
Revisiting Swapping in User-space with Lightweight
Threading

Kan Zhong†, Wenlin Cui†, Youyou Lu§, Quanzhang Liu†,
Xiaodan Yan†, Qizhao Yuan†, Siwei Luo†, and Keji Huang†

†Huawei Technologies Co., Ltd
Chengdu, China

§Department of Computer Science and Technology, Tsinghua University
Beijing, China

Abstract
Memory-intensive applications, such as in-memory databases,
caching systems and key-value stores, are increasingly de-
manding larger main memory to fit their working sets. Con-
ventional swapping can enlarge the memory capacity by
paging out inactive pages to disks. However, the heavy I/O
stack makes the traditional kernel-based swapping suffers
from several critical performance issues.
In this paper, We redesign the swapping system and pro-

pose LightSwap, an high-performance user-space swapping
scheme that supports paging with both local SSDs and re-
mote memories. First, to avoids kernel-involving, a novel
page fault handling mechanism is proposed to handle page
faults in user-space and further eliminates the heavy I/O
stack with the help of user-space I/O drivers. Second, we
co-design Lightswap with light weight thread (LWT) to im-
prove system throughput and make it be transparent to user
applications. Finally, we propose a try-catch framework in
Lightswap to deal with paging errors which are exacerbated
by the scaling in process technology.

We implement Lightswap in our production-level system
and evaluate it with YCSBworkloads running onmemcached.
Results show that Ligthswap reduces the page faults han-
dling latency by 3–5 times, and improves the throughput of
memcached by more than 40% compared with the stat-of-art
swapping systems.

CCS Concepts: • Software and its engineering→ Oper-
ating systems.

Keywords: user-space swapping, memory disaggregation,
light weight thread

1 Introduction
Memory-intensive applications[1, 2], such as in-memory
databases, caching systems, in-memory key-value stores are
increasingly demanding more and more memory to meet
their low-latency and high-throughput requirements as these
applications often experience significant performance loss
once their working set cannot fit in memory. Therefore, ex-
tending the memory capacity becomes a mission-critical task
for both researchers and system administrators.

Based on the virtual memory system, existing OS pro-
vides swapping to enlarge the main memory by writing
inactive pages to a backend store, which today is usually
backed by SSDs. Compared to SSDs, DRAM still has orders
of magnitude performance advantage, providing memory-
like performance by paging with SSDs has been explored
for decades [3–13] and still remains great challenges. Espe-
cially, we find that the heavy kernel I/O stack introduces
large performance penalty, more than 40% of the time is cost
by the I/O stack when swapping in/out a signal page, and
this number will keep increasing if ultra-low latency storage
media, such as Intel Optane [14] and KIOXIA XL-FLash [15]
are adopted as the backend stores.
To avoid the high-latency of paging with SSDs, memory

disaggregation architecture [16–20] proposes to expose a
global memory address space to all machines to improve
memory utilization and avoid memory over-provisioning.
However, existing memory disaggregation proposals require
new hardware supports [17, 18, 21–23], making these solu-
tions infeasible and expensive in real production environ-
ments. Fortunately, recent researches, such as Infiniswap [24],
Fluidmem [25], and AIFM [26] have shown that paging or
swapping with remote memory is a promising solution to en-
able memory disaggregation. However, we still find several
critical issues of these existing approaches.
First, kernel-based swapping, which relies on the heavy

kernel I/O stack exhibits large software stack overheads,
making it cannot fully exploit the high-performance and low-
latency characteristics of emerging storage media (e.g., Intel
Optane) or networks (e.g., RDMA). We measured the remote
memory access latency of Infiniswap, which is based the
kernel swapping, can be as high as 40𝜇s even using one-side
RDMA. Further, modern applications exhibit diverse mem-
ory access patterns, kernel-based swapping fails to provide
enough flexibility to customize the eviction and prefetch-
ing policy. Second, recent research [25] has also explored
the user-space swapping with userfaultfd, which however
needs extra memory copy operations and exhibits ultra-high
page fault latency under high-concurrency (i.e., 107𝜇s un-
der 64 threads), leading to systems that based on userfaultfd
cannot tolerate frequent page faults. Finally, new proposals
like AIFM [26] and Semeru [27], that do not rely on virtual

ar
X

iv
:2

10
7.

13
84

8v
1

 [
cs

.O
S]

 2
9

Ju
l 2

02
1

memory abstraction, provide a runtime-managed swapping
to applications and can largely reduce the I/O amplification.
However, these schemes break the compatibility and require
large efforts to rewrite existing applications.

Therefore, we argue that swapping need to be redesigned
to become high-performance and remains transparent to
applications. In this paper, we propose Lightswap, an user-
space swapping that supports paging with both SSDs and
remote memories. First, Lightswap handles page faults in
user-space and utilizes the high-performance user I/O stack
to eliminate the software stack overheads. To this end, we
propose an ultra-low latency page fault handling mechanism
to handle page faults in user-space (§4.2). Second, when page
faults happen, existing swapping schemes will block the
faulting thread to wait for data fetch, which lowers the sys-
tem throughput. In Lightswap, we co-design swapping with
light weight thread (LWT) to achieve both high-performance
and application-transparent (§4.3). When page fault happens,
leveraging the low context switch cost of LWT, we use a ded-
icated swap-in LWT to handle page fault and allow other
LWTs to occupy the CPUwhile waiting for data fetch. Finally,
due to the scaling in process technology and the ever increas-
ing capacity, we find that both DRAM and SSD become more
prone to errors. Therefore, we propose a try-catch exception
framework in Lightswap to deal with paging errors (§4.4).

We evaluate Lightswap with memcached workloads. Eval-
uation results show that Lightswap can reduce the page fault
handling latency by 3–5 times and improve the throughput
bymore than 40%when compared to Infiniswap. In summary,
we make the following contributions:

• We propose an user-space page fault handling mecha-
nism that can achieve ultra-low page fault notification
latency (i.e., 2.4𝜇s under 64 threads).

• We demonstrate that with the help of LWT, user-space
swapping system can achieve both high-performance
and application-transparent.

• We propose a try-catch based exception framework to
handle paging errors. To best of our knowledge, we
are the first work to explore handling both memory
errors and storage device errors in a swapping system.

• We show the performance benefits of Lightswap with
YSCB workloads on memcached, and compare it to
other swapping schemes.

The rest of the paper is organized as follows. Section 2
presents the background and motivation. Section 3 and 4
discuss our design considerations and the design details of
Lightswap, respectively. Section 5 presents the implementa-
tion and evaluation of Lightswap. We cover the related work
in Section 6 and conclude the paper in Section 7.

0

10

20

30

40

L
a

te
n

c
y
 (

u
s
)

Disk Kernel stack User stack

4K-Rnd-Rd 4K-Rnd-Wr 8K-Rnd-Rd 8K-Rnd-Wr

66.5%

6.3%

62.9%

5.3%

60.2%

5.2% 4.1%

56.6%

Figure 1. Random read and write latency breakdown. The
numbers on top of each bar denote the relative fraction of I/O
stack time in the total latency.

2 Background and Motivation
2.1 Swapping
Existing swapping approaches [3–10] depend on the existing
kernel data path that is optimized for slow block devices,
both reading and writing pages from/to the backend store
would introduce high software stack overheads. Figure 1
compares the I/O latency breakdown for random read and
write of XL-Flash [15] while using the kernel data path and
user-space SPDK [28] driver. The figure shows that over half
(56.6% – 66.5%) of the time is spent on the kernel I/O stack
for both read and write while using the kernel data path.
This overhead mostly comes from the generic block layer
and device driver. Comparably, the I/O stack overhead is
negligible while using the user-space SPDK driver.
Besides using local SSDs as the backend store, the high

bandwidth and low latency RDMA network offers the oppor-
tunity for swapping pages to remote memories. The newly
proposed memory disaggregation architecture [16–20] takes
a first look on remote memory paging. In disaggregation
model, computing nodes can be composed of large amount of
memory borrowing space from remote memory servers. Ex-
istingworks, such as Infiniswap [24] and FluidMem [25] have
showed that swapping to remote memories is a promising so-
lution for memory disaggregation. Nevertheless, Infniswap
exposes remotememory as a local block device, paging in/out
still needs to go through the whole kernel I/O stack. Our
evaluation shows that the remote memory access in Infin-
iswap can as high as 40𝜇s, which is about 10x higher than
the latency of a 4KB page RDMA read. The difference is all
caused by the slow kernel data path.

2.2 Linux eBPF
eBPF (for extended Berkeley Packet Filter) is a general virtual
machine that running inside the Linux kernel. It provides an
instruction set and an execution environment to run eBPF
programs in kernel. Thus, user-space applications can instru-
ment the kernel by eBPF programs without changing kernel
source code or loading kernel modules. eBFP programs are
written in a special assembly language. Figure 2 shows how
eBPF works. As shown, eBPF bytecode can be loaded into
the kernel using bpf() system call. Then a number of checks
are performed on the eBPF bytecode by a verifier to ensure

2

eBPF Prog (bytecode)

eBPF program

LLVM/Clang

eBPF

eBPF bytecode

Verifier & JIT compiler

bpf()

Native code

eBPF Maps

kprobe

User App

Read map

update

bpf()Userspace

Kernel

Kernel

function

Figure 2. Linux eBPF framework.

that it cannot threaten the stability and security of the ker-
nel. Finally, the eBPF bytecode can either be executed in the
kernel by an interpreter or translated to native machine code
using a Just-in-Time (JIT) compiler.

eBPF programs can be attached to predetermined hooks in
the kernel, such as the traffic classifier (tc) [29] and eXpress
Data Path (XDP) [30] in the network stack. One can also
attach eBPF programs to kprobe tracepoint hooks, which
makes eBPF programs can be attached to any kernel function.
One of most important property of eBPF is that it provides
eBPF maps for sharing data with user-space application. eBPF
maps are data structures implemented in the kernel as key-
value stores. Keys and values are treated as binary blobs,
allowing to store user-defined data structures and types. To
enable handling page fault in user-space, we utilize eBPF
program to store thread context and page fault information
into maps when page fault happens. Then our user-space
page fault handler can retrieve the needed information from
the maps to handle the page fault (§4.2).

2.3 Target Application and Execution Mode
In high-concurrency and low-latency memory-intensive ap-
plications, such as web service, in-memory cache and data-
base, each server may handle thousands of requests. The
traditional thread-based execution model (i.e., launching
one thread per request) would lead to significant scheduling
overhead, making most of the CPU time wasted on thread
scheduling and context switching. To address this issue, light
weight thread (LWT), as known as coroutine [31, 32] is
proposed and widely adopted in memory-intensive applica-
tions to improve the throughput and reduce the response
latency [33, 34]. Different from thread, such pthread in Linux,
LWT is fully controlled and scheduled by user program, in-
stead of the operating system. Each thread can be comprised
of lots of LWTs, and each LWT has an entry function that
can suspend its execution and resume at a later point. There-
fore, compared to OS managed thread, LWT has much lower
scheduling overhead and more flexible scheduling policy.
Moreover, in conventional swapping, when accessing a

non-present page, the current thread will be blocked and

woke up by the OS once the requested page is fetched back
to local DRAM. During this process, the swap-in request
needs to go through the whole IO stack to read the page, and
a context switch is performed to put the blocked thread into
running state, which both bring significant latency penalty.
Therefore, we adopt LWT as our application execution

model for high-throughput in-memory systems, and co-design
Lightswap with LWT to provide an high-performance and
transparent user-space swapping to applications.

3 LightSwap Design Considerations
This section discusses the design considerations of Lightswap.
To make Lightswap fast and flexible, we move page swap-
ping from kernel to user-space, and co-design swapping
with LWT to hide the context switching cost and improve
the CPU utilization. Then, we discuss the need of paging
error handling due to the scaling in process technology.

3.1 Why User space?
We design an user space swapping framework based on the
following reasons:

1) User space I/O drivers show high potential in per-
formance improvements. The performance of storage de-
vices has been improved significantly due to the emerging
technologies in both storage media and interface, such the
Intel Optane memory [14], new NVMe (Non-Volatile Mem-
ory Express) [35] interface and PCI Express (PCIe) 4.0 inter-
connect. Therefore, the overhead of legacy kernel I/O stack
becomes more and more noticeable since it was originally
optimized for slow HDDs.
To reduce the I/O stack overhead, user space I/O stacks

without any kernel intervention are desired to support high-
performance storage device. To this end, Intel released stor-
age performance development kit (SPDK) [28], which moves
all the necessary drivers into user-space, thus avoids syscalls
and enables zero-copy. Other optimizations, such as polling
and lock-free are also used in SPDK to enhance the I/O per-
formance. To accelerate network I/Os, DPDK [36], a packet
process acceleration framework, maps Ethernet NIC into
user-space and control it in user-space program. DPDK also
provides an user-space polling mode driver (PMD), which
uses polling to check for received data packets instead of us-
ing interrupts as the kernel network stack would. Therefore,
to be beneficial from these high-performance user-space I/O
drivers, we build Lightswap in user-space.

2) User space swapping can easily support memory
disaggregation. Thanks to the fast and low-latency RDMA
network, the effective memory capacity can also be extended
through remote memory paging. To achieve this, memory
disaggregation architecture [16–20] has been proposed to
expose the memories in dedicated servers to computational
severs to enlarge their memory space. Previous works [24,

3

25, 37, 38] have shown that swapping is a promising solution
to enable efficient memory disaggregation.
Lightswap uses an user-space key-value abstraction for

paging in/out. Pages are read/write from/to backend stores
through an unified KV interface. Thus, memory disaggrega-
tion can be enabled by writing pages to a remote KV store
in Lightswap.

3) User-space is more resilient to errors. Due to the
continuous scale in storage density and process technology,
both storage devices and memories becomes more prone to
errors [39]. When these errors are triggered in kernel space,
Linux and UNIX-like OSes have to call a panic function,
which cause system crash and even service termination.

To deal with the above errors in user-space, one can iso-
late the faulted storage device or memory address and then
simply kill the corresponding applications. However, this
approach still causes application termination and thus lower
the system’s availability. Moreover, it is difficult to handle the
error properly without application semantics. Therefore, we
propose to handle memory and device errors in user-space
with application-specific knowledges.

3.2 Swapping with LWT
Existing OS usually pays a high cost on thread context-
switching, which can take 5–10 microseconds on x86 plat-
forms [40]. To hide the thread context-switching latency,
Fastswap [41] poll waits the requested page when page fault
happens by leveraging the low latency of RDMA network.
However, with SSD-based swapping or larger page size, read-
ing the requested page into local memory needs comparably
longer durations. Even paging with remote memory with
RDMA, we still argue that polling wait is not the optimal
way as the context-switching of LWT is in nanoseconds.
Thus, polling wait would cause a large waste on CPU cycles.
To tackle this issue, Lightswap uses asynchronous I/O: it
switches to other LWTs while waiting for data fetch.
To effectively swap-in pages in user-space, we co-design

Lightswap with LWT (§4.3). First, to make Lightswap be
transparent to applications, Lightswap uses a dedicated LWT,
referred as swap-in LWT, to fetch pages from a backend store
to local memory. When a page fault is triggered by normal
application LWT, referred as faulting LWT, it will be blocked
and the swap-in LWT is launched to fetch the requested
pages. Second, the swap-in LWT will also be blocked and
yields CPU for other worker LWTs when waiting for data
fetch. Finally, to reduce the overall page fault latency, we
adjust our LWT scheduler to prioritize swap-in LWTs, thus
the requested pages can be fetched as soon as possible.

3.3 Handling Paging Errors
Due to storage device and memory errors, pages in SSD-
based backend store, remotememory, and local memory have
more possibility to be corrupted. Therefore, paging mainly
encounter two kinds of errors: 1) swap-in error, swapped out

pages cannot be brought back due to device or network fail-
ure, and 2) uncorrectable memory error (UCE), memory error
that has exceeded the correction capability of DRAM hard-
ware. Existing data protection methods, such as replication
and erasure code, only work well for slow disk. To reduce
the possibility of encounter memory errors in memory ac-
cess, a daemon named memory scrubber will periodically
scan DRAM and correct any potential errors. However, the
most advanced DRAM ECC scheme (i.e., chipkill) also fails to
correct errors from multiple devices in a DIMM module [42].
When an UCE is found by memory scrubber or triggered
during memory access (i.e., load/store), the BIOS will gen-
erate a hardware interrupt to notify the OS that a memory
UCE has happened. To deal with these paging errors, in-
cluding swap-in errors and UCEs, the common wisdom is
to terminate the related process or even restart the whole
system. Undoubtedly, this “brute force” method is simple
and effective, but also lower the system’s availability.

Fortunately, some applications, such as in-memory caching
system, can tolerate such memory data corruption/loss as
they can recovery data from disk or replicas. Therefore, in
Lightswap, we propose an error handling framework, which
provides an opportunity for applications to tolerate and cor-
rect these errors in the application context. When a paging
error happens, the corresponding application is notified and
then the application will try handling this error using its
specific error handling routine.

4 Lightswap Design
In this section, we first introduce the overview of Lightswap
framework and its building blocks. Then we discuss how to
effectively handle page fault in user-space and the co-design
of swapping and LWT. Finally, we show how paging errors
are handled in Lightswap.

4.1 Lightswap Overview
Figure 3 illustrates the overall architecture of Lightswap.
As shown, Lightswap handles page faults in user-space and
uses a generic key-value store for swapping in/out. For the
key-value store, keys are the process virtual addresses, while
values are pages. Using key-value interface for swapping
makes pages can be swapped to arbitrary storage devices.
With one-side RDMA semantics, memory disaggregation can
also be enabled by swapping pages to remote memory pools.
The components of Lightswap are introduced as below.
LWT library. An application can create multiple standard
pthreads, which usually are bounded to given CPU cores.
The number of pthreads is limited by the number of avail-
able CPU cores to minimize scheduling overhead. Inside each
pthread, LWTs are created to process user or client requests.
LWT library is provided to user application for creating and
managing LWTs. In the LWT library, a scheduler is designed
for scheduling LWTs based on the priority. Different from

4

K
e
rn

e
l

U
s
e
rs

p
a
c
e

memig kernel

module

Default strategy

memigd

Cold page
scanner

Memory management

OS page fault handler
eBPF prog

Application

access_bit page_map/page_unmap

Backend store

Page fault handler

Index

put/
get SSDs

Remote

Memory

RNIC

LWT library

Scheduler Sig handler

eBPF maps

Default Ctx
map

Page fault
Ctx map

bpf

OS UCE handler

PF-entry

LWTs
Running LWT

pthread

schedule

Swap policy

Swap cache

Page prefetcher Swap-out routineUser strategy

Swap subsystem

allocate/free K
e
y
 v

a
lu

e
 i
n
te

rf
a

c
e

Figure 3. Lightswap architecture. Lightswap handles page faults in user-space and swap in/out pages uses a key-value
interface.

thread scheduling and context-switching, which requires ker-
nel involvement, the scheduling of LWTs is fully controlled
by LWT library in user-space without any kernel efforts.
Therefore, the scheduling overhead of LWT is minimized.
In our measurement, LWT switching latency is usually less
than 1 microsecond, which is orders of magnitude faster than
thread switching (several microsecond).

To handle page faults triggered by LWTs, each pthread has
a page fault entry point (PF-entry), which is the entry point
of user-space page fault handler. When a page fault happens,
this entry point will be reached and then the user-space page
fault handler will be involved after reading the page fault
information from eBPF maps (§4.2).

The signal handler (Sig handler) is used to receive pag-
ing error signals. For memory UCEs, the BIOS will notify
the OS to handle the error, and the OS UCE handler will first
tries to isolate the faulted memory address and then issues a
signal to the user application, more specifically, to the Sig
handler. For swap-in errors, signals will be generated and
sent by the swap-in LWTs. In the signal handler, application-
specific paging error handling routine will be executed to
try to resolve the error (§4.4).
Memory migration daemon (memigd). memigd is a user-
space process that responsible for scanning cold pages of
given applications. The results will be used as the input of
default strategy in swap policy to guide the page reclaiming.
To identify cold pages accurately, memigd utilizes a kernel
module, namely memig to periodically test and clear the ac-
cess bit of page table entries. The access bit of a page table
entry is set to ‘1’ by hardware once the page is touched.
Therefore, in memigd, pages whose access bits are survived
during two consecutive scans are considered as hot pages,
otherwise, they will be regarded as cold pages. When the
system’s available memory below a pre-defined threshold,
memigd will start to scan cold pages of user applications that
labeled as swappable, then these cold pages will be selected

as victim pages for swapping out. In Lightswap, to reduce the
scanning cost and make mission-critical applications fully
reside in memory, only applications that marked as swap-
pable will be scanned for paging out. Moreover, to reduce the
I/O operations, we also only write dirty victim pages back
to backend store, clean victim pages are discarded directly
as they already existed in the backend store.
Besides cold page identification, memigd can also be em-

ployed to control the physical memory usage of each process,
enabling memory quota for user applications. Once the sys-
tem’s memory is under pressure or applications’ memory
usage exceeds the quota, memigd will starts scan cold pages
and notify the uswplib (see below) for swapping out.
User-space swap library (lswaplib). uswplib is the core
component of Lightswap. It is a library that enables user-
space swapping for applications. uswplib is comprised of
two parts: swap policy and swap subsystem. The swap policy
decides which pages to be swap out based on both user spe-
cific strategy and default strategy. Besides, swap policy can
also be used to guide the page pre-fetching when page fault
happens. More specifically, applications can pass application-
specific strategy to swap policy by calling:
void swap_advise(void* addr, size_t len, bool out).

If parameter out is true, this function provides swap out
suggestions. Pages in (addr, len) of that application will be
preferred for swapping out. In our current implementation,
if application memory quota is configured, pages belong to
(addr, len)will be swapped out once the application’smemory
quota is full, otherwise, the swap policy will evenly select
victim pages (including cold pages recognized by memigd and
pages suggested using swap_advice()) across applications
for swapping out.
If parameter out is false, this function provides prefetch

hints. Since we do not know when these pages will be used,
to reduce the memory footprints, we neither bring in pages

5

6 10 16 39

607

1.7 18 31
107

657

0

200

400

600

800

1 16 32 64 128

A
v
e

ra
g
e

 l
a
te

n
c
y
 (

u
s
)

Number of threads

userfaultfd signal

Figure 4. Average page fault events notification latency un-
der different number of threads.

in (addr, len) immediately nor bring these pages in a con-
sequent page fault handling process. Instead, we bring in
pages belong to (addr, len) only when an address in this range
causes a page fault. In the corresponding page fault handling
routine, we prefetch these pages from the backend store.
The swap subsystem do the actual paging in and out. A

dedicated swap-out thread is launched to receive victim
pages from swap policy and write them to backend store.
When swapping pages out, pages will be first removed from
application’s page table use page_unmap() system call and
then added to the swap cache. Pages in swap cache are asyn-
chronously writeback to the backend store, thus decoupling
page write from the critical path of swapping out routine. A
dedicate thread periodically flushes the swap cache to the
backend store when its size has reached a pre-configured
threshold batch size. uswplib defines an user-space page
fault handler, which will be called to swap in the requested
page when page fault happens. The page fault handler will
first search the swap cache for the desired page. If the page is
found in the swap cache, we remove it from the swap cache
and add it to the application’s page table at the faulted ad-
dress. Otherwise, page will be read from the bankend store.
In the page fault handler, we also decouple the prefetching
from the critical path of swapping in routine. After bringing
the desired page into memory, the page fault handler ap-
pends a prefetch request into a prefetch queue. If the faulted
address associated with an application-specific prefetch hint,
the prefetch request will read pages in (addr, len) specified
by swap_advice(). Otherwise, a simple read-ahead policy
will be used and the prefetch request tries to read the sur-
rounding eight pages at the faulted address. To improve the
concurrency and of page prefetching, a group of I/O LWTs,
referred as prefetchers will constantly pull requests from the
prefetch queue and bring pages into memory. Note that in
our current implementation, we do not have any special or
carefully designed prefetch algorithm as this work does not
aim at prefetching, but these algorithm can be easily added
to Lightswap.
eBPF prog. The eBPF prog is eBPF bytecode that injected
into the kernel using bpf() system call. It is the key compo-
nent of handling page fault in user-space (§4.2). eBPF prog
maintains two context maps: default context map and page
fault context map. Both maps contains multiple entries. Each

❷ Page faultUserspace

Kernel

do_page_fault()

eBPF prog

Hook

LWTLWTLWT PF-entry PF handler

Default context map

Thread

❸ Save page fault
context

❹ Restore default
context

ctx1 ctx2 ... ctxn

Page fault context map

❶ Save thread default

context at PF-entry

❺

ctx1 ctx2 ... ctxn

❷ Page faultUserspace

Kernel

do_page_fault()

eBPF prog

Hook

LWTLWTLWT PF-entry PF handler

Default context map

Thread

❸ Save page fault
context

❹ Restore default
context

ctx1 ctx2 ... ctxn

Page fault context

map

❶ Save thread

default context at

PF-entry

❺

ctx1 ctx2 ... ctxn

Figure 5. eBPF-based page fault handling scheme.

entry of the default context map stores the default context
that is saved at page fault entry point (i.e., PF-entry). Each
entry of the page fault context map stores the LWT context
where page fault is triggered.When page fault happens, eBPF
prog is responsible for 1) saving the context of faulting LWT
into the page fault context map and 2) modify the current
context with the previously saved default context.

4.2 Handling Page Fault in User-space
Page faults are handled in user-space in Lightswap. The
key challenge here is how to notify user-space application
when page fault happens effectively. To achieve this, Linux
provides userfaultfd [43] to notify and allow user-space appli-
cations handle page faults of pre-registered virtual address
regions. Besides, one can also use Linux signal to notify
user-space applications that page faults happened, which
is similar to the memory UCE notification (§4.4). However,
both userfaultfd and signal suffer from several performance
issues as discussed below.

Userfaultfd requires a fault-handling thread that pulls page
fault events through reading the userfaultfd file descriptor,
and provides UFFD_COPY and UFFD_ZERO ioctl operations to
resolve the page faults. When a page fault happens, The OS
page fault handler puts the faulting thread into sleep and
allocates physical page for the faulted address, then an event
is generated and sent to the fault-handling thread. The fault-
handling thread reads events from userfaultfd file descriptor
and resolves the page fault with UFFD_COPY or UFFD_ZERO
ioctl operations. In userfaultfd, all the page faults are han-
dled by the fault-handling thread, which will easily become
the bottleneck when multiple threads trigger page faults al-
most simultaneously. Moreover, one cannot directly bring
the request page from backend store to the faulted address.
To resolve a page fault, one must first read the request page
from backend store to a memory buffer, and then copy the

6

1: pthread_func() {
2: ucontext *ctx = get_current_contex();
3: PF-entry(ctx);
4: while (current->stat != EXITING)
5: LWT_sched();
6: }

1: PF-entry(ucontext *ctx) {
2: if (ctx_saved == FALSE) {
3: ebpf_map_save_default_ctx(ctx);
4: ctx_saved = TRUE;
5: return;
6: }
7: ucontext *pf_ctx;
8: pf_ctx = ebpf_retrieve_pagefault_ctx();
9: pagefault_handler(pf_ctx);
10: }

Figure 6. Swapping with LWT. Thread schedules LWTs and
calls page fault handler when any LWT triggers page fault.

page from the buffer to the faulted address using ioctl sys-
tem call, which brings one extra memory copy operation.
For the signal approach, when page faults happen, the

OS page fault handler notifies the user-space by sending a
signal, which contains the faulted address and other related
information. However, as the signal handler of a process
is shared by all its threads, a lock is required to protect
the signal handler data structure, which makes the signal
sending routine suffers from seriously lock contention under
high-concurrency.
To show the performance of userfaultfd and signal, we

record the page fault notification latency (i.e., latency from
page fault happens to the user-space page fault handler re-
ceives the page fault event) of both userfualtfd and signal
under different concurrent threads and plot their average
latency in Figure 4. The detailed configurations can be found
in §5.3. As shown, with only one thread, both userfaultfd and
signal achieve very low page fault notification latency (i.e.,
6𝜇s for userfaultfd and 1.7𝜇s for signal). However, with the
increasing of concurrent threads, the page fault latency of
both userfaultfd and signal increase significantly. Therefore,
neither userfaultfd nor signal is impractical for handling
page fault in user-space for high-currency applications.

To effectively handling page faults in user-space, we pro-
pose the eBPF-based page fault notification scheme. As shown
in Figure 5. In the main thread, before launching and sched-
uling LWTs, thread will enter the page fault entry point
(i.e., PF-entry) and saves the current thread context into
the default context map (❶). When one of the LWT triggers
a page fault (❷), the kernel page fault handler will be in-
volved. We use the kernel page fault handling function (i.e.,
do_page_fault()) as a hook point and attached our eBPF
program to this function. Once this function is involved, the
attached eBPF program will be executed. In the eBPF pro-
gram, we first save LWT’s context at the point that page

Faulting LWT

Thread

Swap-in LWT

Other LWT

Page fault

Kernel

restore
ctx

❶create
LWT

❷sleep

❸sched

yield

sched

❹yield

❺sched

PF-entry Page fault handlereBPF prog Swap in routine LWT scheduler

PF-entry

Page fault handlereBPF prog

Swap in routine

LWT execution

LWT scheduler

Figure 7. Scheduling of swap-in LWTs and faulting LWTs.

fault happens (❸). We refer this context as page fault context
and store it into the page fault context map, which uses the
thread ID (i.e., tid) as the key and the thread context as its
value. The page fault context contains the page fault address
and will be used to restore the execution of LWT after page
fault is resolved. Then the thread’s default context (which is
saved in step ❶) is retrieved from the default context map,
and the current thread context is modified to the retrieved
default context, which makes the execution of current thread
restore to PF-entry (❹). In PF-entry, thread will notice that
the default context is already saved, which means this is not
the first enter and thus thread knows page fault occurs. Then,
the page fault context is also retrieved from the page fault
context map and saved in the faulting LWT’s stack. The
page fault context will be employed by the LWT scheduler
to restore the execution of the faulting LWT. Finally, the
user-space page fault handler is called to resolve the page
fault (❺). In the user-space page fault handler, the faulting
LWT is blocked and put into sleep, then the requested page
will be read from the backend store (see details in §4.3). Once
the page fault is resolved, the state of the faulting LWT is
set to runnable and will be scheduled in the next scheduling
period. In the next subsection, we will show how pages are
read from backend store using LWT.

4.3 Co-design Swapping with LWT
Lightswap handles page faults in user-space. There are two
challenges that we need to address. First, user applications
must use Lightswap transparently to avoid application mod-
ifications. Second, to reduce the total page fault latency, the
faulting LWT must be woken up as soon as possible after
the requested page is brought into memory.

To address these issues, we co-design swapping with LWT
to reduce the swap-in latency. Figure 6 shows the pseudo
code of how LWTs are scheduled and user-space page fault
handler are called. In the main thread, the thread’s context
is saved to the default context eBPF map in PF-entry()
before scheduling LWT. After that, the LWT scheduler (i.e.,
LWT_sched()) continuously picks and run LWTs from the
front of the ready LWT queue. When any LWT triggers page
fault, the faulting LWT is blocked and the thread is restore to
PF-entry(), in which the user-space page fault handler will

7

1: LIGHTSWAP_TRY {
2: // do something
3: *addr = value;
4: // do something
5: } LIGHTSWAP_CATCH (_err_code, _vaddr) {
6: /* paging error handling code */
7: } LIGHTSWAP_TRY_CATCH_END

(a)

1: #define LIGHTSWAP_TRY
2: do { \
3: ucontext *lwt_ctx = getcontext(); \
4: if (lightswap_has_err()) {
5:
6: #define LIGHTSWAP_CATCH (_err_code, _vaddr)
7: } else { \
8: int _err_code = get_error_code(); \
9: ulong _vaddr = get_pagefault_addr();
10:
11: #define LIGHTSWAP_TRY_CATCH_END
12: } \
13: while(0);

(b)

Figure 8. Try-catch paging error handling framework. (a)
Example of how application handling paging errors with the
proposed try-catch framework; (b) Lightswap try-catch key-
words macro definition.

be called. To tackle the first challenge, a new LWT (referred
as swap-in LWT) is created to swap in the requested page in
the page fault handler. Thus, user application does not aware
page fault happens and the page fault will be handled by our
dedicated swap-in LWT. To tackle the second challenge, we
make the LWT scheduler prefers swap-in LWTs and faulting
LWTs. To achieve this, we classify the ready LWTs into three
queues: 1) swap-in LWT queue, swap-in LWTs are put into
this queue after they are created and ready to run; 2) faulting
LWT queue, which contains LWTs that encounter page faults
and the page faults have been resolved, which means their
requested pages have been brought into memory by the
swap-in LWTs and their status become ready; 3) normal
LWT queue, other ready LWTs are resided in this queue.
The LWT scheduler assigns the first priority to the swap-in
LWT queue, second priority to the faulting LWT queue, and
third priority to the normal LWT queue. Therefore, swap-in
LWTs can be scheduled to run immediately after they are
created, and once the requested pages are swapped back to
memory, the faulting LWTs can be scheduled to run as soon
as possible.
Figure 7 illustrates an example of scheduling of swap-

in LWT that reading page from backend store. As shown,
when page fault happens, the faulting LWT is blocked and
a dedicated swap-in LWT is created in the user-space page
fault handler (❶). We assume that the swap-in LWT queue is
empty currently, thus when the swap-in LWT is added to the
swap-in LWT queue, it will be scheduled to run immediately.

OS UCE

handler

Sig handler

Exception

SIGRTMAX

Userspace

Kernel

❶ Isolate corrupted physical pages

❷ Allocate new physical pages and

setup page table mapping

❸ Send memory UCE signal to

userspace application

USWAP_TRY {

/* protected code */

} USWAP_CATCH {

/* error handling */

} USWAP_TRY_CATCH_END

❹ Save error code and faulted virtual address

❺ Restore LWT context

OS UCE

handler

Sig handler

Exception

SIGRTMAX

Userspace

Kernel
LIGHTSWAP_TRY {

/* protected code */

} LIGHTSWAP_CATCH {

/* error handling routine*/

} LIGHTSWAP_TRY_CATCH_END

❺ Save error code and faulted virtual address

❻ Restore LWT context

❶ Save LWT context

❷ Isolate corrupted physical pages

❸ Allocate new physical pages and

update page table mapping

❹ Send memory UCE signal

Application

Figure 9. Handling memory UCE.

After the requested page is brought into memory, the swap-
in LWT changes the state of faulting LWT to ready and adds
it to the faulting LWT queue. Then it gives up the CPU by
calling yield() (❹). Finally, the scheduler picks the faulting
LWT from the queue and schedules it to run (❺). To improve
the throughput, we propose swap in pages asynchronously
by leveraging the negligible scheduling overhead of LWT. As
shown in Figure 7, the swap-in LWT is put into sleep when
waiting for page to be read from backend store (❷). Thus,
other ready LWT can be scheduled to run to maximize the
CPU usage(❸). After the page is brought into memory, the
swap-in LWT is set to ready and re-added to the swap-in
LWT queue. Remember that swap-in LWT queue has the
highest priority, and thus the swap-in LWTs will be preferred
by the scheduler at the next LWT scheduling.

4.4 Try-catch Exception Framework
Inspired by the try-catch exception handling approach in
C++, we designed a paging error handling framework in
Lightswap. Basically, applications can embed LIGHTSWAP_TRY
and LIGHTSWAP_CATCH macro into their program, as shown
in Figure 8(a). Codes that surrounded by LIGHTSWAP_TRY
macro will be protected against from paging errors. For the
example in Figure 8(a), if the pointer deference at line 3 trig-
gers a paging error (memory UCE or swap-in error), the
application will jump to the LIGHTSWAP_CATCH immediately
to handle the paging error using application customize codes.
For example, memory cache applications can recovery the
data from disk. Through this way, we provide an opportunity
for applications to handle paging errors in user-space.
Figure 8(b) shows the definition of Lightswap try-catch

macro. In LIGHTSWAP_TRY macro (line 1–4), we first save
the context of the current LWT (line 3) and check whether
a paging error is encountered (line 5). In normal execu-
tion, lightswap_has_err() returns false and codes in the
LIGHTSWAP_TRY block will be executed. If a paging error
happens when executing codes in the LIGHTSWAP_TRY block,
the user-space page fault handler or the signal handler will
restore the program pointer to the context saving point (line

8

Number of threads/LWTs 1 16 32 64 128

Latency (𝜇s)
Userfaultfd 6 10 16 39 607

Signal 1.7 18 31 107 657
eBPF 1.6 1.7 2 2.4 4

Table 1. Average latency of different user-space page fault
notification schemes.

3) using the previous saved LWT context. Then, function
lightswap_has_err() will return true as an error happens,
which makes the application jumps to LIGHTSWAP_CATCH
block to handle the error.

Figure 9 shows howmemory UCE is handled in Lightswap.
For memory access that causes memory UCE, the OS UCE
handler will first be notified by the hardware. In the OS
UCE handler, the corrupted physical pages are isolated and
new pages are allocated and mapped to the faulted virtual
addresses (❶❷). Then a standard Linux signal, which con-
tains the signal number, error type (i.e., memory UCE), and
faulted virtual address is sent to the corresponding appli-
cation (❸). Currently, we utilize the maximum signal num-
ber (i.e., SIGRTMAX) as the memory UCE signal. After the
signal handler captures the signal, it first saves the error
code and faulted virtual address, which will be used in the
LIGHTSWAP_CATCH block, then it restore LWT context to the
point that the context is saved (❹❺). With these steps, the
application will finally jump to the LIGHTSWAP_CATCH block
to handle the memory UCE.
To handle swap-in errors, the user-space page fault han-

dler is responsible for restoring the LWT context. For exam-
ple, if the pointer deference at line 3 in Figure 8(b) triggers a
page fault and the user-space page fault handler finds that
the requested page cannot be brought in memory correctly,
it first saves the error code and faulted virtual address, and
then restores the LWT context to let application to handle
the swap-in error.

5 Evaluation
This section introduce the evaluation of Lightswap, we start
with a brief introduction of our system implementation, then
give the evaluation setups and finally discuss the results.

5.1 Implementations
We implement and evaluate Lightswap in real production sys-
tem to show its effectiveness. We made some modifications
to the Linux kernel to let it supports user-space swapping
effectively. First, we add a hook point, more especially, a
empty function to the kernel. The kernel page fault han-
dler (i.e., do_page_fault()) will call this function and then
return immediately if the faulted address belongs to an ap-
plication that is supported by Lightswap. We make the eBPF
program to hook this function and thus normal page faults
still use the kernel page fault handler while only applications
that are supported by Lightswap use our user-space page
fault handler. To reduce the number of bpf() system calls,

0

50

100

1 16 32 64 128A
v
e

ra
g

e
 l
a

te
n

c
y
 (

u
s
)

Number of threads/LWTs

Lightswap-RDMA Infiniswap

Lightswap-SSD Linux kernel swap

Figure 10. Average page fault handling latency, from page
fault happens to the requested page be brought into memory
by the page fault handler. Lightswap-RDMA denotes paging
with remote memory via one-side RDMA, while Lightswap-SSD
represents paging with local SSDs.

we use shared memory between kernel and user-space to
share the page fault context map. Second, to support swap
in/out pages in user-space, we added a pair of system calls
(i.e., page_map() and page_unmap()) to respectively map or
unmap a page to or from a given virtual address, thus the
swap-in LWT can update the page table mapping for the
faulted address, and the swap-out thread can also remove a
page from the application’s page table. Third, we modified
the OS UCE handler to make it send memory UCE signal
to our signal handler if the OS cannot correct the memory
error. Totally, all these kernel modification effort is no more
than 1000 lines of code.

To implement the key-value based backend store, we use
a in-memory hash table as its index to reduce the index
traversal time. We use a second hash table to solve the hash
conflicts. Entries in the second hash table point to the actual
positions of pages. For local SSDs, we organize the SSD space
in a log-structured way and thus pages in swap cache can be
flushed in batches to maximize the throughput. For remote
memory, we deploy a daemon in remote memory servers to
reserve and allocate memory space. To reduce the number
of allocation requests, memory servers only allocate 1GB
large memory blocks and response clients their registered
memory region IDs and offsets for RDMA. The backend store
in the client is responsible for managing memory blocks and
splitting them into pages.

5.2 Evaluation Setups
We employ two x86 servers in the evaluation, one is used as
client for running applications. Another server is configured
as memory server to allocate memory blocks. Each server
equips with two Intel Xeon CPUs, and each CPU contains
40 cores with hyper-thread enabled. The memory capacity
of both server is 256GB. We will limit the memory usage
of client server in order to trigger swapping in/out. The
connection between two serves is 100G RoCE with our cus-
tomized user-space driver that based on DPDK. For paging
with local SSDs, we use the state-of-art NVMe SSD with our
SPDK-based user-space NVMe driver as the storage device.

9

0 5 10 15 20 25 30 35 40 45 50

Lightswap-RDMA

Infiniswap

Lightswap-SSD

Linux-kernel-swap

Latency (us)

Kernel PF handler PF notification Create LWT Mapping page Kernel IO stack
Index lookup User IO stack RDMA read SSD read Memory copy

39.76%

80.16%

13.09%

42.13%

Figure 11. Page fault handling latency breakdown under no concurrency. The numbers beside each bar denote the fraction of
time cost by the software stack during handling page faults.

5.3 Microbenchmarks
Page fault notification latency. To show the effectiveness
of eBPF-based user-space page fault handling, we first evalu-
ate the average page fault notification latency under differ-
ent concurrency, where the page fault notification latency
denotes the latency from page fault happens to the user-
space page fault handler receives the page fault event. We
compares the average page fault notification latency among
eBPF, userfaultfd and signal. Since our eBPF-based approach
is co-designed with LWT, to evaluate its performance, we
create multiple threads (from 1 to 128) and bound them to
certain CPU cores. Inside each thread, we launch a LWT
as the faulting LWT. For userfaultfd, we use one faulting-
handling thread to pull page fault event and create multiple
threads as faulting threads. For the signal approach, a signal
handler is registered as the user-space page fault handler. In
this scheme, we reuse the signal number of handling swap-in
errors and memory UCEs, and use error code to identify the
actual fault type (i.e., page fault, swap-in error or memory
UCE). In the page fault handler of all these schemes, we sim-
ply allocate and map a zeroed page for the faulted address
and return immediately.

Table 1 shows the average page fault notification latency
of handling page faults in user-space. As shown, when there
is no concurrency, all of these page fault notification schemes
perform well, achieving extreme low latency. However, with
the increase of concurrency, the notification latency of both
userfaultfd and signal increase exponentially.With 128 threads,
the average latency of userfaultfd and signal as high as 607𝜇s
and 657𝜇s, respectively. As we discussed in §4.2, for user-
faultfd, the high latency is caused by the contention of fault
handling thread. The fault handling thread can launch multi-
ple threads to handle page faults concurrently, but this also
brings extra CPU overheads and adds synchronous costs.
For the signal scheme, in the signal sending routine (i.e.,
force_sig_info()), a siglock must be obtained before
sending the signal, which leads to seriously lock contention
under high-concurrency and thus resulting the high latency
of page fault notification. In the contrary, the proposed eBPF-
based page fault notification scheme achieve extreme low

latency under all the degrees of concurrency. When the num-
ber of LWTs increases from 1 to 128, the average latency
only has a slight increment, which is mainly due to the lock
contention of eBPF maps. In our current implementation, we
employ 32 eBPF hash maps for page fault context, and a lock
is used to protect each map.We divide the page fault contexts
of LWTs into these eBPF maps evenly by using the core ID as
an index number. Thus, even with 128 LWTs, each eBPF map
only needs to store the page fault contexts of 4 LWTs, which
significantly reduces the lock contention and contributes to
the slight increment of latency under high-concurrency.
Page fault handling latency. To show the end-to-end per-
formance of Lightswap, we compare the page fault handling
latency of Lightswap to other swapping schemes.We denotes
the page handling latency as the time duration from page
fault happens to the page fault handler finishes resolving the
page fault. We compare the results between Lightswap, Infin-
iswap and the Linux default kernel swap. Figure 10 illustrates
our evaluation results. Note that page fault handling latency
does not include the time duration from the page fault be re-
solved to the point that the faulting thread/LWT is restored
to run. As shown, when pagingwith remotememory through
one-side RDMA, Lightswap achieves the lowest page fault
handling latency, ranges from 10𝜇s to 13.5𝜇s under differ-
ent degrees of concurrency. The conventional Linux kernel
swap has the highest page fault handling latency, ranges
from 43.2𝜇s to 63.2𝜇s. When paging with remote memory
via one-side RDMA, Lightswap respectively outperforms In-
finiswap and Linux kernel swap by around 2.5 - 3.0 times and
4.3 - 5.0 times in terms of page fault handling latency. Even
paging with local SSDs, the proposed Lightswap achieves
comparable performance with Infiniswap, and has around
30% lower latency than Linux kernel swap. With ultra-low
latency NVMe SSDs, such as Intel Optane and KIOXIA XL-
Flash, we believe that Lightswap-SSD can achieve lower
latency than Infiniswap.
To demystify the reason behind this improvements, we

breakdown the page fault handling process and plot its de-
tailed time cost in Figure 11. In the figure, the kernel PF (page
fault) handler has already included the time spend on trap
into the kernel. In our measurement, reading a 4KB page

10

0

5

10

15

20

T
P

S
 (

T
h

o
u

s
a

n
d

s
)

Lightswap-RDMA Infiniswap Lightswap-SSD Linux kernel swap

Baseline 75% 50%

Linux kernel swap

0

5

10

15

20

T
P

S
 (

T
h

o
u

s
a

n
d

s
)

Lightswap-RDMA Infiniswap Lightswap-SSD Linux kernel swap

Baseline 75% 50%

(a) Readmost

0

5

10

15

20

T
P

S
 (

T
h

o
u

s
a

n
d

s
)

Lightswap-RDMA Infiniswap Lightswap-SSD Linux kernel swap

Baseline 75% 50%

(b) Readwrite

0

5

10

15

20

T
P

S
 (

T
h

o
u

s
a

n
d

s
)

Lightswap-RDMA Infiniswap Lightswap-SSD Linux kernel swap

Baseline 75% 50%

(c) Writemost

Figure 12. Average TPS of memcached with different swapping schemes.We compare the performance of different swapping
schemes with 75% and 50% physical memory of the memcached dataset size. We use 32 worker threads to process requests for all
these configurations.

from remote memory via one-side RDMA and local SSD will
respectively cost 5𝜇s and 25𝜇s on average in our environment.
Lightswap handles page faults in user-space and avoids the
slow kernel data path by leverage high-performance user-
space drivers. Therefore, in Lightswap, the page fault han-
dling latency is dominated by the page read latency. Software
stack respectively takes 39.76% and 13.09% for paging with
remote memory and local SSDs. However, both Infiniswap
and Linux kernel swap need to go through the entire ker-
nel I/O stack when fetch pages, making the kernel I/O stack
takes a large fraction of the total latency. The kernel I/O stack
is mainly comprised by the generic block layer that provides
OS-level block interface and I/O scheduling, and the device
driver that handles device specific I/O command submission
and completion. As shown in the figure, due to the kernel I/O
stack, the software stack overheads for Infiniswap and Linux
kernel swap are 80.16% and 42.13%, respectively. Despite the
fact that Infiniswap also one-side RDMA, the high software
stack overhead makes its page fault handling latency reaches
25𝜇s, and even exceeds 40𝜇s under high-concurrency.

5.4 Application: Memcached
Memcached is an widely used in-memory key-value based
object caching system. Memcached uses the client-server
mode and in the server sides, multiple worker threads is
created to process the PUT and GET requests from the
client side. We benchmark memcached with the YCSB work-
loads [44] under different swapping schemes. Each YCSB
workload performs 1 million operations on memcached with
10,485,760 1KB records, which are 10GB data in total. Table 2
summarizes the characteristics of our YSCB workloads.

Workload Name Read Insert Update OPs Size
Readmost 90% 5% 5% 1 million 10GB
Readwrite 50% 25% 25% 1 million 10GB
Writemost 90% 5% 5% 1 million 10GB

Table 2. YCSB workloads characteristics.

In memcached, mutiple worker threads are created to han-
dle requests from the client-side. However, the proposed

0

40

80

120

L
a

te
n

c
y

(u
s
)

Lightswap-RDMA Infiniswap

Lightswap-SSD Linux kernel swap

0

50

100

150

L
a

te
n

c
y

(u
s
)

Lightswap-RDMA Infiniswap

Lightswap-SSD Linux kernel swap

(a) Readmost

0

50

100

150

L
a

te
n

c
y

(u
s
)

Lightswap-RDMA Infiniswap

Lightswap-SSD Linux kernel swap

(b) Readwrite

0

50

100

150

L
a

te
n

c
y

(u
s
)

Lightswap-RDMA Infiniswap

Lightswap-SSD Linux kernel swap

(c) Writemost

Figure 13. Comparison of average operation latency under
different swapping schemes.

Lightswap is co-designed with LWT, so we first rewrite mem-
cached and make it to use LWTs to process client-side re-
quests. In this LWT version memcached, we create mutiple
worker threads and bound these threads to certain CPU cores.
Inside each thread, we launch a worker LWT for each incom-
ing request. We limit the number of LWTs in each thread
to 10 to reduce the LWT management overhead. Since the
LWT execution mode is much similar to the thread mode,
the rewritting does not need too much efforts. In our sys-
tem’s LWT implementation, each LWT has amaximum 32KB
stack, and the execution of LWTs is non-preemptive, which
means they will hold the CPU till get terminated or reach a
waiting state (e.g., waiting semaphore) or proactively release
the CPU by calling yield(). For other swapping schemes,
we still use the thread version memcached.

Figure 12 compares the average throughput of different
swapping schemes. Besides, we also compares their average
operation latency in Figure 13. In these two figures, The base-
line indicates the case that all memcached’s dataset is reside
in memory and there is no swap-ins/-outs. Since the number
of threads/LWTs in memcached is smaller than the number
CPU cores (i.e., 80 in total), all the worker threads/LWTs
can occupy the CPU continuously. Therefore, we observed
that there is no performance difference between LWT ver-
sion and thread version memcached. We found 3 key results

11

Error type Count Terminated (%) Survived (%)
Swap-in error 10000 43% 57%
Memory UCE 15000 74% 26%

Table 3. Paging error handling results.We use the OS UCE
handler and the swap-int LWT to randomly generate memory
UCEs and swap-in errors, respectively.

from these figures: 1) Lightswap-RMDA has the least per-
formance degradation, it outperforms Infiniswap and Linux
kernel swap by 40% and 60% on average in throughput, re-
spectively; 2) Due to the outstanding page fault handling
latency, Lightswap-RDMA also achieves the lowest latency
among these swapping schemes, it outperforms Infiniswap
and Linux kernel swap by 18% and 30% on average, respec-
tively; 3) Even with higher operation latency, Lightswap-SSD
still achieves 10% – 20% higher throughput than Ininifswap.
This is mainly because that Lightswap is co-desinged with
LWT. In LWT version memcached, page fault insteads of
blocking the current worker thread, it only blocks the fault-
ing LWT. Thus other worker LWT can still get scheduled and
executed by the worker thread. In contrast, in the thread ver-
sion memcached, the current worker thread will be blocked
once page fault happens, leading to that the CPU usage can-
not be maximized.
In order to show the effectiveness of the propose paging

error handling framework, we generate random UCEs and
swap-in errors for address space used by memcached. Cur-
rently, we only add a simple paging error handling routine
in do_item_get() of memcached. Since the item metadata
and item data are placed in the same structure, and items
belong to the same slab class are linked in the same LRU
list. Thus, if the error handling routine finds that any item is
corrupted due to paging error, it has to reset the whole slab
class and returns not found for GET requests. If paging error
causes any corruption in the memcached metadata, such as
the hash table and slab class array, the error handling routine
has to terminated memcached.
Table 3 shows the results of simulated paging error han-

dling results for Readmost workload, we generate 10 thou-
sands swap-in errors and 15 thousands memory UCEs to
memcached. As we only protect the GET operation, most of
thememory UCEwill cause process termination, memcached
only survives in 26% of the errors. In contrast, memcached
survives inmost of case (i.e., 57%) of swap-in errors as the test
workload is dominated by GET operations. We believe that
with more try-catch protections, memcached can eliminate
more process terminations.

6 Related Work
SSD-based swapping. Swapping has been studied for years,
with magnitudes of performance improvements compared
to hard disks, SSDs based swapping becomes an attractive
solution to extend the effective memory capacity. To this end,
kernel-based swapping has been revisited and optimized for

SSDs [3–10] to enlarge the main memory. They are inte-
grated with Linux virtual memory and rely on paging mech-
anism to manage the page movement between host DRAM
and SSDs. Different from these application transparent ap-
proaches, runtimemanaged and application-aware swapping
schemes [11–13] are proposed to fully exploit flash’s perfor-
mance and alleviate the I/O amplification. However, all these
swapping schemes, including both OS managed and run-
time managed approaches, employ kernel-level SSD drivers
and thus I/O traffics need to go through all the storage stack,
which may introduce notable software overheads as the next-
generation storage technology like Intel Optane [14] and
KIOXIA XL-Flash [15] are much faster than the past ones.

Disaggregated and remotememory. Several works [45–
51] have already explored paging with remote memory in-
stead of local SSDs, but their performance is often restricted
by the slow networks and high CPU overheads. With the
support of RDMA networks and emerging hardwares, it has
became possible to reorganize resources into disaggregated
clusters [16–20, 52–54] to improve and balance the resource
utilization. To achievememory disaggregation, Fastswap [41]
and INFINISWAP [24] explore paging with remote memory
using the kernel based swapping. FluidMem [25] supports
full memory disaggregation for virtual machines through
hogplug memory regions and relies userfaultfd to achieve
transparent page fault handling. AIFM [26] integrates swap-
ping with application and operates at object granularity in-
stead of page granularity to reduce network amplification.
Semeru [27] provides a JVM based runtime to managed ap-
plications with disaggregated memory and offloads garbage
collection to servers that holding remote memory. Remote
Regions [55] applies file abstraction for remote memory and
provide both block (read()/write()) and byte (mmap()) ac-
cess interface. In this paper, we implement a fully user-space
swapping framework and co-design it with LWT for data-
intensive and high-currency applications.

Distributed share memory (DSM). DSM systems [56–
61] provide an unified abstraction by exposing an shared
global address space to applications. Different from remote
memory, DSM provides an memory abstraction that data
is shared across different hosts, therefore bringing signifi-
cant cache coherence costs and making DSM inefficiency.
To avoid the coherence costs, Partitioned Global Address
Space (PGAS) [62–65] is proposed but requires application
modification. Lightswap that lets applications transparently
utilize remote memory through swapping is more efficient.

7 Conclusion
This paper proposes an user-space swapping mechanism
that can fully exploit the high performance and low latency
of emerging storage devices, as well as the RDMA-enable
remote memory. We focus on three main aspects: 1) how to
handle page faults in user-space effectively; 2) how to make

12

user-space swapping both high-performance and application-
transparent; 3) how to deal with paging errors which are
necessary but not considered in previously works.

References
[1] Memcached. https://memcached.org/. 2021.
[2] VoltDB. https://www.voltdb.com/. 2021.
[3] Mohit Saxena and Michael M. Swift. FlashVM: Virtual memory man-

agement on flash. In Proceedings of the 2010 USENIX Annual Technical
Conference (ATC’10), 2010.

[4] S. Ko, S. Jun, Y. Ryu, O. Kwon, and K. Koh. A new linux swap system for
flash memory storage devices. In Proceedings of the 2008 International
Conference on Computational Sciences and Its Applications, 2008.

[5] Seon-yeong Park, Dawoon Jung, Jeong-uk Kang, Jin-soo Kim, and
Joonwon Lee. CFLRU: A replacement algorithm for flash memory. In
Proceedings of the 2006 International Conference on Compilers, Architec-
ture and Synthesis for Embedded Systems (CASES’06), 2006.

[6] Jeffrey C. Mogul, Eduardo Argollo, Mehul Shah, and Paolo Faraboschi.
Operating system support for nvm+dram hybrid main memory. In
Proceedings of the 12th Conference on Hot Topics in Operating Systems
(HotOS’09), 2009.

[7] Ahmed Abulila, Vikram Sharma Mailthody, Zaid Qureshi, Jian Huang,
Nam Sung Kim, Jinjun Xiong, and Wen-mei Hwu. Flatflash: Exploiting
the byte-accessibility of ssds within a unified memory-storage hier-
archy. In Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’19), 2019.

[8] Viacheslav Fedorov, Jinchun Kim, Mian Qin, Paul V. Gratz, and
A. L. Narasimha Reddy. Speculative paging for future nvm storage.
In Proceedings of the International Symposium on Memory Systems
(MEMSYS’17), 2017.

[9] Jian Huang, Anirudh Badam, Moinuddin K Qureshi, and Karsten
Schwan. Unified address translation for memory-mapped ssds with
flashmap. In Proceedings of the 42Nd Annual International Symposium
on Computer Architecture (ISCA’15), pages 580–591, 2015.

[10] Nae Young Song, Yongseok Son, Hyuck Han, and Heon Young Yeom.
Efficient memory-mapped i/o on fast storage device. ACM Transaction
on Storage, 12(4), 2016.

[11] Anirudh Badam and Vivek S. Pai. SSDAlloc: Hybrid ssd/ram memory
management made easy. In Proceedings of the 8th USENIX Symposium
on Networked Systems Design and Implementation (NSDI’11), 2011.

[12] C. Wang, S. S. Vazhkudai, X. Ma, F. Meng, Y. Kim, and C. Engelmann.
NVMalloc: Exposing an aggregate ssd store as a memory partition
in extreme-scale machines. In Proceedings of the 2012 IEEE 26th In-
ternational Parallel and Distributed Processing Symposium (IPDPS’12),
2012.

[13] X. Ouyang, N. S. Islam, R. Rajachandrasekar, J. Jose, M. Luo, H. Wang,
and D. K. Panda. SSD-assisted hybrid memory to accelerate mem-
cached over high performance networks. In Proceedings of the 2012
41st International Conference on Parallel Processing (ICPP’12), 2012.

[14] Intel Corporation. Intel Optane Technology. https://www.intel.com/
content/www/us/en/architecture-and-technology/intel-optane-
technology.html. 2021.

[15] KIOXIA Corporation. Kioxia press release. https://business.kioxia.
com/en-us/news/2019/memory-20190805-1.html. 2021.

[16] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira,
Sangjin Han, Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker.
Network requirements for resource disaggregation. In In Proceedings
of 12th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI’16), pages 249–264, 2016.

[17] Sangjin Han, Norbert Egi, Aurojit Panda, Sylvia Ratnasamy, Guangyu
Shi, and Scott Shenker. Network support for resource disaggregation
in next-generation datacenters. In Proceedings of the Twelfth ACM

Workshop on Hot Topics in Networks (HotNets’13), 2013.
[18] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan,

Steven K. Reinhardt, and Thomas F. Wenisch. Disaggregated memory
for expansion and sharing in blade servers. SIGARCH Comput. Archit.
News, 37(3):267–278, 2009.

[19] Feng Li, Sudipto Das, Manoj Syamala, and Vivek R. Narasayya. Accel-
erating relational databases by leveraging remote memory and rdma.
In Proceedings of the 2016 International Conference on Management of
Data (SIGMOD’16), pages 355–370, 2016.

[20] P. S. Rao and G. Porter. Is memory disaggregation feasible? a case study
with spark sql. In Proceedings of the 2016 ACM/IEEE Symposium on
Architectures for Networking and Communications Systems (ANCS’16),
pages 75–80, 2016.

[21] HP. The Machine: A new kind of computer. https://www.hpl.hp.com/
research/systems-research/themachine/. 2021.

[22] Kevin Lim, Yoshio Turner, Jose Renato Santos, Alvin AuYoung, Jichuan
Chang, Parthasarathy Ranganathan, and Thomas F. Wenisch. System-
level implications of disaggregated memory. In In Proceedings of IEEE
International Symposium on High-Performance Computer Architecture
(HPCA’12), pages 1–12, 2012.

[23] Irina Calciu, M. Talha Imran, Ivan Puddu, Sanidhya Kashyap, Hasan Al
Maruf, Onur Mutlu, and Aasheesh Kolli. Rethinking Software Runtimes
for Disaggregated Memory, pages 79––92. 2021.

[24] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury,
and Kang G. Shin. Efficient memory disaggregation with INFINISWAP.
In In Proceedings of 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’17), pages 649–667, 2017.

[25] Blake Caldwell. FluidMem: Open Source Full Memory Disaggregation.
PhD thesis, University of Colorado at Boulder, 2019.

[26] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K Aguilera, and Adam
Belay. {AIFM}: High-performance, application-integrated far memory.
In Proceedings of the 14th {USENIX} Symposium on Operating Systems
Design and Implementation (OSDI’20), pages 315–332, 2020.

[27] Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan Ruan, Khanh
Nguyen, Michael D. Bond, Ravi Netravali, Miryung Kim, and Guo-
qing Harry Xu. Semeru: A memory-disaggregated managed runtime.
In Proceedings of the 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’20), pages 261–280, 2020.

[28] Intel Corporation. Storage Performance Development Kit. https:
//spdk.io/. 2021.

[29] Daniel Borkmann. On getting tc classifier fully programmable with
cls bpf. Proceedings of netdev, 1, 2016.

[30] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann,
John Fastabend, Tom Herbert, David Ahern, and David Miller. The
express data path: Fast programmable packet processing in the operat-
ing system kernel. In Proceedings of the 14th International Conference
on Emerging Networking EXperiments and Technologies, pages 54–66,
2018.

[31] Melvin E. Conway. Design of a separable transition-diagram compiler.
Commun. ACM, 6(7):396–408, 1963.

[32] Ana Lúcia De Moura and Roberto Ierusalimschy. Revisiting coroutines.
ACM Transactions on Programming Languages and Systems (TOPLAS),
31(2):1–31, 2009.

[33] Christopher Jonathan, Umar Farooq Minhas, James Hunter, Justin
Levandoski, and Gor Nishanov. Exploiting coroutines to attack the
"killer nanoseconds". Proc. VLDB Endow., 11(11):1702–1714, 2018.

[34] Georgios Psaropoulos, Thomas Legler, Norman May, and Anastasia
Ailamaki. Interleavingwith coroutines: A practical approach for robust
index joins. Proc. VLDB Endow., 11(2):230–242, 2017.

[35] NVM Express Work Group. NVM Express. https://nvmexpress.org/.
2021.

[36] DPDK community. DPDK Home. https://www.dpdk.org/. 2021.
[37] W. Cao and L. Liu. Hierarchical orchestration of disaggregatedmemory.

IEEE Transactions on Computers, 69(6):844–855, 2020.

13

https://memcached.org/
https://www.voltdb.com/
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://business.kioxia.com/en-us/news/2019/memory-20190805-1.html
https://business.kioxia.com/en-us/news/2019/memory-20190805-1.html
https://www.hpl.hp.com/research/systems-research/themachine/
https://www.hpl.hp.com/research/systems-research/themachine/
https://spdk.io/
https://spdk.io/
https://nvmexpress.org/
https://www.dpdk.org/

[38] Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agarwal,
Radoslaw Burny, Shakeel Butt, Jichuan Chang, Ashwin Chaugule, Nan
Deng, Junaid Shahid, Greg Thelen, Kamil Adam Yurtsever, Yu Zhao,
and Parthasarathy Ranganathan. Software-defined far memory in
warehouse-scale computers. In Proceedings of the Twenty-Fourth In-
ternational Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS’19), pages 317–330, 2019.

[39] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu. Error character-
ization, mitigation, and recovery in flash-memory-based solid-state
drives. Proceedings of the IEEE, 105(9), 2017.

[40] Vincent M Weaver. Linux perf_event features and overhead. In Pro-
ceedings of the 2nd International Workshop on Performance Analysis of
Workload Optimized Systems (FastPath’13), volume 13, page 5, 2013.

[41] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy
Ousterhout, Marcos K. Aguilera, Aurojit Panda, Sylvia Ratnasamy,
and Scott Shenker. Can far memory improve job throughput? In
Proceedings of the Fifteenth European Conference on Computer Systems
(EuroSys’20), 2020.

[42] Vilas Sridharan, Nathan DeBardeleben, Sean Blanchard, Kurt B. Fer-
reira, Jon Stearley, John Shalf, and Sudhanva Gurumurthi. Memory
errors in modern systems: The good, the bad, and the ugly. ACM
SIGPLAN Notices, 50(4):297–310, 2015.

[43] The kernel development community. Userfaultfd. https://www.kernel.
org/doc/html/latest/admin-guide/mm/userfaultfd.html. 2021.

[44] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking cloud serving systems with ycsb. In
Proceedings of the 1st ACM Symposium on Cloud Computing (SoCC’10),
pages 143—-154, 2010.

[45] Tia Newhall, Sean Finney, Kuzman Ganchev, and Michael Spiegel.
Nswap: A network swapping module for linux clusters. In Proceedings
of the European Conference on Parallel Processing (Euro-Par’03), pages
1160–1169, 2003.

[46] Sandhya Dwarkadas, Nikolaos Hardavellas, Leonidas Kontothanas-
sis, Rishiyur Nikhil, and Robert Stets. Cashmere-vlm: Remote mem-
ory paging for software distributed shared memory. In Proceedings
13th International Parallel Processing Symposium and 10th Symposium
on Parallel and Distributed Processing (IPPS/SPDP’99)., pages 153–159,
1999.

[47] Michael J Feeley, William E Morgan, EP Pighin, Anna R Karlin,
Henry M Levy, and Chandramohan A Thekkath. Implementing global
memory management in a workstation cluster. In Proceedings of the
fifteenth ACM Symposium on Operating Systems Principles (SOSP’95),
pages 201–212, 1995.

[48] Evangelos P Markatos and George Dramitinos. Implementation of a
reliable remote memory pager. In Proceedings of the USENIX Annual
Technical Conference (ATC’96), pages 177–190, 1996.

[49] Shuang Liang, Ranjit Noronha, and Dhabaleswar K Panda. Swap-
ping to remote memory over infiniband: An approach using a high
performance network block device. In Proceedings of the 2005 IEEE
International Conference on Cluster Computing (ICCC’05), pages 1–10,
2005.

[50] H. Oura, H. Midorikawa, K. Kitagawa, and M. Kai. Design and evalua-
tion of page-swap protocols for a remote memory paging system. In
Proceedings of the 2017 IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing (PACRIM’17), pages 1–8, 2017.

[51] HirokoMidorikawa, Yuichiro Suzuki, andMasatoshi Iwaida. User-level
remote memory paging for multithreaded applications. In Proceedings

of the 2013 13th IEEE/ACM International Symposium on Cluster, Cloud,
and Grid Computing (CCGrid’13), pages 196–197, 2013.

[52] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. LegoOS:
A disseminated, distributed OS for hardware resource disaggregation.
In Proceedings of the 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’18), pages 69–87, 2018.

[53] Amanda Carbonari and Ivan Beschasnikh. Tolerating faults in disag-
gregated datacenters. In Proceedings of the 16th ACM Workshop on Hot
Topics in Networks (HotNets’17), pages 164–170, 2017.

[54] Luiz Andre Barroso. Warehouse-scale computing: Entering the teenage
decade. In Proceedings of the 38th Annual International Symposium on
Computer Architecture (ISCA’11), 2011.

[55] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard,
Jayneel Gandhi, Stanko Novaković, Arun Ramanathan, Pratap Subrah-
manyam, Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian, and
Michael Wei. Remote regions: a simple abstraction for remote mem-
ory. In Proceedings of the 2018 USENIX Annual Technical Conference
(ATC’18), 2018.

[56] John B. Carter, John K. Bennett, and Willy Zwaenepoel. Implementa-
tion and performance of munin. In Proceedings of the Thirteenth ACM
Symposium on Operating Systems Principles (SOSP’91), pages 152–164,
1991.

[57] Kai Li and Paul Hudak. Memory coherence in shared virtual memory
systems. ACM Transactions on Computer Systems, 7(4):321–359, 1989.

[58] Bill Nitzberg and Virginia Lo. Distributed shared memory: A survey
of issues and algorithms. Computer, 24(8):52–60, 1991.

[59] Daniel J. Scales, Kourosh Gharachorloo, and Chandramohan A.
Thekkath. Shasta: A low overhead, software-only approach for sup-
porting fine-grain sharedmemory. In Proceedings of the Seventh Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS’96), page 174–185, 1996.

[60] Jacob Nelson, Brandon Holt, BrandonMyers, Preston Briggs, Luis Ceze,
Simon Kahan, and Mark Oskin. Latency-tolerant software distributed
shared memory. In Proceedings of the 2015 USENIX Annual Technical
Conference (ATC’15), pages 291–305, 2015.

[61] Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. Distributed shared
persistent memory. In Proceedings of the 2017 Symposium on Cloud
Computing (SoCC’17), page 323–337, 2017.

[62] Bradford L Chamberlain, David Callahan, and Hans P Zima. Parallel
programmability and the chapel language. The International Journal
of High Performance Computing Applications, 21(3):291–312, 2007.

[63] Katherine Yelick, Dan Bonachea, Wei-Yu Chen, Phillip Colella, Kaushik
Datta, Jason Duell, Susan L. Graham, Paul Hargrove, Paul Hilfinger,
Parry Husbands, Costin Iancu, Amir Kamil, Rajesh Nishtala, Jimmy Su,
Michael Welcome, and TongWen. Productivity and performance using
partitioned global address space languages. In Proceedings of the 2007
International Workshop on Parallel Symbolic Computation (PASCO’07),
page 24–32, 2007.

[64] Mattias De Wael, Stefan Marr, Bruno De Fraine, Tom Van Cutsem,
and Wolfgang De Meuter. Partitioned global address space languages.
ACM Computer Surveys, 47(4), 2015.

[65] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Don-
awa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek
Sarkar. X10: An object-oriented approach to non-uniform cluster com-
puting. In Proceedings of the 20th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA’05), pages 519–538, 2005.

14

https://www.kernel.org/doc/html/latest/admin-guide/mm/userfaultfd.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/userfaultfd.html

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Swapping
	2.2 Linux eBPF
	2.3 Target Application and Execution Mode

	3 LightSwap Design Considerations
	3.1 Why User space?
	3.2 Swapping with LWT
	3.3 Handling Paging Errors

	4 Lightswap Design
	4.1 Lightswap Overview
	4.2 Handling Page Fault in User-space
	4.3 Co-design Swapping with LWT
	4.4 Try-catch Exception Framework

	5 Evaluation
	5.1 Implementations
	5.2 Evaluation Setups
	5.3 Microbenchmarks
	5.4 Application: Memcached

	6 Related Work
	7 Conclusion
	References

