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Abstract—Sparse training is one of the promising techniques
to reduce the computational cost of DNNs while retaining high
accuracy. In particular, N:M fine-grained structured sparsity,
where only N out of consecutive M elements can be nonzero,
has attracted attention due to its hardware-friendly pattern and
capability of achieving a high sparse ratio. However, the potential
to accelerate N:M sparse DNN training has not been fully ex-
ploited, and there is a lack of efficient hardware supporting N:M
sparse training. To tackle these challenges, this paper presents
a computation-efficient training scheme for N:M sparse DNNs
using algorithm, architecture, and dataflow co-design. At the
algorithm level, a bidirectional weight pruning method, dubbed
BDWP, is proposed to leverage the N:M sparsity of weights
during both forward and backward passes of DNN training,
which can significantly reduce the computational cost while
maintaining model accuracy. At the architecture level, a sparse
accelerator for DNN training, namely SAT, is developed to neatly
support both the regular dense operations and the computation-
efficient N:M sparse operations. At the dataflow level, multiple
optimization methods ranging from interleave mapping, pre-
generation of N:M sparse weights, and offline scheduling, are
proposed to boost the computational efficiency of SAT. Finally,
the effectiveness of our training scheme is evaluated on a Xilinx
VCU1525 FPGA card using various DNN models (ResNet9,
ViT, VGG19, ResNet18, and ResNet50) and datasets (CIFAR-10,
CIFAR-100, Tiny ImageNet, and ImageNet). Experimental results
show the SAT accelerator with the BDWP sparse training method
under 2:8 sparse ratio achieves an average speedup of 1.75×
over that with the dense training, accompanied by a negligible
accuracy loss of 0.56% on average. Furthermore, our proposed
training scheme significantly improves the training throughput
by 2.97∼25.22× and the energy efficiency by 1.36∼3.58× over
prior FPGA-based accelerators.

I. INTRODUCTION

DEEP neural networks (DNNs) have been widely used
in many applications, such as computer vision, speech

recognition, autonomous driving, and robotics. However, their
impressive accuracy comes at the cost of expensive computa-
tional requirements: the state-of-the-art DNNs could contain
trillions of parameters [1] and consume thousands of peta-level
floating-point operations (FLOPs) [2] for the training process.
To relieve this burden, it is crucial to seek a computation-
efficient scheme for DNN training.
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Sparse training [3]–[12] is one of the promising techniques
to reduce the training computational cost while retaining
impressive accuracy of DNNs. It dynamically prunes elements
such as weights, activations, gradients, and then eliminates
computations associated with the pruned elements during
training iterations. Prior works mostly focus on exploiting
structured [6], [7] or unstructured [8]–[11] sparsity patterns
for sparse DNN training. Structured sparsity [13]–[15], which
involves pruning entire kernels or channels of weights at a
coarse-grained level, has limitations in reducing the number of
FLOPs of DNN training (less than 40% sparse ratio in [6]).
On the other hand, unstructured sparsity [16]–[18] involves
pruning elements in any position without constraints, leading
to a high sparse ratio (over 80% sparse ratio in [9]) and a
significant reduction in the number of FLOPs for training.
However, its irregular pattern makes it challenging to be fully
utilized on hardware for effective training speedup [19]–[21].

In recent years, there has been a growing interest in lever-
aging fine-grained structured sparsity [21]–[25] for efficient
DNN acceleration. N:M sparsity [21] has attracted significant
attention among various fine-grained structured sparsity for its
practical sparsity ratio and hardware-friendly pattern, which
allows only N out of consecutive M elements in a group to be
nonzero. The static 2:4 sparse pattern was initially introduced
by NVIDIA Ampere GPUs [20] for efficient DNN inference.
However, researchers have gone beyond the 2:4 static pattern
and explored more aggressive N:M sparse patterns, such as
2:8 or 2:16, which have demonstrated significant inference
acceleration [26]–[28] with competitive accuracy to the dense
counterparts [29]–[31]. In addition to its use in efficient DNN
inference, N:M sparsity has also shown potential in reducing
the computational cost of DNN training [3], [32]. However,
accelerating N:M sparse DNN training is a challenging task
that involves several issues to be addressed.

• The potential to accelerate N:M sparse DNN training has
not been fully exploited. Previous works solely accelerate
DNN training by introducing N:M sparsity in either for-
ward pass [32] or backward pass [3]. A unified approach
that takes advantage of N:M sparsity in both passes could
lead to further acceleration of DNN training.

• Current hardware platforms are unable to fully leverage
the sparsity benefits of N:M sparsity to accelerate DNN
training. Firstly, the Ampere GPUs [20] only support
2:4 sparse operations, which restricts the acceleration
capability of various N:M patterns with higher sparsity
ratios for efficient DNN training. Secondly, while N:M
sparse data can be packed in advance for DNN infer-

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this

work in other works. This work has been accepted by the IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD).

ar
X

iv
:2

30
9.

13
01

5v
1 

 [
cs

.L
G

] 
 2

2 
Se

p 
20

23



TO APPEAR IN THE IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

ence deployment, the N:M elements need to be updated
in training iterations. However, the lack of dedicated
hardware implementation for this iterative update process
results in substantial computational overhead, hampering
the speedup of N:M sparse training.

• Dataflow mapping optimizations are required to further
improve hardware utilization and achieve significant ac-
celeration. Specifically, in N:M sparse DNN training, var-
ious types of computational intensive operations in both
forward and backward passes, require tailored dataflow
optimizations for both dense and N:M sparse operations
to better utilize hardware resources and accelerate the
training process.

To address the aforementioned issues, this paper presents a
computation-efficient N:M sparse training scheme for DNNs,
featuring three aspects: algorithm, architecture, and dataflow.
1) The bidirectional weight pruning algorithm for N:M sparse
training, namely BDWP, leverages the N:M sparse pattern on
weights in both forward and backward passes, and significantly
reduces the number of training operations. 2) The efficient
hardware architecture for N:M sparse DNN training, dubbed
as SAT, supports both regular dense matrix multiplication
(MatMul) and N:M sparse MatMul with improved training
throughput and energy efficiency. Additionally, SAT also sup-
ports online N:M sparse reduction of data, further enhancing
its computational efficiency. 3) The dataflow optimization
techniques, including interleave mapping, pre-generation of
N:M sparse weights, and offline scheduling, further increase
hardware utilization and improve the throughput of SAT.

The main contributions can be summarized as follows:

• Algorithm: We propose a bidirectional weight pruning
method for N:M sparse training, namely BDWP, lever-
aging N:M sparsity of weights during both forward and
backward passes of DNN training. Compared to dense
training, our 2:8 BDWP training reduces the number of
training operations by 48% with a negligible accuracy
loss of 0.56% on average.

• Architecture: We propose a sparse accelerator for train-
ing DNNs, namely SAT, to support computation-efficient
N:M sparse operations besides the regular dense oper-
ations. It achieves 2.97∼25.22× higher throughput and
1.36∼3.58× greater energy efficiency than prior training
accelerators [33]–[39] evaluated on FPGA.

• Dataflow: We propose several dataflow optimization
methods, including interleave mapping, pre-generation of
N:M sparse weights, and offline scheduling, to boost the
computational efficiency of SAT.

• Scheme: We present an efficient scheme for DNN train-
ing that incorporates the BDWP algorithm and the SAT
architecture. It improves the training speed by 1.75×
on average compared to the conventional dense training
scheme deployed on SAT.

The remainder of this paper is organized as follows. Sec. II
introduces training steps of DNNs and reviews sparse training
techniques and FPGA-based training accelerators. Sec. III,
Sec. IV, and Sec. V describe BDWP algorithm, SAT architec-
ture, and optimization methods for SAT dataflow, respectively.

Sec. VI presents experimental results to illustrate the effective-
ness of our proposed computation-efficient scheme for N:M
sparse DNN training. The paper is concluded in Sec. VII.
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Fig. 1. Example of the training process for a convolutional layer: (a) it
consists of FF in the forward pass, BP, and WU in the backward pass. An
input tensor can be transformed into a matrix if required by the (b) im2col
process. (c), (d), and (e) illustrate the MatMul operations during FF, BP, and
WU, respectively, using a single batch data.

II. BACKGROUND AND RELATED WORKS

A. Training Steps of DNNs

As shown in Fig. 1 (a), the training steps of a DNN layer
consist of two stages: the forward and the backward passes.
In the forward pass, the network layer feeds forward (FF) the
activations as input and produces the outputs based on the
trainable weights. The intermediate outputs computed during
FF must be kept in memory for the backward pass. In the
backward pass, the gradients of activations and weights are
computed by backward propagation (BP) and weight update
(WU), respectively. The activation gradients are calculated
based on the weights and the output gradients, while the
weight gradients are computed according to the stored activa-
tions and the output gradients. MatMul can be utilized to unify
the computational flow of computationally intensive layers like
convolutional layers of ResNet18 and linear layers of ViT in
large-batch DNN training, boosting computational efficiency.
Taking a convolutional layer as an example, Fig. 1 (b) demon-
strates the im2col process [40], which converts a tensor into a
matrix for subsequent DNN training operations. Fig. 1 (c) to
(e) further illustrates how FF, BP, and WU for a single layer
of DNN are transformed into MatMul through im2col process,
respectively. Furthermore, we leverage PyTorch profiler [41]
to dissect the execution time for training three typical DNNs
with a batch size of 512 using an RTX 2080 Ti card. As
shown in Fig. 2, those operations can be unified into MatMuls
and constitute a considerable portion, up to 84%, of the
training time per batch on average, significantly impacting
the training process. By optimizing these MatMuls, significant
improvements in training speed can be attained.
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Fig. 2. Execution time profile results on training three DNN models with a
batch size of 512 using an RTX 2080 Ti card. The dominance of MatMul
operations in the training process highlights the significance of accelerating
these operations to improve training efficiency.

B. Sparse Training for DNNs

Sparse training [3]–[12] is one of the promising techniques
to reduce the training computational cost while retaining
impressive accuracy of DNNs. A majority of prior arts mainly
focus on ReLU-based [42], [43], structured [6], [7] or un-
structured sparsity [8], [9] for sparse training. ReLU-based
sparsity has no impact on model accuracy but suffers a low
sparse ratio (approximately 50%) and can be difficult to be
exploited on hardware. Structured sparsity has limitations in
reducing computational complexity (less than 40% sparse ratio
in [6]), while unstructured sparsity, despite saving a great
number of operations (over 80% sparse ratio in [9]), is difficult
to accelerate on hardware [20]. To achieve a better trade-
off between structured and unstructured sparsity, pre-defined
sparsity [22], [23], has been exploited as the pioneering
technique, where the sparse pattern is predetermined based
on prior knowledge or heuristics. Recently, N:M fine-grained
structured sparsity [21], demanding that at least N values
must be zero for each group of M values, has attracted the
attention of researchers [3], [26]–[32], [44] due to its practical
sparsity ratio as well as its hardware-friendly pattern. As for
N:M fine-grained sparse training, SR-STE [32] and SDGP
[3] can boost training efficiency by forcing N:M sparsity
on weights in the forward pass and output gradients in the
backward pass, respectively. The sparsity introduced in one
training direction hinders the further improvement of training
efficiency. In this work, our BDWP leverages the N:M sparsity
of weights in both forward and backward passes of DNN
training, significantly reducing the number of operations and
retaining competitive training accuracy compared to SR-STE
and SDGP.

C. FPGA-based DNN Training Accelerators

Nowadays, DNN training is mainly accelerated on power-
hungry GPU devices [3], [6] leading to low energy efficiency
[37]. Additionally, many ASIC designs dedicated to DNN
training, such as [45], achieve good energy efficiency but
require lengthy design cycles. In contrast, building dedicated
accelerators on FPGA enable agile deployment with satisfac-
tory energy efficiency. Various DNN training accelerators [33],
[34], [36]–[39], [46]–[49] have been developed on FPGA plat-
forms. [33], [34], [36], [37] exploited optimization for standard
DNN training process. However, with the increasing number

of operations in developing DNNs, it is difficult to achieve
satisfying speedup by simply optimizing dataflow or hardware
design for the standard training process. Furthermore, [39],
[49] exploit DNN sparse training acceleration on FPGA but
suffer low computational efficiency due to leveraging irregular
unstructured sparse patterns. In addition, [46]–[49] employed
aggressive reduced numerical precision, such as FP9 or INT8,
to decrease the computational cost of DNN training which is
orthogonal to sparse DNN training. Compared to prior works,
we aim to significantly improve DNN training efficiency by
developing an FPGA-based accelerator, namely SAT, that
enables both dense and computation-efficient N:M sparse
operations within the N:M sparse DNN training process.
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Fig. 3. Comparison of (a) conventional training, uni-directional N:M sparse
training, including (b) SR-STE and (c) SDGP, and our proposed bidirectional
N:M sparse training, i.e., (d) BDWP for a DNN layer. Without compromising
convergent accuracy, the DNN training process using BDWP can significantly
speed up due to aggressive N:M pruning in both forward and backward passes.

III. N:M SPARSE TRAINING ALGORITHM

N:M sparsity pattern can be leveraged to accelerate the
DNN training process by significantly reducing the number of
operations, which has been introduced through SR-STE [32]
in the forward pass and SDGP [3] in the backward pass. In
this section, we first learn the sensitivity of the training loss
by introducing N:M sparse patterns during DNN training and
then propose our BDWP based on our findings, which unifies
N:M patterns in both forward and backward passes to further
elevate DNN training efficiency.

A. Exploiting N:M Sparse Training Potential

As shown in Fig. 3, compared with the conventional train-
ing, SR-STE prunes weights in the forward pass, while SDGP
prunes output gradients in the backward pass to reduce the
number of required operations of DNNs. To evaluate the
effectiveness of these N:M pruning techniques, we employ the
from-scratch training loss as a metric and compare the errors of
the pruned models with those of the densely trained models.
Fig. 4 presents the loss curves when training from scratch
ResNet9, ViT, and ResNet18 models on CIFAR-10, CIFAR-
100, and Tiny ImageNet datasets, respectively. For ResNet9
on the simple CIFAR-10 dataset, both SR-STE and SDGP
exhibit good performance compared to the dense baseline.
However, for larger models or more complicated datasets
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Fig. 4. Comparison of training loss using multiple N:M pruning methods for
(a) ResNet9 on CIFAR-10, (b) ViT on CIFAR-100 dataset and (c) ResNet18
on Tiny ImageNet dataset.

like ViT on CIFAR-100 and ResNet18 on Tiny ImageNet,
pruning activations in the backward pass using SDGP with a
sparse ratio of about 75% results in a loss curve that deviates
significantly from the dense training scheme. To address this
issue, we explore an alternative approach by pruning weights
in the backward pass, denoted as SDWP in Fig. 4. Notably,
SDWP demonstrates better convergence compared to SDGP
at the same N:M sparse ratio. Therefore, a novel bidirectional
N:M sparse training approach called BDWP is proposed by
integrating both unidirectional weight pruning techniques, i.e.,
SR-STE and SDWP. The training loss curve of BDWP in Fig. 4
closely aligns with SR-STE and SDWP at the same N:M sparse
ratio, showing BDWP achieving negligible impact on training
convergence with a significant reduction of training operations.

Algorithm 1 Training an L layer network using BDWP
Input: A mini-batch of input activations and labels (a0t , yt),

current weights wt, sparse ratio N and M at iteration t.
Output: Updated weights wt+1.

Forward Pass
1: for l = 1 to L do
2: w̃l

FF ← BDWPFF(wl
t, N , M ).

3: alt ← FF(al−1
t , w̃l

FF).
4: end for
5: Compute the gradient of the output layer gaL

t
.

Backward Pass
6: for l = L downto 1 do
7: w̃l

BP ← BDWPBP(wl
t, N , M ).

8: gal−1
t
← BP(gal

t
, w̃l

BP).
9: gwl−1

t
← WU(al−1

t , gal
t
).

10: end for
11: Optimize wt+1 with momentum SGD.

B. Bidirectional Weight Pruning

Our N:M sparse training method, BDWP, is illustrated in
Fig. 3 (d) and detailed in Algorithm 1.
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Fig. 5. Applying BDWP in the convolutional layer and the linear layer in both
forward and backward passes of DNN training. For the convolutional layer,
BDWP is applied to each group across (a) input channels in the forward pass
and (b) output channels in the backward pass, respectively. For the linear
layer, BDWP is applied to each group across (c) input features in the forward
pass and (d) output features in the backward pass, respectively.

Notation. Given a mini-batch of training samples a0t and
labels yt, we aim to optimize weights wt to wt+1 at iteration t
for an L layer DNN. Activations and weights of the l-th layer
are denoted as alt and wl

t, respectively. In addition, gal
t

and
gwl

t
denote gradients with respect to activations and weights

of the l-th layer, respectively. Weights of the corresponding
sparse network are denoted with w̃, and w̃FF and w̃BP denote
the pruned N:M sparse weights of BDWP using in the forward
pass and backward pass, respectively.

Training Flow. Algorithm 1 describes the process of BDWP
when training an L layer network at the iteration t. BDWPFF
and BDWPBP denote the N:M element group generation pro-
cess in the forward pass and backward pass, respectively. Both
of them take the dense weights w as input and generate N:M
sparse weights w̃ for further computation. In FF, as shown in
Line 3, the activations perform operations with the N:M sparse
w̃FF, which have been slimmed for M

N times. In BP, as shown
in Line 8, the activation gradients are obtained by performing
operations with output gradients and w̃BP. The other steps of
the training process stay the same as the standard training flow.
For from-scratch training, N:M sparse patterns are leveraged
from the first to the final training steps, and following SR-
STE and SDGP, updated in every training step. Other training
hyperparameters remain the same as for dense training.

N:M Element Group Generation. Fig. 5 presents how
to apply BDWP in forward and backward passes to the
convolutional layer and the linear layer, respectively, both of
which dominate most of the required DNN training operations.
BDWP preserves values with the N most significant magni-
tude in each group of M elements. N:M is assumed as 2:4
here, and B denotes batch size. Additionally, the subscripts
i and o refer to the input activations and output gradients,
respectively. When training a convolutional layer, the input
activations are represented by a tensor with B batches, each
having a height of H , width of W , and Ci channels, and
the weights are denoted as a tensor with a height of K,
width of K, Ci input channels, and Co output channels.
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BDWP removes pruned elements in each group across the
input channels (Ci) in the forward pass, and across the output
channels (Co) in the backward pass, respectively. As for
training a linear layer, the input activations are represented
by a tensor with B batches, each having a width of D and Fi

features, and the weights are represented by a transformation
matrix from Fi to Fo. BDWP is applied to each group across
input features (Fi) in the forward pass and across output
features (Fo) in the backward pass, respectively. The preserved
elements in each group would be packed into the compact
format as in [21] to reduce memory consumption.

Opportunities on Hardware Implementation. Given hard-
ware accelerators supporting N:M sparsity are rather limited
[20], [27], there are opportunities to develop new architectures
to accelerate N:M sparse training with high performance and
efficiency. For instance, generating N:M sparse weights during
each iteration presents an opportunity for an on-chip hardware
module capable of producing N:M sparse data. In addition,
to accommodate the varying sizes of MatMuls required at
different stages of the training process, a flexible interconnect
capable of adapting to the changing demands is imperative.
Finally, a unified and efficient computing unit is critical to
enable the accelerator to handle both N:M sparse and dense
operations with high computational efficiency.

IV. HARDWARE ARCHITECTURE

The efficient hardware architecture is crucial for achiev-
ing significant acceleration in DNN training through com-
putational optimization resulting from N:M sparsity pattern.
This section presents an efficient N:M sparse accelerator for
DNN training, namely SAT, fully leveraging the computation-
efficient operations from N:M sparse training algorithms. We
first briefly introduce the overall architecture of SAT and then
elaborate on the designs of the major computing engines.
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Fig. 6. The overall microarchitecture of SAT is composed of three computing
engines, namely STCE, WUVE, and SORE, respectively.

A. Overall Architecture
As shown in Fig. 6, SAT consists of three major computing

engines: 1) an N:M sparse tensor computing engine (STCE),

2) a weight update vector engine (WUVE), and 3) a sparse
online reduction engine (SORE). STCE significantly boosts
the computational efficiency of DNN training by efficiently
unifying the MatMuls across FF, BP, and WU, and flexibly
supporting both N:M sparse and dense operations in its pro-
cessing elements. WUVE is a dedicated optimizer capable of
updating weights through a mixed-precision scheme following
NVIDIA Adaptive Mixed Precision (AMP) [50], which can
significantly reduce off-chip memory access. SORE under-
takes online N:M sparse reduction operations by taking dense
weights with a group size of M as input and producing N:M
sparse weights along with corresponding indexes as output. To
improve the overall hardware performance, double-buffering is
employed across all on-chip buffers to overlap the data transfer
and computation.
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(d) 2:2 dense dot-product operations.

B. Unified N:M Sparse Processing Element

STCE employs a systolic array composed of 32×32 unified
N:M sparse processing elements (USPEs), which can be
configured dynamically at runtime to perform N:M sparse-
dense or dense-dense products. As depicted in Fig. 7 (a), USPE
comprises a task counter, an FP16 multiplier, an FP16-to-FP32
switcher, and an FP32 adder, in addition to four register files.
These register files serve as temporary storage for input data
received from the west and north, input valid indexes received
from the north, and output accumulated partial results to the
south. During each cycle, the USPE is capable of multiplying
two FP16 data and then adding its result to the input partial
sum. Both multiplier and adder in the USPE are pipelined by
3 stages to improve computational efficiency.

USPE is flexible enough to support diverse types of dot-
product operations during DNN training. Fig. 7 (b)-(d) illus-
trate how the USPE performs dot-product operations across
various N:M sparse and dense configurations. In order to
accommodate varying N:M sparsity, the USPE utilizes a value-
serial computing approach, which facilitates the folding of the
dot-product operation for an N:M group into N cycles. For
instance, a 2:4 USPE can execute a 1:4 sparse dot-product
within a cycle, and a 2:4 sparse dot-product within two cycles.
Additionally, we decompose dense MatMul into multiple 2:2
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dense dot-products, which are then assigned to USPEs. Each
USPE can perform a 2:2 dense dot-product within two cycles.
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Fig. 8. Example of STCE performing a 2:4 sparse MatMul in the WS dataflow
and a dense MatMul in the OS dataflow.

C. Flexible Systolic Interconnect

STCE improves on previous works that employed weight-
stationary (WS) [51]–[53] or output-stationary (OS) [27], [33],
[37] systolic architectures by leveraging a flexible systolic
interconnect that is capable of dynamically switching between
WS and OS dataflows on the fly, providing increased mapping
space for MatMul operations and enabling efficient MatMuls
across various computing patterns in FF, BP, and WU stages.

Fig. 8 presents how STCE equipped with the flexible
systolic interconnect performs a 2:4 sparse MatMul in WS
dataflow and a dense MatMul in OS dataflow. In Fig. 8 (a), we
present a case of 2:4 sparse MatMul, where the sparse matrix is
compactly packed by preserving only the two most significant
values in each 2:4 group, along with their corresponding
indexes. When performing this operation in the WS dataflow,
STCE first preloads the compact 2:4 weight groups to each
USPE. The computation starts once the preload is complete.
To accomplish the dot-product operation of a 2:4 sparse group,
each USPE in STCE consumes two cycles, after which it
transfers its data from the west to the east and data from
the north to the south. Fig. 8 (c) illustrates the data transfer
process every two times 2:4 sparse group computation tasks.
Due to the removal of pruned weight elements, STCE performs
fewer operations in comparison with the dense task, thereby
improving computational efficiency. Fig. 8 (b) is a case of
dense MatMul. When a dense MatMul is performed in OS
dataflow, STCE with 2:4 USPEs streams the two input dense
matrices from the west and north directions, respectively.
Every two cycles, a USPE performs 2:2 dense dot-product
operations, and the computed data from the west is transferred
to the east, while the data from the north is passed to the
south. The data transfer process is shown in Fig. 8 (d),
which illustrates the exchange of data every two times 2:2

dense group computation tasks. The high utilization of USPEs
during the computation stage enables STCE to achieve high
computational efficiency for dense operations as well. Finally,
STCE sequentially pops its accumulation results to the south
upon the computation is finished.

D. Hardware Costs of STCE Enabling N:M Sparse Operations

To support N:M sparse operations, STCE requires additional
logic to support sparse decoding. It also requires more registers
to support the storage overheads caused by the significant
increase in input bandwidth in N:M sparse MatMul compared
to dense MatMul. As shown in Fig. 8, for 2:4 STCE, each
USPE requires 4 registers to store data from the west in the
sparse mode, while in the dense mode, only two registers need
to be enabled to complete the dense operations. In this case,
the two disabled registers are the additional hardware overhead
compared to a dense systolic array at the same scale. When
enabling higher sparse ratios such as 2:8 and 2:16, the 2:4
STCE cannot directly implement 2:8 or 2:16 sparse operations,
and needs to be reconfigured on FPGA. At higher N:M sparse
ratios, the register overhead per USPE in STCE will continue
to grow, which may lead to disproportionate hardware costs,
and the improvement in training accuracy may not be able to
offset the continuous increase in hardware costs. Therefore,
the selection of N:M sparsity is a trade-off between model
accuracy and hardware cost.

E. Weight Update Vector Engine

As depicted in Fig. 6, WUVE serves as a dedicated op-
timizer that employs momentum stochastic gradient descent
(SGD) to update weights using the mixed precision scheme
of NVIDIA AMP [50]. To update master parameters for
the next training iteration, WUVE takes weight gradients in
FP16 format and other master parameters in FP32 format as
input. It specifically elevates the numerical precision of weight
gradients from FP16 to FP32 to minimize quantization errors
in the WU step. Moreover, WUVE provides 32 parallel lanes
to improve computational efficiency, and each lane consists of
three FP32 multipliers, two FP32 adders, one FP16-to-FP32
switcher, and one FP32-to-FP16 switcher.

F. N:M Sparse Online Reduction Engine

Dedicated accelerators [20], [27], designed for N:M sparse
inference acceleration, utilize N:M sparse weights that are
generated offline prior to inference. However, during N:M
sparse training, weights, activations, and gradients are varied
in every iteration, leading to dynamic updates of the preserved
elements and their corresponding indexes in an N:M element
group, as illustrated in Fig. 9. Therefore, to handle the dynamic
updates of N:M sparse elements during training, the dedicated
module for N:M sparse online reduction, namely SORE, is
designed to enable the efficient generation of compact groups
of N:M sparse elements with their associated indexes.

There are 32 parallel lanes in SORE, and each lane consists
of a top-K sorter and a data provider. The top-K sorter
sequentially receives dense data in a group with a size of M,
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and after M cycles, the K data sorted in the top-K sorter with
their indexes in the group are passed to the data provider.
The data provider, which is configurable to support all N not
larger than K, sequentially outputs the top-K elements in a
group. Fig. 9 takes a 2:4 SORE as an example for illustration.
A 4-element group is sequentially provided to the top-K sorter
as input, and a 2:4 sparse group with corresponding indexes
is generated in parallel to the data provider after 4 cycles.

V. DATAFLOW OPTIMIZATION

SAT is capable of effectively supporting N:M sparse DNN
training through its innovative design of STCE, which includes
unified processing elements and a flexible interconnect, as well
as SORE, which efficiently generates N:M sparse data groups.
To further optimize the computational efficiency of SAT, we
introduce several dataflow optimization methods to improve
the utilization of STCE and the efficiency of SORE.

A. Interleave Mapping of USPE

To reduce the critical path of STCE and improve the operat-
ing frequency of SAT, both the multiplier and adder in USPE
are deeply pipelined. However, when STCE is configured as
OS dataflow computing mode, there is an accumulation loop in
USPE as shown in Fig. 10 (a). This causes a computation stall
when a dot-product operation is mapped to USPE, since the
partial sums generated during dot-product operations are held
in the pipelines until they reach the output stage. As a result,
the next dot-product operation has to wait until the previous
one has cleared the pipeline, resulting in a three-cycle latency
as shown in Fig. 10 (b).

By contrast, we propose an interleave mapping method
for USPE that allows for the simultaneous processing of
computationally independent operations during the accumu-
lation loop. This helps to minimize the stall and improve the
computational efficiency of USPE. As shown in Fig. 10 (c),
three parallel dot-product operations are interleaved and fed
into USPE, effectively filling up the pipelines. By leveraging
the proposed interleaving mapping method, USPE can achieve
3× throughput improvement when employing OS dataflow.
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Fig. 10. (a) The loop in USPE when employing OS dataflow slows down the
computational efficiency of USPE using (b) the conventional systolic mapping
strategy. By contrast, (c) the proposed interleave mapping strategy can improve
3x throughput by improving the utilization of USPE.

B. Pre-generation of N:M Sparse Elements

Pre-generation technique for N:M sparse weights is pro-
posed to boost the efficiency of N:M sparse training with
NVIDIA AMP [50]. AMP is a training scheme that optimizes
the precision of the arithmetic operations used during training
in DNNs. Fig. 11 (a) presents the computational steps to train
a convolutional layer using AMP. It can perform the forward
pass with half-precision (FP16) arithmetic and accumulate and
convert the gradients back to the original precision (FP32)
before updating the weights.

(a) Conventional AMP training

(b) AMP sparse training by generating N:M sparse weights in FF & BP

(c) AMP sparse training by pre-generating N:M sparse weights in WU

WtLoad

Compute

Store

FF

WFF

Wt

BP

Wt

Wt+1 Wt+1

WU

FP16FP16 FP32

FP32 FP16

FP16 FP16 FP16 FP16

FP16

Reduced
Operations

Reduced
Operations

Sparse
Weights

Sparse
Weights

FP32 master weights for accurate WU

WBP

FP32 FP16

Wt WtLoad

Compute

Store

Wt

Wt+1 Wt+1
FF BP WU

FP16 FP32FP16
FP32 master weights for accurate WU

FP16 FP16 FP16

WBP

FP16 FP16

FP16

FP16

Reduced
Operations

Reduced
Operations

FF

Load

Compute

Store

WFF

BP

WBP Wt

Wt+1

WU FP32 FP16

FP16FP16 FP32
Sparse

Weights

Saved
Bandwidth

Saved
Bandwidth

FP32 master weights for
accurate WU

WFF WBP

WFF

Fig. 11. Weight dataflow schedule using (a) conventional AMP training, (b)
sparse AMP training of BDWP with N:M sparse generation in FF and BP,
and (c) sparse AMP training of BDWP with N:M sparse pre-generation in
WU. Compared with (b), (c) saves external memory space, memory access
bandwidth, and execution time at a high N:M sparse ratio.

BDWP is taken as an example to integrate N:M sparse
training into AMP. As shown in Fig. 11 (b), N:M sparse data
can be generated after the weight tiles are loaded in FF and BP,
and the computational cost is significantly reduced by skipping
zero-value operations. However, this generation process can
slow down computational efficiency, as the MatMul must wait
for the generation of N:M sparse weights. Fig. 11 (c) illustrates
the working flow of our proposed pre-generation technique for
N:M sparse weights, which can improve the computational
efficiency and storage requirement of N:M sparse training. In
WU stage, the FP32 weight updates are calculated in WUVE
and then directly sent to SORE for N:M sparse compression
to obtain FP16 sparse weights. This process is fine-grained
pipelined, thus achieving the overlap of computation and
storage. In contrast, in Fig. 11 (b), dense FP16 weights must
be loaded from external memory and sent to SORE to obtain
sparse weights before they can be sent to STCE for MatMul
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computation, which cannot achieve the overlap and affects
the overall computation efficiency. In addition, compared to
Fig. 11 (b), Fig. 11 (c) can save the bandwidth requirement
by storing and loading the N:M sparse weights. It requires to
store for the N:M weights w̃FF and w̃BP from its input and
output channels. When its sparse ratio is higher than 50%, the
storage cost is also significantly lower than the conventional
AMP training.
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Fig. 12. Enabling N:M sparse DNN training on SAT with offline dataflow
scheduling, which first transforms the DNN model into the MatMul format,
and then generates per-layer configuration words for the three training stages.

C. Offline Dataflow Scheduling

Fig. 12 illustrates the implementation of N:M sparse DNN
training on SAT through flexible offline dataflow scheduling. It
involves transforming the DNN model into the MatMul format,
and generating per-layer configuration words for the three
training stages. The reconfiguration word generator (RWG)
takes the MatMul format of DNNs in three training stages as
input and generates per-layer configuration words based on
the selected N:M sparse training method and the N:M sparse
ratio. During training acceleration, SAT’s controller fetches
each layer’s reconfiguration words gradually at the FF, BP,
and WU stages and produces corresponding control signals
for the other components.

RWG is the key component for improving the training
throughput of SAT. Fig. 12 presents how RWG produces
reconfiguration words for ResNet18 when using three N:M
sparse training methods: SR-STE, SDGP, and BDWP enabled
with 2:8 sparse ratio. RWG first assigns N:M sparse mode
for FF, BP, and WU these three training stages based on the
user-configured N:M sparsity (e.g., 2:8) and the selected sparse
training method. For example, for SR-STE, RWG will deter-
mine the FF stage of the network layer as 2:8 sparse training,
and the BP and WU stages as dense training. For BDWP,
which introduces N:M sparsity in both directions, RWG will
determine the FF and BP stages as 2:8 sparse training, and
WU as dense training. Next, RWG allocates the method of
generating N:M sparse data. The pre-generation of N:M sparse
elements in the WU stage is prioritized due to its significant
advantages. If pre-generated features are not available, the
corresponding layers need to generate N:M sparse elements
during the FF and BP computing stages. For example, SR-STE
and BDWP, which allow the pre-generation of sparse weights,

prompt the RWG to schedule SORE within the WU stage.
Conversely, SDGP, which prunes input gradients during the BP
stage, requires RWG to schedule SORE within the BP stage.
Finally, RWG predicts the computational utilization of SAT
based on the scale of transformed MatMul of each network
layer in advance, so that it can arrange the superior dataflow
and the output data layout rules for each layer. As shown in
Fig. 12, for BDWP, within the 4th layer, RWG calculates the
hardware utilization of OS and WS in the FF, BP, and WU
phases, and based on predicted results, the OS, OS, and WS
dataflows are allocated to the three phases, respectively. By
assigning the above three phases, RWG effectively improves
the computational utilization of each network layer, thereby
significantly improving the training throughput of SAT.

TABLE I
FROM-SCRATCH TRAINING SETUP OF EVALUATED DNNS

Model Dataset Optimizer EP† BS† LR† WD†

ResNet9 CIFAR-10 Momentum SGD 150 512 0.5 5e-4
ViT CIFAR-100 Momentum SGD 150 512 0.1 5e-4

VGG19 CIFAR-100 Momentum SGD 150 512 0.1 5e-4
ResNet18 Tiny ImageNet Momentum SGD 88 512 0.05 5e-3
ResNet50 ImageNet Momentum SGD 120 256 0.1 5e-5

† EP: epochs; BS: batch size; LR: initial learning rate; WD: weight decay.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup
Benchmarks. To evaluate the algorithmic and hardware

performance of our proposed N:M sparse training scheme, we
choose five typical DNN models on four popular datasets for
from-scratch training. The details are shown in Table I. The
ResNet9, ResNet18, ResNet50 [54] and VGG19 [55] are the
conventional convolutional neural networks (CNNs), and the
vision Transformer (ViT) [56] is a novel DNN architecture
utilizing the attention mechanism.

Software Implementation. We train the DNN benchmarks
with the hyper-parameter settings shown in Table I using
PyTorch v1.10 with mixed-precision training support [50].
Note that, in each training iteration, N:M sparsity is applied to
all convolutional layers except for the first layer of evaluated
CNNs, and all linear layers in the Transformer blocks of
ViT. Excluding the first convolutional layer from N:M sparsity
aligns with SDGP’s experimental setup [3] and quantization-
related practices [57] due to the first layer’s sensitivity to
accuracy impacts arising from its limited input channels. N:M
sparse patterns are introduced since the first training step and
kept updated for every iteration until the end of training.

Hardware Implementation. SAT is implemented in Sys-
temVerilog with the help of hardware components from the
PULP platform [58] and the BaseJump standard template
library [59]. We evaluate hardware performance using a Xilinx
Virtex UltraScale+ VCU1525 card with an XCVU9P FPGA,
with Xilinx Vivado 2018.2 at a clock frequency of 200 MHz.
We measure power consumption using the Xilinx Power Esti-
mator tool. Moreover, we validate speed performance using a
cycle-accurate performance model that is cross-validated with
RTL simulation results following methods in [33], [60]. The
memory accesses to external memory are also considered.
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TABLE II
ACCURACY COMPARISON USING VARIOUS N:M SPARSE TRAINING SCHEMES

ResNet9 on CIFAR-10 VGG19 on CIFAR-100 ViT on CIFAR-100 ResNet18 on Tiny ImageNet ResNet50 on ImageNet

Method Pat.
Sparsity

in
FW&BW

Train.
FLOPS
(×1016)

Infer.
FLOPS
(×109)

Top-1
Acc.
(%)

Train.
FLOPS
(×1015)

Infer.
FLOPS
(×108)

Top-1
Acc.
(%)

Train.
FLOPS
(×1016)

Infer.
FLOPS
(×108)

Top-1
Acc.
(%)

Train.
FLOPS
(×1016)

Infer.
FLOPS
(×109)

Top-1
Acc.
(%)

Train.
FLOPS
(×1018)

Infer.
FLOPS
(×109)

Top-1
Acc.
(%)

Baseline - ✘ ✘ 2.62 1.16 95.27 9.00 4.00 72.23 1.45 6.43 60.81 4.82 1.83 65.46 1.91 4.14 76.72
[32] 2:4 ✔ ✘ 2.19 0.59 95.18 7.52 2.02 73.04 1.22 3.36 60.37 4.07 0.98 65.43 1.61 2.16 76.52
[3] 2:4 ✘ ✔ 2.19 1.16 95.11 7.52 4.00 72.01 1.22 6.43 57.67 4.07 1.83 64.99 1.61 4.14 N/A

BDWP 2:4 ✔ ✔ 1.75 0.59 95.10 6.03 2.02 72.21 0.99 3.36 60.85 3.33 0.98 65.40 1.30 2.16 76.80
[32] 2:8 ✔ ✘ 1.97 0.30 95.18 6.78 1.03 72.78 1.10 1.83 59.55 3.70 0.55 65.04 1.45 1.17 75.88
[3] 2:8 ✘ ✔ 1.97 1.16 95.18 6.78 4.00 71.25 1.10 6.43 46.10 3.70 1.83 62.40 1.45 4.14 N/A

BDWP 2:8 ✔ ✔ 1.32 0.30 95.18 4.55 1.03 72.32 0.76 1.83 59.60 2.58 0.55 65.14 1.00 1.17 75.44
[32] 2:16 ✔ ✘ 1.86 0.15 95.15 6.40 0.53 72.18 1.04 1.06 55.72 3.52 0.34 63.75 1.38 0.67 74.75
[3] 2:16 ✘ ✔ 1.86 1.16 94.91 6.40 4.00 69.95 1.04 6.43 38.37 3.52 1.83 48.00 1.38 4.14 N/A

BDWP 2:16 ✔ ✔ 1.10 0.15 95.16 3.80 0.53 72.04 0.64 1.06 55.70 2.21 0.34 63.94 0.84 0.67 74.24

B. Algorithmic Performance

We compare the Top-1 accuracy of BDWP against the other
state-of-the-art N:M sparse training methods, including SDGP
[3] and SR-STE [32]. To evaluate the robustness of these
sparse training methods, we inherit the hyperparameter settings
of the baseline to BDWP, SDGP, and SR-STE. Notably, all
experiments are repeated three times for reliability, except for
ResNet50 on ImageNet, which has a single run due to limited
available computational resources.

Table II shows how the different N:M sparse training meth-
ods affect the convergent model accuracy. ’Pat.’ is short for
N:M sparsity pattern, while ’FW’ and ’BW’ refer to introduced
N:M sparse patterns from the forward and backward passes,
respectively. In most cases, BDWP results in the best perfor-
mance with the lowest training FLOPS compared to SDGP and
SR-STE, indicating BDWP is an effective method to reduce
computational costs without sacrificing accuracy. As shown in
Table II, with a 2:8 sparse ratio, BDWP achieves an average
theoretical computational reduction of 1.93× across evaluated
training tasks compared to the dense training scheme. The sig-
nificant reduction of computational operations is coupled with
negligible impact on model convergence accuracy, showing an
average loss of only 0.56%. Moreover, the required number
of operations for inference significantly reduces by 3.54× on
average.

Fig. 13 illustrates the impact of various N:M sparse ratios
on model convergent accuracy when employing BDWP sparse
training. Experimental results show that the larger the N:M
sparse ratio, the less likely the model is to overfit the dataset.
For example, ResNet9 on CIFAR-10 is less prone to overfit-
ting, so it can tolerate a higher N:M sparse ratio without losing
too much accuracy. However, for models that are less prone
to overfitting on selected datasets, such as ViT, ResNet18, and
ResNet50, a higher N:M sparse ratio, up to 87.5%, may result
in a slight decrease in accuracy. This is because these models
are less tolerant of the loss of representation capability due to
sparsity. Additionally, the impact of M on model accuracy
varies depending on the level of sparsity. For instance, at
lower sparsity levels, like 50%, the choice of M may not have
a significant impact on accuracy at the same N:M sparsity
ratio. On the other hand, for higher sparsity ratios, up to
87.5%, a larger M can provide more flexible pattern choices,
leading to better accuracy performance. For example, when
comparing the ViT, ResNet18, and ResNet50 models, it has
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Fig. 13. Impact of various N:M sparse ratios on model convergent accuracy
when employing BDWP sparse training.

been observed that the convergence accuracy of a 2:16 sparse
model with a sparsity ratio of 87.5% is higher than that of
a 1:8 sparse model. Therefore, the choice of M should be
carefully considered when designing N:M sparse models to
achieve optimal accuracy and sparsity trade-offs.

C. Hardware Resource Consumption

To precisely understand the hardware overhead of STCE,
we conduct an experiment using a 4×4 dense systolic array
as a baseline, along with 4×4 STCEs under various N:M
sparse configurations. Additionally, for a fair comparison, we
implement the other baseline systolic arrays with the same
throughput of N:M STCEs. To support sparse N:M operations,
STCE requires additional LUT overhead for supporting sparse
indexes, additional FF overhead for storing N:M data groups,
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Fig. 14. Hardware resource comparison between multiple dense systolic
arrays and STCE of various N:M sparse ratios.

and corresponding power overhead compared to the dense
baseline. Experimental results are shown in Fig. 14. Compared
to the 4×4 dense baseline, 2:4, 2:8, and 2:16 STCEs increase
the LUT overhead by 1.1×, 1.2×, and 1.3×, respectively,
while the FF overhead increases significantly by 1.7×, 2.2×,
and 3.3×. However, these additional hardware costs are highly
worthwhile when comparing STCE with the dense systolic
arrays operating at the same throughput scale. As shown in
Fig. 14, 2:8 STCE has significantly lower hardware overheads
than 4×16 dense systolic array, with 3.4× lower LUT, 2.0×
lower FF, 4.0× lower DSP, and 3.1× lower power consump-
tions, which shows that STCE is a promising architecture for
performing sparse N:M operations.

TABLE III
SAT RESOURCE BREAKDOWN ON XILINX VCU1525

Component Logic Registers Memory
blocks

DSP
blocks

STCE 389K 589K 0 1024
WUVE 40K 20K 0 192
SORE 3K 5K 0 0

Input Buffer (W2E) 0 0 128 0
Input Buffer (N2S) 0 0 38 0

Output Buffer (N2S) 0 0 38 0
Optimizer Buffer 0 0 64 0

Others 257K 358K 443 12

Total 689K
(58%)

972K
(41%)

711
(23%)

1228
(18%)

Based on the comprehensive trade-off from the algorithm
and hardware perspectives, we select a 2:8 sparsity pattern
in the following hardware implementation of SAT. Table III
presents the resource consumption, where the ’others’ row
includes DDR4 controller, PCIe DMA, the interconnect from
DDR to SAT, and other auxiliary components. Due to the
adoption of 2:8 sparse patterns, the number of memory banks
for W2E buffer needs to be expanded to four times that of N2S
buffer, resulting in the use of 128 banks. Additionally, N2S
buffer requires additional storage space to store sparse indexes,
and therefore a total of 38 banks are used for both N2S input
and output buffers. Furthermore, the optimizer buffer needs to
store weight update parameters for 64 banks.

As shown in Table III, STCE dominates DSP consumption
of SAT since it is the computing core for computational
intensive MatMuls that transformed from convolutional or
linear layers. STCE also takes the majority of the register
consumption since there are multiple pipelines in USPEs to

shorten the critical path and improve computational through-
put. Furthermore, SORE, the sparse online reduction engine,
is an area-efficient hardware solution for enabling N:M sparse
online reduction capability in SAT, as it consumes less than
1% of the resources utilized by STCE.

D. Training Efficiency

To evaluate the training efficiency of the proposed training
scheme composed of BDWP and SAT, Time-To-Accuracy
(TTA) metric [3], [61] is used in comparison with other train-
ing methods, including conventional dense training, SDGP, and
SR-STE. SAT enables 2:8 sparse acceleration for SDGP, SR-
STE, and BDWP. As depicted in the upper part of Fig. 15, SAT
with 2:8 BDWP training achieves an average of 46% reduction
in single-batch training times compared to dense training,
which corresponds to a significant 1.82× speedup per batch.
Furthermore, the introduction of sparsity during training can
impact the speed of model convergence, affecting the overall
acceleration of sparse training. To ensure a fair comparison,
the lower part of Fig. 15 shows the model convergence curves
during 2:8 BDWP sparse training compared to dense training
on SAT, where training time is normalized by the required time
for a training epoch of BDWP. It reveals an average practical
speedup of 1.75×, which highlights the combined contribution
of the sparse training algorithm and the hardware accelerator,
with the algorithm reducing the computation and the hardware
accelerating the process.

To provide a clear picture of the runtime breakdown, Fig. 16
presents the running time per batch of BDWP sparse training
for each N:M sparse convolutional layer in ResNet18 on Tiny
ImageNet with a batch size of 512. Note that we purposely
did not overlap the memory access and computing cores
during our analysis. In actual deployment, the running time of
memory access and computing can be significantly reduced
through the use of double buffering techniques. In Fig. 16,
STCE’s running time for FF and BP, which enable 2:8 sparse
computing, is significantly lower compared to that for WU, by
approximately a quarter of that required for dense computing.
Additionally, WUVE and SORE exhibit a low activation
frequency and short latency in task completion, respectively,
consuming only a negligible fraction of the total running
time. Overall, the SAT accelerator shows promise in enabling
highly computation-efficient DNN training, with SORE’s low
resource consumption and running time overhead, coupled
with significantly reduced number of operations through N:M
sparse patterns in FF and BP.

E. Comparison with CPU and GPU

To evaluate the potential of SAT for efficient DNN training,
we compare it against CPU and GPU platforms. The CPU
baseline is the Intel Core i9-9900X processor, equipped with
19.25 MB L3 cache, 10 physical cores, 20 threads running
at 3.50 GHz, and a thermal design power (TDP) of 165
W. Meanwhile, the GPU baselines are the NVIDIA RTX
2080 Ti card and Jetson Nano. The former achieves a peak
throughput of 76 TFLOPS equipped with 4352 CUDA cores
running at 1.35 GHz and a TDP of 250 W, and the latter is
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Fig. 15. Required training time of SR-STE, SDGP, and our BDWP on SAT for ResNet9, ViT, VGG19, ResNet18, and ResNet50, respectively.
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Fig. 16. Layer-wise running time per batch of 2:8 sparse training with BDWP
in ResNet18 on Tiny ImageNet with a batch size of 512.

a competitive candidate for energy-efficient edge computing
scenarios with a peak throughput of 472 GFLOPS. As shown
in Table IV, the peak throughput of SAT can achieve 409.6
GOPs for dense operations, which closely aligns with Jetson
Nano’s performance, and achieve 1638.4 GOPs for 2:8 sparse
operations.

Energy efficiency across CPU, GPUs, and SAT is evaluated
to highlight the potential in N:M sparse training. The Intel
performance counter monitor utility [62] is used to measure the
actual CPU power consumption. We use nvidia-smi on RTX
2080 Ti and jtop on Jetson Nano to measure the GPU run-
time power. For fair comparison against SAT, we use PyTorch
v1.10 to perform convolutional layers that have been arranged
in MatMul form in ResNet18 on both CPU and GPU with a
batch size of 512. As presented in Fig. IV, SAT achieves 8.42×
energy efficiency improvement compared to the CPU baseline.
Moreover, compared to Jetson Nano and RTX 2080 Ti, SAT
improves energy efficiency by 1.72× and 1.53×, respectively.

To make a fair comparison with the RTX 2080 Ti, we scale

TABLE IV
PERFORMANCE COMPARISON OF SAT VERSUS CPU AND GPU

CPU GPU GPU FPGA

Platform Intel
i9-9900X

NVIDIA
Jetson Nano

NVIDIA
RTX 2080 Ti

Xilinx
XCVU9P

Frequency 3.50 GHz 921 MHz 1.35 GHz 200 MHz

Model ResNet18 (Batch Size = 512)

Precision FP32 FP32+FP16 FP32+FP16 FP32+FP16

Bandwidth
(GB/s) 57.6 25.6 616 25.6

Latency (s) 12.91 61.28 1.72 11.98

Power
(W) 165.00 7.54 238.36

22.38 (avg.)
20.73 (dense)

24.15 (2:8 sparse)

Peak
Throughput
(GFLOPS)

2240 472 76000 409.6 (dense)
1638.4 (2:8 sparse)

Runtime
Throughput
(GFLOPS)

423.69 94.66 3372.52
484.21 (avg.)

280.31 (dense)
702.54 (2:8 sparse)

Energy
Efficiency

(GFLOPS/W)
2.57 12.56 14.15

21.64 (avg.)
13.52 (dense)

29.09 (2:8 sparse)

SAT by changing the number of USPEs in STCE and the
off-chip bandwidth, while keeping other factors unchanged.
The experimental results are shown in Fig. 17, where the
X-axis represents the systolic array size of STCE in SAT.
It can be seen that the number of USPEs and the off-chip
bandwidth have a significant impact on the runtime throughput
of training. When the off-chip bandwidth is 409.6 GB/s, as
shown in Fig. 17 (c), which is less than the 616 GB/s of
the RTX 2080 Ti GPU as shown in Table IV, the runtime
throughput of SAT executing 2:8 BDWP reaches 3.9 TOPS,
which is greater than the runtime throughput of the RTX 2080
Ti GPU in training ResNet18 (only 3.4 TOPS). In addition, the
dense peak performance of 2:8 SAT under this configuration
is 6.6 TOPS, and the sparse peak performance of 2:8 SAT is
26.2 TOPS, which is also significantly less than the 76 TOPS
of the RTX 2080 Ti GPU. This shows that SAT after scaling
has a higher computational utilization for training a ResNet18.
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TABLE V
COMPARISON OF PRIOR FPGA-BASED TRAINING ACCELERATORS

Accelerator Platform Network Precision DSP Util. Freq.
(MHz)

Power
(W)

Throughput
(GOPS)

Comp. Effi.
(GOPS/DSP)

Energy Effi.
(GOPS/W)

SAT (this work) XCVU9P ResNet-18 FP16+FP32 1228 200 22.38 484.21 0.39 21.64
TODAES’22 [34] ZCU102 VGG-16 FP32 1508 100 7.71 46.99 0.03 6.09

FPGA’20 [35] Stratix 10 AlexNet FP32 1796 253 N/A ∼24.00 0.01 N/A
FPT’17 [36] ZU19EG LeNet-10 FP32 1500 200 14.24 86.12 0.06 6.05

ICCAD’20 [33] Stratix 10 MX VGG-like FP16 1046 185 ∼20.00 ∼158.54 0.15 ∼9.00
OJCAS’23 [39] ZCU104 AlexNet BFP16 1285 200 6.44 102.43 0.08 15.90
AICAS’21 [38] XC7Z100 FC INT16 64 150 2.50 19.20 0.30 7.68

FPL’19 [37] Stratix 10 GX VGG-like INT16 1699 240 20.60 163.00 0.09 7.90

FPL’19 [49] XCVU9P AlexNet FP9 1106 200 75.00 375.61 0.34 5.00
ISVLSI’21 [46] VC709 VGG-like INT8 2324 200 16.27 771.00 0.33 47.38

JOS’20 [47] XCVU9P VGG-like INT8 4202 200 13.50 1417.00 0.34 104.96
TNNLS’22 [48] VC709 VGG-16 PINT8 1728 200 8.44 610.98 0.35 72.37
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Fig. 17. Runtime training throughput of ResNet18 with different available
off-chip memory bandwidths when scaling the number of USPEs in STCE.

F. Comparison with FPGA-based Training Accelerators

Table V presents a comparison between SAT and existing
state-of-the-art FPGA-based training accelerators for DNNs.
Our SAT outperforms other architectures equipped with FP16
or higher numerical formats, exhibiting superior performance
in terms of throughput, computational efficiency, and energy
efficiency. Specifically, SAT improves the training throughput
by 2.97∼25.22×, computational efficiency by 1.3∼39×, and
energy efficiency by 1.36∼3.58× when compared to [33]–
[39]. The superior results of SAT can be attributed to its
efficient hardware implementation of N:M sparsity acceler-
ation. First, by exploiting the parallelism offered by large
batch sizes, SAT can significantly increase the throughput of
the training process, which is a significant improvement over
prior FPGA-based accelerators [33], [37] that use small batch
sizes for DNN training. Second, a more efficient dataflow
design is adopted to efficiently cover the data loading and
computation process, leading to high throughput and energy
efficiency of SAT. Third, we exploit 2:8 sparsity in the
forward and backward training processes, which significantly
reduces the number of training operations by 48% on average,
leading to improvements in throughput and energy efficiency.
By leveraging the potential of N:M sparsity acceleration on
hardware, SAT presents a novel approach to efficient DNN
training that is orthogonal [12] to prior works that employ re-

duced numerical precision [46]–[49]. Our results demonstrate
that SAT is a promising FPGA-based accelerator for DNN
training that significantly outperforms existing state-of-the-art
solutions, highlighting the potential of N:M sparse acceleration
for efficient DNN training.

G. Discussion

The effectiveness of N:M sparse DNN training has been
demonstrated both at the algorithm and hardware levels. From
an algorithm perspective, BDWP achieves significant compu-
tational reduction without sacrificing model accuracy com-
pared to other state-of-the-art N:M sparse training methods.
Moreover, BDWP can be easily integrated with AMP training
pipeline. From a hardware perspective, SAT is efficient in
supporting N:M sparse DNN training. SORE incurs less than
1% hardware overhead, and STCE supports flexible dataflows,
as well as both regular dense and computation-efficient N:M
sparse operations, significantly improving DNN training effi-
ciency. Deployment of BDWP on SAT reduces training time
by 43%, resulting in 1.75× training acceleration compared to
dense training. Additionally, SAT outperforms CPU and GPU
in energy efficiency and also shows significant improvements
over prior state-of-the-art FPGA-based training accelerators.
These results demonstrate the proposed N:M sparse training
scheme is particularly promising for achieving efficient and
rapid training for increasingly large DNN models.

VII. CONCLUSION

In this paper, we present an efficient N:M sparse DNN train-
ing scheme on FPGA exploiting optimizations of algorithm,
architecture, and dataflow aspects. At the algorithm level, a
novel bidirectional weight pruning method, dubbed BDWP, is
first proposed to significantly reduce the number of operations
while maintaining model accuracy. At the architecture level,
a sparse accelerator for DNN training, namely SAT, is fur-
ther developed to support computation-efficient N:M sparse
operations besides the regular dense operations efficiently. At
the dataflow level, multiple optimization techniques further
increase hardware utilization, improving the throughput of
SAT. Experimental results show our N:M sparse training



TO APPEAR IN THE IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 13

scheme can significantly improve the training throughput by
2.97∼25.22× and the energy efficiency by 1.36∼3.58× com-
pared to state-of-the-art FPGA training accelerators. As the
computations involved in DNN training are rapidly increasing,
this work should be helpful for developing efficient sparse
DNN training.
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