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Abstract—Recently, neural network compression schemes like
channel pruning have been widely used to reduce the model size
and computational complexity of deep neural network (DNN) for
applications in power-constrained scenarios such as embedded
systems. Reinforcement learning (RL)-based auto-pruning has
been further proposed to automate the DNN pruning process to
avoid expensive hand-crafted work. However, the RL-based pruner
involves a time-consuming training process and the high expense of
each sample further exacerbates this problem. These impediments
have greatly restricted the real-world application of RL-based
auto-pruning. Thus, in this paper, we propose an efficient auto-
pruning framework which solves this problem by taking advantage
of the historical data from the previous auto-pruning process. In
our framework, we first boost the convergence of the RL-pruner by
transfer learning. Then, an augmented transfer learning scheme is
proposed to further speed up the training process by improving the
transferability. Finally, an assistant learning process is proposed
to improve the sample efficiency of the RL agent. The experiments
have shown that our framework can accelerate the auto-pruning
process by 1.5 ~ 2.5x for ResNet20, and 1.81 ~ 2.375x for other
neural networks like ResNet56, ResNet18, and MobileNet v1.

Index Terms—Reinforcement Learning, Auto-pruning, DNN.

I. INTRODUCTION

Nowadays, deep neural network (DNN) has become one of
the most popular algorithms for its impressive performance in
applications ranging from object detection and image classifi-
cation to speech recognition. However, the high performance
is at the expense of the large model size and huge computing
complexity which have blocked DNN from broader usage. As
one of the most successful solutions, network pruning [/1], has
been proposed to slim DNN models to obtain a good tradeoff
between accuracy and model size, making them feasible for
power-hungry devices such as mobile phones. A variety of
methods [2[]-[|6] have been proposed to prune DNN with dif-
ferent granularities and metrics. Channel pruning, which prunes
the featuremap and weights in channel granularity, is widely
used due to its high efficiency in hardware implementation. In
this work, we mainly focused on channel pruning, however, our
framework can be easily extended to other pruning schemes.

In order to avoid the extra hand-crafted work introduced by
the pruning process and to explore a larger network pruning
space, auto-pruning is proposed to compress the network by
automatically generating the optimal pruning policy, i.e. prun-
ing/preservation ratio of each layer of the input DNN model,
using a trainable agent. During the auto-pruning process, the
agent is trained by the existing pruning policy and correspond-
ing accuracy. With sufficient data and training time, the agent
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can converge and generate the optimal pruning policy for the
input network.

Among all the auto-pruning agents, the reinforcement learn-
ing (RL) [7] based agent [8] has attracted great attention
from researchers and developers due to its mature theoretical
study, universality, and high performance. However, the training
process of the RL-based pruner is time-consuming for several
reasons. Firstly, the sample efficiency is low since the RL
agent is randomly initiated and may not exploit its knowledge
of the environment to improve its performance until enough
interaction data with the environment are collected. Secondly,
the computation time of each sample is high as it requires
inferences for thousands of images to measure the accuracy.
The expensive time cost has greatly restricted the usage of RL-
based auto-pruning. For example, it takes over one day to prune
the ResNet18 automatically on four Nvidia 1080Ti. It will take
much longer time for more complex and practical networks like
ResNet50, which makes auto-pruning prohibitive for industry,
where time-to-market is critical.

In this work, we propose a comprehensive learning frame-
work to boost the convergence of the RL agent using historical
data. Firstly, we resort to transfer learning to resolve the ran-
dom initialization problem. Transfer learning between different
pruning ratios, DNN models, and datasets is investigated in
detail to accelerate the auto pruning process for the first time.
Furthermore, we realize that one obstacle to transfer learning
between different pruning scenarios is the differences in the
preservation ratio, network model, efc. Therefore, we propose
network and data augmentation to enhance the transferability so
that the converging time of the RL agent can be further reduced
compared with vanilla transfer learning. Finally, we propose a
novel assistant learning process to improve the data efficiency
of the RL agent at the beginning of the learning process by
generating the training samples according to the pruning history.
In this way, the negative effects of the low performance in the
initial training process can be minimized.

In summary, we make the following contributions:

e« We propose to speed up the auto-pruning process with
transfer learning. Transfer learning across different pruning
ratios, models, and datasets is discussed in a comprehen-
sive manner.

« We propose a novel augmented transfer learning scheme
to enhance the transferability between different pruning
scenarios, thereby, further reducing the training time.



« We propose a novel assistant learning process to improve
the data efficiency of the RL agent in the initial training
stage.

« Comprehensive experiments have been conducted for the
proposed pruning framework. The experiments have shown
that the auto-pruning time can be reduced by by 1.5 ~
2.5x for ResNet20, and 1.81 ~ 2.375x for other networks
like ResNet56, ResNet18, and MobileNet v1.

The remaining paper is organized as follows: Section [lI| states
the background and related works. Section introduces the
overall framework of this work. Section [IV] and [V| present the
proposed augmented transfer learning and assistant learning
schemes, respectively, to find the optimal pruning policy. Sec-
tion [VI|shows the experiments to validate our proposed learning
framework, and Section concludes the paper.

II. BACKGROUND AND RELATED WORKS
A. Reinforcement Learning-based Auto-Pruning

There have been a significant amount of works on neu-
ral network compression to slim DNNs so that they can be
computed efficiently without losing much accuracy. As one of
the most important pruning methods, channel pruning reduces
the computing complexity by removing the redundant channels
on the featuremap. Many channel pruning schemes [2f, [3[],
[9] have been proposed to identify the redundant channels
efficiently. In our work, the auto channel pruning is achieved
by predicting the numbers of the channels preserved in each
layer based on the RL agent. Then, the redundant channels are
identified and pruned by minimizing the reconstruction error
[2. An Iy regularization is applied to push the weights of
the abandoned channels to zero, and an iterative algorithm
is proposed to solve the corresponding Lasso problem [10]
efficiently.

RL-based auto-pruning was firstly proposed in [§]]. In that
work, a deep deterministic policy gradient (DDPG) agent [[11]],
which is one of the most popular RL algorithms that target the
continuous action space, is utilized to automatically generate the
action of each layer of the DNN model. Here the action refers
to the preservation ratio, however, its pruning ratio counterpart
can be processed in a similar way. Currently, the RL agent
takes a long time to converge since it usually takes hundreds of
trials to train the DDPG agent, and the accuracy measurement,
which requires inferences of thousands of images, is necessary
for each trial. Therefore, it is of great importance to improve
the convergence speed of the RL agent.

Several works have proposed to address this problem. In [12],
previously collected offline data is employed to aid the online
learning process by constraining the current policy to stay close
to the policy in the previous data. However, this work relies on
the assumption that the offline data has the same distribution as
the online data, which may not hold true for auto-pruning across
different pruning scenarios. Therefore, it cannot be applied in
our case. In [[13]], Pertsch er al. accelerates the RL agent by
integrating the actions into skills and learns a prior over the
skills from the offline data. However, this work also suffers
from the offline data consistency problem. In our work, we show
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Fig. 1. Proposed historical data based framework to boost the convergence of
RL agent in auto-pruning.

that our proposed framework can solve this problem by bridging
the source task and target task via network augmentation and
data augmentation. As a result, the auto-pruning process can be
accelerated with historical data from other pruning scenarios.

B. Transfer Learning

The core idea of transfer learning, which was proposed in
[14], is that experience gained in learning of performing one
task can benefit the learning performance in related but different
task. By transferring the knowledge from a source task to a
target task, instead of learning from scratch, the training time
can be significantly reduced. As a result, transfer learning has
been widely used to expedite the learning process of DNN
models.

Recent works also use transfer learning in RL [15]], [[16] to
accelerate the learning process by leveraging and transferring
external expertise. However, there still lacks investigations of
transfer learning in auto-pruning to the best of our knowl-
edge. Furthermore, vanilla transfer learning may suffer from
significant performance degradation in several scenarios and
become less valuable for practical usage due to the difference
between the source task and the target task. In this work, we
present a framework to speed up the RL-based auto-pruning
via transfer learning for the first time. Then we further boost
the performance of the transfer learning by network and data
augmentation.

III. FRAMEWORK

In this section, we will show the overview of the proposed
framework as illustrated in Fig[l] followed by a detailed intro-
duction of each component.

In this work, we aim to accelerate the RL-based auto-
pruning process by taking advantage of the historical data
in other pruning scenarios. To achieve this goal, the pruning
specifications (e.g. DNN to be compressed, preservation ratio
etc.) and historical data are first imported to the source model
selection part. The source model can be selected according
to the experience and the performance of the vanilla transfer
learning between historical model and target model. If the
time constraints are already satisfied, the RL agent can be
directly accelerated by vanilla transfer learning. Otherwise, an
augmented transfer learning process will be conducted to boost
the transferability of the source model so that the converging
time of the transfer learning can be further reduced.

Our proposed augmented transfer learning consists of model
augmentation and data augmentation, which increase the trans-
fer learning efficiency by augmenting the model of the actor



neural network and the data in the replay buffer, respectively.
The corresponding historical model will also be updated to ease
the later transfer learning.

Finally, assistant learning will be employed to improve the
sampling efficiency in the initial phase of the RL process. This
is based on the rationale that the RL agent suffers from low
sampling efficiency since the interactions with the environment
in the initial period are random. We can boost the convergence
of the RL algorithm by taking advantage of the historical data
from other pruning scenarios to improve the sampling efficiency
in the early RL phase.

IV. AUGMENTED TRANSFER LEARNING

Similar with previous works [8]], [[17], we consider the auto
channel pruning as a Markov process [18]] in which channels are
pruned in a layer by layer manner. The layer information e.g.,
the layer index, height, width efc., is considered as the state,
while the preservation ratio is considered as the action. The
DDPG-based RL agent [11]], which consists of an actor and a
critic, is employed to predict the preservation ratio of each layer
of the input neural network automatically. The actor, which is
usually a light-weight CNN model, exploits the information of
the states and generates the action. The critic, which is also
a light-weight CNN model, is used to evaluate the action to
suggest the optimizing direction of the actor. During the training
process of RL agent, the weights of the actor network and critic
network are updated by maximizing the output of the critic
network and balancing the Bellman equation [19], respectively.
As the actor and critic converge, the optimal pruned model can
be obtained by measuring the preservation ratio of each layer
according to the inference of the actor network given the input
state information.

However, the actor network and critic network take a long
time to converge due to the huge number of the parameters
in their networks and randomness of the network initialization.
Observing that the training process of a DNN can be accelerated
by transfer learning, which reuses the weights of the source
task as the starting point of the target task, we find transfer
learning promising to boost the convergence of RL-based auto-
pruning, since there are many common features between auto-
pruning agents in different scenarios. For example, it has
been observed that the optimal pruning policies for different
preservation ratios have a similar pattern, which depends on
the importance of each layer. Hence, we proposed to embed
the transfer learning framework into the RL-based auto-pruner
so that the weights trained in other scenarios can be reused to
speedup the convergence of the current pruning agent.

Vanilla transfer learning may not work perfectly across
different pruning ratios, models, and datasets. For example, the
experiments for transfer learning from ResNet20 to ResNet18
are shown in Fig. 2| It is obvious that transfer learning from
ResNet20 with preservation ratio of 0.5 and 0.6 have non-
optimial performance. This is caused by the inconsistency
of the source preservation ratio and the target preservation
ratio. The high preservation ratio of the source model may
lead to high action in the target model. However, when the
weights of the actor are transferred to a pruning scenario
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Fig. 2. Transfer learning from different starting points. “res20 0.4 to resl8
0.4” refers to transfer learning from ResNet20 with a preservation ratio of 0.4
to ResNet18 with a target preservation ratio of 0.4. The rest of the legend can
be interpreted in the same manner.

which has a lower preservation ratio, it tends to mislead the
target model, and the predicted action for the initial layers
becomes higher than expected. Given the constraints of the
overall preservation ratio requirement, the action for the later
layers will be suppressed and become lower than expected. This
inconsistency will significantly harm the performance of the
RL-based auto-pruning agent. In order to solve this problem,
we propose augmented transfer learning, which consists of an
automatic source selection scheme, network augmentation, and
data augmentation, to transfer the knowledge between different
pruning scenarios efficiently. The framework of the augmented
transfer learning is illustrated in Fig.

In our augmented transfer learning framework, we first select
the source model candidates according to the experience. For
example, transfer learning from high preservation ratio to low
preservation usually indicates a less satisfying result, as shown
in 2] therefore transfer learning from low preservation ratio is
usually preferred. Then the source models can be further filtered
by transfer learning from multiple starting points in a parallel
manner and the optimal source model can be selected according
to our source selection scheme, which will be explained in detail
in Then, a decision is made according to the convergence
speed of the vanilla transfer learning. If the convergence speed
meets the time requirement specified by the user, the auto-
pruning policy can be obtained by the inference of the source
actor network. Otherwise, data and network augmentation will
be applied to enhance the transferability. Next, the augmented
data and network will be transferred to the target buffer
and augmented target actor, respectively. The actor will be
trained according to the samples from the replay buffer and
the optimization direction given by the critic network. As the
augmented target actor converges, the pruning policy can be
obtained by the inference of it. Finally, the augmented data and
actor will be used to update the library to ease the later auto-
pruning process.

The source selection, network augmentation, and data aug-
mentation are explained in the following subsections.

A. Source Selection

As Fig.[2] shows, it is critical to select the starting point of the
target network. A good source network may benefit the training
process, while an inappropriate source network may poison the
performance. However, it will be time-consuming to finish the
transfer learning process for all of the source models in the
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Fig. 3. Our proposed augmented transfer learning. Source selection, network
augmentation, and data augmentation are applied to boost the convergence of
the transfer learning process.

library. Hence, we exploit an early stopping scheme to search
for the optimal source model efficiently.

In this scheme, transfer learning from multiple pre-trained
models starts at the same time, and a moving average-based
smoothing process, which has a window size of 21 based on our
experiments, is conducted for each learning curve, as shown in
Fig. 2| The mean of the points inside the window is considered
as the value of the center points, while the variance of the points
inside the window is a good approximation of the corresponding
variance. A minimum of 30 trials are required to train each
transfer learning process due to the high randomness at the
beginning of the training process. Then the optimal transfer
learning starting point can be selected according to the priority
of different source models, which is defined as the following.

Def: We consider source model "A” as significantly superior
to source model "B’ if there exists an trial x in which
avga(z) — avgp(z) > vara(z) + varpg(z).

Thus, the transfer learning process from the non-optimal
source model can be stopped early to save resources, as
illustrated by the green line and red line in Fig. [2] Note that
there exists the case that one model may not be significantly
superior to the other if the performance difference of the two
source models is smaller than the corresponding variance. In
this case, we choose the source model that has the better
inference accuracy at the maximum trial specified by the user.

B. Network Augmentation

The actor network and critic network inside the RL agent aim
to predict the action for the given input states and to evaluate
its corresponding performance. However, the transferability is
not considered in the actor network design, which may lead to
sub-optimal transfer performance. We show that by modifying
the network, the transferability can be significantly increased
without causing extra computational costs.

To achieve this goal, we modify the actor network to generate
invariant defined in Eqn. [I] across different scenarios instead
of the pruning ratio of the given layer, which may vary
significantly for different pruning ratios and models. As a result,
the weights of the actor network for different pruning scenarios
can be easily reused with little re-training process. We consider

the following invariant [; between different pruning scenarios

c for layer k:
aC

I = ;ﬁ )
where ay, indicates the action, i.e. the preservation ratio of layer
k, and p is the targeted preservation ratio. We approximate
the invariant using the actor network inside the RL agent with
I, = f(sk), where sy, indicates the input states for layer k. This
is based on the assumption that the preservation ratio of each
layer aj, for pruning scenario c is ?roportional to the overall
preservation ratio p¢. Therefore, Z—’; is invariant to different
pruning scenarios and can be easily transferred. We note that
this assumption may not hold true for transfer learning across
different models since the invariant depends on k. However, it
turns out to be a good assumption to bridge pruning scenarios
with different preservation ratios, and the experiments have
validated this approximation.

By predicting the above invariant using the actor network,
the actual action ratio can be obtained by f(sy)*p°, which has
little computing overhead.

C. Data Augmentation

Another problem of the RL agent comes from the buffer
filling process at the beginning of the training stage. Note that
the adjacent states are strongly dependent. Therefore, a replay
buffer is employed to store and shuffle the training samples,
e.g., states information, actions, and corresponding rewards, to
resolve the dependence. Though the replay buffer can achieve
decent performance improvement, the filling process is time-
consuming and exacerbates the training costs due to the high
expense of each sample. However, on the other hand, this
also opens up another opportunity for accelerating the RL-
based auto-pruning. To solve this problem, we propose to
transfer training data to provide more information between the
source model and the target model, in addition to weight-based
transfer learning between the models inside the RL agents. As a
result, the transfer efficiency can be further improved. However,
directly applying the training data of the source pruning agent
may cause bias of the target agent, since the pruning scheme
of the source agent and target agent may be different. In this
work, we propose the following data augmentation to reduce
the data bias between the source and target models.

Firstly, we consider data augmentation for transfer learning
across the same model with different preservation ratios. The
rationale is that a high preservation ratio usually indicates a
high action for each layer. To reduce the action bias caused
by the inconsistency of the preservation ratio for the source
task and target task, an action scale is introduced to fine-tune
the action. In this work, we scale the action by the following
formula, which aims to protect the critical layers from pruning:
1 _ as}ource

t t
atorget — 1 _

. target ) . (2)

1 — pSOUTCC ( - p
For example, when layer k is critical and a3°“"® is close to 1,
the second term will be close to zero. As a result, ai‘"get will

be close to 1 as well.



Next, we consider the data augmentation for transfer learning
across different models and datasets. In this case, the samples
are fine-tuned according to the prior information of the source
and target model. We illustrate this by the widely used ResNet
model. It can be observed that the shortcut layer and the top
layer inside the ResNet block have fewer parameters than other
layers. As a result, the preservation ratios for these layers
are usually high since pruning these layers may lead to a
significant accuracy loss. Therefore, it becomes natural to adjust
the preservation ratio according to the importance of the layers
for the transfer learning between different ResNet models. In
our experiments, we set the preservation ratio to 1 for the layers
that are critical in the target model. The preservation ratios for
layers that are critical in source model, while not critical in
the target model, are uniformly reduced to maintain the overall
preservation ratio unchanged. Then, Eqn. [2| can be used to
reduce the action bias if the inconsistency of the preservation
ratio exists.

Finally, these data are randomly sampled to train the auto-
pruner which is similar to the data sampling in the vanilla
transfer learning. The experiments presented in Section |VI] will
show the effectiveness of our proposed augmentation schemes.

V. ASSISTANT LEARNING

In the previous section, we took advantage of the previous
well-trained model and data to improve the learning speed of the
target model. However, the learning time is still intolerable in
many time-critical scenarios. This is caused by the low sampling
efficiency of the RL algorithm, since the actor network is not
well-tuned and the action generated by the actor network in the
initial trials may be useless.

Inspired by the high data efficiency of Bayesian optimization,
where each sample is generated according to the historical
samples and a well-defined acquisition function [20], we pro-
pose an assistant learning process to generate the next training
samples at the initial stage according to the training history. As
a result, the sub-optimal samples generated by the actor network
at the initial stages can be avoided and the corresponding data
efficiency can be significantly improved. After a certain number
of trials, (30 in our experiments), the RL actor network becomes
mature and the transfer learning based RL algorithm, which
trains the network according to the action generated by the
actor, can be resumed.

The details of our proposed assistant learning algorithm are
shown in Fig. fi] The proposed algorithm contains two separate
dataflows, as indicated by red and green flow, respectively, in
Fig. @ The green color refers to the RL-based auto-pruning
process, which gets the action by the inference of the actor
neural network. The dataflow highlighted in red represents the
history data based action prediction flow to improve the data
efficiency of the RL agent at initial stages. A switch is used to
select the action from the two data paths and output the action
to interact with the environment, which is network pruning in
our case. The predicted action will also be used to update the
target replay buffer with an accept probability, which we will
explain later.

It is non-trivial to predict a sample according to the states and
actions of the historical pruning data due to the large pruning
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Fig. 4. Our proposed assistant learning. Inspired by the Bayesian Optimization,
the historical data are employed by a measuring and a dynamic selection process
to improve the sample efficiency at the initial learning stages.

space and numerous historical records. In order to exploit the
pruning history efficiently, the samples of the pruning history
are iterated, and the scores for similarity and performance
are evaluated for each historical record. Historical data with
higher similarity and performance are preferred for later action
generation. This is based on the assumption that the design
space of the pruning network is continuous and the samples
with similar input state information should have a similar
action. This is a rational assumption since the accuracy changes
continuously as the pruning ratio and the convolution size
change.

The definition of the similarity S can be illustrated by the
following formula:

where G refers to the Gaussian function to indicate the distance
between historical states h(z) and input states i(z), x is the
iterator of the states, and o is the standard deviation of G to
adjust the distance measurements. In this work, we set o to 0.1
according to experience. For the performance measurement of
the historical data, the inference accuracy of the corresponding
pruned network is considered as a good indicator. Metrics like
power, throughput, efc. can also be considered for pruning with
hardware constraints, which is temporarily not discussed in this
work.

Then the historical data can be selected according to both
the similarity and the performance metric, as shown in the
following formula:

M=5“+P, 4)

where M is the final selection metric, S refers to the similarity
measurements, P is the performance measurements, and w is a
weight parameter. In our experiment, we set w = 2 according to
the experimental performance. Our dynamic selection scheme
selects historical samples based on the metric M to cater to
different pruning scenarios. In the early trials, exploration is
more important. Therefore, the top n (n = 3 in our experiments)
historical samples are randomly selected to explore wider policy
spaces. In the later trials, accuracy becomes more critical. The
historical sample with the highest M is selected to boost the
performance of the RL agent.
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Fig. 5. Experiments for vanilla transfer learning between pruned ResNet20
model with different preservation ratios. The baseline is based on PocketFlow
(17l

Then, the action of the input state can be given according
to the selected historical record and noise, which also aims
to widen the exploration space of the RL process. Note that
it is critical to select appropriate noise to get a good tradeoff
between exploration and exploitation. Both uniform noise and
Gaussian noise are investigated in our experiments, and we
found that uniform noise is more effective for the assistant
learning process. Then the uniform noise passes through a linear
decay filter to reduce the disturbance as the actor network
converges.

Finally, the new interactions with the environment are feed-
back to the replay buffer to update the data in the buffer. In
contrast with the RL agent, which directly accepts all the data
and updates the buffer, we adopt a probability-based updating
algorithm to get rid of the low-performance trials in the assistant
learning phase. This is because the RL agent focuses on the
whole training phase, while our assistant learning algorithm
only focuses on the initial training phase where low-quality
samples are common. Therefore, accepting all the samples will
harm the convergence of the actor, and a probability-based
accepting rule becomes necessary. In our case, the trials with
accuracy ranks in the top 1/3 of the batch can be accepted and
update the buffer without rejection. The other samples will be
accepted with an exponential decreased probability.

We also investigated model-based action predictors to take
advantage of the history knowledge and to predict the action.
XGBoost [21]] and Matrix Factorization [22] based models have
been tried. Both the simulated annealing based solver and Adam
[23]], which is embedded in Tensorflow, have been employed to
solve the maximum point of the model. However, we found
that this is non-practical due to the huge data requirement to
learn the model and the low generalizability of the model across
different pruning scenarios.
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Fig. 6. Experiments for vanilla transfer learning in five pruning scenarios (a)-
(e). The baseline is based on PocketFlow [[17]

VI. EXPERIMENTS

Our framework has run on an Intel(R) Core(TM) i7-5820K
CPU @3.30GHz with a 32 GB DDR memory. Tensorflow 1.12
is employed for the auto-pruning process. The experiments are
conducted on Nvidia GeForce GTX TITAN X, which has 3072
cores and a boost frequency of 1089MHz, leading to a peak
throughput of 6691 GFLOPS. The GPU cards are connected
with the host machine via a PCI-e 3.0 interface which offers a
maximum bandwidth of 8GT/s. The widely used CUDA-10.1
is used to program the DNN applications on GPU efficiently.

The vanilla RL agent-based auto-pruner, which is conducted
on the auto-pruning platform PocketFlow [[17], is employed as
the baseline. Note that the accuracy in the following exper-
iments refers to the inference accuracy of the pruned model
without the fine-tuning process. The learning curve is smoothed
using the exponential moving average, which is also built into
the widely used TensorBoard platform, with a weight factor of
0.5.

A. Vanilla Transfer Learning

In this subsection, comprehensive experiments are conducted
to show the performance of the vanilla transfer learning. The
results are illustrated in Fig. [5] and Fig. [

Firstly, we show the performance of the transfer learning
across different preservation ratios. To have a comprehensive
and fair comparison, we provide experiments for all the transfer
learning cases within the ratio list (0.4, 0.5, 0.6, 0.7), as
illustrated in Fig. 5] In Fig. Ba), we show the RL based auto
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Fig. 7. Experiments for augmented transfer learning for ResNet20.

compression for ResNet20 with a target preservation ratio of
0.4. Among all the curves, “res20 0.4 baseline” refers to the
accuracy of the auto-pruning process in PocketFlow [|17]], which
serves as the baseline in our experiments. “res20 0.5 to res20
0.4” indicates transferring the knowledge learned in the source
pruning scenario, which has a preservation ratio of 0.5, to the
target pruning scenario with a preservation ratio of 0.4. The
legend for other figures can be interpreted in a similar manner.

In this experiment, we made the following observations. (1),
Auto-pruning for high preservation ratio is more likely to benefit
from the transfer learning process. In (c) and (d), vanilla transfer
learning can significantly boost the convergence of the RL
algorithm. However, in case (a) and (b), the benefits of transfer
learning diminishes. In case “res20 0.7 to res20 0.4”, the
transfer learning may even poison the convergence of the auto-
pruning process. (2), source models with lower preservation
ratios are preferred. For example, in (b), "res20 0.4 to res20 0.5”
has higher performance than “res20 0.6 to res20 0.5”. These
are because of the inconsistency of the preservation ratios as
we mentioned in section In precis, although the transfer
learning for (c) and (d) are promising, the performance in (a)
and (b) are far from optimal, this motivates us to develop the
novel framework to boost the vanilla transfer learning process.

We further extend our transfer learning algorithm to different
datasets and DNN models as shown in Fig. [§] Fig. [f (a),
(b) and (c) shows the transfer learning based auto-pruning for
ResNet18. In Fig. [f[(a), the source model has a preservation ratio
of 0.4, while the target model has a preservation ratio of 0.5. It
can be observed that transfer learning can significantly increase
the convergence speed. The baseline RL agent converges in
around 100 trials, while the transfer learning based RL agent
can achieve the same pruning accuracy within 60 trials, and
acceleration of 1.67x is achieved. The transfer learning process
can also benefit the final accuracy of the auto-pruner.

In Fig. [6[b), we show the transfer learning for ResNet18 with
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Fig. 8. Experiments for assistant learning for ResNet20.

different source and target preservation ratios, i.e. “res18 0.5 to
res18 0.4”. In contrast with the previous example, although the
transfer learning based auto-pruner in this scenario has a better
pruning accuracy at the initial trials, it fails to outperform the
baseline when the training process converges. This indicates
the fact that vanilla transfer learning may not always benefit
the learning process, and may lead to degraded performance.
However, in later experiments, we show that this problem can
be avoided by our proposed augmented transfer learning and
assistant learning.

Fig.[6[c) shows transfer learning for ResNet18 from different
models and dataset. In this case, the baseline converges in 125
trials while the transfer learning based counterpart can converge
in 25 trials. Therefore, around 5x speedup can be achieved.

In Fig. [6(d).(e), we show the transfer learning for other DNN
models. Transfer learning from ResNet18 to ResNet34 is shown
in Fig. [6[d), while transfer learning from ResNetl8 to a light-
weight network running on embedded systems like MobileNet
is shown in Fig. [f[e). In both cases, a significant speedup, which
is around 5Xx, in convergence time can be observed.

In summary, our experiments in this section show that the
transfer learning process can boost the learning process by
1.67 ~ 5x for different pruning scenarios. However, it may
harm the accuracy in a few cases, for example, Fig. [5(a) and
Fig. [6[b). In the later experiments, we show that our proposed
algorithms can solve this performance degradation problem and
further speed up the learning process.

B. Augmented Transfer Learning

In this section, we propose experiments to verify the validity
of our augmented transfer learning algorithm. In order to have a
fair comparison, we conducted experiments for all the transfer
learning scenarios within the preservation ratio list (0.4, 0.5, 0.6,
0.7), which is similar to Fig.[5} The corresponding experiments



TABLE I TABLE 1T
BOOSTING THE CONVERGENCE OF RESNET56 WITH PRESERVATION RATIO BOOSTING THE CONVERGENCE OF RESNET18 WITH PRESERVATION RATIO
OF 0.4 OF 0.4
pruning scenarios source model | convergence time (trials) | accuracy pruning scenarios source model | convergence time (trials) | accuracy
baseline [17] None 100 0.8675 baseline [17] None 110 0.5063
vanilla transfer res20 0.4 50 0.8479 vanilla transfer res20 0.4 50 0.5371
augmented transfer res20 0.4 50 0.8838 augmented transfer res20 0.4 50 0.5486
assistant Learning res20 0.4 50 0.9078 assistant Learning res20 0.4 50 0.5671
vanilla transfer res20 0.7 75 0.8638 vanilla transfer res20 0.7 60 0.4979
augmented transfer res20 0.7 55 0.8624 augmented transfer res20 0.7 60 0.4925
assistant learning res20 0.7 55 0.8694 assistant learning res20 0.7 60 0.5704
are shown in Fig. In (¢) and (d), we observe that the TABLE III
performance of the augmented transfer learning is similar to its =~ BOOSTING THE CONVERGENCE OF MOBILENET V1 WITH PRESERVATION
counterpart in Fig. [5] since they are already close to optimal. RATIO OF 0.4
However, in (a) and (b), we found that the converging speedup pruning scenarios source model | convergence time (trials) | accuracy
can be significantly increased. We also observe a substantial baseline [17] None 95 0.6443
improvement in the final accuracy of the pruned model. More auvg?;’grliegiﬁlf;rfer ;‘2258 8'1 Zg 8'2?52
specifically, the accuracy loss problem in “res20 0.6 to res20 assistant Learming 52004 20 06673
0.4” and "res20 0.7 to res20 0.4” as we have mentioned in the vanilla transfer res20 0.7 50 0.6293
previous subsection has been solved. augmented transfer | res20 0.7 30 0.6497
assistant learning res20 0.7 50 0.7305

We summarized the experiments for augmented transfer
learning for other models in section to have a more clear
comparison.

C. Assistant Learning

In this subsection, we provide the experiments for auto-
pruning after the assistant learning process. Note that the
assistant learning relies on the output of the augmented transfer
learning, the experiment for assistant learning here indicates
that both augmented transfer learning and assistant learning are
applied.

Similar with previous subsection, we conducted experiments
for all transfer learning scenarios as in Fig. [5] and Fig. [} The
corresponding results are shown in Fig. [§] In Fig. [§[c) and (d),
the performance of the assistant learning is still similar with
its counterpart in Fig. [5] and Fig. [7} due to their near-optimal
performance. However, in Fig. @ka) and (b), we found that the
converging time can be further reduced. For example, in Fig.
[/(a), the augmented transfer learning converges in 125 trials,
while the assistant learning counterpart in Fig. [§[a) converges
in 60 trials. The experiments for other models can be seen in
section

In summary, by combining the augmented transfer learning
and assistant learning, we observe that we can achieve around
1.5 ~ 2.5x speedup for ResNet20 with superior or comparable
pruned accuracy.

D. Experiments for Other DNNs

In this section, we provide the experiments for other neural
networks such as ResNet56, ResNet18, and MobileNet v1. We
mainly focused on auto-pruning with a preservation ratio of
0.4 since it is the most challenging case among the 4 cases
as we have observed from previous experiments. We put the
PocketFlow based baseline, vanilla transfer learning, augmented
transfer learning, and assistant learning based auto-pruning in
the same table, so that the gain of our proposed framework can
be illustrated more clearly.

Table. [I| shows the auto-pruning experiments for ResNet56.
For transfer learning from ResNet20 with a preservation ratio
of 0.4, we observe that vanilla transfer learning, augmented
transfer learning and assistant learning have a similar con-
verging speed, which is much faster than the baseline version.
2x speedup can be achieved. Besides, our proposed assistant
learning can achieve higher accuracy. This is because the history
based sampling can possibly lead to better design points in
the design space. For transfer learning from ResNet20 with a
preservation ratio of 0.7, we show that our proposed augmented
transfer learning and assistant learning have superior converging
speed than the vanilla transfer learning counterpart. Our pro-
posed framework can achieve around 1.81x acceleration over
the PocketFlow baseline and 1.36x acceleration over the vanilla
transfer learning counterpart.

Similarly, table[IT] shows the experiments for ResNet18 which
has a larger dataset, e.g. Imagenet. For transfer learning from
ResNet20 with a preservation ratio of 0.4, we observe that
both the augmented transfer learning and assistant learning
have little performance gain in converging speed and accuracy
since the vanilla transfer learning is already close to optimal
performance. However, for transfer learning from ResNet20
with a preservation ratio of 0.7, our proposed framework can
achieve higher performance in accuracy. This is because transfer
learning from “’res20 0.7” is more challenging than “res20 0.4”,
therefore, our proposed learning framework can unleash its
superior performance compared with vanilla transfer learning.

In table we show the experiments for MobileNet vl1,
which is also trained on ImageNet. A time acceleration of
2.375x can be achieved compared with the PocketFlow base-
line. A significant accuracy gain in assistant learning can also
be observed.

In summary, in this section, we conducted comprehensive
experiments for different preservation ratios and DNN models.
A speedup of 1.81 ~ 2.375x can be observed for different auto-
pruning scenarios. A substantial performance gain in accuracy
is also observed.



VII. CONCLUSION

In this paper, we propose a comprehensive transfer learning
framework for the RL agent. An augmented transfer learning
and an assistant learning algorithm are proposed to take advan-
tage of the historical data from other pruning scenarios to boost
the convergence speed of the network inside the pruning agent,
thus saving computing resources and time. The experiments
have shown that our framework can significantly reduce the
convergence time with superior or comparable pruning accu-
racy. In the future, we would like to extend our framework to
applications like network architecture search, auto quantization,
and so on.
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