
ar
X

iv
:2

10
1.

05
43

0v
2

 [
qu

an
t-

ph
]

 9
 J

un
 2

02
2

Efficient quantum circuit synthesis for SAT-oracle with limited ancillary qubit

Shuai Yang,1, 2 Wei Zi,1, 2 Bujiao Wu,3 Cheng Guo,1, 2 Jialin Zhang,1, 2 and Xiaoming Sun1, 2

1Institute of Computing Technology, Chinese Academy of Sciences, 100190 Beijing, China
2University of Chinese Academy of Sciences, 100049 Beijing, China

3Center on Frontiers of Computing Studies, Peking University, Beijing 100871, China

How to implement quantum oracle with limited resources raises concerns these days. We design two ancilla-

adjustable and efficient algorithms to synthesize SAT-oracle, the key component in solving SAT problems. The

previous work takes 2m−1 ancillary qubits and Õ(m) elementary gates to synthesize an m clauses oracle.

The first algorithm reduces the number of ancillary qubits to 2
√
m, with at most an eightfold increase in circuit

size. The number of ancillary qubits can be further reduced to 3 with a quadratic increase in circuit size. The

second algorithm aims to reduce the circuit depth. By leveraging of the second algorithm, the circuit depth can

be reduced to Õ(logm) with m ancillary qubits.

INTRODUCTION

Quantum computation has been extensively studied since

Feynman first proposed in the 1980s [1]. Several quantum

algorithms have been proposed which are superior to the best

classical algorithms, such as Shor’s algorithm and Grover’s

algorithm [2, 3]. As a result, more and more attention is paid

to quantum computation [4, 5].

In these quantum algorithms, quantum oracles are used to

evaluate the value of Boolean function [6]. Here a Boolean

function is a function f : {0, 1}n → {0, 1}. The function of a

quantum oracle is transforming |x〉 |c〉 into |x〉 |c⊕ f(x)〉 [6].

To implement these quantum algorithms on quantum devices,

we have to decompose the oracle into elementary gates. Since

we are in a noisy intermediate-scale quantum (NISQ) era, the

number of qubits and the fidelity and decoherence time of the

elementary gate is still at a low level by far [7, 8]. Although

the above quantum oracle can be implemented theoretically,

the huge number of quantum resources is unavailable in the

NISQ era. Therefore, it is essential to implement a quantum

oracle with as few quantum costs as possible.

There are several works for the synthesis of quantum ora-

cle [9–12]. Those algorithms focus on different representa-

tions for Boolean functions. However, for Conjunction Nor-

mal Form (CNF) Boolean function, those algorithms need ex-

ponential running time to synthesize such an oracle. Here a

CNF Boolean function is an AND of several clauses. Each

clause is an OR of variables or their negations. We denote the

quantum oracle of the CNF formula as the SAT-oracle.

The well-known NP-hard problem — satisfiability (SAT)

problem determines whether a CNF is satisfiable [13–15].

SAT problems appear in several practical application domains,

such as gene regulatory networks, model checking, electronic

design automation, etc [16–18]. In classical computation

and quantum computation, enormous studies aim to solve the

SAT problem [19–23]. Those quantum algorithms use SAT-

oracle to evaluate the value of the CNF Boolean function.

SAT-oracle can also be used in quantum state preparation [24].

Now, we give the definition of the quantum circuit synthesis

problem for SAT-oracle. For a given CNF formula f over

n variables x = (x1, x2, · · · , xn), the task is to construct a

quantum circuit C such that C |ψ〉 |c〉 = |ψ〉 |c⊕ f(ψ)〉 . For

convenience, we denote n variables m clauses k-CNF (each

clause contains at most k variables) as CNFk
n,m. Ancillary

qubits are widely used in the quantum circuit synthesis and

the optimization of quantum circuits. An idea in [25, 26] is

to store the value of clauses in the ancillary qubits and then

calculate the AND function with a Toffoli gate [27]. When

the ancillary qubits are limited, this algorithm fails.

Inspired by the construction of multi-controlled Toffoli

(MCT) in [6], we design an algorithm to synthesize a gen-

eral quantum AND (OR) circuit for functions rather than vari-

ables to conquer the limitation of ancillary qubits. Based on

the general AND circuit, we design the size-oriented algo-

rithm to synthesize CNFk
n,m. The algorithm costs ℓ ancillary

qubits and Õ(km1+o(1)) elementary gates. The size of the cir-

cuit decreases rapidly with the growth of ℓ. Particularly when

ℓ = mǫ, the circuit size drops to O(km/ǫ). Then, we intro-

duce depth-oriented algorithm to reduce the depth of the quan-

tum circuit to Õ(log km) with km ancillary qubits, where the

size increases by a logarithm factor. When the ancillary qubits

is limited, the circuit depth is roughly Õ(km1+o(1)/ℓ). The

running time of the two algorithms is both O(km). The ex-

perimental results show that with a tolerable (a constant ra-

tio) increase in the size of the quantum circuit, the number of

ancillary qubits is reduced from 2m − 1 to 2
√
m using the

size-oriented algorithm. The depth-oriented algorithm signif-

icantly reduces the circuit depth of the SAT-oracle. We also

give a resource estimate of solving a meaningful SAT prob-

lem using Grover’s algorithm and our synthesis algorithm.

RESULT AND METHOD

Consider a general AND problem: given p Boolean func-

tions g1(x), g2(x), · · · , gp(x) and the corresponding quantum

oracles Oi |x〉 |c〉 = |x〉 |c⊕ gi(x)〉. The goal is to construct

a quantum circuit p-GAND such that p-GAND |x〉n |q〉ℓ |c〉 =
|x〉n |q〉ℓ |c⊕ (

∧p
i=1 gi(x))〉 with ℓ ancillary qubits. We call

this general p-AND function and denote p-GAND as the gen-

eral p-AND circuit. We can define the general p-OR circuit

similarly.

http://arxiv.org/abs/2101.05430v2

2

Merge stage Restore stage

|x〉 /

Oq3
3 Oq2

2 Oq1
1 Oq2

2 Oq3
3

❴ ❴
✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

❴ ❴

Oq2
2 Oq1

1 Oq2
2 3-AND

|x〉
❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴
✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

|q1〉 • • • • • • • • |q1〉
|q2〉 • • • • • • • • = |q2〉
|q3〉 • • • • |q3〉
|q4〉 • • • • |q4〉
|qt〉

∣

∣qt⊕∧3i=1gi(x)
〉

Step: 1.1 1.2 1.3 2.1 2.2 2.3 2.4 2.5 2.6 2.7 3.1 3.2 3.3 2.1 2.2 2.3 2.4 2.5 2.6 2.7

Phase: Up phase Top phase Down phase Top phase

FIG. 1: Construction of 3-GAND circuit. |x〉 is input qubits, |qt〉 is target qubit and |q1〉 , · · · , |q4〉 are ancillary qubits. Here

Oq
i is the Oi on the target qubit q.

Lemma 1 (p-GAND circuit). For any natural number p, gen-

eral p-AND circuit can be implemented with 2p dirty ancillary

qubits, O(p) Toffoli gate and 4 calls of each Oi.

Due to the space constraints, we briefly introduce the struc-

ture of the circuit implemented by the algorithm [28]. We

give an example as illustrated in Figure 1. The construction of

p-GAND is divided into two stages: the merge stage and the

restore stage. The merge stage contains 2p− 3 steps, and the

restore stage is to repeat steps 2 to 2p− 4 of the merge stage.

Those 2p − 3 steps can be further divided into three phases:

Up phase, Top phase, and Down phase.

1. Up phase: In this phase, we add the information in the

ancillary qubits to corresponding qubits, which can help

to eliminate unexpected information. Up phase contains

the first p−2 step. Step i contains 3 sub-steps: 2 Toffoli

gates and a call of Oi.

2. Top phase: In this phase, we implement a circuit that

merges two clauses and stores the result in an ancillary

qubit. Top phase only contains step (p−1), which has

seven sub-steps (4 Toffoli gates, 2 calls of O2 and 1 call

of O1).

3. Down phase: In this phase, we merge all the clauses

in the ancillary qubits. With the help of Up phase, the

target qubit stores the value of input CNF. There are 3

sub-steps in each step i ∈ {p, p+1, · · · , 2p−3}, which

are 2 Toffoli gates and a call of oracle O2p−i.

By recursively calling this circuit, we design two efficient

algorithms to implement SAT-oracles. The input CNF will be

divided into several blocks recursively. In the innermost sub-

block, which is numbered 1st level block, we use the general

k-OR circuit to generate a sub-CNF. The circuit to construct i-
th level block is used as an oracle in (i+1)-th level block. We

give the pseudo-code of size-oriented algorithm and depth-

oriented algorithm in the algorithm 1 and 2 respectively.

Theorem 1. By applying algorithm 1, any instance of

CNFk
n,m can be implemented by anO(n(km/n)1+logℓ/2+1 4)-

size circuit with ℓ ancillary qubits.

The size-oriented algorithm performs well in the size of the

circuit. When the ancillary qubits are clean (the initial state

Algorithm 1: Size-oriented algorithm

input : A CNFk
n,m instance f =

∧m
a=1Ca and the number

of ancillary qubits ℓ ≥ 3.

output: A circuit C such that

C|x〉 |0〉ℓ |c〉 = |x〉 |0〉ℓ |c⊕ f(x)〉,∀x ∈ {0, 1}n.
1 d← logℓ/2 m, s← 2m

ℓ
;

2 for j in 1 to ℓ/2:

3 Clause ((j−1)s+1, js, Ancilla[j], d−1);

4 MCT (Ancilla, Target);

5 for j in 1 to ℓ/2:

6 Clause ((j−1)s+1, js, Ancilla[j], d−1);

7 Clause(SId,EId,Target,Depth):

8 if (Depth=0):

9 Synthesize clauses on target qubit;

10 return;

11 s← (EId−SId)/(ℓ/2 + 1);
12 Apply (2ℓ+1)-GAND circuit, where Oi is synthesized by

Clause (SId+(i−1)s, SId+is−1, Ancilla[i], Depth−1);

13 return;

is |0〉), we design depth-oriented algorithm to further reduce

the circuit depth, with a little increase in the circuit size. We

partition the ancillary qubits into 3 registers, qmem, qdirty and

qclean. The qubits in qmem and qclean are clean at the be-

ginning. The synthesis framework is implemented with the

qdirty register. The difference between the two algorithms is

in the innermost recursion, where we use the qmem and qclean
to parallel the quantum circuit.

Theorem 2. By applying algorithm 2, any instance of

CNFk
n,m can be implemented by an O

(

k
(

mS
ℓ

)1+c
log ℓ

)

-

depth circuit, where ℓ is the number of ancillary qubits, S =
max{ k

log ℓ , 1} and c = logℓ/S 4.

The depth of the quantum circuit is declined rapidly with

the growth of the number of ancillary qubits. Some numeri-

cal experiments are designed to show the performance of our

algorithm in the following subsection. We also point out the

asymptotically lower bound for synthesizing the CNF formula

by counting. The classical running time is the same as the

number of calls to the clause function, which is polynomial to

the input size. Using the counting method, we show the lower

3

Algorithm 2: Depth-oriented algorithm

input : A CNFk
n,m instance f =

∧m
a=1 Ca and the number

of ancillary qubits ℓ ≥ 3.

output: A circuit C such that

C|x〉 |0〉ℓ |c〉 = |x〉 |0〉ℓ |c⊕ f(x)〉,∀x ∈ {0, 1}n.
1 S ← max{k/ log ℓ, 1}, d← logℓ/2(S+1) m, s← 2(S+1)m

ℓ
;

2 Divide the ancillary qubits into 3 parts qmem, qdirty, qclean,

size of each part is (S − 1)ℓ/(S + 1), ℓ/(S + 1), ℓ/(S + 1);

3 for j in 1 to ℓ
2(S+1)

:

4 Clause ((j−1)s+ 1, js, qdirty[j], d− 1);

5 MCT (qdirty,Target);

6 for j in 1 to ℓ
2(S+1)

:

7 Clause ((j−1)s+ 1, js, qdirty[j], d− 1);

8 Clause(SId,EId,Target,Depth):

9 if (Depth=0):

10 Copy the input to qmem;

11 Use the input and qmem to synthesize ℓ/(S + 1) clauses

in parallel at qdirty;

12 Use the qclean to merge all the clauses in parallel;

13 Reset the ancillary qubits;

14 return;

15 s← 2(S+1)(EId−SId)
ℓ

;

16 Apply the GAND circuit, where Oi is synthesized by Clause

(SId+(i−1)s, SId+is−1, qdirty[i], Depth−1);

17 return;

bound of the SAT-oracle synthesis problem.

Theorem 3. There exists an instance of CNFk
n,m, such that

any quantum circuits approximating it with error ε<
√
2
2 must

have size at least Ω (km).

Combining the Theorem 1 and Theorem 3, we see that our

algorithm is asymptotically optimal when the number of an-

cillary qubits is Ω((km)ǫ) for any ǫ > 0.

Both two algorithms show significant advantages compare

to the previous work. For the size-oriented algorithm, we can

reduce the number of ancillary qubits to O(
√
m) with only a

constant ratio in size. For the depth-oriented algorithm, we

use O(log km) ancillary qubits to construct the same depth

circuit generated by qiskit [28].

We use random k-CNF as the experimental benchmark to

test the performance of different algorithms. To sample a

CNFk
n,m, we first randomly sample k variables from the input

variables, then randomly choose the variables or the negations

of the variables. After two steps, a clause of CNFk
n,m is gener-

ated. Then, repeating the first two steps m times, we generate

a randomCNFk
n,m. We randomly sample 100 CNFs of differ-

ent parameters and use the average quantum cost to measure

the performance of quantum synthesis algorithms. The width

of the CNF k is 3 and 4, and the number of variables n is

40, 80, 400, and 800. The number of clauses m we choose

in this manuscript is determined by the number of variables

n and the width of CNF k. When k is 3 and 4, there are

m = ⌊4.267n⌋ and m = ⌊9.931n⌋, respectively, which is

called SAT phase transition [29]. Our algorithm is suitable for

all the input. To evaluate the quantum cost to conquer the most

difficult SAT instance, we choose such a specific m in our ex-

periments. Here, the size and the depth of the quantum circuit

are considered appropriate quantum costs in the NISQ era. To

verify the relationship between the number of ancillary qubits

ℓ and the quantum cost of our two algorithms, we choose sev-

eral different ℓ. Some are near to the n, and others are near to

2m − 1. The results of different widths (the number of vari-

ables in a clause) seem similar. For convenience, we plot the

result of 4-CNF in the Figure 2, which is appropriate to show

the performance of our algorithms.

1 2 3 4

·105

0

500

1,000

1,500

size

#
an

ci
ll

ar
y

q
u

b
it

s(
ℓ
)

1 2 3 4

·106

0

0.5

1

1.5

·104

size

#
an

ci
ll

ar
y

q
u

b
it

s(
ℓ
)

Alg.1: n = 40

Alg.1: n = 80

Qiskit: n = 40

Qiskit: n = 80

Alg.1: n = 400

Alg.1: n = 800

Qiskit: n = 400

Qiskit: n = 800

(a) The number of ancillary qubits needs to reach a given size.

0 500 1,000 1,500

2

4

6

8

·104

#ancillary qubits(ℓ)

d
ep

th

0 0.5 1 1.5

·104

0

2

4

6

8

·105

#ancillary qubits(ℓ)

d
ep

th

Alg.2: n = 40

Alg.2: n = 80

Qiskit: n = 40

Qiskit: n = 80

Alg.2: n = 400

Alg.2: n = 800

Qiskit: n = 400

Qiskit: n = 800

(b) The change of the depth of circuits synthesized by the

depth-oriented algorithm.

FIG. 2: The performance of algorithms. Choose the random

4-CNF with 40, 80, 400, and 800 variables to compare the

performance of our algorithm and qiskit’s. The result of

qiskit contains only one point.

In Figure 2 (a), we compare the size of the quantum cir-

cuit synthesized by our algorithm and the CNF synthesis al-

gorithm used in the qiskit. The circuit synthesis algorithm in

qiskit requires 2m − 1 ancillary qubits, so there is only one

point and the corresponding horizontal dashed line in Figure

2 [27]. This Figure shows that when 2m− 1 ancillary qubits

are used, the size-oriented algorithm can generate a quantum

circuit with a smaller size than qiskit. If we want to reduce

the number of ancillary qubits significantly, the corresponding

size will only increase by a constant multiple. For example,

for a random 4-CNF with n equal to 80, qiskit needs 1587 an-

cillary qubits to synthesize a quantum circuit of size 103205,

while the size-oriented algorithm can use 80 ancillary qubits

(about 5% of qiskit) to synthesize a circuit of size 391760 (less

than 4 times).

In Figure 2 (b), a more notable advantage appears in com-

paring the circuit depth between the depth-oriented algorithm

4

and the algorithm used in qiskit. The depth-oriented algo-

rithm requires very few ancillary qubits to synthesize low-

depth quantum circuits. When using the same 2m − 1 an-

cillary qubits as qiskit, the circuit depth synthesized by depth-

oriented algorithm is significantly lower. For example, for a

random 4-CNF with n equal to 800, qiskit needs 15887 ancil-

lary qubits to synthesize a quantum circuit of depth 778498.

In comparison, the depth-oriented algorithm can use 200 an-

cillary qubits (about 1.2% of qiskit) to synthesize a circuit of

depth 416179 (about 53.5% of qiskit). If the depth-oriented

algorithm uses 15887 ancillary qubits, the depth of the circuit

can be reduced to 21735 (about 2.8% of qiskit). For both two

algorithms, the quantum cost of the output circuit is declined

with the growth of the number of ancillary qubits. Despite a

few single points, our experimental results are in good agree-

ment with the theory.

size (Alg.1) depth (Alg.2)

k n #clause #ancillae full round one round full round one round

3 40 170 240 1.8× 10
10 21384 6.2× 10

9 7523

3 80 341 240 4.3× 1016 49522 1.0× 1016 11586

5 40 844 240 4.3× 1011 5.2 ×105 7.6× 1010 92444

5 80 1689 240 1.0× 1018 1.2× 106 1.1× 1017 1.3× 105

7 40 3511 240 3.4× 10
12

4.1× 10
6

6.7× 10
11

8.1× 10
5

7 80 7023 240 7.3× 10
18

8.4× 10
6

9.3× 10
17

1.1× 10
6

TABLE I: The quantum resource estimation for solving

k-SAT problems using Grover’s algorithm, where k = 3, 5, 7.

n is the number of variables. The left 4 columns are the

parameters of the k-SAT problem instance, and the rest

columns show the quantum cost needed to solve the k-SAT

problem via Grover’s algorithm and our synthesis algorithms.

We list the full round cost and the one round cost separately.

Further, we apply our synthesis algorithms to estimate the

quantum resources required for solving k-SAT using Grover’s

algorithm. In [26], they also estimate the quantum resources

required for solving 14-SAT algorithm. To solve a 65 to 78
variables 14-SAT, the number of ancillary qubits used is 1012

to 1014, which is unavailable in NISQ era. Hence, we fix the

number of ancillary qubits as 240, which is more available in

NISQ era. In Grover’s algorithm there is multiple rounds of

Grover iteration. Table I shows the quantum resources needed

for both the full round (reaching the highest success probabil-

ity) and one round execution of Grover iteration. For example,

a random 7-SAT with 80 variables, which is among the most

challenging instances that a classical computer can solve to-

day [30–34], can be solved by using 240 ancillary qubits and

a 7.3× 1018-size quantum circuit via Grover’s algorithm.

DISCUSSION

In this manuscript we design two synthesis algorithms for

the different quantum costs. We first construct a general p-

AND circuit. We design the size-oriented algorithm, which

recursively use p-AND module to construct the circuit for

SAT-oracle. Notice that the ancillary qubits used here could

be dirty, which means this algorithm can use the temporarily

idle qubits. The size of the circuit generated with this algo-

rithm is O(n(km/n)1+c), where c = o(1) is determined by

ℓ. Specially we can reduce the number of ancillary qubits

to O(
√
m) with a constant ratio increase in the size of the

circuit. We also prove a matched lower bound of this prob-

lem using counting method. Further, we propose the depth-

oriented algorithm to reduce the depth of the quantum circuit.

The depth of the circuit generate by depth-oriented algorithm

is O(k log ℓ(mS/ℓ)1+c′), where S = max{k/ log ℓ, 1} and

c′ = o(1) is determined by ℓ. We design several experiments

to evaluate the performance of our algorithm. Finally, we ap-

ply our synthesis algorithms to give an estimate of quantum

costs to solve the SAT problem.

Some interesting open problems left. Can we use the dirty

ancillary qubits to replace the clean ancillary qubits in the syn-

thesis algorithm? Is there some essential difference between

the clean and dirty ancillary qubits in general circuit? Are

there some efficient algorithms that can generate size-optimal

or depth-optimal circuit for any given CNFk
n,m instance?

[1] RP Feynman. Simulating physics with computers. Interna-

tional Journal of Theoretical Physics, 21(6), 1982.

[2] Peter W. Shor. Polynominal time algorithms for discrete log-

arithms and factoring on a quantum computer. In Algorith-

mic Number Theory, First International Symposium, ANTS-I,

Ithaca, NY, USA, May 6-9, 1994, Proceedings, 1994.

[3] Lov K Grover. A fast quantum mechanical algorithm for

database search. In Proceedings of the twenty-eighth annual

ACM symposium on Theory of computing, pages 212–219,

1996.

[4] Salman Beigi and Leila Taghavi. Quantum speedup based on

classical decision trees. Quantum, 4:241, 2020.

[5] Frédéric Magniez, Miklos Santha, and Mario Szegedy. Quan-

tum algorithms for the triangle problem. SIAM Journal on Com-

puting, 37(2):413–424, 2007.

[6] Michael A Nielsen and Isaac Chuang. Quantum computation

and quantum information, 2002.

[7] John Preskill. Quantum computing in the nisq era and beyond.

Quantum, 2:79, 2018.

[8] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon,

Joseph C Bardin, Rami Barends, Rupak Biswas, Sergio Boixo,

Fernando GSL Brandao, David A Buell, et al. Quantum

supremacy using a programmable superconducting processor.

Nature, 574(7779):505–510, 2019.

[9] Vivek V Shende, Aditya K Prasad, Igor L Markov, and John P

Hayes. Synthesis of reversible logic circuits. IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Sys-

tems, 22(6):710–722, 2003.

[10] D Michael Miller, Dmitri Maslov, and Gerhard W Dueck. A

transformation based algorithm for reversible logic synthesis.

In Proceedings of the 40th annual Design Automation Confer-

ence, pages 318–323, 2003.

[11] Robert Wille and Rolf Drechsler. BDD-based synthesis of re-

versible logic for large functions. In Proceedings of the 46th

Annual Design Automation Conference, pages 270–275, 2009.

5

[12] Kenneth Fazel, Mitchell A Thornton, and JE Rice. ESOP-based

toffoli gate cascade generation. In 2007 IEEE Pacific Rim Con-

ference on Communications, Computers and Signal Processing,

pages 206–209. IEEE, 2007.

[13] CNF is an AND of several clauses, each clause is an OR of the

variables or their negations. The number of variables is usually

denoted by n and the number of clauses is denoted by m. The

number of variables used in a single clause is called the width of

the clauses, and the width of CNF is defined by the max width

of the clauses, which is denoted by k.

[14] Stephen A Cook. The complexity of theorem-proving proce-

dures. In Proceedings of the third annual ACM symposium on

Theory of computing, pages 151–158, 1971.

[15] Leonid Anatolevich Levin. Universal sequential search prob-

lems. Problemy peredachi informatsii, 9(3):115–116, 1973.

[16] Fabien Corblin, Lucas Bordeaux, Youssef Hamadi, Eric Fan-

chon, and Laurent Trilling. A sat-based approach to decipher

gene regulatory networks. Integrative Post-Genomics, RIAMS,

Lyon, 2007.

[17] Kenneth L McMillan. Interpolation and sat-based model check-

ing. In International Conference on Computer Aided Verifica-

tion, pages 1–13. Springer, 2003.

[18] Wolfgang Kunz and Dominik Stoffel. Reasoning in Boolean

Networks: logic synthesis and verification using testing tech-

niques, volume 9. Springer Science & Business Media, 1997.

[19] T Schoning. A probabilistic algorithm for k-sat and constraint

satisfaction problems. In 40th Annual Symposium on Founda-

tions of Computer Science (Cat. No. 99CB37039), pages 410–

414. IEEE, 1999.

[20] Ramamohan Paturi, Pavel Pudlák, Michael E Saks, and Fran-

cis Zane. An improved exponential-time algorithm for k-sat.

Journal of the ACM (JACM), 52(3):337–364, 2005.

[21] Thomas Dueholm Hansen, Haim Kaplan, Or Zamir, and Uri

Zwick. Faster k-sat algorithms using biased-ppsz. In Proceed-

ings of the 51st Annual ACM SIGACT Symposium on Theory of

Computing, pages 578–589, 2019.

[22] Vedran Dunjko, Yimin Ge, and J Ignacio Cirac. Computational

speedups using small quantum devices. Physical Review Let-

ters, 121(25):250501, 2018.

[23] Alberto Leporati and Sara Felloni. Three “quantum” algorithms

to solve 3-sat. Theoretical Computer Science, 372(2-3):218–

241, 2007.

[24] Gregory Rosenthal. Query and depth upper bounds for quantum

unitaries via grover search. arXiv preprint arXiv:2111.07992,

2021.

[25] IBM Q. https://www.research.ibm.com/ibm-q/.

[26] Earl Campbell, Ankur Khurana, and Ashley Montanaro. Ap-

plying quantum algorithms to constraint satisfaction problems.

Quantum, 3:167, 2019.

[27] The synthesis algorithm used in qiskit has been changed. When

we wrote this manuscript, the algorithm used in qiskit is first

generating all clauses in the clean ancillary qubits and then

merged them up. The new algorithm used in qiskit is a heuristic

algorithm, which can not work when the input n is large. Hence,

we still compare the result with the old synthesis algorithm in

qiskit.

[28] More detail can be found in supplemental material at (link).

[29] David Mitchell, Bart Selman, Hector Levesque, et al. Hard and

easy distributions of sat problems. In AAAI, volume 92, pages

459–465. Citeseer, 1992.

[30] SAT 2013 Competition. http://www.satcompetition.org/2013/.

[31] SAT 2014 Competition. http://www.satcompetition.org/2014/.

[32] SAT 2016 Competition. https://baldur.iti.kit.edu/sat-

competition-2016/.

[33] SAT 2017 Competition. https://baldur.iti.kit.edu/sat-

competition-2017/.

[34] SAT 2018 Competition. https://satcompetition.github.io/2018/.

ar
X

iv
:2

10
1.

05
43

0v
2

 [
qu

an
t-

ph
]

 9
 J

un
 2

02
2

Supplementary materials for “ Efficient quantum circuit synthesis for SAT-oracle with limited

ancillary qubit ”

Shuai Yang,1, 2 Wei Zi,1, 2 Bujiao Wu,3 Cheng Guo,1, 2 Jialin Zhang,1, 2 and Xiaoming Sun1, 2

1Institute of Computing Technology, Chinese Academy of Sciences, 100190 Beijing, China
2University of Chinese Academy of Sciences, 100049 Beijing, China

3Center on Frontiers of Computing Studies, Peking University, Beijing 100871, China

NOTATION AND PRELIMINARY

A Boolean formula consists of the variables and logical op-

erations AND, OR, and NOT. In specific, a Conjunction Nor-

mal Form (Disjunctive Normal Form) formula is the AND

(OR) of OR’s (AND’s) of variables or their negations. To

synthesis a CNF (DNF) formula f is to find a quantum cir-

cuit Cf such that for any input x, we have Cf |x〉 |y〉 →
|x〉 |y ⊕ f(x)〉 . X gate, Controlled-NOT gate (CNOT gate),

and Toffoli gate form a universal gate set for Boolean func-

tions oracle. A layer in a quantum circuit is a set of con-

secutive disjoint quantum gates. We use the number of the

elementary gates (CNOT gate and single-qubit gate) and the

number of layers to measure the cost of a quantum circuit.

For convenience, we use the notation CNFk
n,m to denote an

instance of n variables m clauses k-CNF and Sizeℓ(CNF
k
n,m)

to denote the size of the circuit generated by the first algo-

rithm for CNFk
n,m with ℓ ancillary qubits. We may omit the

rounding notation ‘⌊⌋’ for convenience in the manuscript.

A multi-controlled Toffoli gate in quantum circuit can

calculate AND/OR of variables. Denote Tof qt
q1,q2,...,qk

as

the k-controlled Toffoli gate, where the control qubits are

{q1, q2, · · · , qk} and the target qubit is qt. For examples:

Tof qt
q1,q2,··· ,qk |q〉 |c〉 → |q〉

∣

∣c⊕ ∧k
j=1qj

〉

,

(⊗k
j=1Xj)Xqt(Tof

qt
q1,q2,··· ,qk)(⊗

k
j=1Xij) |q〉 |c〉

→ |q〉
∣

∣c⊕ ∨k
j=1qj

〉

.

THE DETAIL OF GENERAL AND (OR) CIRCUIT

Lemma 1 (general p-AND circuit). For any natural number

p, general p-AND circuit can be implemented with 2p−2 dirty

ancillary qubits, O(p) Toffoli gate and 4 calls of each Oi.

For convenience, let us introduce some notations.

q′i =











qi ⊕ (qi−1 ∧ gi−p+1(x)) 2p− 2 ≥ i ≥ p+ 2

qi ⊕ (q1 ∧ g2(x)) i = p+ 1

qi ⊕ gi(x) p ≥ i ≥ 1

and q′′i = qi ⊕ (∧i−p+1
k=1 gk(x)), i ∈ {p+ 1, p+ 2 · · · 2p− 2}.

Let qt be the target qubit, qat = qt ⊕ (
∧a

k=1 gk(x)), and q′t =
qt ⊕ (qp ∧ gp(x)). Let Qa,b = ⊗b

k=a |qk〉, Q′
a,b = ⊗b

k=a |q′k〉,
and Q′′

a,b = ⊗b
k=a |q′′k 〉. The number of dirty ancillary qubits

ℓ = 2p− 2.

Proof. Using Toffoli gate can easily merge the information

stored in the qubits. However if the information is stored in

the oracle, we need to apply the oracle in some qubits at first.

The information stored in the qubits will influence the result.

Hence, we add additional operation to eliminate the dirty in-

formation. We firstly divide the C into 2 sub-circuit: merge

stage C2 and restore stage C1. The construct of quantum cir-

cuit C1 contains 2p−3 steps. These steps can be divided into 3

phases : Up phase, Top phase and Down phase. The Up phase

first store the information about qp+1−i and oracle Op+1−i at

qubit q2p−1−i. The Top phase then merge the information

about O1 and O2. In the Down phase, we merge the all the

information store in the Oi. Notice the dirty information is

added twice under F2. Finally in C2 we repeat step 2 to step

2p− 4 to restore the ancillary qubits.

1. Up phase: In this phase, we add the information in the

ancillary qubits to corresponding qubits, which can help

to eliminate unexpected information. There are 3 parts

in step i ∈ [p − 2]. The details of each part are shown

as follows.

(a) In step i.1, as well as step i.3, corresponds to a

Toffoli gate. The control qubits are qp+1−i and

q2p−1−i. When i = 1, the target qubit is qt, other-

wise the target is q2p−i.

(b) In step i.2, we call the Op+1−i at qp+1−i.

At the begining, the state is at the

Q1,ℓ |qt〉

After step 1.1, we apply an Toffoli gate to store the dirty

information stored in the dirty ancillary qubits qp+1 and

q2p. Then the state transfer to

Q1,ℓ |qt ⊕ (qp ∧ q2p−2)〉 .

Then, we apply an Op+1 at the qubit qp+1. This step

add the information of the oracle into the qubits. The

state after step 1.2 becomes

Q1,p−1Q
′
p,pQp+1,2p−2 |qt ⊕ (qp ∧ q2p−2)〉 .

Finally in step 1.3, we use a Toffoli gate to add the in-

formation to the target qubit and some dirty information

has been eliminated. The state after step 1 is

Q1,p−1Q
′
p,pQp+1,2p−2 |q′t〉 .

http://arxiv.org/abs/2101.05430v2

2

Same to the analyze in the step 1, the state before the

step i.1 is

Q1,p−i+1Q
′
p−i+2,pQp+1,2p−iQ

′
2p−i+1,2p−2 |q′t〉 .

After step i.3, the state transfer to

Q1,p−iQ
′
p−i+1,pQp+1,2p−i−1Q

′
2p−i,2p−2 |q′t〉 .

2. Top phase: In this phase, we implement a circuit that

merges two clauses and stores the result in an ancillary

qubit. There are seven parts in step p − 1. The details

of each part are shown as follows.

(a) In steps (p − 1).j, j ∈ {1, 3, 5, 7}, the operation

are the same. Each step corresponds to a Toffoli

gate. The control qubits of Toffoli gate is q1 and

q2, and the target qubit is qp+1.

(b) In steps (p − 1).2, as well as p.6, we call the O2

at q2.

(c) In steps (p− 1).4, we call the O1 at q1.

The step from (p − 1).1 to (p − 1).3 are similar to the

step in Up phase. The state after step (p− 1).3 is

|q1〉Q′
2,2p−2 |q′t〉

The step (p− 1).4 just apply an Oracle O1. So the state

is Q′
1,2p−2 |q′t〉.

The step from (p − 1).5 to (p − 1).7 restore the qubit

2 and store the g1 ∧ g2(x) without dirty information in

qubit p+1. The equation below only focus on the qubits

q1, q2 and qp+2.

|q′1〉 |q′2〉
∣

∣q′p+1

〉

(p−1).5−−−−−→|q′1〉 |q′2〉
∣

∣q′p+1 ⊕ ((q1 ⊕ g1(x)) ∧ (q2 ⊕ g2(x)))
〉

(p−1).6−−−−−→|q′1〉 |q2〉
∣

∣q′p+1 ⊕ ((q1 ⊕ g1(x)) ∧ (q2 ⊕ g2(x)))
〉

(p−1).7−−−−−→|q′1〉 |q2〉
∣

∣q′p+1 ⊕ ((q1 ⊕ g1(x)) ∧ g2(x))
〉

= |q′1〉 |q2〉 |qp+1 ⊕ (g1(x) ∧ g2(x)).〉

3. Down phase: In this phase, we merge all the clauses

in the ancillary qubits. With the help of Up phase, the

target qubit stores the value of input CNF. There are 3

parts in step i ∈ {p, p+ 2, · · · , 2p− 3} .

(a) Step i.1, as well as step i.3, corresponds to a Tof-

foli gate. The control qubits are qi−p+3 and qi+1.

When i = 2p− 3, the target qubit is qt, otherwise

the target is qi+2.

(b) In step i.2, we call the Oi−p+3 at qi−p+3.

The analyse is similar to the step (p− 1).5 to (p− 1).7.

In each step, we restore a qubit i − p+ 3 and store the

correct information in qubit qi+3.

After the C1, the state is

|q′1(x)〉Q2,pQ
′′
p+1,2p−2 |qt ⊕ f(x)〉 .

What we need to do is repeating the steps from 2 to 2p− 4 to

restore the ancillary qubits.

Totally, we use at most 8p− 12 Toffoli gates and call each

Oi at most four times. In the merge stage, each step except

step p contain 2 Toffoli gates. The total number of Toffoli

gates in merge stage is 2(2p− 3− 1)+4 = 4p− 4. Similarly,

we use 4p−8 Toffoli gates in restore stage. So we use at most

8p − 12 Toffoli gates in p-AND circuit. In each stage, each

oracle Oi is called at most 2 times. So each Oi is called at

most 4 times in the p-AND circuit.

Corollary 1. By adding X gates when we call the O and

adding X gates at target qubit, we can construct a circuit C
for function f(x) =

∨

gi(x).

SIZE-ORIENTED SYNTHESIS ALGORITHM

This section will introduce how to use the general p-AND

circuit to construct the circuit for SAT-Oracle.

Lemma 2. Any n variables m clauses k-CNF f ∈ CNFk
n,m

can be implemented by O(km1+logℓ/2+1 4)-size quantum cir-

cuits C with ℓ ancillary qubits.

Proof. We divide the clauses in CNF into p = ⌊ℓ/2⌋ + 1
sub-blocks recursively until in each blocks only one clause

or less. An oracle O for a single clause can be realized by a

k-controlled Toffoli gate and several X gate, where k is the

width of the clause, which means Size0(CNF
k
n,1) = O(k).

Lemma 1 shows that we can construct a circuit to calculate

the AND(OR) of some sub-function. By recursively using the

general p-AND/OR circuit, we can finally construct the circuit

for any given CNF. In each recursion we need O(ℓ) elemen-

tary gates and call 4p sub-blocks oracle.

The total quantum cost is Sizeℓ(CNF
k
n,m) =

4pSizeℓ(CNF
k
n,m/p) + 4ℓ. Notice that Sizeℓ(CNF

k
n,1) ≤

Size0(CNF
k
n,1) = O(k). Solving this recursion formula, we

have that Sizeℓ(CNFk
n,m) = O(km1+logℓ/2+1 4).

Ancillary qubits used in this section are dirty ancillary

qubits, which means we can use the unused input qubits as

ancillary qubits. In a t (t ≤ n−nǫ

k) clauses CNF formula,

at most kt variables is used in this CNF formula. To gen-

erate such a CNF formula, we can regard other input qubits

as ancillary qubits, which means Size0

(

CNFk
n,n−nǫ

k

)

=

Sizenǫ

(

CNFk
n,n−nǫ

k

)

= O(n). This idea can improve the up-

per bound that Sizeℓ(CNFk
n,m) = O

(

n
(

km
n−nǫ

)1+logℓ+1 4
)

.

Then the upper bound is proved.

If the ancillary qubits are clean, which means the initial

state of ancillary qubits are |0〉 at the beginning, the outer-

most recursive circuit can be improved. We can merge ℓ terms

3

Merge stage Restore stage

|x〉 /

Oq3
3 Oq2

2 Oq1
1 Oq2

2 Oq3
3

❴ ❴
✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

❴ ❴

Oq2
2 Oq1

1 Oq2
2 3-AND

|x〉
❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴
✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

|q1〉 • • • • • • • • |q1〉

|q2〉 • • • • • • • • = |q2〉

|q3〉 • • • • |q3〉

|q4〉 • • • • |q4〉

|qt〉
∣

∣qt ⊕ ∧3
1gi(x)

〉

Step: 1.1 1.2 1.3 2.1 2.2 2.3 2.4 2.5 2.6 2.7 3.1 3.2 3.3 2.1 2.2 2.3 2.4 2.5 2.6 2.7

Phase: Up phase Top phase Down phase Top phase

FIG. 1: A example of general 3-AND circuit.

into one in the outer-most recursion. This optimization will

reduce the quantum cost by about half.

Approximate Toffoli gate consists of 3 CNOT gates and

four single-qubit gates. Like the Toffoli gate, approximate

Toffoli gate can implement AND/OR gate in the quantum cir-

cuit, with an additional change over control qubit. Using ap-

proximate Toffoli to synthesize Toffoli gate can reduce the

quantum cost of m-control Toffoli gate.

When the number of ancillary qubits is small, we can use

the circuit shown in Figure 2 to replace the circuit in Figure 1.

The recursive circuit shown in Figure 2 can merge ℓ functions,

rather than ℓ/2 functions shown in the previous discussion, in

one recursion.

Choosing these optimizations can help us synthesize CNF

with less quantum cost.

DEPTH-ORIENTED SYNTHESIS ALGORITHM

To further reduce the depth of the circuit, we need to par-

allelize our construct algorithm. In the size-oriented synthesis

algorithm, each sub-block is implemented one by one. So we

try to use some of the ancillary qubits, which are clean, to

parallelize the circuit.

The framework of the depth-oriented synthesis algorithm

is similar to the algorithm described in the size-oriented syn-

thesis algorithm. Different from the size-oriented synthe-

sis algorithm, we divide the ancillary qubits into 3 regis-

ters: qmem, qdirty, qclean. The size of these 3 registers are
(S−1)ℓ
S+1 , ℓ

S+1 ,
ℓ

S+1 , where S = max{ k
log ℓ , 1}. We run the re-

cursive procedure by using qdirty as ancillary qubits. The only

difference lies in the inner-most recursion of our algorithm.

We use all the ancillary qubits to synthesize ℓ
S+1 clauses in

parallel.

The inner-most recursion of our circuit is shown in Figure

3. There are four stages in the inner-most recursion: Copy

stage, Clause stage, Merge stage, and Reset stage.

For convenience, let CO, CL,ME ,RE to denote the Copy

stage, Clause stage, Merge stage and Reset stage, respec-

tively. After these 4 stages, we synthesize a f =
∧⌊ℓ/S⌋

j=1 Cj ∈
CNFk

n,⌊ℓ/S⌋ to the target qubit. Without loss of generality, let

⌊ℓ/S⌋ is a even.

In the Copy stage CO, we copy the information of input

qubits to the qmem register.

CO |x〉 |0〉 |q〉 |0〉 |qt〉 → |x〉 (⊗i |xi〉⊗ti) |q〉 |0〉 |qt〉 , (1)

where the number ti is determined by the input Boolean func-

tion. The depth of Copy stage is log2(maxi ti) = O(log ℓ).
In the Clause stage, we use the information in the qmem

register and input qubits to synthesize clauses in parallel. The

result is stored in the first half of qclean register.

CL |x〉 (⊗i |xi〉⊗ti) |q〉 |0〉 |qt〉

→ |x〉 (⊗i |xi〉⊗ti) |q〉
(

⊗⌊ℓ/2S⌋
i=1 |C2i−1 ∧C2i〉

)

|qt〉 .

We can synthesizeO(ℓ/k) terms withO(k)-depth circuit. The

total depth of Clause stage is O(k log ℓ).
In the merge stage, we merge all the clauses stored in the

qclean to the target qubit.

ME
(

⊗⌊ℓ/2S⌋
i=1 |C2i−1 ∧ C2i〉

)

|qt〉

→
(

⊗⌊ℓ/2S⌋
i=1 |C2i−1 ∧ C2i〉

)

|qt ⊕ f(x)〉 .

A Toffoli gate can merge two CNF formulae on a clean ancil-

lary qubit. To merge ℓ/2(S + 1) CNF formulae, the depth of

merge stage is O(log(ℓ/2(S + 1))) = O(log l).
We repeat the Copy stage and the Clause stage to reset all

the ancillary qubits in the reset stage.

RE |x〉 (⊗i |xi〉⊗ti) |q〉
(

⊗⌊ℓ/2S⌋
i=1 |C2i−1 ∧ C2i〉

)

|qt ⊕ f(x)〉

→ |x〉 |0〉 |q〉 |0〉 |qt ⊕ f(x)〉 .

We repeat the first two stages, and the depth of the reset stage

is O(k log ℓ).
The depth of inner-most recursion circuit is O(k log ℓ).

In the inner-most recursion, ℓ/S clauses can be syn-

thesized in parallel. We use Depth′ℓ(f) to denote the

depth of the circuit, obtained by the algorithm described

in this section, to synthesize f with ℓ ancillary qubits.

Depth′ℓ(CNF
k
n,ℓ/S) = O(k log ℓ). Combine with the recur-

rence formula in the previous section: Depth′ℓ(CNF
k
n,m) =

2ℓ
(S+1)Depth′ℓ(CNF

k
n,2m(S+1)/ℓ). Then we have:

Depth′ℓ(CNF
k
n,m) = O

(

k log ℓ

(

mS

ℓ

)1+logℓ/S 4
)

.

4

|x〉

Fq3
a3,b

Fq2
a2,b2

Fq1
a,b1

Fq2
a2,b2

Fq3
a3,b

Fq2
a2,b2

Fq1
a,b1

Fq2
a2,b2

|x〉

|q1〉 • • • • • • • • |q1〉

|q2〉 • • • • • • • • |q2〉

|q3〉 • • • • • • • • |q3〉

|qt〉 |qt ⊕ f〉

FIG. 2: When the number of ancillary qubits is small, another synthesis circuit for the CNF formula. Here f ∈ CNFk
n,(b−a).

|x〉 /
Copy

Clause
Reset

|x〉

qmem, |0〉 / |0〉

qdirty, |q〉 / |q〉

qclean, |0〉 /
Merge

|0〉

|qt〉 |qt〉

FIG. 3: The inner-most recursion of algorithm. The ancillary qubits are divide into 3 registers: qmem, qdirty, qclean, where the

size of these registers are
(S−1)ℓ
S+1 , ℓ

S+1 ,
ℓ

S+1 , respectively.

Circuit lower bound for CNF synthesis

We will prove that there exists a k-CNF with m clauses

which need Ω(km) size of quantum circuits to approximate it

with any error ε <
√
2
2 , as depicted in Theorem 1. To obtain

this lower bound, let us first give a lower bound for the number

of different CNFk
n,m.

Lemma 3. There are Ω
(

((nk)
m

)

)

different instances for

CNFk
n,m.

Proof. Note that a CNF formula φ : {T, F}n → {T, F} can

be uniquely represented as a Boolean function fφ : {0, 1}n →
{0, 1}. With a little abuse of symbols, we use the same

symbol to represent the input of CNF formula and the cor-

responding Boolean functions. Let φ = (v1 ∨ · · · ∨ vk) ∧
· · · ∧

(

v(k−1)m+1 ∨ · · · ∨ vkm
)

be a k-CNF formula, where

vi ∈ {x1, . . . , xn,¬x1, . . . ,¬xn}, then it can be represented

as a Boolean function

fφ(x) =



1−
k
∏

j=1

v̄j



 · · ·



1−
k
∏

j=1

v̄(k−1)m+j



 , (2)

where v̄i = 0 iff vi = T and v̄i = 1 iff vi = F , and

the input xi ∈ {0, 1} of fφ is associated with xi ∈ {T, F}
of φ. Let f(x), g(x) be two functions (formulas), we say

f ≡ g if f(x1, · · · , xn) = g(x1, · · · , xn) for any legal in-

put (x1, · · · , xn). Let

L := {v1 ∨ · · · ∨ vk|vi ∈ {¬x1, . . . ,¬xn}, vi 6= vj for i, j ∈ [k]}

be the set of all clauses with k-variables, where xj ∈ {T, F},

and ¬xj are the negations of xj . Let a set of k-CNF formulas

be

A := {φ|φ = l1 ∧ · · · ∧ lm, li ∈ L, li 6= lj , for i 6= j ∈ [m]}.

We would like to show the size of A is size(A) =
((nk)

m

)

. i.e.,

any two different formulasφ1 = l1∧. . .∧lm, φ2 = l′1∧. . .∧l′m

such that there exists j ∈ [m], lj 6= l′j , we have φ1 6≡ φ2. By

contradiction, suppose φ1 ≡ φ2, then fφ1(x) ≡ fφ2(x). Let

gφ(x) satisfies deg(g) = k be the summations of all degree-k
terms of fφ(x). By the definition of fφ(x) in Equation (2) and

the fact that v̄2j = v̄j ,

gφ(x) = −
m−1
∑

j=0

v̄jk+1 · · · v̄j(k+1).

Since fφ1(x) ≡ fφ2(x), then deg(fφ1 − fφ2) = 0, i.e.,

gφ1(x) ≡ gφ2(x). Let v̄1 · · · v̄k be one term of gφ1(x). For

a given input x = (x1, . . . , xn) such that xi = 1 when

xi ∈ {v̄1, . . . , v̄k} and xi = 0 otherwise. It is easy to check

gφ2(x) = 1 iff x1 · · ·xk is one term of the function gφ(x).
Hence v̄1 · · · v̄k is also a term of gφ2(x). Without loss of gen-

erality, each term l̄j = v̄jk+1 · · · v̄j(k+1) ∈ gφ1 , l̄j ∈ gφ2 at

the same time. Therefore φ1 = φ2, contrary with the fact that

φ1, φ2 are two different formulas in A.

Theorem 1. There exists a CNFk
n,m, any quantum circuits

approximating it with error ε <
√
2
2 needs size Ω (km).

Proof. Let U ∈ C4×4 be a two qubit gate, and the δ-

discretization of the (j, k)-th element Ujk be U δ
jk = δ⌊a/δ⌋+

iδ⌊b/δ⌋, where Ujk = a + ib. Then we have
∥

∥U − U δ
∥

∥

2
<

2δ. There are at most
(

2
δ

)32
different δ-discretizations U δ for

the infinite continuous U in the space by its definition.

In the following, we prove that any two different instances

in A do not share any common δ-discretization. Hence, we

can use the counting method to give a lower bound of the cir-

cuit size.

Let AG, AH be the quantum circuit representations of two

different instances in A. Let s be the maximum size of all

the unitaries related to AG and AH . By the fact that the uni-

tary U ∈ C2n×2n has a s-size quantum circuit, the following

5

|x〉 /

G
p2i−1

2i−1 Gp2i
2i

G
p2i−1

2i−1 Gp2i
2i

|x〉

qmem, |x′〉 / |x′〉

|p2i−1〉 • • • • |p2i−1〉

|p2i〉 • • • • |p2i〉

|qi〉 |qi ⊕ (C2i−1 ∨ C2i)〉

FIG. 4: The Clause stage in the inner-most recursion of algorithm. The qdirty and qclean registers are divided into ℓ/2S parts.

Here we show the i-th part of Clause stage, where we synthesize a two clauses function. Different part of Clause is running in

parallel. Operator Gqt
j generate a clause Cj on the target qubit qt, Gqt

j |x〉 |qt〉 → |x〉 |qt ⊕ Cj(x)〉 .

inequalities

∥

∥AG −Aδ
G

∥

∥ < 2sδ ≤ ε,
∥

∥AH −Aδ
H

∥

∥ < 2sδ ≤ ε,

hold when δ = ε
2s , and ε <

√
2
2 . Combined with the fact that

‖AG −AH‖ =
√
2, we have Aδ

G 6= Aδ
H .

Hence, any two different instances in A have different δ-

discretization. There are Ω
(

((nk)
m

)

)

different instances for k-

CNF with m-clause by Lemma 3 in main file. By the fact

that the number of different instances is upper bounded by the

number of δ-discretization of quantum circuits,

(
(

n
k

)

m

)

≤
(

(

2

δ

)32

· n
)s

. (3)

Since
(

n
k

)

= Ω((n/k)k) for any k. Then

(
(

n
k

)

m

)

= Ω

((

(

n
k

)

m

)m)

= Ω

((

nk

kkm

)m)

.

By inequality 3, we have s = Ω(km) when k = o(n). When

k = cn for constant c < 1, by Stirling’s formula,
(

n
k

)

=
Ω(2an) for some constant a < 1. Hence,

(
(

n
k

)

m

)

= Ω

((

2an

m

)m)

,

combined with inequality (3) give us s = Ω(km) when k =
cn for constant c < 1. This implies the lower bound also holds

for any k < n for general k-CNF.

