈1000, x〉, 〈0100, x〉, 〈1100, x〉〉 . (Step 5)

In Step 6-9, we transform the copy register to initial state and make two copies of suffix x3x4:

input register
︷      ︸︸      ︷

|x1x2x3x4〉
copy register
︷      ︸︸      ︷

|x1x2x1x2〉
→ |x1x2x3x4〉 |0000〉 (Step 6-7)

→|x1x2x3x4〉 |x3x4x3x4〉 . (Step 8-9)

Up to now, we have generated all prefixes for suffix “00”, and next we need to generate all the other

4-bit strings. In order to reduce the number of CNOT gates, we consider two forms of 2-bit Gray code.

The 1-Gray code and 2-Gray code starting from 00 are

00, 10, 11, 01 and 00, 01, 11, 10.

If in 1-Gray code and 2-Gray code, we list all the bits changed between adjacent strings, we get two lists:

1, 2, 1 and 2, 1, 2. To obtain parallelism, in the first and second qubit in the phase register we generate

suffixes 00, 10, 11, 01 (1-Gray code) in that order. In the third and fourth qubit in the phase register we
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generate suffixes 00, 01, 11, 10 (2-Gray code) in that order. In Step 10-15, we implement the following

transformation

e
i
∑

s∈{0,1}2 〈s00,x〉αs00 |x1x2x3x4〉 |x3x4x3x4〉
|〈0000, x〉, 〈1000, x〉, 〈0100, x〉, 〈1100, x〉〉

→e
i
∑

s∈{0,1}4−{04}〈s,x〉αs |x1x2x3x4〉 |x3x4x3x4〉
|〈0001, x〉, 〈1001, x〉, 〈0110, x〉, 〈1110, x〉〉 (Step 10-15)

=eiθ(x) |x1x2x3x4〉 |x3x4x3x4〉
|〈0001, x〉, 〈1001, x〉, 〈0110, x〉, 〈1110, x〉〉 .

Every step can be realized by a quantum circuit in depth 1. Step 16 consists of inverse quantum circuits

of Step 14,12,10,9,8,7,6,4,3,2 and 1 in order. The total depth of Step 16 is 11. It transforms copy register

and phase register to their initial states. Therefore, it implements the following transformation

eiθ(x) |x1x2x3x4〉 |x3x4x3x4〉
|〈0001, x〉, 〈1001, x〉, 〈0110, x〉, 〈1110, x〉〉

→eiθ(x) |x〉 |0000〉 |0000〉 (Step 16)

As discussed above, the quantum circuit in Figure 9 is an implementation of Λ4 with 8 ancillary qubits.

E Proof of Lemma 15

Lemma 15 Let t = ⌊log m
2
⌋ and ℓ = 2t. The set {0, 1}n can be partitioned into a 2-dimensional array

{s( j, k) : j ∈ [ℓ], k ∈ [2n/ℓ]} of n-bit strings, satisfying that

1. Strings in the first column {s( j, 1) : j ∈ [ℓ]} have the last (n − t) bits being all 0, and strings in

each row {s( j, k) : k ∈ [2n/ℓ]} share the same first t bits.

2. ∀ j ∈ [ℓ],∀k ∈ [2n/ℓ − 1], s( j, k) and s( j, k + 1) differ by 1 bit.

3. For any fixed k ∈ [2n/ℓ − 1], and any t′ ∈ {t + 1, ..., n}, there are at most
(

m
2(n−t)

+ 1
)

many j ∈ [ℓ]

s.t. s( j, k) and s( j, k + 1) differ by the t′-th bit.

Proof. Consider each n-bit string as two parts, a t-bit prefix followed by an (n − t)-bit suffix. We

let {s( j, 1) : j ∈ [ℓ]} run over all ℓ possible prefixes, and for each fixed j ∈ [ℓ], the collection of

{s( j, k) : k ∈ [2n/ℓ]} run over all possible suffixes. Thus {s( j, k) : j ∈ [ℓ], k ∈ [2n/ℓ]} form a partition of

{0, 1}n, and the first condition is satisfied.

Now for the j-th set of suffixes {s( j, k) : k ∈ [2n/ℓ]}, we identify it with {0, 1}n−t, and apply the

( j′, n − t)-Gray code and Lemma 7 to it, where j′ = (( j − 1) mod (n − t)) + 1 ∈ {1, ..., n − t}. For any

k ∈ [2n/ℓ − 1] and any t′ ∈ {t + 1, ..., n}, let us see how many j ∈ [ℓ] have that s( j, k) and s( j, k + 1) differ

by bit t′. When j runs over [n − t], s( j, k) and s( j, k + 1) differ by bit t′ exactly once. When j runs over

{n − t + 1, ..., 2(n − t), s( j, k) and s( j, k + 1) differ by bit t′ again exactly once. Repeating this we can see

that when j runs over all [ℓ], s( j, k) and s( j, k + 1) differ by bit t′ for at most ⌈ℓ/(n − t)⌉ ≤ m/2(n − t) + 1

times. �

F Proof of Lemma 19

Lemma 19 The depth and size of the Inverse Stage are at most O(log m + 2n/m) and m
2
+ nm

2
+m + 2n =

2n + 3m+nm
2

. The effect of this stage is

|x〉 |xsu f 〉 | f[ℓ],2n/ℓ〉
UInverse−−−−−→ |x〉 |0m/2〉 |0m/2〉 .
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Proof. The depth is just the summation of the CNOT depth of the first four stages, which is O
(

log m +

2 log m + 2 log m + 2n/ℓ
)

= O
(

log m + 2n/m
)

. The analyze of size is similar by adding up the sizes in

previous stages. The effect is shown as follows, which holds by Lemma 18, Eq. (11), Eq. (9) and Eq.

(7).

|x〉 |xsu f 〉 | f[ℓ],2n/ℓ〉
U
†
2
···U†

2n/ℓ−−−−−−−→ |x〉 |xsu f 〉 | f[ℓ],1〉
Ucopy,1U

†
copy,2

−−−−−−−−−−→

|x〉 |xpre〉 | f[ℓ],1〉
U
†
1−−→ |x〉 |xpre〉 |0

m
2 〉

U
†
copy,1

−−−−−→ |x〉 |0
m
2 〉 |0

m
2 〉

�

G Proof of Lemma 20

Lemma 20 The circuit implements the operation in Eq. (3) in depth O(log m + 2n/m) and in size

3 · 2n + nm + 7
2
m.

Proof. For the depth, simply adding up the depth and the size of the five stages gives the bound. Next we

analyze the operation step by step as follows. The three registers are the input, copy and phase registers,

respectively.

|x〉 |0m/2〉 |0m/2〉
Ucopy,1

−−−−−→ |x〉 |xpre〉 |0m/2〉 (Eq. (7))

UGrayInit

−−−−−−→ e
i
∑

j∈[ℓ]
f j,1(x)αs( j,1)

|x〉 |xpre〉 | f[ℓ],1〉 (Eq. (8))

Ucopy,2U
†
copy,1

−−−−−−−−−−→ e
i
∑

j∈[ℓ]
f j,1(x)αs( j,1)

|x〉 |xsu f 〉 | f[ℓ],1〉 (Eq. (11))

R2U2−−−−→ e

i
∑

j∈[ℓ]
k∈[2]

f j,k (x)αs( j,k)

|x〉 |xsu f 〉 | f[ℓ],2〉 (Eq. (12))

...

R 2n

ℓ
U 2n

ℓ−−−−−−→ e

i
∑

j∈[ℓ]
k∈[ 2n

ℓ
]

f j,k (x)αs( j,k)

|x〉 |xsu f 〉 | f[ℓ], 2n

ℓ
〉 (Eq. (12))

= e
i
∑

s∈{0,1}n
〈x,s〉αs

|x〉 |xsu f 〉 | f[ℓ],2n/ℓ〉 (Lem 15)

= eiθ(x) |x〉 |xsu f 〉 | f[ℓ],2n/ℓ〉 (Eq. (6))

UInverse−−−−−→ eiθ(x) |x〉 |0m/2〉 |0m/2〉 (Eq. (13))

= Λn |x〉 |0m/2〉 |0m/2〉

�

H Construction of linearly independent sets

What remains for completing the Generate Stage is the construction of sets T (1), T (2), . . . , T (ℓ), which we

will show next.

Lemma 40. There exist sets T (1), T (2), · · · , T (ℓ) ⊆ {0, 1}n − {0n}, for some integer ℓ ≤ 2n+2

n+1
− 1, such that:

1. For any i ∈ [ℓ], |T (i)| = n;

2. For any i ∈ [ℓ], the Boolean vectors in T (i) = {t(i)

1
, t(i)

2
, · · · , t(i)

n } are linearly independent over F2;
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3.
⋃

i∈[ℓ] T (i) = {0, 1}n − {0n}.

Proof. For any n-bit vector x ∈ {0, 1}n, let S x = {x ⊕ e1, x ⊕ e2, · · · , x ⊕ en}. Firstly, we construct a

set L ⊆ {0, 1}n which satisfies |L| ≤ 2n+1
n+1

and {0, 1}n = (
⋃

x∈L S x) ∪ L. Let k = ⌈log (n + 1)⌉. For

t ∈ [n], denote the k-bit binary representation of integer t by tk · · · t2t1, where t1, . . . , tk ∈ {0, 1} and

t =
∑k

i=1 ti2
i−1. We use a bar to denote the corresponding column vector, i.e.

t = [t1, t2, . . . , tk]T ∈ {0, 1}k.

Define a k × n Boolean matrix H by concatenating vectors 1, 2, · · · , n together, i.e.

H = [1, 2, · · · , n] ∈ {0, 1}k×n.

Note that the k-dimensional identity matrix Ik = [20, 21, . . . , 2k−1] is a submatrix of H, therefore H is

full row rank, i.e. rank(H) = k. Define sets

L(0) = {x ∈ {0, 1}n : Hx = 0k},
L(1) = {x ∈ {0, 1}n : Hx = 1k}, (26)

and

A(0) = {x ∈ {0, 1}n : (Hx)k = 0},
A(1) = {x ∈ {0, 1}n : (Hx)k = 1}. (27)

For each x ∈ {0, 1}n, the last bit of Hx is either 0 or 1, thus A(0) ∪ A(1) = {0, 1}n. Also note that for each

b ∈ {0, 1}, L(b) requires all bits being b and A(b) only requires the last bit being b, thus L(b) ⊆ A(b).

Now we will show

A(0) ⊆ L(0) ∪
(

∪x∈L(0) S x

)

and A(1) ⊆ L(1) ∪
(

∪x∈L(1)S x

)

.

For any y ∈ A(0) − L(0), consider t = Hy: Since it satisfies tk = 0 and tk−1 · · · t1 , 0k−1, we have that

1 ≤ t ≤
k−1∑

i=1

2i−1 < 2k−1 = 2⌈log(n+1)⌉−1 < 2log(n+1) = n + 1.

Therefore, 1 ≤ t ≤ n, and we can thus use Het = t to obtain the following equality

H(y ⊕ et) = Hy ⊕ Het = t ⊕ t = 0k.

Therefore, y ⊕ et ∈ L(0). That is, for any y ∈ A(0) − L(0), there exists an x ∈ L(0) s.t. y = x ⊕ et for some

t ∈ [n]. Hence,

A(0) ⊆ L(0) ∪
(

∪x∈L(0), t∈[n] {x ⊕ et}
)

= L(0) ∪
(

∪x∈L(0)S x

)

.

For any y ∈ A(1) − L(1), t = Hy satisfies tk = 1 and tk−1...t1 , 1k−1. It looks symmetric to the

A(0) − L(0) case but there is a technicality that the corresponding integer t may be outside the range [n].

To remedy this, define t′ = t ⊕ 1k (and let t′ be the integer corresponding to vector t′). Now that t′k = 0

and t′
k−1
...t′

1
, 0k−1, and we know t′ ∈ [n]. Thus we can again get Het′ = t′ and, in turn,

H(y ⊕ et′) = Hy ⊕ Het′ = t ⊕ t′ = t ⊕ t ⊕ 1k = 1k.

Therefore, y ⊕ et′ ∈ L(1), and

A(1) ⊆ L(1) ∪
(

∪x∈L(1), t′∈[n] {x ⊕ et′}
)

= L(1) ∪
(

∪x∈L(1)S x

)

.
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Let L = L(0) ∪ L(1). We have

{0, 1}n = A(0) ∪ A(1) ⊆ L(0) ∪
(

∪x∈L(0)S x

)

∪ L(1) ∪
(

∪x∈L(1)S x

)

= L ∪ (∪x∈LS x) ⊆ {0, 1}n.

Recall that rank(H) = k over field F2, the size of solution set L(b) is |L(b)| = 2n−k = 2n−⌈log(n+1)⌉ ≤ 2n

n+1
,

for each b ∈ {0, 1}. Thus |L| = |L(0)| + |L(1)| ≤ 2n+1

n+1
.

We have constructed a set L ⊆ {0, 1}n of size at most 2n+1

n+1
satisfying L ∪ (∪x∈LS x) = {0, 1}n. We will

now use this set L to construct ℓ ≤ 2n+2

n+1
− 1 sets T (i) which satisfy the three properties in the statement of

the present lemma.

Since 0n is a solution of Hx = 0k, it holds that 0n ∈ L(0) ⊆ L. Note that the vectors in S 0n =

{e1, e2, . . . , en} are linearly independent. For any x ∈ L and x , 0n, let us construct two sets of linearly

independent vectors S
(0)
x and S

(1)
x . Since rank[x⊕e1, x⊕e2, · · · , x⊕en] ≥ n−1 over field F2, we can select

n − 1 linearly independent vectors from S x to form a set S
(0)
x ⊆ S x. Let S

(1)
x = (S x − S

(0)
x − {0n}) ∪ {x}.

It is not hard to verify that if x = e j for some j ∈ [n], then S
(1)
x = {x} = {e j}; if x < {0n, e1, . . . , en}, then

S
(1)
x = {x, x⊕e j} for some j ∈ [n]. In any case, the vector(s) in S

(1)
x are linearly independent (the same for

S
(0)
x ), and it holds that S

(0)
x ∪S

(1)
x = S x∪{x}−{0n}. Thus for each b ∈ {0, 1}, we can always extend the set

S
(b)
x to T

(b)
x of n linearly independent vectors by adding some vectors. Recalling {0, 1}n = (∪x∈LS x) ∪ L,

we have

{0, 1}n − {0n}
= (∪x∈LS x) ∪ L − {0n}
= ∪x∈L(S x ∪ {x}) − {0n}
=
(

∪x∈L−{0n}(S x ∪ {x} − {0n})
)

∪ S 0n

=
(

∪x∈L−{0n}(S
(0)
x ∪ S

(1)
x )
)

∪ S 0n

=
(

∪x∈L−{0n}S
(0)
x

)

∪
(

∪x∈L−{0n}S
(1)
x

)

∪ S 0n

⊆
(

∪x∈L−{0n}T
(0)
x

)

∪
(

∪x∈L−{0n}T
(1)
x

)

∪ S 0n

⊆ {0, 1}n − {0n}.

Now collect {T (0)
x : x ∈ L − {0n}}, {T (1)

x : x ∈ L − {0n}} and S 0n as our sets T (1), . . . , T (ℓ). Since |L| ≤ 2n+1

n+1

and 0n ∈ L, the collection contains ℓ ≤ 2 · (2n+1

n+1
− 1) + 1 = 2n+2

n+1
− 1 sets, each consisting of n linearly

independent vectors, and the collection of all these vectors is exactly {0, 1}n − {0n}. This completes the

proof. �
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I Correctness of circuit framework in Figure 4

In this section, we shown the correctness of circuit framework in Figure 4. For any input state |x〉, the

quantum circuit (Λrc
⊗ R)GℓGℓ−1 · · · G1 makes the following sequence of operations.

|x〉 = |xcontrol〉 |y(0)〉
G1−−→ ei

∑

s∈F1
〈s,x〉αs |xcontrol〉 |y(1)〉

G2−−→ ei
∑

s∈F1∪F2
〈s,x〉αs |xcontrol〉 |y(2)〉

...

Gℓ−−→ e
i
∑

s∈
⋃

k∈[ℓ] Fk
〈s,x〉αs |xcontrol〉 |y(ℓ)〉

Irc⊗R−−−−→ e
i
∑

s∈⋃k∈[ℓ] Fk
〈s,x〉αs |xcontrol〉 |y(0)〉

Λrc⊗Irt−−−−−→ e
i
∑

s∈(
⋃

k∈[ℓ] Fk)∪
(

{c0rt }c∈{0,1}rc−{0rc }
)〈s,x〉αs

|xcontrol〉 |y(0)〉
= ei

∑

s∈{0,1}n−{0n}〈s,x〉αs |xcontrol〉 |y(0)〉
= eiθ(x) |xcontrol〉 |y(0)〉
= eiθ(x) |x〉

The first equation holds by Eq. (14). For arbitrary k ∈ [ℓ], unitary transformation Gk holds by Eq.(17)

and F j ∩ Fk = ∅, for j ∈ [k − 1]. Unitary transformation R holds by Eq. (18). Unitary transformation

Λrc
holds by Eq. (19). The last two equations hold by Eq. (16) and Eq. (6)), respectively.

J Proof of Lemma 26

Lemma 26 The quantum circuit defined above is of depth O(2rc) and of size rc2rc+1, and implements

Gray Path Stage UGrayPath in Eq. (22).

Proof. We first show the correctness. For each p ∈ [2rc ], let us define a set F
(p)

k
by

F
(p)

k
=
{

s : s ∈ Fk and s = ci
pt

(k)
i

for some i ∈ [rt]
}

. (28)

By definition of Fk in Eq. (15), the collection of F
(p)

k
’s satisfy

F
(i)

k
∩ F

( j)

k
= ∅ for all i , j ∈ [2rc ], (29)

Fk =
⋃

p∈[2rc ]

F
(p)

k
. (30)

Now we can see how the Gray Path Stage UGrayPath in Eq. (22) is realized by the above quantum circuit

C1,C2, . . . ,C2rc+1 step by step as follows. For j ∈ [2rc ], define | f j〉 := |〈c1
j
t
(k)

1
, x〉, 〈c2

j
t
(k)

2
, x〉, · · · , 〈crt

j
t
(k)
rt
, x〉〉.
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Note that | f1〉 = |〈0rc t
(k)

1
, x〉, 〈0rc t

(k)

2
, x〉, · · · , 〈0rc t

(k)
rt
, x〉〉 since ci

1
= 0rc for all i ∈ [rt].

|xcontrol〉 |y(k)〉
= |xcontrol〉 | f1〉 (Eq. (14))

C1−−→ e
i
∑

s∈F(1)
k

〈s,x〉αs

|xcontrol〉 | f1〉 (Eq. (28))

C2−−→ e
i
∑

s∈F(1)
k
∪F

(2)
k

〈s,x〉αs

|xcontrol〉 | f2〉 (Eq. (28),(29))

...

C2rc−−−→ e
i
∑

s∈⋃p∈[2rc ] F
(p)
k

〈s,x〉αs

|xcontrol〉 | f2rc 〉 (Eq. (28), (29))

= ei
∑

s∈Fk
〈s,x〉αs |xcontrol〉 | f2rc 〉 (Eq. (30))

C2rc+1−−−−−→ e
i
∑

s∈Fk
〈s,x〉αs |xcontrol〉 | f1〉

= ei
∑

s∈Fk
〈s,x〉αs |xcontrol〉 |y(k)〉 (Eq. (14))

Next we analyze the depth. Phase 1 consists of rotations applied on different qubits in the target

register, thus can be made in a single depth. In each phase p ∈ {2, 3, . . . , 2rc}, since ci
p−1

and ci
p differ by

only 1 bit, one CNOT gate suffices to implement the function 〈ci
pt

(k)

i
, x〉 from 〈ci

p−1
t
(k)

i
, x〉 in the previous

phase. The control and target qubit of this CNOT gate is the hip-th qubit in control register and the i-th

qubit in target register. According to Eq. (23), indices h1p, h2p, . . . , hrt p of control qubits are all different,

and therefore, all the CNOT gates in step p.1 can be implemented in depth 1. The rotations in step p.2

are on different qubits and thus fit in one depth as well. Similarly, phase 2rc + 1 can also be implemented

in depth 1. Thus the total depth of Gray Path Stage is at most 1 + 2 · (2rc − 1) + 1 = 2 · 2rc . The size of

Gray Path Stage is at most rc · 2 · 2rc = rc2rc+1. �

K Proof of Lemma 28

The Toffoli gate is a 3-qubit CCNOT gate where we flip the basis |0〉 , |1〉 of (i.e. apply X gate to) the

third qubit conditioned on the first two qubits are both on |1〉. This can be extended to an n-qubit Toffoli

gate, which applies the X gate to the last qubit conditioned on the first (n− 1) qubits all being on |1〉. An

n-qubit Toffoli gate can be implemented by a circuit of O(n) size and depth [24].

Lemma 41. An n-qubit Toffoli gate can be implemented by a quantum circuit of depth and size O(n)

without ancillary qubits.

The next result we need says that cascading CNOT gates with the same target qubit can be exponen-

tially compressed [55].

Lemma 42. Let C be a quantum circuit consisting of n CNOT gates with the same target qubit and

distinct controlled qubits. Then C can be compressed to O(log n) depth and O(n) size without using

ancillary qubits.

Recall the description of Lemma 28.

Lemma 28 The following unitary transformation on 2n qubits

|ei〉 → |i〉 |02n−n〉 , for all i ∈ {0} ∪ [2n − 1], ei ∈ {0, 1}2
n

,

can be implemented by a quantum circuit using single-qubit gates and CNOT gate with 2n+1 ancillary

qubits, of depth O(n) and size O(2n).

Proof. We will implement Eq. (24) with 2n+1 ancillary qubits in three steps:
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Step 1: |ei〉
︸︷︷︸

2n

qubits

|02n+1〉 → |02n〉 |es〉
︸︷︷︸

2n/2

qubits

|et〉
︸︷︷︸

2n/2

qubits

|02n+1−2·2n/2〉 for all s, t ∈ {0} ∪ [2n/2 − 1] and i = s · 2n/2 + t.

Step 2: |02n〉 |es〉 |et〉 |02n+1−2·2n/2〉 → |02n〉 |i〉 |02n+1−n〉 for all s, t ∈ {0} ∪ [2n/2 − 1] and i = s · 2n/2 + t.

Step 3: |02n〉 |i〉 |02n+1−n〉 → |i〉 |03·2n−n〉 for all i ∈ {0} ∪ [2n − 1].

In these three steps, the first 2n qubits are called register A. The last 2n+1 are ancillary qubits, which

are initialized as |0〉 and called register B. Let the first 2n/2 qubits of register B be register B1 and the

second 2n/2 qubits of register B be register B2.

Firstly, we implement Step 1 by a quantum circuit of depth O(n) and size O(2n) with 2n+1 ancillary

qubits. Step 1 consists of two phases.

• Step 1a: |ei〉 |02n+1〉 → |ei〉 |es〉 |et〉 |02n+1−2·2n/2〉 for all s, t ∈ {0} ∪ [2n/2 − 1] and i = s · 2n/2 + t.

Let CNOT i
j,(k)

denote a CNOT gate whose controlled qubit is the i-th qubit of register A, and target

qubit is the j-th qubit of register Bk for k ∈ [2]. Let CNOT i
s,t = CNOT i

s,(1)
CNOT i

t,(2)
. Therefore,

Step 1a can be realized by a CNOT circuit as follows:

2n/2−1∏

s,t=0

CNOT s·2n/2+t
s,t

=





2n/2−1∏

s,t=0

CNOT s·2n/2+t
s,(1)









2n/2−1∏

s,t=0

CNOT s·2n/2+t
t,(2)





=





2n/2−1∏

s=0





2n/2−1∏

t=0

CNOT s·2n/2+t
s,(1)









·





2n/2−1∏

t=0





2n/2−1∏

s=0

CNOT s·2n/2+t
t,(2)









.

For every s ∈ {0} ∪ [2n/2 − 1], all CNOT gates in C′s
def
=
∏2n/2−1

t=0 CNOT s·2n/2+t
s,(1)

have different

controlled qubits and the same target qubit. According to Lemma 42, C′s can be implemented

by a circuit of depth O(n) and size O(2n/2) without ancillary qubits. For all s ∈ {0} ∪ [2n/2 − 1],

C′s act on different qubits. Therefore, they can be paralleled and
∏

s C′s can be implemented by

a circuit of depth O(n) and size O(2n) without ancillary qubits. By similar discussion,
∏

t C′′t
can be implemented by a circuit of depth O(n) and size O(2n) without ancillary qubits, where

C′′t
def
=
∏2n/2−1

t=0 CNOT s·2n/2+t
t,(2)

. So Step 1a can be implemented by a quantum circuit of depth O(n)

and size O(2n) without ancillary qubits.

• Step 1b: |ei〉 |es〉 |et〉 |02n+1−2·2n/2〉 → |02n〉 |es〉 |et〉 |02n+1−2·2n/2〉 for all s, t ∈ {0} ∪ [2n/2 − 1] and

i = s · 2n/2 + t. Let T
s,t
i

denotes a 3-qubit Toffoli gate, whose controlled qubits are the s-th qubit

in register B1 and t-th qubit in register B2, and the target qubit is the i-th qubit in register A. The

unitary transform of Step 1b is realized by applying all Toffoli gates T
s,t

s·2n/2+t
. To reduce the circuit

depth, we make 2n/2 − 1 copies of register B1, B2 in last 2n+1 qubits of register B:

|ei〉 |es〉 |et〉 |02n+1−2·2n/2〉 → |ei〉 |es〉 |et〉 · · · |es〉 |et〉
︸                ︷︷                ︸

2n/2 copies of |es〉|et〉

for all s, t ∈ {0} ∪ [2n/2 − 1] and i = s · 2n/2 + t. This transformation can be parallelized to depth

O(n) (by Lemma 14) and size O(2n). Because there are 2n/2 copies of |es〉 |et〉, all Toffoli gates

T
s,t

s·2n/2+t
are on distinct control and target qubits, thus can be executed in parallel in depth O(1).

Finally, restore the last 2n+1 − 2 · 2n/2 qubits of register B to all-zero state in O(n) depth. Overall,

Step 1b can be implemented by a quantum circuit of depth O(n) and size O(2n) with 2n+1 ancillary

qubits.
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Secondly, Step 2 can be realized by a circuit of depth O(n) and size O(n2n/2) with O(n2n/2) ancillary

qubits. Now, we rewrite the transformation of Step 2:

|02n〉 |es〉 |et〉 |02n+1−2·2n/2〉 → |02n〉 |s〉
︸︷︷︸
n
2

qubits

|t〉
︸︷︷︸
n
2

qubits

|02n+1−n〉

for all s, t ∈ {0} ∪ [2n/2 − 1]. If we can realize transformation

|es〉 |0k〉 → |s〉 |02k〉 , for es ∈ {0, 1}2
k

, s ∈ {0} ∪ [2k − 1] (31)

by a quantum circuit of depth O(k) and size O(k2k) with k2k ancillary qubits, then we can implement

Step 2 by a quantum circuit of depth O(n) and size O(n2n/2) with (n/2)2n/2 ancillary qubits.

We will implement Eq. (31) with k2k ancillary qubits in three steps:

Step 2a: |es〉 |0k〉 |0k2k 〉 → |es〉 |s〉 |0k2k〉 for all s ∈ {0} ∪ [2k − 1];

Step 2b: |es〉 |s〉 |0k2k 〉 → |02k〉 |s〉 |0k2k〉 for all s ∈ {0} ∪ [2k − 1];

Step 2c: |02k〉 |s〉 |0k2k 〉 → |s〉 |02k〉 |0k2k 〉 for all s ∈ {0} ∪ [2k − 1].

The first 2k qubits are called register A and the second n qubits are called register B. The last k2k qubits

are ancillary qubits, which are called register C. Let CNOT s
j

denote a CNOT gate, whose controlled

qubit is the s-th qubit in register A and target qubit is the j-th qubit in register B for all i ∈ {0} ∪ [2k − 1]

and j ∈ {0} ∪ [n − 1]. Define CNOT s
S s

def
=
∏

j∈S s
CNOT s

j
, where S s

def
=
{

j|s j = 1 for j ∈ {0} ∪ [k − 1]
}

.

• Step 2a: Firstly, we implement Step 2a by a quantum circuit with k2k ancillary qubits of depth

O(k). It can be easily verified that Step 2a can be implemented by a CNOT circuit

∏

s∈{0}∪[2k−1]

CNOT s
S s
=

∏

s∈{0}∪[2k−1]

∏

j∈S s

CNOT s
j =

∏

s∈{0}∪[k−1]

∏

s:s∈{0}∪[2k−1],s j=1

CNOT s
j .

For every j ∈ {0} ∪ [k − 1], CNOT circuit C j
def
=
∏

s:s∈{0}∪[2k−1],s j=1 CNOT s
j

consists of 2k−1 CNOT

gates. All these CNOT gates have distinct control qubits and the same target qubit. According to

Lemma 42, C j can be parallelized to depth O(k) and size O(2k) without ancillary qubits. Step 2a

consists of C0,C1, . . . ,Ck−1 and the target qubits of CNOT gates in Ct and Cℓ are different if t , ℓ.

In order to reduce the depth of Step 2a, we make k copies of register A in ancillary qubits (register

C). Then C0,C1, . . . ,Ck−1 can be implemented simultaneously using the k copies of register A.

Thus
∏k−1

j=0 C j can be implemented simultaneously in depth O(k) and size O(k2k). Finally, we

reset register C back to 0 in depth O(k) and size O(2k). Step 1 is summarized as follows:

|es〉 |0k〉 |0k2k〉
→ |es〉 |0k〉 |es〉 · · · |es〉

︸      ︷︷      ︸

k copies of |es〉

(Lemma 14, depth O(log k), size O(k2k))

→|es〉 |s〉 |es〉 · · · |es〉 (Lemma 42, depth O(k), size O(k2k))

→|es〉 |s〉 |0k2k 〉 (Lemma 14, depth O(log k), size O(k2k))

The total depth and size of Step 2a are O(log k)+O(k)+O(log k) = O(k) and O(k2k), respectively.

• Step 2b: Secondly, we implement Step 2b by a quantum circuit with k2k ancillary qubits of depth

O(k) and size O(k2k). Define an (k + 1)-qubit quantum gate Tofs acting on register B and the s-th

qubit in register A:

Tofs |x〉 | j〉 = |x ⊕ δs j〉 | j〉 , for s, j ∈ {0} ∪ [2k − 1],
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where |x〉 is the s-th qubit in register A and | j〉 is in register B. That is, conditioned on the state in

register B is |s〉, Tofs flips the s-th qubit in register A. Step 2b is just
∏2k−1

s=0 Tofs.

Any Tofs can be implemented by [I ⊗ (⊗k−1
j=0

Xs j)]Tof2k−1[I ⊗ (⊗k−1
j=0

Xs j )], where Toffoli gate Tof2k−1

can be implemented in depth O(k) and size O(k) without ancillary qubits (Lemma 41). Therefore

Tofs can be realized by an O(k)-depth and O(k)-size quantum circuit without ancillary qubits. To

realize Tof0, . . . ,Tof2k−1 simultaneously, we make 2k copies of register B in register C depth O(k)

and O(k2k). Then Tof0, . . . ,Tof2k−1 can be implemented simultaneously by using these copies.

Finally, we reset register C back to 0 in depth O(k) and size O(k2k). Step 2b can be summarized

as follows:

|es〉 |s〉 |0k2k 〉
→ |es〉 |s〉 |s〉 · · · |s〉

︸   ︷︷   ︸

2k copies of |s〉

(Lemma 14, depth O(k), size O(k2k))

→|02k〉 |s〉 |s〉 · · · |s〉 (depth O(k), size O(k2k))

→|02k〉 |s〉 |0k2k〉 (Lemma 14, depth O(k), size O(k2k))

The total depth and size of Step 2b are O(k) + O(k) + O(k) = O(k) and O(k2k), respectively.

• Step 2c: Thirdly, for Step 2c, we swap the first k qubits in register A and register B by k swap

gates. Hence, Step 2c can be implemented in depth O(1) and size O(k).

Thirdly, for Step 3, we swap the first n qubit in register A and register B in depth O(1) and size O(n)

without ancillary qubits by swap gates. �

L Circuit depth for general unitary synthesis

In Eq. (2), we called a (2 × 2)-block diagonal matrix V j a j-qubit UCG. In the view of a circuit, this is

a multiple controlled gate where the target qubit is the last one and the conditions are on the first j − 1

qubits. But this target qubit can actually be any one, and all the implementations in Section 4 and Section

5 still apply. Let Vn
k

denote an n-qubit UCG whose index of target qubit is k. By repeatedly applying

cosine-sine decomposition, one can factor an arbitrary unitary matrix U into a sequence of UCGs as

follows [27]. Recall that the Ruler function ζ(n) is defined as ζ(n) = max{k : 2k−1|n}.

Lemma 43. Any n-qubit unitary matrix U ∈ C2n×2n

can be decomposed as U = Vn
n (0)·∏2n−1−1

i=1 Vn
n−ζ(i)

(i)·
Vn

n (2n−1), where different i in Vn
k
(i) denote different forms of n-qubit UCGs despite the same target qubit

k.

The proofs of Theorem 31 and Corollary 32 in Section 7 are shown as follows.

Theorem 31 Any unitary matrix U ∈ C2n×2n

can be implemented by a quantum circuit of depth O
(

n2n +

4n

m+n

)

and size O(4n) with m ≤ 2n ancillary qubits.

Proof. Based on Eq. (4), Lemma 10 and Lemma 11, given m ≤ 2n ancillary qubits, any n-qubit UCG

Vn
k
(i) can be implemented by a circuit of size O(2n) and depth O

(

n + 2n

n+m

)

. Since Lemma 43 shows

that any U can be decomposed into O(2n) many n-qubit UCGs, a circuit can simply implement them

sequentially to realize U, yielding a circuit of size O(2n) ·O(2n) = O(4n) and depth O(2n) ·O
(

n+ 2n

m+n

)

=

O
(

n2n + 4n

m+n

)

. �

Corollary 32 The minimum circuit depth DUnitary(n,m) for an arbitrary n-qubit unitary with m ancillary

qubits satisfies





DUnitary(n,m) = Θ
(

4n

m+n

)

, if m = O(2n/n),

DUnitary(n,m) ∈
[

Ω(n),O(n2n)
]

, if m = ω(2n/n).
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Proof. The lower bound for the number of CNOT gates is Ω(4n) by a similar argument. The only

difference is that with m ancillary qubits, the number of single-qubit gates right before the output is

at most n + m instead of n. We thus have 4k + 3(n + m) ≥ 4n − 1. When m = O
(

2n/n
)

, this still

gives k = Ω(4n). Since each layer can have at most (m + n)/2 CNOT gates, we know that it needs at

least Ω
(

4n

m+n

)

depth for any circuit of n input qubits and m ancillary qubits. Theorem 3 shows a lower

bound Ω(n) for an n-qubit QSP circuit, which is a special case of a circuit for an n-qubit unitary matrix.

Therefore, we get a depth lower bound of Ω
(

max
{

n, 4n

n+m

})

for an n-qubit unitary matrix. Putting the

depth upper bound O
(

n2n+ 4n

n+m

)

and lower bound Ω
(

max
{

n, 4n

n+m

})

together, we complete the proof. �

M Decomposition with Clifford + T gate set

Lemma 44 ( [56]). For ǫ > 0, any rotation Rz(θ) ∈ C2×2 can be ǫ-approximated by a quantum circuit

consisting of O(log(1/ǫ)) many H and T gates, without ancillary qubits.

Based on this lemma, it is not hard to extend our results on the exact implementation of diagonal

unitary matrix Λn to its approximate version (Lemma 45). This in turn gives approximate realization of

UCGs Vn (Lemma 46), state preparation (Corollary 34), and unitary operation (Corollary 35).

Lemma 45. Any n-qubit diagonal unitary matrix Λn can be ǫ-approximated by a quantum circuit of

depth O

(

n +
2n log(2n/ǫ)

m+n

)

, using the Clifford+T gate set with m ancillary qubits.

Proof. In Section 4 and Section 5, our quantum circuits for Λn consist of only CNOT gates and 2n − 1

rotation gates R(α) for α ∈ R. By Lemma 44, every R(α) can be (ǫ/2n)-approximated by O(log(2n/ǫ))

H and T gates up to a global phase. The overall accuracy of the circuit can then be seen from a union

bound.

If m ∈ [2n, 2n], the total circuit depth of Λn is O(log m) + O(log m + log(2n/ǫ)) + O(log m) +

O(2n log(2n/ǫ)/m) = O(log m + 2n log(2n/ǫ)/m) = O(n + 2n log(2n/ǫ)/m). If m ≤ 2n, the depth of

the circuit implementing the diagonal unitary matrix is O(2n log(2n/ǫ)/n). Putting these two results

together, we complete the proof. �

Corollary 46. Any n-qubit UCG Vn can be ǫ-approximated by a quantum circuit using the Clifford+T

gate set, of depth O

(

n +
2n log(2n/ǫ)

m+n

)

with m ancillary qubits.

Proof. From Eq. (4), we can see that any n-qubit UCG can be decomposed into three n-qubit diagonal

unitary matrices, two S gates and two H gates. By Lemma 45, every Λn can be (ǫ/3)-approximated by a

quantum circuit of depth O

(

n +
2n log(3·2n/ǫ)

m+n

)

with m ancillary qubits. Hence, Vn can be ǫ-approximated

by a circuit of depth 3 × O

(

n +
2n log(3·2n/ǫ)

m+n

)

+ 2 + 2 = O

(

n +
2n log(2n/ǫ)

m+n

)

. �

The approximate implementations of state preparation and general unitary matrix are shown in

Corollary 34 and Corollary 35.

Corollary 34 For any n-qubit target state |ψv〉 and ǫ > 0, one can prepare a state |ψ′v〉 which is ǫ-close

to |ψv〉 in ℓ2-distance, by a quantum circuit consisting of {CNOT,H, S , T } gates of depth






O

(
2n log(2n/ǫ)

m+n

)

if m = O(2n/(n log n)),

O(n log n log(2n/ǫ)) if m ∈ [ω(2n/(n log n), o(2n)],

O(n log(2n/ǫ)) if m = Ω(2n),

where m is the number of ancillary qubits.
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Proof. According to Theorem 1, any n-qubit quantum state |ψv〉 can be prepared by a quantum circuit

QS P, using single-gates and CNOT gates, of size c · 2n for some constant c > 0 and depth

d =






O
(

2n

m+n

)

if m = O(2n/(n log n)),

O(n log n) if m ∈ [ω(2n/(n log n), o(2n)],

O(n) if m = Ω(2n),

Based on Eq. (1) and Lemma 44, every single-qubit gate can be (ǫ/c2n)-approximated by a quan-

tum circuit consisting of O(log((2n)/ǫ)) Clifford+T gates. Approximate all single-qubit gates in this

way. The depth of the new quantum circuit QS P′ consisting of Clifford+T gates is d × O(log(2n/ǫ)) =

O(d log(2n/ǫ)). And circuit QS P′ prepare a quantum state |ψ′v〉 satisfying

‖ |ψv〉 − |ψ′v〉 ‖2 = ‖(QS P − QS P′) |0〉⊗n ‖2 ≤
ǫ

c2n
× c2n = ǫ.

�

Corollary 35 Any n-qubit general unitary matrix can be implemented by a quantum circuit, using the

{CNOT,H, S , T } gate set, of depth O

(

n2n +
4n log(4n/ǫ)

m+n

)

with m ancillary qubits.

Proof. Lemma 43 shows that any U ∈ C2n×2n

can be decomposed into 2n − 1 n-qubit UCGs. Ac-

cording to Lemma 46, an n-qubit UCG Vn can be ǫ/(2n − 1)-approximated by a quantum circuit V ′n

consisting of {CNOT,H, S , T } gates in depth O

(

n +
2n log(4n/ǫ)

m+n

)

with m ancillary qubits. Hence, U can

be ǫ-approximated by a quantum circuit in depth O

(

n +
2n log(4n/ǫ)

m+n

)

× (2n+1) = O

(

n2n +
4n log(4n/ǫ)

m+n

)

. �

N Sparse quantum state preparation

A vector v = (v0, v1, . . . , v2n−1) ∈ C2n

is said to be s-sparse if there are at most s nonzero elements in v.

In this section, we consider how to efficiently prepare s-sparse states.

Lemma 47. The unitary transformation defined by

|x1x2 · · · xn〉 |t〉 → |x1x2 · · · xn〉 |
n⊕

i=1

xi ⊕ t〉 (32)

∀x1, . . . , xn, t ∈ {0, 1}, can be implemented in depth O(log(n)).

Proof. The circuit implementation of Eq. (32) is shown in Figure 10. �

x1 • • x1

x2 • • x2

x3 • • x3

x4 • • x4

... • • ...
xn−2 • • xn−2

xn−1 • • xn−1

xn • xn

t
⊕n

i=1
xi⊕t

Figure 10: An O(log(n))-depth circuit implementation of Eq. (32).
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Lemma 48. Suppose that we are given two sets S 1 ⊆ {0, 1}n1 and S 2 ⊆ {0, 1}n2 , both of size s, and also

given a bijection P : S 1 → S 2. Then a unitary transformation satisfying

|x〉 |0n2〉 → |x〉 |P(x)〉 ,∀x ∈ S 1 (33)

can be implemented by a quantum circuit of depth O
(

n2 log(m) +
(n1+log(m))sn1n2

m

)

, using m (≥ 2n1) ancil-

lary qubits.

Proof. Define an (n1 + 1)-qubit unitary Tof
x
a |z〉 |b〉 := |z〉 |a · δxz ⊕ b〉 for any x, z ∈ {0, 1}n1 and a, b ∈

{0, 1}, where δxz = 1 if x = z and δxz = 0 if x , z. Unitary Tof
x
a can be implemented by an n1-qubit

Toffoli gate and at most 2n1 Pauli X gates. According to Lemma 41, Tof
x
a can be implemented in depth

O(n1).

Let {x(1), x(2), . . . , x(s)} be the elements of S 1, and P(x(i)) = y(i). Denote y(i) = y1(i)y2(i) · · · yn2
(i),

and we will compute y(i) bit by bit.

We start by computing y1(i), the first bit of y(i), and then all other bits can be computed similarly.

More precisely, we aim to implement the following unitary transformation U1:

|x(i)〉 |0〉
U1−−→ |x(i)〉 |y1(i)〉 ,∀i ∈ [s].

Unitary U1 can be implemented in 3 steps.

• Step 1: make m
2n1

copies of |x(i)〉 using m
2

ancillary qubits, i.e., implement the following unitary

transformation

|x(i)〉 |0〉 |0m/2〉 → |x(i)〉 |0〉 |x(i)x(i) · · · x(i)〉 ,∀i ∈ [s].

This step can be implemented in depth O(log(m)) by Lemma 14.

• Step 2: implement the following unitary transformation using m
2n1

ancillary qubits

|x(i)〉 |0〉 |x(i)x(i) · · · x(i)〉 |0
m

2n1 〉 → |x(i)〉 |y1(i)〉 |x(i)x(i) · · · x(i)〉 |0
m

2n1 〉 ,∀i ∈ [s].

We divide set S 1 into s
m/2n1

=
2sn1

m
parts S

(1)

1
, . . . , S

(
2sn1

m
)

1
. The size of each part is m

2n1
. For the first

part S
(1)

1
:= {x(i) : i ∈ [ m

2n1
]}, we implement the following unitary transformation:

|x(i)〉 |0〉 |x(i)x(i) · · · x(i)〉 |0
m

2n1 〉 →





|x(i)〉 |y1(i)〉 |x(i) · · · x(i)〉 |0
m

2n1 〉 , if x(i) ∈ S
(1)

1

|x(i)〉 |0〉 |x(i) · · · x(i)〉 |0
m

2n1 〉 , otherwise.
(34)

Namely, we compute y1(i) for those x(i) ∈ S
(1)

1
(and keep other x(i) untouched). This can be

achieved by the following three sub-steps. In step 2.1, we apply unitaries Tof
x(1)

y1(1)
,Tof

x(2)

y1(2)
, . . . ,Tof

x( m
2n1

)

y1( m
2n1

)
.

For each Tof
x(i)

y1(i)
, the control qubits are the i-th copy of x(i) and the target qubit is the i-th qubit of

ancillary qubits (those in |0
m

2n1 〉). Therefore, they can be realized in parallel by a circuit of depth

O(n1). The effect of this step 2.1 is

|x(i)〉 |0〉 |x(i) · · · x(i)〉 |0
m

2n1 〉 → |x(i)〉 |0〉 |x(i) · · · x(i)〉 |0i−1y1(i)0
m

2n1
−i〉 , ∀x(i) ∈ S

(1)

1
.

In step 2.2, we implement the following unitary transformation

|x(i)〉 |0〉 |x(i)x(i) · · · x(i)〉 |0i−1y1(i)0
m

2n1
−i〉 → |x(i)〉 |y1(i)〉 |x(i)x(i) · · · x(i)〉 |0i−1y1(i)0

m
2n1
−i〉 , ∀x(i) ∈ S

(1)

1
.

in depth O(log(m/(2n1))) according to Lemma 47. In step 2.3, we restore the ancillary qubits by

an inverse circuit of step 2.1 of depth O(n1), i.e., we realize the following unitary transformation:

|x(i)〉 |y1(i)〉 |x(i)x(i) · · · x(i)〉 |0i−1y1(i)0
m

2n1
−i〉 → |x(i)〉 |y1(i)〉 |x(i)x(i) · · · x(i)〉 |0

m
2n1 〉 ,∀x(i) ∈ S

(1)

1
.

40



We can verify that step 2.1, 2.2 and 2.3 realize unitary in Eq. (34) by circuit of depth O(n1 +

log(m/n1)) = O(n1 + log(m)). By the same discussion, for every j ∈ [2sn1

m
],

|x(i)〉 |0〉 |x(i)x(i) · · · x(i)〉 |0
m

2n1 〉 → |x(i)〉 |y1(i)〉 |x(i)x(i) · · · x(i)〉 |0
m

2n1 〉 ,∀x(i) ∈ S
( j)

1
. (35)

can be implemented in depth O(n1 + log(m)). In summary, step 2 can be implemented in depth

O
(

n1 + log(m)
)

· 2sn1

m
= O
(

(n1+log(m))sn1

m

)

.

• Step 3: restore the ancillary qubits by an inverse circuit of step 1, of depth O(log(m)).

In summary, unitary U1 can be implement in depth 2 · O(log(m)) + O
(

(n1+log(m))sn1

m

)

= O
(

log(m) +
(n1+log(m))sn1

m

)

. By similar discussion of U1, for all j ∈ [n2], the following unitary U j

|x(i)〉 |0〉
U j

−−→ |x(i)〉 |y j(i)〉 ,∀i ∈ [s].

can be also implemented in depth O
(

log(m) +
(n1+log(m))sn1

m

)

. By applying U1,U2, . . . ,Un2
, we compute

all n2 bits of y(i). This implements unitary in Eq. (33) and the total depth is n2·O
(

log(m)+
(n1+log(m))sn1

m

)

=

O
(

n2 log(m) +
(n1+log(m))sn1n2

m

)

. �

Lemma 49 ( [57]). Any n-qubit s-sparse quantum state can be prepared by a quantum circuit of size

O(ns), using no ancillary qubits.

Theorem 50. For any m ≥ 0, any n-qubit s-sparse quantum state can be prepared by a quantum circuit

of depth O(n log(sn) +
s log(s)n2

n+m
), using m ancillary qubits.

Proof. For simplicity, we assume log(s) is an integer and n′ = log(s). Define S 1 = {0, 1}n
′
, and S 2 to be

all s-sparse strings in {0, 1}n. Let P be any bijection from S 1 to S 2. Any n-qubit s-sparse quantum state

can be represented as |ψ〉 =
∑

x∈{0,1}n′
vx |P(x)〉.

• Case 1: m ≥ 3n. First, we prepare an n′-qubit quantum state

|ψ′〉 =
∑

x∈{0,1}n′
vx |x〉 ,

which can be implemented in depth O((n′)2+ 2n′

n′+m
) = O(log2(s)+ s

log(s)+m
) using m ancillary qubtis

by Lemma 13.

Second, we implement the following unitary transformations and then we complete preparing the

state |ψ〉.
|x0n−n′〉 |0n〉 → |x0n−n′〉 |P(x)〉 (36)

→|0n〉 |P(x)〉 (37)

→|P(x)〉 |0n〉 ,∀x ∈ {0, 1}n′ . (38)

Based on Lemma 48, using m ancillary qubits, Eq. (36) can be implemented in depth O(n log(m)+
(log(s)+log(m))s log(s)n

m
). Eq. (37) can be viewed as a similar process by Lemma 48, though we

need to swap S 1 and S 2 and reverse the direction of P. This can be implemented in depth

O(log(s) log(m) +
(n+log(m))s log(s)n

m
), respectively. Eq. (38) can be implemented by n swap gates

in depth 1. Therefore, if m ≤ s log(s)n

log(s)+log(n)
, the total depth is O(n log(m) +

(log(s)+log(m))s log(s)n

m
) +

O(log(s) log(m) +
(n+log(m))s log(s)n

m
) + 1 = O(n log(sn) +

s log(s)n2

m
). If m >

s log(s)n

log(s)+log(n)
, we use only

s log(s)n

log(s)+log(n)
ancillary qubits and the total depth is O(n log(sn)). Combining these two cases, the

total depth is O(n log(sn) +
s log(s)n2

m
).

• Case 2: m < 3n. If m < 3n, we do not use ancillary qubits. According to Lemma 49, |ψ〉 can be

prepared in depth O(ns).

Combining the above two cases, the circuit depth for |ψ〉 is O(n log(sn) +
s log(s)n2

n+m
). �
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