
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, XXX 2022 1

Statistical Modeling of Soft Error Influence on
Neural Networks

Haitong Huang, Xinghua Xue, Cheng Liu, Ying Wang, Tao Luo, Long Cheng,
Huawei Li, Senior Member, IEEE, and Xiaowei Li, Senior Member, IEEE

Abstract—Soft errors in large VLSI circuits pose dramatic
influence on computing- and memory-intensive neural network
(NN) processing. Understanding the influence of soft errors on
NNs is critical to protect against soft errors for reliable NN
processing. Prior work mainly rely on fault simulation to analyze
the influence of soft errors on NN processing. They are accurate
but usually specific to limited configurations of errors and NN
models due to the prohibitively slow simulation speed especially
for large NN models and datasets. With the observation that
the influence of soft errors propagates across a large number
of neurons and accumulates as well, we propose to characterize
the soft error induced data disturbance on each neuron with
normal distribution model according to central limit theorem
and develop a series of statistical models to analyze the behavior
of NN models under soft errors in general. The statistical models
reveal not only the correlation between soft errors and NN model
accuracy, but also how NN parameters such as quantization and
architecture affect the reliability of NNs. The proposed models
are compared with fault simulation and verified comprehensively.
In addition, we observe that the statistical models that charac-
terize the soft error influence can also be utilized to predict fault
simulation results in many cases and we explore the use of the
proposed statistical models to accelerate fault simulations of NNs.
According to our experiments, the accelerated fault simulation
shows almost two orders of magnitude speedup with negligible
simulation accuracy loss over the baseline fault simulations.

Index Terms—Neural Network Reliability, Fault Simulation,
Fault Analysis, Statistical Fault Modeling

I. INTRODUCTION

Recent years have witnessed the widespread adoption of
neural networks in various applications [26]. Many of the
applications such as autonomous driving, medical diagnosis,
and robot-assisted surgery are safety-critical as failures in these
applications can cause threats to human life and dramatic
property loss [21] [11] [23]. The reliability of neural network
accelerators that are increasingly utilized for their competitive
advantages in terms of performance and energy efficiency [30]
[29] becomes critical to these applications, and must be eval-

The corresponding author is Cheng Liu.
Haitong Huang, Xinghua Xue, Cheng Liu, Ying Wang, and Xiaowei Li

are with both State Kep Lab of Processors (SKLP), Institute of Computing
Technology (ICT), Chinese Academy of Sciences (CAS), Beijing 100190,
China and Department of Computer Science, University of Chinese Academy
of Sciences, Beijing 100190.(e-mail:liucheng@ict.ac.cn)

Huawei Li is with both State Kep Lab of Processors(SKLP), Institute of
Computing Technology (ICT), Chinese Academy of Sciences (CAS), Beijing
100190, China and Peng Cheng Laboratory, Shenzhen, 518055, China.

Tao Luo is with Institute of High Performance Computing, A*STAR,
138632, Singapore.

Long Cheng is with North China Electric Power University, Beijing 102206,
China.

uated and verified comprehensively to ensure the application
safety.

With the continuously shrinking semiconductor feature sizes
and growing transistor density, the influence of soft errors
on large-scale chip designs becomes inevitable [5] [31]. A
variety of analysis work have been conducted to investigate the
influence of soft errors on neural network execution reliability
from distinct angles recently [27] [14] [34] [35] [36] [32]
[13] [20] [6] [12] [18]. For instance, Brandon Reagen et al.
[27] investigated the relationship between fault error rate and
model accuracy from the perspective of models, layers, and
structures. Guanpeng Li et al. [14] experimentally evaluated
the resilience characteristics of deep neural network systems
(i.e., neural network models running on customized accel-
erators) and particularly studied the influence of data types,
values, data reuses, and types of layers on neural network
resilience under soft errors, which further inspires two efficient
protection techniques against soft errors. Yi He et al. [12] had
the major neural network accelerator architectural parameters
considered to obtain more accurate fault analysis. Dawen Xu
et al. [34] [35] explored the influence of persistent faults
on FPGA-based neural network accelerators with hardware
emulation.

Despite the efforts, they mainly rely on a large number of
fault simulation on either software or FPGAs with limited
fault injection configurations. The simulation based analysis is
relatively accurate on specific neural network models and fault
configurations, but the simulation remains rather limited com-
pared to the entire large design space. Hence, there is still a
lack of generality using the simulation based fault analysis. In
fact, some of the simulation results may lead to contradictory
conclusions. For instance, the experiment results in Ares [27]
demonstrate that the model accuracy of typical neural networks
drops sharply when the bit error rate reaches 1× 10−7 while
the experiments in [24] reveal that the model accuracy starts
to drop when the bit error rate is larger than 1 × 10−5. In
fact, both experiments are correct and the difference is mainly
caused by the distinct quantization setups. Although this can
be fixed with more comprehensive fault simulations, the total
number of fault simulations can increase dramatically given
more analysis factors, which will lead to rather expensive
simulation overhead accordingly. Hence, more general analysis
approaches are demanded to gain sufficient understanding of
the influence of soft errors on neural networks.

Moreover, the simulation based fault analysis can be ex-
tremely time-consuming under real-world applications with
large neural networks and datasets, which hinders its use

ar
X

iv
:2

21
0.

05
87

6v
1 

 [
cs

.L
G

] 
 1

2 
O

ct
 2

02
2



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, XXX 2022 2

in practice. Take neural network vulnerability analysis that
locates the most fragile part of an neural network to facili-
tate selectively protection against soft errors as an example.
Suppose we need to select the most fragile k layers of a
neural network with N layers. A straightforward simulation
based approach needs to conduct CkN experiments on the target
test dataset. When N = 153,K = 5, CkN = 654045930.
Assume the neural network fault simulation speed is 50 frame
per second (fps) and 1000 samples are required for accuracy
estimation. The evaluation of a single configuration takes 20s
and the full evaluation takes around 420 years, which generally
can not be afforded. As a result, many existing solutions [36]
can only adopt heuristic algorithms to address this problem
approximately.

In order to achieve more efficient fault analysis of soft
errors on neural network execution, we develop a statistical
model to gain insight of the influence of soft errors on
neural network models with much less experiments or even
no experiments. The basic idea is to view the soft errors
randomly distributed across the neural network processing via
statistical analysis and investigate the influence of soft errors
on the neural network model accuracy. Specifically, we utilize
a normal distribution model to characterize the distribution
of the neurons in neural networks according to central limit
theorem and analyze the computing error distribution induced
by the random soft errors first. On top of the models, we
further investigate the influence of neural network depth, quan-
tization, classification complexity on the resilience of neural
networks under soft errors. At the same time, we verify the
proposed modeling and analysis with fault simulation. Finally,
we further leverage the statistical models to accelerate the
time-consuming fault simulation by performing fault analysis
with intermediate data rather than model accuracy directly.

The contributions of this work can be summarized as
follows.

• We propose a series of statistical models to characterize
the influence of soft errors on neural network processing
for the first time. The models enable relatively general
analysis of neural network model resilience under soft
errors.

• We leverage the statistical models to investigate how the
major neural network parameters such as quantization,
number of layers, and number of classification types
affect the neural network resilience, which can be utilized
to guide the fault-tolerant neural network design.

• With the proposed statistical models, we can also ac-
celerate conventional fault simulation of neural network
processing under soft errors by almost two orders of
magnitude through simplifying the fault injection and re-
placing model accuracy analysis with more cost-effective
intermediate parameter analysis.

• We validate the proposed model based soft error influence
analysis of neural networks and demonstrate significant
fault simulation acceleration with comprehensive experi-
ments.

The rest of this paper is organized as follows. Section 2 briefly
introduces prior fault analysis of neural network models. Sec-

tion 3 illustrates the proposed statistical models for neural net-
work reliability analysis under soft errors. Section 4 presents
the use of the proposed statistical models to characterize the
influence of neural network parameters on neural network
resilience over soft errors. Section 5 mainly demonstrates how
the proposed statistical models can be utilized to accelerate the
fault simulation of neural networks under soft errors. Section
6 concludes this paper.

II. RELATED WORK

Fault simulation is key to understand the influence of
hardware faults on the neural network processing and is the
basis for fault-tolerant neural network model and accelerator
designs [18] [12] [19] [4] [10] in various application scenarios.
For instance, fault simulations in [36] [33] are utilized to in-
vestigate the vulnerability of neural networks and accelerators,
which enables selectively hardware protection against various
hardware faults with minimum overhead. Fault simulations in
[27] [25] [28] are applied to investigate the design trade-offs
between model accuracy loss and computing errors, which can
be leveraged for energy-efficient neural network accelerator
design through approximate computing and voltage scaling.
Hence, a variety of fault simulation work have been developed
in the past few years [19] [4] [33] [9] [15] [22] [17] [37]
[3] [38]. They can generally be divided into two categories
depending on the fault simulation abstraction layers.

First, neuron-wise fault simulation that injects faults to
neurons or weights are mostly widely adopted in prior works
[17] [19] [4] [33] [9] [15] [22] [37] [28] [27] [14] and
have been verified according to [27]. Although faults are
originated from the underlying computing engines, these sim-
ulation frameworks typically adopt abstract bit-flip or stuck-
at faults and include little hardware architecture details. To
further improve the fault analysis precision, Xinghua Xue et
al. [36] developed an operation-level fault analysis framework
such that hardware faults are injected to basic operations
such as multiplication and accumulation, which is utilized to
explore the influence of winograd convolution on resilience of
neural network processing. Yi He et al. [12] had neural net-
work accelerator architectural parameters combined with high-
level simulation of neural network processing with transient
faults to achieve both high-fidelity and high-speed resilience
study of general neural network accelerators. In summary, the
above fault simulation work are mostly built on existing deep
learning frameworks such as PyTorch and TensorFlow and
are flexible for various fault simulations while the parallel
processing capability can be negatively affected by the low-
level fault injection substantially.

The other category is circuit-layer fault simulation that typi-
cally conducts fault simulation on circuit designs at either gate
level or RTL level. It is already well-supported by commercial
EDA tools like TetraMAX and can achieve high simulation
precision, but it can be extremely slow for neural network
accelerators that include a larger number of transistors. An
alternative approach is fault emulation that conducts fault
simulation on FPGAs [16] [8] [34] [35]. Similarly, NVIDIA
SASSIFI [10] developed a fault injection mechanism for GPU



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, XXX 2022 3

and can be utilized for rapid fault analysis of neural networks
on GPUs. Basically, these fault simulation frameworks greatly
improve the fault simulation speed but rely on specific hard-
ware prototypes and architectures which are usually difficult
to scale and modify.

Despite the efforts, simulation-based fault analysis is mainly
applicable to specific setups in terms of neural network mod-
els, target hardware architectures, and fault configurations. A
comprehensive fault analysis requires a huge number of fault
simulations as discussed in Section I which is prohibitively
expensive. As a result, the fault analysis generality is usually
limited. In fact, because of the limited fault simulation setups,
some of the simulation based fault analysis even produces
inconsistent results. For instance, Brandon Reagen et al. [27]
concluded that the resilience of different layers of the neural
network may vary up to 2781×. Nevertheless, Subho S.
Banerjee et al. [2] revealed a different conclusion based on
the Bayesis fault injection and analysis. The problem poses
significant demands for more general and faster fault analysis.

III. SOFT ERROR INDUCED NEURAL NETWORK
COMPUTING ERROR MODELING

In this work, we mainly analyze the influence of soft errors
on neural network processing with modeling to gain insight
of the neural network fault tolerance and guide the fault-
tolerant design of neural network models and accelerators.
Soft errors induced computing errors propagate rapidly across
layers of neural networks and the influence of the different
soft errors is accumulated on neurons of the neural network.
Basically, the influence of random soft errors are distributed
and accumulated on a large number of neurons. Hence, it can
be characterized with a normal distribution model according
to central limit theorem. With the distribution model, we can
further estimate the neural network outputs and the model
accuracy loss eventually, which can be fast and general as
well.

A. Model Notations

Neural networks can be considered as multi-layer non-linear
transformation and the transformation in a layer l can be
formulated as Equation 1 where fl represents the transfor-
mation operation, xl represents the input activations, xl+1

represents the output activations. Particularly, for convolution
neural networks, wl represents weights in layer l, ∗ denotes
convolution or full connection, bl is the bias, and ϕ represents
a non-linear activation function.

xl+1 = fl(xl) = ϕ(xl ∗wl + bl) (1)

While soft errors may happen in any layer of an neural
network and propagate across the neural network layers, we
utilize Equation 2 to characterize the relation between input
activations in layer l and the output activations of the layer
that is m layers behind to facilitate the fault analysis. Note that
xl denotes input activations in layer l and F l+ml (xl) denotes
output activations of layer l +m.

F l+ml (xl) = fl+m(fl+m−1(· · · fl+1(fl(xl)) · · · )) (2)

Soft errors propagate along with layers of the neural net-
work and can cause input variation on all the following layers.
Suppose bit flip errors occur in weights or output activations
at the (l− 1)th layer. The induced variation at the lth layer is
denoted as δl and the variation at the (l+a)th layer is denoted
as ∆l+a

l . These variation can be calculated with Equation 3.
For the variation of the overall neural network outputs induced
by soft errors in layer l, we denote it as ∆N

l where N refers
to the total number of layers in the neural network and the
notation is simplified as ∆l in the rest of this paper.

∆l+1
l = x′

l+1 − xl+1 = fl(xl + δx,l)− fl(xl)
∆l+2
l = x′

l+2 − xl+2 = F l+1
l (xl + δx,l)− F l+1

l (xl)

...

∆l+m
l = x′

l+m − xl+m = F l+ml (xl + δx,l)− Fml (xl)

(3)

To quantize the soft error induced computing variation of
the neural network, we utilized RMSEl = ‖∆l/n‖2 =√

var(∆l) as a metric initially where n is the vector length
of the neural network output. However, RMSE is sensitive
to the data range of activations that may vary over different
layers of the same neural network, so we have RMSE further
normalized and utilize RMSE Ratio(RRMSE) RRMSEl =
RMSEl/

√
var(xl) instead. The metric is more convenient

to calculate compared to the model accuracy that relies on
statistical results of a large number of samplings. The correla-
tion between RRMSE and model accuracy will be illustrated
in the rest of this section.

B. Assumptions and Lemmas

Recent work [1] [7] already demonstrated that the dis-
tribution of weights in neural networks fits well with t-
Location scale distribution which is essentially a long-tail
normal distribution. While output activations are generally
accumulation of many weighted input activations. Suppose
the input activations are random variables. Then, the output
activations will be close to a normal distribution according to
central limit theorem. Particularly, activations are usually close
to zero to make full use of the non-linear activation function.
Similarly, activation errors are also accumulation of multiple
random errors propagated from neurons in upstream layers
and belongs to a normal distribution. In summary, weights,
activations of the neural network, and activation errors can all
be approximated to normal distribution centered at zero and
they can be formulated as follows.

wl ∼ N(0, var(wl))

xl ∼ N(0, var(xl))
(4)

∆l ∼ N(0, var(∆l)) (5)

To further verify the distribution of weights and activations
in neural networks, we take LeNet on CIFAR-10 as an



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, XXX 2022 4

example. Figure 1 shows the distributions of weights and
activations on different layers of LeNet. It shows that the
distribution is quite close to the fitted normal distribution
model highlighted with orange color. We further have a bit
error injected to a neuron in Conv2 of LeNet randomly. Then,
we investigate the distribution of neuron errors in the following
layers. Particularly, we take the first neuron in these layers
as an example and fit the error distribution with a normal
distribution model. The experiment result is shown in Figure 2.
It can be observed that the neuron errors generally fit well
with a normal distribution model centered at zero except
that in Conv2 in which the input errors have not propagated
comprehensively.

0.25 0.00 0.25
0

20

conv1.weight

0.25 0.00 0.25
0

100

200

conv2.weight

0.5 0.0 0.5
0

5000

10000

fc1.weight

0.25 0.00 0.25
0

500

1000

fc2.weight

0.25 0.00 0.25
0

50

fc3.weight

5 0 5
0

1000

2000

conv2.activation

10 0
0

500

1000

fc1.activation

5 0 5
0

500

1000

fc2.activation

10 0 10
0

500

1000

fc3.activation

Fig. 1. weights and activations in LeNet fit well with normal distribution
models

0 1
0

2500

5000

7500

conv2

1 0 1
0

1000

2000

fc1

2 0
0

1000

2000

3000
fc2

1 0 1
0

1000

2000
fc3

Fig. 2. Error distribution of the first neuron of layers Conv2, fc1, fc2, fc3 in
LeNet. Note that a single bit error is injected to an input activation of Conv2
randomly and we conduct the error injection multiple times to obtain the error
distribution.

In addition, we assume the distribution of the weights and
activations are independently and identically to simplify the
modeling in the rest of this work. With the above assumptions,
we can further derive the following lemmas.

Lemma 1: For a layer with n neurons that follow indepen-
dently identical normal distribution, the variance of sum of the
neurons in the layer can be approximated with nvar(x).

Lemma 2: For an output activation that is an accumulation
of weighted input neurons x(j)l+1 =

∑m
i=1 x

(i)
l · w

(i)
l , var(xl+1)

can be calculated with var(xl+1) ≈ mvar(xl)var(wl) when

the influence of activation function is ignored according to
Proof 1. Note that m stands for the total number of accu-
mulated operations for a single neuron calculation. xil and wil
refer to an neuron and a weight in (l+1)th layer respectively.

Lemma 3: For an output activation error propagated from
input activation errors, var(∆l+1) can be calculated with
var(∆l+1) ≈ mvar(∆l)var(wl) where m represents the
number of accumulation according to Proof 2.

Lemma 4: With the second and the third lemmas,
we can conclude that RMSEl/

√
var(xl) ≈

RMSEl+1/
√

var(xl+1). Hence, RRMSEl ≈ RRMSEl+1

which indicates that RRMSEl keeps almost constant across
different layers of an neural network.

Proof 1: Suppose X and Y are two independent random
variables following normal distribution, the variation of their
product can be calculated with the product of their variation
according to Equation 6. Since xil and wil can be considered
as independent variables following normal distribution, we
can conclude var(xl+1) ≈ mvar(xl)var(wl) according to
Equation 6 and Lemma 1.

var(X · Y ) = E[X2Y 2]− E2[XY ]

= E[X2]E[Y 2]− E2[X]E2[Y ]

= var(X) · var(Y )

(6)

Proof 2: An output activation error induced by neuron errors
in previous layer can be formulated with Equation 7. Basically,
an neuron error is essentially the accumulation of weighted
input neuron errors. As mentioned, both neuron errors and
weights can be characterized with normal distribution. In this
case, the variation of an neuron error can also be calculated
with var(∆l+1) ≈ mvar(∆l)var(wl) according to Equation 6
and Lemma 1.

∆
(j)
l+1 = ((xl + ∆l) ∗wl − xl ∗wl)

(j)

= (∆l ∗wl)
(j)

=
m∑
i=1

∆
(i)
l · w

(i)
l

(7)

C. Bit Flip Influence Modeling

To understand the influence of bit flip soft errors on neural
network processing, we start to investigate the influence of bit
flip on a single data. Take an activation x quantized with int8
as an example, the quantized activation xQ can be represented
with Equation 8 where bound represents the dynamic range
of activations in a layer of the neural network.

xQ = b128 · x
bound

c (8)

In this section, we mainly investigate the influence of
quantization bound and the different fault injection methods on
the resulting variations of activations. As mentioned before, we
utilize RMSE as the metric to measure the activation variation
caused by soft errors. Suppose the range of an activation is
[−bound, bound], a bit flip on most significant bit results in
a change of ±bound. Similarly, a bit flip on the following bit



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, XXX 2022 5

leads a change of ±bound/2. In this case, the expected change
of data i.e. σδ quantized with int8 and int16 given a random
bit flip can be represented with Equation 9 and Equation 10
respectively. When we double the bound, σδ doubles. When
the quantization data width doubles, σδ shrinks by

√
2.

σδint8 =

√√√√1

8

7∑
bit=0

(
bound

2bit

)2

≈ bound√
6

(9)

σδint16 =

√√√√ 1

16

15∑
bit=0

(
bound

2bit

)2

≈ bound√
12

(10)

On top of the bit error influence of a single data, we scale the
analysis to estimate the output data variation of a convolution
operation induced by soft errors injected to either weights or
activations. Suppose ic refers to the number of input channel,
oc refers to the number of output channel, H × H stands
for the size of a feature map, K ×K refers to the size of a
convolution kernel.

Disturbance in weights: Disturbance in a single weight
affects output activations of an entire channel, i.e. H2 activa-
tions. According to definition RMSE = ‖∆/n‖2 and Lemma
2 in Section III-B, the average variation of weights i.e. var(w)
depends on the amount of input activations m = K2 × ic.
var(w) = 1

mvar(xl+1)/var(xl) ≈ 1/m = 1/(K2 × ic). So
the average computing variation of output activations can be
calculated with Equation 11.

RMSEw = ‖∆/n‖2

=

√
H2 ×∆2

H2 × oc

=

√
H2σ2

δvar(w)

H2 × oc

=
σδ

K
√
ic× oc

(11)

Disturbance in activations: Suppose the average value of
an activation in a layer is σa. Disturbance in a single activation
will affect a window (K2) of output activations in all the oc
channels, i.e. oc × K2 activations. Suppose the feature map
size is H ×H , then the average influence of the disturbance
on an output activation can be calculated with Equation 12.

RMSEa = ‖∆/n‖2

=

√
oc×K2 × σ2

δvar(w)

H2 × oc

=
σδ

H
√
ic

(12)

Since the variation of activations and weights is generally
constant given a specific model and data set according to the
assumptions in Section III-B, RRMSE of a convolution layer l
that can be calculated with RRMSEl = RMSEl/

√
var(xl)

is consistent with RMSE accordingly.

D. Relation between RRMSE and Classification Accuracy

Since the model accuracy of a typical classification task
is based on statistics of a number of classification tasks and
it is difficult to formulate with neural network computing
directly, we utilize RRMSE defined in subsection III-A as
an alternative metric to measure the influence of soft errors
on model accuracy metric which is more closely related with
neural network computing.

To begin, we start with a simple binary classification task
and it includes only two output neurons in the last layer of
the network. Then, the classification depends on larger output
neuron. Suppose the two output neurons are y(0) and y(1),
and assume y(0) > y(1) without loss of generality. When
there are random errors injected to the neural network, the
two output neurons follow normal distribution accordingly
and they can be formulated with Y (0) ∼ N(y(0), var(∆y),
Y (1) ∼ N(y(1), var(∆y)) according to Section III-B. In this
case, the probability of wrong classification is essentially
that of Y (0) < Y (1). The distribution of Y (0) < Y (1)

can be formulated with Equation 13, which is a shifted and
scaled normal distribution model. Hence, the probability when
Y (0) − Y (1) > 0 can be calculated with Equation 14 where
normcdf stands for cumulative distribution function of normal
distribution.

Y (0) − Y (1) ∼ N(y(0) − y(1), 2var(∆y)) (13)

Acc = normcdf

(
y(0) − y(1)√

2var(∆y)

)

=
1

2
erf

(
y(0) − y(1)

2
√

var(∆y)

)
+

1

2

(14)

While var(y) = 1
4 (y0 − y1)2 in a typical binary clas-

sification task, Equation 14 can be converted to Equation
15 according to the definition of RMSE and RRMSE in
Section III-A.

Acc =
1

2
erf

(
2
√

var(y)

2RMSEy

)
+

1

2

=
1

2
erf

(
1

RRMSEy

)
+

1

2

(15)

For multi-class classification models, suppose there are nc
classification types and the corresponding outputs of the clas-
sification model are denoted as y(i), i = (0, 1, 2, ..., nc − 1).
Assume the expected output is y(0) which is larger than any
other output y(i), i = (1, 2, ..., nc − 1). Similar to the binary
classification problem, a classification error happens when
any of the outputs y(i), i = (1, 2, ..., nc − 1) is larger than
y(0) given Gaussian disturbance i.e. RRMSE according to
the definition of RRMSE. In this case, the model accuracy
subjected to errors is the integration of the multiplication of
the probability density function of y(0) and the cumulative dis-
tribution function of the rest outputs y(i), i = (1, 2, ..., nc−1).
It can be calculated with Equation 16.

Since the analytical model is usually difficult to calculate,
we replace it with an empirical model as shown in Equation



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, XXX 2022 6

Acc(RRMSE) =

∫ ∞
−∞

normpdf(x) · (normcdf(x+ 1/RRMSE))
nc−1

dx

=

∫ ∞
−∞

1√
2π
e−

x2

2 ·
(∫ t

−∞

1√
2π
e−

(t+1/RRMSE)2

2 dt

)nc−1
dx

(16)

Acc(RRMSE) =
(1 + e−ms)(Accclean + nc−1)

1 + es(RRMSE−m)
+ nc−1 (17)

10 1 100

RRMSE

0.00

0.25

0.50

0.75

1.00

ac
c

VGGNet-11

FI experiment
analytical model
empirical model

10 1 100

RRMSE

0.00

0.25

0.50

0.75

1.00
ac

c

ResNet-18

FI experiment
analytical model
empirical model

(a) Single Image Analysis

10 1 100

RRMSE

0.00

0.25

0.50

0.75

1.00

ac
c

VGGNet-11

FI experiment
analytical model
empirical model

10 1 100

RRMSE

0.00

0.25

0.50

0.75

1.00

ac
c

ResNet-18

FI experiment
analytical model
empirical model

(b) Multiple Image Analysis

Fig. 3. Analytical model and empirical model comparison on both single
image analysis experiment and multiple image analysis experiment.

17. It is essentially an sigmoid function variant and has two
parameters i.e. m and s included. When there are no errors,
the output of Equation 17 is the accuracy of a clean neural
network model. When there are too many errors, the output
of Equation 17 becomes 1/nc which represents classification
accuracy of random guessing. The empirical model can be
determined given very few sampling data points of RRMSE
and the corresponding classification accuracy.

To verify the proposed models of correlation between
RRMSE and neural network classification accuracy, we take
VGGNet-11 and ResNet-18 on ImageNet as typical neural
network examples to compare the analytical models and
empirical models to the ground truth results. Particularly, we
have two different evaluation approaches performed for the
model comparison. In the first approach, we have a single
true positive images from ImageNet utilized and repeat the
execution for 10000 times on each error injection rate setup.
It is denoted as single image analysis and it removes the
influence of image variations from the analysis. In the second
approach, we have 10000 different images randomly selected
from ImageNet and evaluated for each error injection rate
setup. It is denoted as multiple image analysis and it has
the image variations incorporated in the analysis. For the soft
error injection, we have 31 different bit error rate (BER)

setups ranging from 1E-7 to 1E-4 conducted in the experiment.
Ground truth of RRMSE and classification accuracy can be
obtained from experiments directly. Analytical model can be
determined given the RRMSE and nc while the empirical
model can be determined with fitting on 4 data points evenly
selected from ground truth data. The comparison is shown in
Figure 3. It can be observed that the proposed analytical model
is close to the ground truth data in the single image analysis
setup but it has variation under multiple image analysis setup.
This is expected as the proposed analytical model fails to
characterize the influence of image variations. In contrast,
empirical model fits much better on both single image analysis
and multiple image analysis despite the lack of explainability.
Nevertheless, it is clear that the model accuracy decreases
monotonically with the increase of RRMSE, which allows
us to characterize the influence of soft errors with RRMSE
which can be obtained more conveniently compared to model
accuracy.

E. Error Influence Aggregation

In this section, we mainly explore how the influence of
different errors aggregate on the same output neurons. Suppose
RRMSE represents RRMSE of an neural network output, it is
the accumulation of n independent random errors propagated
from different layers. As mentioned, the influence of the
random errors follows normal distribution model. The accumu-
lation of these independent random errors can be formulated
with Equation 18 where RRMSE(l,i) denotes the RRMSE
induced by a neuron faults on layer l. As the number of
neurons in a neural network is extremely large, it remains
timing consuming and inefficient to conduct neuron-wise fault
analysis. To address the problem, we have Equation 18 fur-
ther converted to layer-wise fault analysis where RRMSE(l)

denotes RRMSE of neural network output caused by all the
errors in layer l and L denotes the total number of neural
network layers.

RRMSE =

√√√√ L∑
l=1

nl∑
i=1

RRMSE2
(l,i) =

√√√√ L∑
l=1

RRMSE2
(i)

(18)
To verify the error aggregation model, we conduct layer-

wise fault injection on VGGNet-11 and Resnet-18 quantized
with int8 at different error injection rate BER ∈ {0, 1e −
5, 2e−5}. Then, we randomly select 32 different combination
of layer-wise error injection configurations and compare the
ground truth RRMSE with that estimated with Equation 18.
The comparison shown in Figure 4 reveals that the error



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, XXX 2022 7

aggregation model fits well with the simulation results and
confirms the effectiveness of the model.

0

0.4

0.8

0 0.4 0.8

Pr
ed

ic
t R

R
M

SE

Real RRMSE

(a) VGGNet-11

0

0.5

1

0 0.5 1
Pr

ed
ic

t R
R

M
SE

Real RRMSE

(b) ResNet-18

Fig. 4. Comparison of ground truth RRMSE and that estimated with error
aggregation model.

IV. MODELING FOR NEURAL NETWORK RESILIENCE
ANALYSIS

With the above modeling of soft error influence on neural
network accuracy, we can further utilize the models to analyze
the influence of the major neural network design parame-
ters on the resilience of neural networks subjected to soft
errors, which can provide more general analysis compared
to simulation based approaches. Specifically, we investigate
influence of neural network layers, quantization, and number
of classification types respectively on neural network resilience
and they will be illustrated in detail in this section.

A. Influence of Number of Layers on NN Resilience

According to Lemma 4 in Section III-B, the output error
metric of the lth layer i.e. RRMSEl is almost constant
across different layers of a neural network, which means that
neural network depth does not have direct influence on neural
network resilience. In order to verify this, we have random bit
flip errors injected to neurons in different layers of VGGNet-
11 and ResNet-18 respectively. The bit error rate is set to
be 1E-6 in this experiment. Then, we evaluate RRMSE of the
following layers of the neural networks over the corresponding
golden reference output. RRMSE of the neural network layers
is shown in Figure 5. It can be seen that RRMSE on different
layers varies in a small range in general for each specific
fault injection despite the layer locations of the error injection.
Basically, it demonstrates that the influence of soft errors
remains steady across the different layers and neural network
depth will not affect the fault tolerance of the neural network
model in general. It is true that small variations rather than
constant as estimated in Lemma 4 can be found in RRMSE
of different layers in Section III-B. This is mainly caused by
the non-linear operations in neural networks which may filter
out the computing errors and affect the error propagation.

B. Influence of Quantization on NN Resilience

According to the analysis in Section III-D, we notice
that quantization bound has straightforward influence on data
variation induced by a single bit flip and affects RRMSE

(a) VGGNet-11

(b) ResNet-18

Fig. 5. Error Propagation Across the Layers. Color of the lines refers to
experiments with different initial error injection layers.

0%

25%

50%

75%

100%

0

0.2

0.4

0.6

0.8

0 0.25 0.5 0.75 1

Ac
cu

ra
cy

R
R

M
SE

bound factor

RRMSE

accuracy of clean model
accuracy of model with errors

(a) VGGNet-11

0%

25%

50%

75%

100%

0

0.15

0.3

0.45

0.6

0 0.25 0.5 0.75 1

Ac
cu

ra
cy

R
R

M
SE

bound factor

RRMSE

accuracy of clean model

accuracy of model with errors

(b) ResNet-18

Fig. 6. Influence of quantization bound on RRMSE

accordingly. Meanwhile, neural network models can choose
different quantization bound with little accuracy loss in prac-
tice, so it can be expected that smaller quantization bound
can improve the neural network model reliability subjected
to soft errors without accuracy penalty. Figure 6 presents
RRMSE of VGGNet-11 and ResNet-18 subjected to soft errors
with various quantization bound while the bit error rate is
set to be 1E-6. It reveals that RRMSE that is closely related
with the neural network model accuracy as demonstrated in
Section III-D increases almost linearly with the quantization
bound experimented with all the different layers. On the other
hand, we also observe that clean neural network classification
accuracy remains steady in a wide range of quantization
bound setups, which indicates that it is possible to improve
the neural network reliability without accuracy penalty by
choosing appropriate quantization bound.

According to the comparison in Equation 9 and Equation
10, we notice that the average disturbance induced by a single
bit error for neural network model quantized with int16 is



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, XXX 2022 8

0.02

0.2

2

2.00E-06 1.00E-05 5.00E-05

R
R

M
SE

BER

int16 random

int8 random

(a) VGGNet-11

0.02

0.2

2

2.00E-06 1.00E-05 5.00E-05

R
R

M
SE

BER

int16 random

int8 random

(b) ResNet-18

Fig. 7. Influence of quantizaton bitwidth on RRMSE

√
2× smaller than that quantized with int8. On the other hand,

the expected total number of bit errors for model quantized
with int16 is twice larger than that quantized with int8 given
the same bit error rate. According to Equation 18, RRMSE
of the same neural network model with more bit errors will
be
√

2× larger. Hence, RRMSEint8 of an neural network is
equal to RRMSEint16 in theory given the same bit error rate.
Similar to prior analysis, we take VGGNet-11 and ResNet-18
quantized with int8 and int16 as examples and conduct fault
simulation to verify the model based analysis. The bit error
rate is set to be 1E-6 and the quantization bound is set to
be the same for both quantization data width. The experiment
results shown in Figure 7 demonstrate that RRMSE of neural
network models are generally steady despite the quantization
data width, which is consistent with the model based analysis.

C. Influence of Classification Complexity on NN Resilience

Intuitively, we notice that easier deep learning tasks are
generally more resilient to errors, but it is usually difficult
to define the complexity of a neural network processing task.
Equation 16 provides a model to characterize the relation
between the number of classification types and classification
accuracy. When we take the number of classification types as
a metric of neural network complexity, it provides a simple
yet efficient angle to characterize the relation between neural
network complexity and neural network resilience. The model
in Equation 16 proves that neural networks with more classifi-
cation types are more vulnerable subjected to the same number
of errors. To verify this, we take VGGNet-11 and ResNet-18
on ImageNet as examples and then configure them for a set
of classification tasks with different number of classification
types i.e. nc ranging from 2 to 1000. Then, we explore the
resulting accuracy of these classification tasks subjected to the
same bit error setups. The experiment result is shown in Figure
8. It reveals that neural network models with less classification
types generally have much higher accuracy and the accuracy
drops slower with increasing bit error rate compared to that
with more classification types.

V. MODELING FOR FAULT SIMULATION ACCELERATION

Fault simulation is a typical practice for neural network
resilience analysis under hardware errors and several fault
simulation tools [19] [4] [12] targeting at neural networks have
been developed with different trade-offs between simulation
accuracy and speed. Usually, a large number of errors need

(a) VGGNet-11 (b) ResNet-18

Fig. 8. VGG-11 classification accuracy under different number of classifica-
tion types

to be injected and a variety of fault configurations need to
be explored to ensure steady simulation results, which can
be rather time-consuming and expensive. Orthogonal to prior
fault simulation approaches, we mainly investigate how the
modeling proposed in this work can be utilized to accelerate
the fault simulation with negligible simulation accuracy loss.

A. Fault Simulation Acceleration Approaches

To begin, we will introduce three statistical model based
approaches that can be utilized to accelerate general fault
simulation. The basic idea is to leverage the proposed sta-
tistical models to predict the fault simulation results with only
a fraction of simulation setups and reduce the number of fault
simulation of all the possible fault configurations. The three
acceleration approaches are listed as follows.

First, according to Equation 17, we can characterize the
relation between RRMSE and model accuracy under various
bit error rate setups with only five data points. Moreover,
RRMSE of a model can be obtained with less input images
and converges much faster than that of model accuracy. Partic-
ularly, we take VGGNet-11 on ImageNet as an example and
investigate how the RRMSE and model accuracy of VGGNet-
11 changes with different number of input image samples
given the same bit error rate. The bit error rate is set to be 1E-
6. The experiment result in Figure 9 confirms the advantage of
using RRMSE in terms of convergence. With both the RRMSE
and the correlation curve of RRMSE and model accuracy,
we can obtain the correlation curve of bit error rate and
model accuracy much faster compared to conventional fault
simulation experiments.

102 103 104

samples

6

8

10

12

14

RM
SE

 p
re

di
ct

ed
 a

cc
 lo

ss
(%

)

102 103 104

samples

6

8

10

12

14

di
re

ct
 a

cc
 lo

ss
(%

)

Fig. 9. RRMSE(a) and model accuracy (b) obtained under different number
of input images. Different lines refer to fault injection with the same bit error
rate but on different random seed. It demonstrates that RRMSE converges
much faster than model accuracy given more input images.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, XXX 2022 9

Second, with the analysis in Section III-C, we notice that
the error injection on different bits contributes differently to
the output RRMSE eventually but the contribution proportion
can be calculated based on Equation 9 and Equation 10.
Similarly, we can also obtain the expected data disturbance
of bit error on MSB. Then, we can calculate RRMSEint8
based on RRMSEMSB with Equation 19 and 20, and replace
the standard random bit error injection with most significant
bit (MSB) based error injection without compromising the
analysis accuracy. Take VGGNet-11 and ResNet-18 quantized
with int16 as examples. Figure 10 shows the RRMSE obtained
with both standard random bit error injection and MSB based
error injection. It confirms that the resulting RRMSE obtained
with standard error injection and MSB based error injection
are linearly correlated as analyzed with the proposed statistical
models. This approach can also be applied for straightforward
model accuracy simulation. MSB based fault simulation and
standard fault simulation for both VGGNet-11 and ResNet-18
is presented in Figure 11. It can be observed that the curves
are quite similar and the difference is mainly induced by the
scaled bit error rate. In summary, given the same bit error rate,
MSB based error injection can be scaled for standard bit error
injection with negligible accuracy penalty while it reduces the
total number of injected bit errors substantially and enhances
the fault simulation speed accordingly.

RRMSEMSB =
√

6RRMSEint8 (19)

RRMSEMSB =
√

12RRMSEint16 (20)

0.1

1

1.00E-06 1.00E-05 1.00E-04

R
R

M
SE

BER

VGG with MSB based FI

VGG with standard FI

6x

(a) VGGNet-11

0.1

1

1.00E-06 1.00E-05

R
R

M
SE

BER

ResNet with MSB based FI

ResNet with standard FI

6x

(b) ResNet-18

Fig. 10. RRMSE of VGGNet-11 and ResNet-18 obtained with both standard
fault simulation and MSB based fault simulation.

0%

20%

40%

60%

80%

1.00E-06 1.00E-05 1.00E-04

Ac
cu

ra
cy

BER

VGG with MSB based FI

VGG with standard FI

6x

(a) VGGNet-11

0%

20%

40%

60%

80%

1.00E-06 1.00E-05 1.00E-04

Ac
cu

ra
cy

BER

ResNet with MSB based FI

ResNet with standard FI

6x

(b) ResNet-18

Fig. 11. Model accuracy of VGGNet-11 and ResNet-18 obtained with
standard bit error injection and MSB based bit error injection.

Third, according to the analysis in Section III-E, we no-
tice that the influence of bit errors in different neurons and
layers can be aggregated with Equation 18 when we utilize
RRMSE as the accuracy metric. Based on this feature, we can
analyze the influence of complex error configurations with
a disaggregated approach. For instance, we can analyze the
influence of random bit errors in each layer independently and
then construct the influence of random bit errors on multiple
neural network layers. We can also leverage the aggregation
feature to scale RRMSE at lower bit error rate to RRMSE at
higher bit error rate. In general, we can take advantage of this
feature to obtain fault simulation of complex and large fault
configurations with only a fraction of the fault configurations,
which can greatly reduce the amount of fault simulation.

B. Fault Simulation Acceleration Examples

To quantize the fault simulation speedup, we take two
typical fault simulation tasks as examples.

In the first task, we investigate how the model accuracy
changes with the increase of bit error rate. We still utilize
VGGNet-11 quantized with int16 on ImageNet as the bench-
mark model. Suppose we want to explore the model accuracy
when the bit error rate changes from 1E-7 to 1E-4 and we take
32 evenly distributed bit error rate setups for the experiments.
For each bit error rate setup, we take 10000 images from
ImageNet to measure the model accuracy. With TensorFI
fault injection framework [4], we need to conduct 3.2 × 106

inference with bit error injection. The fault simulation task
can be accelerated with the first and the second approaches.
It needs only 4 fault simulation points of RRMSE and model
accuracy with 16× less bit error injection. The fault simulation
time can be roughly reduced by 128×. The results obtained
with both a standard fault simulation and the accelerated fault
simulation are shown in Figure 12. They are quite close to
each other, which confirms the quality of the accelerated fault
simulation.

20%

40%

60%

80%

1.00E-07 1.00E-06 1.00E-05 1.00E-04

Ac
cu

ra
cy

BER

Full simulation
Accelerated simulation

Fig. 12. Model accuracy obtained by full simulation and accelerated simu-
lation.

In the second task, we seek to find out the top-3 most
fragile layers of a neural network model such that an se-
lectively hardening approach can be applied to protect the
neural network model with less protection overhead. We take
VGGNet-11 quantized with int16 as a benchmark example
and conduct fault injection at BER = 5 × 10−5. There
are 8 convolution layers in VGGNet-11. A standard fault



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, XXX 2022 10

55.00%

60.00%

65.00%

70.00%

75.00%

0 20 40 60

Ac
cu

ra
cy

Different Layer Combinations

Candidate Layer Combinations
Seletced Top-3 Fragile Layers

Fig. 13. We have the top-3 fragile layers selected with the proposed fault
simulation approach evaluated and compare with all the 56 different candidate
combinations. We have the accuracy of VGGNet-11 under error injection used
as the metric and assume the evaluated 3 convolution layers of VGGNet-11
are set to be fault-free.

simulation based method needs to evaluate all the C3
8 = 56

different combinations. For each configuration, we need to
perform inference on around 10000 images. Theoretically,
we need to conduct 5.6 × 105 inference with random bit
error injection. In contrast, with the second and the third
acceleration approaches, we only need to conduct 8 layer-
wise MSB based error injection and perform inference on
1000 images for each error injection setup to obtain the
neural network RRMSE. Then, we can obtain RRMSE of
all the different layer combinations immediately according to
Equation 18 in Section III. In this case, the fault simulation
time can be reduced by 560×. For neural networks with more
layers, this method can achieve exponential acceleration. In
addition, we also evaluate the selected top-3 fragile layers
based on the accelerated fault simulation approach. Suppose
the top-3 fragile layers are fault-free, we can obtain the model
accuracy with standard fault simulation and compare with that
of all the 56 different combinations. The experiment result is
shown in Figure 13. It demonstrates that the selected top-3
layer are the most fragile layers of VGGNet-11, which is
consistent with the results of standard fault simulation. In
summary, the accelerated fault simulation not only reduces
the execution time but also achieves high-quality results on
this vulnerability analysis task.

VI. CONCLUSION

In this work, we observe that soft errors propagate across a
large number of neurons and accumulate. With the observation,
we propose to characterize the disturbance induced by the soft
errors with a normal distribution model according to central
limit theorem and analyze the influence of soft errors on neural
networks with a series of statistical models. The models are
further applied to analyze the influence of convolutional neural
network parameters on its resilience and verified with exper-
iments comprehensively, which can guide the fault-tolerant
neural network design. In addition, we find that the models
can also be utilized to predict many fault simulation results
precisely and avoid lengthy fault simulation in practice. Given
two typical fault simulation tasks, the model-accelerated fault
simulation can be more than two orders of magnitude faster

on average with negligible accuracy loss compared to standard
fault simulation.

REFERENCES

[1] Muhammad Atta Othman Ahmed. Trained Neural Networks Ensembles
Weight Connections Analysis. Advances in Intelligent Systems and
Computing, 723(January):242–251, 2018.

[2] Subho S. Banerjee, James Cyriac, Saurabh Jha, Zbigniew T. Kalbarczyk,
and Ravishankar K. Iyer. Towards a Bayesian Approach for Assessing
Fault Tolerance of Deep Neural Networks. Proceedings - 49th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works - Supplemental Volume, DSN-S 2019, pages 25–26, 2019.

[3] Zitao Chen, Guanpeng Li, Karthik Pattabiraman, and Nathan De-
Bardeleben. Binfi: An efficient fault injector for safety-critical machine
learning systems. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC
’19, New York, NY, USA, 2019. Association for Computing Machinery.

[4] Zitao Chen, Niranjhana Narayanan, Bo Fang, Guanpeng Li, Karthik
Pattabiraman, and Nathan DeBardeleben. Tensorfi: A flexible fault
injection framework for tensorflow applications. Proceedings - Inter-
national Symposium on Software Reliability Engineering, ISSRE, 2020-
Octob:426–435, 2020.

[5] Anand Dixit and Alan Wood. The impact of new technology on soft
error rates. In 2011 International Reliability Physics Symposium, pages
5B–4. IEEE, 2011.

[6] Fernando Fernandes dos Santos, Caio Lunardi, Daniel Oliveira, Fabiano
Libano, and Paolo Rech. Reliability evaluation of mixed-precision archi-
tectures. In 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 238–249. IEEE, 2019.

[7] Gianni Franchi, Andrei Bursuc, Emanuel Aldea, Séverine Dubuisson,
and Isabelle Bloch. TRADI: Tracking Deep Neural Network Weight
Distributions. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), 12362 LNCS:105–121, 2020.

[8] Giulio Gambardella, Johannes Kappauf, Michaela Blott, Christoph
Doehring, Martin Kumm, Peter Zipf, and Kees Vissers. Efficient
error-tolerant quantized neural network accelerators. In 2019 IEEE
International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), pages 1–6. IEEE, 2019.

[9] Zhen Gao, Han Zhang, Yi Yao, Jiajun Xiao, Shulin Zeng, Guangjun
Ge, Yu Wang, Anees Ullah, and Pedro Reviriego. Soft error toler-
ant convolutional neural networks on fpgas with ensemble learning.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
30(3):291–302, 2022.

[10] Siva Kumar Sastry Hari, Timothy Tsai, Mark Stephenson, Stephen W.
Keckler, and Joel Emer. SASSIFI: An architecture-level fault injection
tool for GPU application resilience evaluation. ISPASS 2017 - IEEE
International Symposium on Performance Analysis of Systems and
Software, 1(1):249–258, 2017.

[11] Daniel A Hashimoto, Guy Rosman, Daniela Rus, and Ozanan R Meire-
les. Artificial intelligence in surgery: promises and perils. Annals of
surgery, 268(1):70, 2018.

[12] Yi He, Prasanna Balaprakash, and Yanjing Li. Fidelity: Efficient re-
silience analysis framework for deep learning accelerators. Proceedings
of the Annual International Symposium on Microarchitecture, MICRO,
2020-Octob:270–281, 2020.

[13] Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Ric-
cio, Andrea Stocco, and Paolo Tonella. Taxonomy of real faults in deep
learning systems. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, pages 1110–1121, 2020.

[14] Guanpeng Li, Siva Kumar Sastry Hari, Michael B. Sullivan, Timothy
Tsai, Karthik Pattabiraman, Joel S. Emer, and Stephen W. Keckler.
Understanding error propagation in deep learning neural network (DNN)
accelerators and applications. In Bernd Mohr and Padma Raghavan, edi-
tors, Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2017, Denver, CO,
USA, November 12 - 17, 2017, pages 8:1–8:12. ACM, 2017.

[15] Wenshuo Li, Xuefei Ning, Guangjun Ge, Xiaoming Chen, Yu Wang, and
Huazhong Yang. Ftt-nas: Discovering fault-tolerant neural architecture.
In 2020 25th Asia and South Pacific Design Automation Conference
(ASP-DAC), pages 211–216. IEEE, 2020.

[16] Fabiano Libano, Brittany Wilson, J Anderson, Michael J Wirthlin, Carlo
Cazzaniga, Christopher Frost, and Paolo Rech. Selective hardening
for neural networks in fpgas. IEEE Transactions on Nuclear Science,
66(1):216–222, 2018.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, XXX 2022 11

[17] Cheng Liu, Cheng Chu, Dawen Xu, Ying Wang, Qianlong Wang,
Huawei Li, Xiaowei Li, and Kwang-Ting Cheng. Hyca: A hybrid com-
puting architecture for fault tolerant deep learning. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2021.

[18] Cheng Liu, Zhen Gao, Siting Liu, Xuefei Ning, Huawei Li, and
Xiaowei Li. Special session: Fault-tolerant deep learning: A hierarchical
perspective. In 2022 IEEE 40th VLSI Test Symposium (VTS), pages 1–
12. IEEE, 2022.

[19] Abdulrahman Mahmoud, Neeraj Aggarwal, Alex Nobbe, Jose Ro-
drigo Sanchez Vicarte, Sarita V. Adve, Christopher W. Fletcher, Iuri
Frosio, and Siva Kumar Sastry Hari. PyTorchFI: A Runtime Perturbation
Tool for DNNs. Proceedings - 50th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN-W 2020, pages
25–31, 2020.

[20] Sparsh Mittal. A survey on modeling and improving reliability of
dnn algorithms and accelerators. Journal of Systems Architecture,
104:101689, 2020.

[21] Khan Muhammad, Amin Ullah, Jaime Lloret, Javier Del Ser, and
Victor Hugo C de Albuquerque. Deep learning for safe autonomous
driving: Current challenges and future directions. IEEE Transactions on
Intelligent Transportation Systems, 22(7):4316–4336, 2020.

[22] Xuefei Ning, Guangjun Ge, Wenshuo Li, Zhenhua Zhu, Yin Zheng,
Xiaoming Chen, Zhen Gao, Yu Wang, and Huazhong Yang. Ftt-
nas: Discovering fault-tolerant convolutional neural architecture. ACM
Transactions on Design Automation of Electronic Systems (TODAES),
26(6):1–24, 2021.

[23] Shane O’Sullivan, Nathalie Nevejans, Colin Allen, Andrew Blyth, Simon
Leonard, Ugo Pagallo, Katharina Holzinger, Andreas Holzinger, Mo-
hammed Imran Sajid, and Hutan Ashrafian. Legal, regulatory, and ethical
frameworks for development of standards in artificial intelligence (ai)
and autonomous robotic surgery. The international journal of medical
robotics and computer assisted surgery, 15(1):e1968, 2019.

[24] Elbruz Ozen and Alex Orailoglu. SNR: Squeezing Numerical Range
Defuses Bit Error Vulnerability Surface in Deep Neural Networks. ACM
Trans. Embed. Comput. Syst., 20(5s), 2021.

[25] Pramesh Pandey, Prabal Basu, Koushik Chakraborty, and Sanghamitra
Roy. Greentpu: Improving timing error resilience of a near-threshold
tensor processing unit. In 2019 56th ACM/IEEE Design Automation
Conference (DAC), pages 1–6. IEEE, 2019.

[26] Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao,
Maria Presa Reyes, Mei-Ling Shyu, Shu-Ching Chen, and Sundaraja S
Iyengar. A survey on deep learning: Algorithms, techniques, and
applications. ACM Computing Surveys (CSUR), 51(5):1–36, 2018.

[27] Brandon Reagen, Udit Gupta, Lillian Pentecost, Paul Whatmough,
Sae Kyu Lee, Niamh Mulholland, David Brooks, and Gu Yeon Wei.
Ares: A framework for quantifying the resilience of deep neural net-
works. In Proceedings - Design Automation Conference, volume Part
F1377, 2018.

[28] Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama,
Hyunkwang Lee, Sae Kyu Lee, José Miguel Hernández-Lobato, Gu-
Yeon Wei, and David Brooks. Minerva: Enabling low-power, highly-
accurate deep neural network accelerators. In 2016 ACM/IEEE 43rd
Annual International Symposium on Computer Architecture (ISCA),
pages 267–278. IEEE, 2016.

[29] Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally,
Siddharth Samsi, and Jeremy Kepner. Survey and benchmarking of
machine learning accelerators. In 2019 IEEE high performance extreme
computing conference (HPEC), pages 1–9. IEEE, 2019.

[30] Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Sid-
dharth Samsi, and Jeremy Kepner. Ai accelerator survey and trends. In
2021 IEEE High Performance Extreme Computing Conference (HPEC),
pages 1–9. IEEE, 2021.

[31] Muhammad Shafique, Mahum Naseer, Theocharis Theocharides, Chris-
tos Kyrkou, Onur Mutlu, Lois Orosa, and Jungwook Choi. Robust
machine learning systems: Challenges, current trends, perspectives, and
the road ahead. IEEE Design & Test, 37(2):30–57, 2020.

[32] Cesar Torres-Huitzil and Bernard Girau. Fault and error tolerance in
neural networks: A review. IEEE Access, 5:17322–17341, 2017.

[33] Dawen Xu, Meng He, Cheng Liu, Ying Wang, Long Cheng, Huawei
Li, Xiaowei Li, and Kwang-Ting Cheng. R2f: A remote retraining
framework for aiot processors with computing errors. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 29(11):1955–1966,
2021.

[34] Dawen Xu, Ziyang Zhu, Cheng Liu, Ying Wang, Huawei Li, Lei Zhang,
and Kwang-Ting Cheng. Persistent fault analysis of neural networks on
fpga-based acceleration system. In 2020 IEEE 31st International Con-

ference on Application-specific Systems, Architectures and Processors
(ASAP), pages 85–92. IEEE, 2020.

[35] Dawen Xu, Ziyang Zhu, Cheng Liu, Ying Wang, Shuang Zhao, Lei
Zhang, Huaguo Liang, Huawei Li, and Kwang-Ting Cheng. Reliability
evaluation and analysis of fpga-based neural network acceleration sys-
tem. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
29(3):472–484, 2021.

[36] Xinghua Xue, Haitong Huang, Cheng Liu, Ying Wang, Tao Luo, and
Lei Zhang. Winograd convolution: A perspective from fault tolerance.
arXiv preprint arXiv:2202.08675, 2022.

[37] Jeff Jun Zhang, Tianyu Gu, Kanad Basu, and Siddharth Garg. Analyzing
and mitigating the impact of permanent faults on a systolic array based
neural network accelerator. In 2018 IEEE 36th VLSI Test Symposium
(VTS), pages 1–6. IEEE, 2018.

[38] Yang Zheng, Zhenye Feng, Zheng Hu, and Ke Pei. Mindfi: A fault
injection tool for reliability assessment of mindspore applicacions. In
2021 IEEE International Symposium on Software Reliability Engineer-
ing Workshops (ISSREW), pages 235–238, 2021.


	I Introduction
	II Related Work
	III Soft Error Induced Neural Network Computing Error Modeling
	III-A Model Notations
	III-B Assumptions and Lemmas
	III-C Bit Flip Influence Modeling 
	III-D Relation between RRMSE and Classification Accuracy 
	III-E Error Influence Aggregation

	IV Modeling for Neural Network Resilience Analysis
	IV-A Influence of Number of Layers on NN Resilience
	IV-B Influence of Quantization on NN Resilience
	IV-C Influence of Classification Complexity on NN Resilience

	V Modeling for Fault Simulation Acceleration
	V-A Fault Simulation Acceleration Approaches
	V-B Fault Simulation Acceleration Examples

	VI Conclusion
	References

