
1

DDC-PIM: Efficient Algorithm/Architecture Co-design for
Doubling Data Capacity of SRAM-based

Processing-In-Memory
Cenlin Duan, Jianlei Yang, Senior Member, IEEE, Xiaolin He, Yingjie Qi, Yikun Wang, Yiou Wang, Ziyan He,

Bonan Yan, Member, IEEE, Xueyan Wang, Member, IEEE, Xiaotao Jia, Member, IEEE,
Weitao Pan, Member, IEEE, and Weisheng Zhao, Fellow, IEEE

Abstract—Processing-in-memory (PIM), as a novel computing
paradigm, provides significant performance benefits from the
aspect of effective data movement reduction. SRAM-based PIM
has been demonstrated as one of the most promising candidates
due to its endurance and compatibility. However, the integration
density of SRAM-based PIM is much lower than other non-
volatile memory-based ones, due to its inherent 6T structure for
storing a single bit. Within comparable area constraints, SRAM-
based PIM exhibits notably lower capacity. Thus, aiming to
unleash its capacity potential, we propose DDC-PIM, an efficient
algorithm/architecture co-design methodology that effectively
doubles the equivalent data capacity. At the algorithmic level, we
propose a filter-wise complementary correlation (FCC) algorithm
to obtain a bitwise complementary pair. At the architecture level,
we exploit the intrinsic cross-coupled structure of 6T SRAM to
store the bitwise complementary pair in their complementary
states (Q/Q), thereby maximizing the data capacity of each
SRAM cell. The dual-broadcast input structure and reconfig-
urable unit support both depthwise and pointwise convolution,
adhering to the requirements of various neural networks. Eval-
uation results show that DDC-PIM yields about 2.84× speedup
on MobileNetV2 and 2.69× on EfficientNet-B0 with negligible
accuracy loss compared with PIM baseline implementation.
Compared with state-of-the-art SRAM-based PIM macros, DDC-
PIM achieves up to 8.41× and 2.75× improvement in weight
density and area efficiency, respectively.

Index Terms—Processing-In-Memory, Algorithm/Architecture
Co-design, Doubling Data Capacity, SRAM-PIM

I. INTRODUCTION

DEEP Neural Networks (DNNs) are ubiquitous in a variety
of applications, such as image recognition [1–3], speech

recognition [4, 5], and object detection [6–8]. To achieve
higher accuracy, an intuitive approach is to design deeper
and more intricate network models. However, the complexity

Manuscript received on April 10, 2023, revised on August 22 and October
28, 2023, accepted on October 31, 2023. This work was supported in part
by the National Natural Science Foundation of China (Grant No. 62072019,
62006011 and 62004011), the Fundamental Research Funds for the Central
Universities and the 111 Talent Program B16001. Corresponding authors are
Jianlei Yang and Weisheng Zhao.

C. Duan, X. Wang, X. Jia and W. Zhao are with BDBC, Fert Beijing
Research Institute, School of Integrated Circuit Science and Engineering, Bei-
hang University, Beijing, 100191, China. E-mail: weisheng.zhao@buaa.edu.cn

J. Yang, X. He, Y. Qi, Yikun Wang and Yiou Wang are with BDBC, Fert
Beijing Research Institute, School of Computer Science and Engineering,
Beihang University, Beijing, 100191, China. E-mail: jianlei@buaa.edu.cn

Z. He and W. Pan are with School of Telecommunications Engineering,
Xidian University, Xi’an, 710071, China.

B. Yan is with Institute of Artificial Intelligence, Peking University, Beijing,
100871, China.

Accuracy

Integration
Density

Weight
Capacity

Speedup

Area
Efficiency

Analog Others

Analog 6T+LCC

Digital 6T+LCC

This Work

列1

Digital PIMAnalog PIM

x

x

I0,0

I1,0

ADC

D
A

C
D

A
C

I0,0

I1,0

ADC

I0,0 I0,0 I0,1

+ + +

x x

x x

𝒘𝟎,𝟎 𝒘𝟎,𝟏

x

x

6T + LCC [24,25]Others [12,21] 6T + LCC [26] 6T + LCC (this work)

6T SRAM Cell

Local Compute Cell (LCC)

Idled Part of 6T Cell

I1,0
I1,0 I1,1

𝒘𝟎,𝟎 𝒘𝟎,𝟎

Fig. 1. Typical principles demonstration and comparison among several state-
of-the-art 6T SRAM-based PIM studies.

of these models makes them difficult to deploy on edge
devices, such as wearable devices, medical equipment, and
mobile devices. To tailor for mobile and resource-constrained
environments, there is a growing interest in building small and
efficient neural networks (NNs), such as MobileNet [9] and
EfficientNet-B0 [10]. These compact NNs usually decompose
standard convolution into separable convolution, significantly
reducing the number of parameters and computations with
negligible accuracy loss.

While compact NNs offer the potential for enhanced ef-
ficiency, the inherent data-intensive nature of such networks
continues to present challenges for edge devices. This is
particularly evident in edge devices built on conventional Von
Neumann architectures, as the deployment on such devices
will bring in large energy consumption, due to frequent
data movements between memory and computing units. With
the saturation of Moore’s law, reducing energy consumption
becomes progressively more difficult. As a new architectural
paradigm, Processing-in-memory (PIM) performs Multiply-
Accumulate (MAC) operations in memory to eliminate the
Memory Wall bottleneck, making it a promising candidate
architecture for energy-efficient edge devices. As illustrated
in Fig. 1, PIM macros are usually categorized into analog
PIM and digital PIM [11–14]. Analog PIM usually performs

ar
X

iv
:2

31
0.

20
42

4v
1

 [
cs

.A
R

]
 3

1
O

ct
 2

02
3

weisheng.zhao@buaa.edu.cn
jianlei@buaa.edu.cn

2

MAC operations in the voltage or current domain [11, 12].
However, the extra ADC/DAC [13] and process variation often
lead to low area efficiency, low computation parallelism, and
non-negligible accuracy loss.

To tackle the above limitations, digital PIM is further pro-
posed by performing bitwise operations [14]. Generally, digital
PIM integrates logic units into a single cell array, simultane-
ously activating all rows to improve computing parallelism.
Previous studies have shown that various technologies, such
as RRAM [15, 16], SRAM and MRAM [17–20], are available
candidates for digital PIM. Among these technologies, SRAM
is widely used in academia and industry due to its faster
write speed, lower write energy and compatibility with proven
process technologies. However, SRAM suffers from a low
integration density compared to non-volatile memory. The
conventional structure of SRAM cells requires six transistors
to store one bit in two cross-coupled inverters, whereas non-
volatile memory is capable of storing multiple bits with fewer
transistors. Thus, inhibited by the integration density, the
capacity has become a crucial limitation for SRAM-based
PIM.

From the essential observations of adopted cross-coupled
inverters in SRAM cells, a pair of complementary states
(denoted as Q and Q) is used for storing a single bit. In
practice, only one state within the same pair will participate in
the computation regarding the bit it represents. Based on this
observation, we seek to promote the representational power of
complementary pairs by treating each state as an independent
bit of information. To realize this vision, the data organization
must be adjusted correspondingly at the algorithmic level.
Hence, storing the weights of compact NNs in this structure
should embody the above complementary characteristic. Based
on this cooperation between algorithm and architecture, the
weight density (i.e., weight capacity per area) will achieve
a twofold increase. As shown in Fig. 2, this approach is
equivalent to using three transistors for storing one bit, which
offers us an opportunity to boost the capacity of SRAM-based
PIM. As the increase in overall area for supporting the above
approach is negligible, the weight density achieves remarkable
improvement compared with prior works. Moreover, compared
to [14] with a PIM macro similar to ours, the area-efficiency
of DDC-PIM also approximately doubles due to improved
computation parallelism.

In this work, we propose DDC-PIM, an efficient al-
gorithm/architecture co-design framework that comprises a
novel DDC-PIM architecture and a Filter-wise Complementary
Correlation (FCC) algorithm. Essentially, DDC-PIM doubles
the weight density without modifying the SRAM structure,
leading to higher equivalent data capacity and area efficiency.
Our main contributions can be summarized as follows:

• We propose a novel DDC-PIM architecture, the first in-
memory architecture for doubling the equivalent data
capacity of SRAM-based PIM. By fully exploiting the
intrinsic cross-coupled structure, DDC-PIM overcomes
the limitation of low integration density of SRAM.

• We propose a FCC algorithm to obtain bitwise com-
plementary filters. This method can reduce the memory
footprint/computation latency and improve the equivalent

0 500

Weight Density (Normalized @28nm)

E
q

u
iv

.
N

o
.
o

f
T
ra

n
s
is

to
rs

 f
o

r
1

 b
it

A
re

a
 E

ff
ic

ie
n

c
y

(G
O

P
S

/m
m

2
)

2800

200

100

10

0

[11]

1000 1500

[24] [26]

1.74×

8.41×

7.10×

7.86×

DDC-PIM

[14]

0

3

6

10

Fig. 2. Normalized weight density improvement and area efficiency compar-
ison with prior SRAM-based PIM solutions.

data transfer bandwidth of NNs with negligible accuracy
loss.

• A dual-broadcast input structure and a reconfigurable
unit, together with a flexible mapping strategy are co-
optimized to achieve a high PIM array utilization rate.

The rest of this paper is organized as follows. Section II
provides background and motivations. Section III demonstrates
the details of the proposed methodology. Section IV illustrates
the experimental results. Related discussions are illustrated in
Section V and conclusion remarks are given in Section VI.

II. BACKGROUND AND MOTIVATIONS

A. Requirements from Compact NN Models

Modern state-of-the-art NN models usually necessitate lots
of memory and computational resources that are easily beyond
the capabilities of typical edge devices. Hence, there is a grow-
ing interest in developing compact and efficient NN models.
One of the mainstream approaches is to obtain smaller models
in decomposed convolution manner, minimizing the scale of
parameters and computations. Among them, MobileNet and
EfficientNet are two typical compact NN models, which in-
herently possess significantly lower levels of redundancy com-
pared to regular NNs. MobileNet decomposes standard con-
volution (std-conv) into pointwise convolution (pw-conv)
and depthwise convolution (dw-conv), which are usually
collectively referred to as separable convolution (sp-conv)
[9]. For std-conv, convolution filters are considered three-
dimensional, including a channel dimension and two spatial
dimensions. For sp-conv, each input channel is assigned
with a single filter in dw-conv for spatial correlation, the
results of which are then combined through 1×1 convolutions
in pw-conv for channel correlation. Thus, the amount of
computation in sp-conv is only about 1/8 of std-conv.
Following the idea of sp-conv in MobileNet, EfficientNet
uniformly scales all dimensions of depth, width and resolution,
using highly effective compound coefficients to maximize the
model efficiency [10]. EfficientNet can usually obtain a faster
inference speed and better accuracy with a smaller model size
than the most popular convolutional NN models.

3

B. Capacity Issues of SRAM-based PIM

For earlier SRAM-based PIM macros [12, 21], as illustrated
in Fig. 1 (denoted by Analog Others), input features are
first converted into analog signals through digital to analog
converters (DACs), and then taking part in analog MAC
operations with the pre-stored weights in SRAM cells. The
results are then converted back to the digital domain by analog
to digital converter (ADCs). In general, multiple cell rows
in PIM array would activate simultaneously to increase com-
putational parallelism. However, this approach will introduce
read disturbance due to the expanded voltage swing of the
bitline. One possible solution to this issue is to increase the
bitline voltage, sacrificing the signal margin of read operation.
Another approach is to use non-6T structure SRAM, such
as 8T, 10T, or 12T, which also brings great area overhead
[11, 22, 23]. Some researchers have proposed LCC-based
(Local Compute Cell-based) PIM macros as shown in Fig. 1
(denoted by Analog 6T+LCC) to resolve the above limitations
[24, 25], where LCC means the newly integrated local comput-
ing cells. The performance of these PIM architectures is often
limited by kinds of analog-specific non-idealities, including
process variations and tremendous area/power overhead due
to essential data conversions. Moreover, handicapped by the
accuracy of ADCs, only a limited number of cell rows can be
activated per cycle, leading to low PIM array utilization and
high computation latency.

In contrast to analog PIM solutions which perform com-
putations in the voltage or current domain, digital PIM in-
corporates logic units within a single-cell array to execute
digital logic operations. This approach enhances the accu-
racy, area efficiency, and energy efficiency of the system,
as demonstrated by previous studies [26–31]. Yu et al. [26]
propose an all-digital SRAM-based full-precision PIM macro.
Yue et al. [28] propose a floating-point CIM processor for
NN inference/training applications. Yan et al. [14] propose
an ADC-less SRAM-based PIM with reconfigurable bitwise
operations as shown in Fig. 1 (denoted by Digital 6T+LCC).
However, only half of the 6T bitcells within these PIM macros
contribute to the MAC computations, due to that a single
bit is represented by two complementary states in the cross-
coupled structure. As shown in the upper right of Fig. 1
(denoted by this work), our intuitive approach is to treat
each state as an independent bit of information to fully utilize
these bitcells for doubling the equivalent data capacities.
When a pair of computation units are connected with the
cross-coupled structure, two independent AND operations can
also be performed simultaneously, providing opportunities for
doubling computation parallelism. As a result illustrated in
the radar plot from Fig. 1, our work achieves remarkable
enhancements in area efficiency, weight density and speed up,
with minor trade-offs in integrated density and accuracy.

III. METHODOLOGIES

This section presents the proposed DDC-PIM in detail,
including the FCC algorithm, DDC-PIM architecture, and data
mapping method, which seeks to harness the capacity potential
and improve the area efficiency of digital 6T SRAM PIM.

DNN Model

Acceleration on

DDC-PIM

PIM Core ARU

FCC Algorithm

FCC-aware Pre-training

FCC-aware QAT

Symmetric filters (FP32)

Data Mapping

Decomposition

&Comp. filters M

Mapping
De-quantization

(FP32)

FCC Training

Biased-Comp. Filters

Alg.1: Symmetrization

Alg.2: Complementization

Symmetric filters (INT8)

Alg.1: Symmetrization

Quantization

FCC Quantization

Quantized filters (INT8)

FCC Quantization

Biased-Comp. filters (INT8)

Fig. 3. Overview of proposed DDC-PIM framework.

A. Overall Framework

Fig. 3 illustrates the overview of the DDC-PIM framework,
consisting of three major components: FCC algorithm, DDC-
PIM architecture, and data mapping method. For compact
NNs, DDC-PIM first transforms the weights into a biased
bitwise complementary format by the two-stage FCC algo-
rithm, comprising FCC training and FCC quantization. During
data mapping, the results of FCC algorithm are decomposed
into bitwise complementary filters and corresponding mean
values layer-by-layer. The per-layer configuration signals are
also generated offline during this procedure. Due to the com-
plementary nature in these filters, only half of the bitwise com-
plementary filters are required for storage and transmission.
DDC-PIM then performs MAC operations with these filters
on the PIM core. The convolution results are recovered from
the MAC outputs and the mean value using an accumulate
and recover unit (ARU). This framework can double data
capacity and reduce computation latency by exploiting the
bitwise complementary nature of weights. Meanwhile, only
half of the complementary filters are required during data
transmission, equivalently increasing the data transfer band-
width. Subsequently, we will detail the three main components
of DDC-PIM.

B. FCC Algorithm

For simplicity, we first introduce the notations that will
facilitate the subsequent exposition, as illustrated in Tab. I.

A convolutional (Conv) layer applies N 3-dimensional (3D,
K × K × C) filters (F) on 3D (H ×W × C) input feature
maps (I) to extract embedded characteristics and generate the
output feature maps (O). H and W denote the height/width
of I. C and N denote the number of channels of I and O,
respectively. K denotes the kernel size. As illustrated in Fig. 4,
we use two adjacent filters (f0 and f1) with the size of 2×2×1
as an example, where M0 denotes the mean value of f0 and
f1. The weights located in the same position of these two
filters are denoted as twin-weights, i.e. wi,j and wi,j+1, where
i ∈ [0, 1, 2, . . . ,K ×K × C − 1] and j ∈ [0, 2, 4, . . . , N−2⌋.

4

filter0

(𝑓0)

filter1

(𝑓1)
Original filters

5.6

3.5

S
y
m

m
e
triz

a
tio

n

FCC-aware Pre-training

Twin-weights

6.5 0.6

1.1

filter0

(𝑓0
𝑠)

filter1

(𝑓1
𝑠)

Symmetric filters

5.6

9.5

Twin-weights

6.5

2.3

filter0

(𝑓0
𝑠)

filter1

(𝑓1
𝑠)

Symmetric filters

-4 -2

11 -8

C
o
m

p
le

m
e
n
tiz

a
tio

n

F
C

C
-a

w
a

re
 Q

A
T

Twin-weights

6 4

-9 10

filter0

(𝑓0
𝑏𝑐)

filter1

(𝑓0
𝑏𝑐)

Biased-Comp filters

-5 -3

11 -9

Twin-weights

6 4

-10 10

S
y
m

m
e
triz

a
tio

n

P
re

-tra
in

e
d
 M

o
d
e
l

𝒘𝟎,𝟏
𝒃𝒄 = 𝒘𝟎,𝟏

𝒔

𝒘𝟎,𝟎
𝒃𝒄 = 𝒘𝟎,𝟎

𝒔 − 𝟏

Symmetric Correlation

5 5

1-4

𝒘𝟎,𝟎
𝒔

6

𝒘𝟎,𝟏
𝒔M0

0

Biased-Comp Correlation

1-5

𝒘𝟎,𝟎
𝒃𝒄

6

𝒘𝟎,𝟏
𝒃𝒄M0

0

6 5

No correlation

𝒘𝟎,𝟏
𝒔 = 𝒘𝟎,𝟏

𝒘𝟎,𝟎
𝒔 = 𝟐 ∗M0−𝒘𝟎,𝟏

Symmetric Correlation

5.5 5.5

1.0-4.5

𝒘𝟎,𝟎
𝒔

6.5

𝒘𝟎,𝟏
𝒔M0

0

2.5 5.5

1.0-1.5 6.5

M0

0
𝒘0,0 𝒘0,1

-1.5

-0.3 -7.5

-4.5

-0.3

-3.6

-7.5

FCC Quantization

Fig. 4. Demonstration of FCC algorithm.

TABLE I
NOTATIONS OF THE INVOLVED MATHEMATICAL SYMBOLS AND

CORRESPONDING DESCRIPTIONS.

Term Description
I input feature map
O output feature map
F original filters
Fs symmetric filters
Fbc biased-comp filters

f
(s)
j jth filter with symmetric correlation

f
(c)
j jth filter with complementary correlation

f
(bc)
j jth filter with bias-complementary correlation
wi,j ith weight in jth filter
M mean value of a pair of adjacent filters
∗ convolution operation function
∼ bitwise complement operation

And a filter pair comprising twin-weights with symmetric
correlation is denoted as symmetric filters. More precisely,
twin-weights in symmetric filters satisfy:

ws
i,j −M = −(ws

i,j+1 −M). (1)

A filter pair composed of bitwise complementary twin-weights
is denoted as complementary filters (Comp filters), which
satisfies:

wc
i,j = ∼ wc

i,j+1. (2)

A pair of complementary filters with a fixed bias (equals to
M) is denoted as biased-complementary filters (Biased-Comp
filters), which satisfies:

wbc
i,j −M = ∼ (wbc

i,j+1 −M). (3)

By storing the complementary bits (wc
i,j [k] and wc

i,j+1[k], k ∈
[0, 1, 2, . . . , 7]) in the cross-coupled structure of 6T SRAM, we
only need to transfer half of the filters and a group ofM. Thus,
the data transfer bandwidth can be equivalently improved by
about 2× with little extra overhead.

FCC algorithm includes FCC training and FCC quanti-
zation, as shown in Fig. 3. FCC training procedure mainly

Algorithm 1: Symmetrization
Input: Original or quantized filters

F .
= [f0, . . . , fN−1], where C/N are the

numbers of input/output channels, K is kernel
size.

Output: Symmetric filters Fs .
=

[
fs
0 , . . . , f

s
N−1

]
.

1 L ← K ×K × C
2 for j in [0, 2, 4, . . . , N − 1⌋ do
3 sumj ← (

∑
fj +

∑
fj+1)

4 Mj ← sumj/(2× L)
5 if |fj(·)−Mj | ≥ |fj+1(·)−Mj | then
6 fs

j (·)← fj(·)
7 fs

j+1(·)← (2×Mj − fj(·))
8 else
9 fs

j (·)← (2×Mj − fj+1(·))
10 fs

j+1(·)← fj+1(·)
11 end
12 end

consists of two steps, FCC-aware Pre-training and FCC-aware
QAT, as following.

1) FCC-aware Pre-training: We pre-train the NN models
to acquire symmetric filters through Symmetrization during
pre-training, as shown in Alg. 1. Considering bitwise oper-
ations are usually incompatible with floating point numbers,
FCC uses negations to approximate the bitwise complemen-
tary operations during pre-training. As shown in Eq. 4, the
opposite value of an integral number is similar to its bitwise
complement, making it a viable solution for approximation
before quantization.

−wi,j = ∼ wi,j + 1. (4)

However, the constraint of symmetrizing all filter pairs to
zero is too rigid for NN models to extract enough information
during training. Hence, it will introduce drastic accuracy
loss. For instance, such a restriction resulted in MobileNetV2
accuracy plummeted from 97.05% to 71.65%. To alleviate the
impact of such restriction, we propose to symmetrize filter
pairs to their mean value M for more flexibility. Fig. 4

5

Algorithm 2: Complementization

Input: Symmetric filters Fs .
=

[
fs
0 , . . . , f

s
N−1

]
, where

N is the number of output channels.
Output: Biased-Comp filters Fbc .

=
[
f bc
0 , . . . , f bc

N−1

]
.

1 for j in [0, 2, 4, . . . , N − 2⌋ do
2 if fs

j (·) ≥ fs
j+1(·) then

3 f bc
j+1(·)←

(
fs
j+1(·)− 1

)
4 f bc

j (·)← fs
j (·)

5 else
6 f bc

j (·)←
(
fs
j (·)− 1

)
7 f bc

j+1(·)← fs
j+1(·)

8 end
9 end

demonstrates an illustrative example of our proposed FCC
algorithm. The procedure of FCC-aware pre-training mainly
consists of the following two steps:

1⃝ First, we initialize the original filters by randomly sam-
pling a normal distribution and then calculateM for each
adjacent filter pair. In this case,M0 = 1.0, w0,0 = −1.5,
and w0,1 = 6.5.

2⃝ Then, we symmetrize these twin-weights according to
M by replacing the weight closer to M with the mirror
image of the other, as shown in Fig. 4. After symmetriza-
tion, ws

0,0 and ws
0,1 are represented as −4.5 and 6.5,

respectively.

As a result of pre-training, the obtained twin-weights in
symmetric filters exhibit an opposite correlation when M is
extracted, which satisfies:

ws
0,0 −M0 = −(ws

0,1 −M0). (5)

2) FCC-aware QAT: Quantization-aware training (QAT)
simulates the quantization effect by applying quantization
and subsequent de-quantization during the training process.
In order to perceive the impact of complementary operations
on model accuracy, we modify QAT to a FCC-aware manner
for obtaining quantization parameters of the above pre-trained
model. Specifically, the procedure of FCC-aware QAT includes
the following four steps:

1⃝ Quantization: We quantize a floating point model (sym-
metric filters) to an 8-bit precision model (quantized
filters) for calculating the quantization parameters.

2⃝ Symmetrization: On account of the weakened symmet-
ric correlation within the quantized filters, we perform
symmetrization for a second time. When symmetrization
is performed, M is rounded to ensure that M is an
integer. As illustrated in Fig. 4, after quantization and
symmetrization, ws

0,0 = −4, ws
0,1 = 6, and M0 = 1.

3⃝ Complementization: Due to the relationship between the
opposite and the bitwise complementary value of wi,j

presented in Eq. 4, we exert Complementization on sym-
metric filters (INT8) to obtain Biased-Comp filters, as
shown in Alg. 2. Specifically, we subtract 1 from the
smaller twin-weight in symmetric filters to obtain the
bitwise complementary correlation after M is extracted.

Top Ctrl

Feature

Memory0

Feature

Memory1

P
in

g
-P

o
n

g
 In

te
rfa

c
e

Post-

Process

Instruction

Memory

Memory Read/Write Circuit

PIM Core

P
re

-p
ro

c
e
s

s
 U

n
it

Macro Ctrl

PIM Macro

Weight

Memory

Ping-Pong Memory

R
e

c
o

n
fig

u
ra

b
le

 U
n

it

DFF

...

W
L

 D
riv

e
rs

 &
 D

u
a
l-B

ro
a
d

c
a

s
t

In
p

u
t S

tru
c

tu
re

 (D
B

IS
)

Compartment #0Compartment #0

Compartment

#31

Compartment

#31

R
e

a
d

o
u

t B
lo

c
k

6T SRAM

LPU

Merge Unit
S

h
ift &

 A
d

d

A
c

c
u

m
u

la
te

 a
n

d
 R

e
c
o

v
e
r U

n
it (A

R
U

)

O
ff-c

h
ip

 D
R

A
M

Fig. 5. Top level architecture design of DDC-PIM.

After complementization, wbc
0,0 and wbc

0,1 become −5 and
6 respectively.

4⃝ De-quantization: We perform de-quantization operation
on Biased-Comp filters, in order to ensure accurate gra-
dient calculations and parameter updates.

We refer to the above process of quantization, symmetriza-
tion and complementization as FCC quantization. At the
end of FCC training, we perform FCC quantization again
to obtain biased-comp filters. The FCC algorithm leverages
the complementary characteristics of weights in Conv layers
to accommodate the DDC-PIM architecture, which offers a
novel paradigm for deep learning computation. However, the
fully connected (FC) layers do not benefit from this algorithm
as much as the Conv layers do, which will be detailed in
Section IV. Therefore, we exclude the FC layers from the
scope of the FCC algorithm. After the biased-comp. filters
generation module, the Biased-Comp filters will be decom-
posed and mapped onto the DDC-PIM architecture, which
enables parallel computation by employing the cross-coupled
structures of 6T SRAM.

C. Architecture Design of DDC-PIM

1) Top level architecture: Fig. 5 shows the overall archi-
tecture of DDC-PIM, which is composed of a top controller,
a pre-process unit, four PIM macros, an instruction memory,
a weight memory, a ping-pong memory, and a post-process
unit. The PIM macro is an extension of the ADC-less SRAM
PIM macro proposed in [14]. The DDC-PIM is interfaced
with an off-chip DRAM that stores the input features and
weights of a neural network. To accomplish the execution of a
convolutional layer, the input features, weights and instructions
are fetched from off-chip DRAM to on-chip memories. After
transmission, the top controller first processes instructions
fetched from instruction memory and sends corresponding
control signals to the whole system. I stored in ping-pong
memory can be accessed by pre-process unit for converting
into bit-serial form and broadcasting to four PIM macros. The
PIM core in each macro receives weights from weight memory
and performs bitwise MAC operation with I to generate the
intermediate results. These results are shifted and accumulated
by shift & add unit based on their respective bit position
for producing the partial sum (Psum). Then, we accumulate

6

PIM Core

Reconfigurable Unit
M

u
x

…

+
A

d
d

e
r

T
re

e

Adder Unit #0
Config

A
d

d
e

r
T

re
e

Adder Unit #3

O
c
h

0
-
O

c
h

3

Compartment #0

Compartment #31

Double

Bitwise

Multiply

Unit#0

(DBMU #0)

DBMU #1 DBMU #15…

SC #0

SC #63

SC #0

SC #63

SC #0

SC #63…

… … …

LPU LPU LPU

…

Reconfigurable Unit

WL
BLP BLN

𝑸 ഥ𝑸

𝒘𝟎,𝟏
𝒄 [𝟎]

LPU

…

SC #0

Och0[0] Och1[0]

SC #63

Double Bitwise Multiply Unit
Config 𝑰𝑵𝑷 𝑰𝑵𝑵𝒘𝟎,𝟎

𝒄 [𝟎] 𝒘𝟎,𝟏
𝒄 [𝟎]

Och0 0 =

𝑰𝑵𝑷&𝒘𝟎,𝟎
𝒄 [𝟎]

Och1[0]=

𝑰𝑵𝑵&𝒘𝟎,𝟏
𝒄 [𝟎]

std-conv

/

pw-conv

0 0
0 1 0 0

1 0 0 0

1 1
1 0 1 0

0 1 0 1

dw-conv

0 0
0 1 0 0

1 0 0 0

0 1
0 1 0 1

1 0 0 0

1 0
0 1 0 0

1 0 1 0

1 1
0 1 0 1

1 0 1 0

(a) Truth Table (b) Double Bitwise Multiply Unit (c) PIM Core

R
e
a
d

o
u

t B
lo

c
k

R
e
a
d

o
u

t B
lo

c
k

Peripheral Circuits

O
c
h

0
-
O

c
h

3

𝒘𝟎,𝟎
𝒄 [𝟎]

Double-Broadcast Input Structure (DBIS)

Double-Broadcast Input Structure (DBIS)

𝑰𝑵𝑷
𝑰𝑵𝑵

Fig. 6. Circuit design of PIM core and its corresponding truth table.

LPUOch0[𝟏] Och1[𝟏] LPUOch0[𝟎] Och1[𝟎]

LPUOch0[𝟏] LPUOch0[𝟎]
𝑬𝑵𝟎

𝒘𝟎,𝟎[𝟏] 𝒘𝟎,𝟎[𝟎]

𝒘𝟎,𝟎
𝒄 [𝟏] 𝒘𝟎,𝟏

𝒄 [𝟏] 𝒘𝟎,𝟎
𝒄 [𝟎] 𝒘𝟎,𝟏

𝒄 [𝟎]

(a) Regular Computing Mode

(b) Double Computing Mode

D
F

F
s

D
F

F
s

𝑬𝑵𝟏 𝑬𝑵𝟐 𝑬𝑵𝟑

𝑬𝑵𝟎 𝑬𝑵𝟏 𝑬𝑵𝟐 𝑬𝑵𝟑

𝑽𝑫𝑫 𝑽𝑫𝑫 𝑽𝑫𝑫 𝑽𝑫𝑫

𝑽𝑫𝑫 𝑽𝑫𝑫 𝑽𝑫𝑫 𝑽𝑫𝑫

𝑰𝑵𝑷
𝑰𝑵𝑵

𝑰𝑵𝑷
𝑰𝑵𝑵

Fig. 7. Illustration of computation modes for PIM core.

(
∑
I) × M and Psum in ARU to recover the convolution

results. The results are sent to post-process unit for performing
pooling and other operations. Finally, O acquired from the
post-process unit is written back to the ping-pong memory.
Details of some key modules are presented below.

2) PIM core with dual-broadcast input structure (DBIS)
and reconfigurable unit: As listed in Fig. 6(c), each PIM
core consists of 32 compartments, a reconfigurable unit, and
other peripheral circuits. Each compartment comprises 16
double-bitwise multiply units (DBMUs) for four signed 8
bit weights configurations (wc

0,0, w
c
0,1, w

c
0,2, w

c
0,3), a DBIS

supporting two different inputs (INN and INP), and a
readout block. Each DBMU consists of sixty-four 6T SRAM
cells (SC #0 – SC #63) and one local processing unit (LPU),
as illustrated in Fig. 6(a) and Fig. 6(b). Sixty-four SCs in
one column share one LPU and perform two bitwise AND
operations of 1 bit input and 1 bit weight with the
support of DBIS. The results generated by LPU are sampled
and held by the readout block. The reconfigurable unit and
the DBIS endow the PIM core with the flexibility of executing
various convolution operations. Each PIM core can be operated
in three operation modes: 1⃝ normal SRAM mode supporting
either read or write operations, 2⃝ regular computing mode
for multi-bit MAC operations, and 3⃝ double computing mode
with dual-broadcast inputs for multi-bit MAC operations.

In normal SRAM mode, the corresponding bits stored in Q

and Q can be accessed through BL pairs (BLP/BLN) in each
standard 6T SRAM bitcell for read and write operation.

In regular computing mode, only dynamic logic switches
EN0 and EN2 are set to ground for pre-charging output to
V DD during each computing cycle. As illustrated in Fig. 7(a),
the black lines represent an available path and the gray
lines represent an inaccessible path, indicating only half of
the LPU enable and perform multiplication of binary inputs
and weights. A corresponding DFF samples and holds the
computational result, which satisfies:

Och0[1] = w0,0[1] & INP. (6)

In double computing mode, overall dynamic logic switches
EN0 ∼ EN3 are set to ground for pre-charging output to
V DD during each computing cycle. As illustrated in Fig. 7
(b), both two paths could contribute current to the compu-
tational results. For example, the left path in LPU opens to
perform multiplication of Och0[1] (Och0[1] = wc

0,0[1]&INP)
and the right path opens to perform multiplication of Och1[1]
(Och1[1] = wc

0,1[1]&INN). With the support of the FCC
algorithm and DBIS, two different inputs (INN and INP)
are broadcasted to LPU for two independent MAC operations.
In each compartment, only one row is activated every cycle
to avoid read disturbance issues. Bitwise AND operations
are performed in all compartments simultaneously, and their
results are accumulated vertically in the reconfigurable unit.

The reconfigurable unit consists of four adder units and a
multiplexer (Mux) for flexibly combining the sum of the output
elements. Each adder unit comprises two adder trees, and each
adder tree is responsible for accumulating AND results of 16
compartments. The output of the adder unit is either directly
extracted from two individual adder trees or the combination
of the results from two adder trees. The former output scheme
represents two different output channels of O while the latter
represents a single output channel. This flexibility allows for
optimizing the performance and efficiency of the adder unit in
different scenarios.

For std-conv and pw-conv, each adder unit accumu-
lates the AND results in the same row of 32 compartments
by combining the results of two adder trees. For dw-conv,
convolutional operations are performed on a per-channel basis
without sharing I among filters. Despite the employment

7

+

Recover Unit

A
c
c
u

m
u

la
to

r

I

M

A
c
c
u

m
u

la
to

r

×

ARUShift & Add

+

Signed *MSB

1 for inv

+

D
F

F <<

Signed

transform

Fig. 8. Circuit design of merge unit.

of DBIS, the computational constraints dictate that only a
pair of output channels can be concurrently computed. To
mitigate load latency, we load two pairs of twin-weights in one
compartment row during each write operation. Consequently,
we perform a two-stage computation and alternately activate
two adder units during each stage to ensure the correctness of
the results. Moreover, for 3× 3× 1 filters, the spatial utiliza-
tion ratio of compartments is only 9/32. To improve spatial
utilization, each adder unit is responsible for computing two
different channels and outputting the results simultaneously.
The proposed methodology enables parallel computation of
four output channels of O during dw-conv operation, which
is analogous to the concurrent processing of std-conv and
pw-conv.

3) Merge unit: Fig. 8 presents the circuit design of the
merge unit that performs shift & add operations and then
recovers the convolution results. The partial results generated
by the PIM core are first shifted and accumulated based on
their respective bit position in shift & add unit. Given that the
Biased-Comp filters are decomposed intoM and Comp filters
during data mapping, as shown in Eq. 7, ARU is adopted to
recover the final convolution results (O). In ARU, the Psums
provided by the shift & add unit are first accumulated in
the vector-wise direction. For Conv layers that are subjected
to the FCC algorithm, the convolution results are obtained
by assembling the accumulated Psums and the multiplication
results ((

∑
I)×M). For FC layers, we disable the recover unit

and only accumulate Psum for the final convolution results.

O =
∑(

I ∗ f bc
)

=
∑

(I ∗ (f c +M))

=
∑

(I ∗ f c) +
(∑

I
)
×M.

(7)

D. Data Mapping

To bridge the gap between FCC training algorithm and
DDC-PIM architecture, we propose a versatile data mapping
method, including offline data decomposition and mapping
strategies for various kinds of computation. Fig. 9 presents
how the Biased-Comp filters obtained from FCC algorithm
are decomposed into Comp filters and M. The cross-coupled
structures are granted the capability of fully utilizing their
complementary states. For example, here wbc

0,0 = −5, wbc
0,1 =

6, and M0 = 1. After decomposition, wc
0,0 and wc

0,1 are
−6 (i.e. 111110102) and 5 (i.e. 000001012) respectively. The

Comp Correlation

𝒘𝟎,𝟎
𝒄 = -6 𝒘𝟎,𝟏

𝒄 = 50

filter0

(𝑓0
c)

filter1

(𝑓1
𝑐)

Comp filters

-6 -4

10 -10

Twin-weights

5 3

-11 9

filter0

(𝑓0
𝑏𝑐)

filter1

(𝑓1
𝑏𝑐)

Biased-Comp filters

-5 -3

11 -9

Twin-weights

6 4

-10 10
extract M0

𝒘𝟎,𝟏
𝒄 = 𝒘𝟎,𝟏

𝒃𝒄 − 1
1-5

𝒘𝟎,𝟎
𝒃𝒄

6

𝒘𝟎,𝟏
𝒃𝒄M0

0

Biased-Comp Correlation

Decomposition

𝒘𝟎,𝟎
𝒄 = 𝒘𝟎,𝟎

𝒃𝒄 − 1 111110102 000001012

Fig. 9. Demonstration of decomposing Biased-Comp filters into Comp filters.

twin-weights in Comp filters exhibit bitwise complementary
properties, only one of them needs to be transferred. Hence,
we first extract half of the Comp filters (f c

0 , f
c
2 , f

c
4 , ...), convert

them into 1-dimensional vectors using the im2col function,
and splice every two 8 bit vectors into a 16 bit vector.

Due to the limited on-chip resources, these vectors and
the corresponding mean values are transferred from off-chip
DRAM to weight memory layer-by-layer. Each time a part
of the weights is fetched from weight memory and loaded
to PIM macros for performing matrix vector multiplication
(MVM). Once these cached weights in weight memory are
nearly exhausted for computation within the PIM macros, our
system proactively pre-fetches the weights for the subsequent
layer, effectively masking the latency typically associated with
off-chip DRAM access. For std-conv and pw-conv, DDC-
PIM tiles these vectors in weight memory according to the
total capacity of 4 PIM macros, and then splits them into sub-
vectors based on the number of compartments.

For dw-conv, we adopt another mapping strategy with
padding technique to solve the spatial under-utilization prob-
lem of the PIM core. For FC layer, we can regard it as a
special case since we exclude it from the scope of the FCC
algorithm. We transfer all weights of the FC layer, tile them
according to the total capacity of 4 PIM macros, and compute
in regular computing mode, as shown in Fig. 7.

1) Standard or pointwise convolution: For std-conv and
pw-conv, two pairs of the twin-weights are mapped to
the same row of the destined compartment. Meanwhile, the
weights within each sub-vector are allocated to rows with
the same position across 32 compartments. Therefore, the
results of AND operation between weights and vector-wise
input are accumulated vertically. We illustrate our method
using a std-conv layer of 3D filters in Fig. 10. By exploiting
the bitwise complementary property of the twin-weights in
f c
0 and f c

1 , f c
2 and f c

3 , we only transmit the corresponding
weights in f c

0 and f c
2 . For the first row of Compartment #0,

we transform wc
0,0 in f c

0 and wc
0,2 in f c

2 into {wc
0,0, w

c
0,2}, and

load them to this row in normal SRAM mode. The data stored
in first row from Compartment #0 can then represent two pairs
of twin-weights from four filters (wc

0,0, w
c
0,1, w

c
0,2, w

c
0,3), due

to the cross-coupled structure of 6T SRAM and the bitwise
complementary correlation (wc

0,0=∼wc
0,1 and wc

0,2=∼wc
0,3).

In this case, the PIM core performs in double computing mode,
where INN and INP receive the same vector-wise input, as

8

Input Feature

IN1,0[i]

IN1,0[i]

IN0,0[i]

IN0,0[i]

R
e
c

o
n

fig
u

ra
b

le
 U

n
it

Compartment #0

w0,0[7] w0,1[7] …… …… w0,0[0] w0,1[0] w0,2[7] …… w0,2[0] w0,3[0]

LPU LPU LPU LPU LPU

……

…… …… …… …… ……

SC #1 SC #1 SC #1 SC #1 SC #1

O
c

h
0 -O

c
h

3
O

c
h

0 -O
c

h
3

A
d

d
e

r
T

re
eA

d
d

e
r U

n
it #

0

INP

INN

INP

INN

H

W

filter 0

(f0
c

)

filter 1

(f1
c

)

filter 2

(f2
c

)
filter 3

(f3
c

)

Weight

K

C

w33,

0

w30,

0

...

w34,

0

w31,

0

...

...

w9,1

...

...

w3,1

w0,1 w1,1 ...w33,

0

w30,

0

...

w34,

0

w31,

0

...

...

w9,1

...

...

w3,1

w0,1 w1,1 ... w33,

0

w30,

0

...

w34,

0

w31,

0

...

...

w9,2

...

...

w3,2

w0,2 w1,2 ...w33,

0

w30,

0

...

w34,

0

w31,

0

...

...

w9,2

...

...

w3,2

w0,2 w1,2 ... w33,

0

w30,

0

...

w34,

0

w31,

0

...

...

w9,3

...

...

w3,3

w0,3 w1,3 ...w33,

0

w30,

0

...

w34,

0

w31,

0

...

...

w9,3

...

...

w3,3

w0,3 w1,3 ...w33,

0

w30,

0

...

w34,

0

w31,

0

...

...

w9,0

...

...

w3,0

w0,0 w1,0 ...w33,

0

w30,

0

...

w34,

0

w31,

0

...

...

w9,0

...

...

w3,0

w0,0 w1,0 ...

Compartment #1

w1,0[7] w1,1[7] …… …… w1,0[0] w1,1[0] w1,2[7] …… w1,2[0] w1,3[0]

…… …… …… …… ……

LPU LPU LPU LPU LPU

Compartment #1

w1,0[7] w1,1[7] …… …… w1,0[0] w1,1[0] w1,2[7] …… w1,2[0] w1,3[0]

…… …… …… …… ……

LPU LPU LPU LPU LPU

c

c c

c

c c c c c cc

c c c c c ccc c c c c cc

c

c c

c

c

c c

c

c

c c

c

... ...
IN[8,0

]

...

IN0,2

...

...

IN[8,0

]

...

...

...

IN0,1

...

...

...

IN8,1

...

...

C

... ...
IN[8,0

]

...

IN0,2

...

...

IN[8,0

]

...

...

...

IN0,1

...

...

...

IN8,1

...

...

C

IN3,0

IN0,0 IN1,0 ...

IN3,0

IN0,0 IN1,0 ...

... ...
IN[8,0

]

...

IN0,2

...

...

IN[8,0

]

...

...

...

IN0,1

...

...

...

IN8,1

...

...

C

IN3,0

IN0,0 IN1,0 ...

*

Fig. 10. Data mapping demonstration of std-conv.

different filters share the same I in std-conv. Thus, the
maximum computation parallelism (X × Y × B) supported
by the DDC-PIM is 32 × 4 × 32. Among them, X , Y , and
B denote the number of compartments, macros, and bits for
parallel computing.

2) Depthwise convolution: Like std-conv, we apply
filter transformation and assign two pairs of twin-weights
to the same row of each compartment in dw-conv. As
we mentioned in the reconfigurable unit design in Section
III-C2, only half of the compartments are activated during each
computation stage. We double the spatial utilization with the
support of padding and reconfigurable unit. For example, as
shown in Fig. 11, we map f c

0 ∼ f c
3 into Compartment #0

∼ Compartment #8, and f c
4 ∼ f c

7 into Compartment #16 ∼
Compartment #24. When performing computation without the
optimization techniques in DDC-PIM, the maximum computa-
tion parallelism is 9×1×8 since only 9 out of 32 compartments
are utilized. Based on the FCC algorithm and PIM core with
DBIS, INN and INP can receive distinct vector-wise inputs,
doubling the computation parallelism to 9×1×16. Meanwhile,
the reconfigurable unit enables DDC-PIM to load four different
filters (f c

0 , f
c
2 , f

c
4 , f

c
6) simultaneously, representing eight filters

(f c
0 to f c

7) for two alternating computations to further dou-
ble the parallelism. Thus, the overall maximum computation
parallelism for dw-conv is 18 × 1 × 16, equivalent to 4×
acceleration.

IV. EVALUATION RESULTS

A. Experimental Setup

Hardware implementation. DDC-PIM is evaluated on 14
nm technology, with a 128 KB ping-pong memory, a 256
KB weight memory, and four 4 KB PIM macros. The power
consumption, latency, and area of PIM macros are extracted
from the post-layout of customized design extension from [14].
The area and power consumption of weight memory and ping-
pong memory are estimated by PCACTI [32]. The remaining
digital modules are implemented with Verilog HDL and syn-
thesized by Design Compiler, while the power consumption

Input Feature

IN0,2[i]

IN0,3[i]

IN0,0[i]

IN0,1[i]

Compartment #0

w0,0[7] w0,1[7] …… …… w0,0[0] w0,1[0] w0,4[7] …… w0,4[0] w0,5[0]

LPU LPU LPU LPU LPU

……

…… …… …… …… ……

SC #1 SC #1 SC #1 SC #1 SC #1

INP

INN

INP

INN

W

filter 0

(f0
c

)

Weight

Compartment #16

w0,2[7] w0,3[7] …… …… w0,2[0] w0,3[0] w0,6[7] …… w0,6[0] w0,7[0]

…… …… …… …… ……

LPU LPU LPU LPU LPU

Compartment #16

w0,2[7] w0,3[7] …… …… w0,2[0] w0,3[0] w0,6[7] …… w0,6[0] w0,7[0]

…… …… …… …… ……

LPU LPU LPU LPU LPU

w3,0

w0,0 w1,0 ...

w3,0

w0,0 w1,0 ...

……

R
e
c

o
n

fig
u

ra
b

le
 U

n
it

A
d

d
e
r U

n
it #

1
A

d
d

e
r U

n
it #

0

O
c
h

0 -O
c
h

1
O

c
h

2 -O
c
h

3
O

c
h

6 -O
c
h

7
O

c
h

4 -O
c
h

5
w3,3

w0,3 w1,3 ...

w3,3

w0,3 w1,3 ...

w3,4

w0,4 w1,4 ...

w3,4

w0,4 w1,4 ...

w3,7

w0,7 w1,7 ...

w3,7

w0,7 w1,7 ...

filter 3

(f3
c

)

… …

filter 4

(f4
c

)

filter 7

(f7
c

)

... ...
IN[8,

0]

...

IN0,2

...

...

IN[8,

0]

...

...

...

IN0,1

...

...

...

IN8,1

...

...

IN0,0

H

C

*

c c c c c ccc c c c c cc

c c c c c ccc c c c c cc

c c

c

c c

c

c c

c

c c

c

Fig. 11. Data mapping demonstration of dw-conv.

Technology Node 14 nm

Area Estimation 0.918 mm2

Power Consumption 11.15 mW

Supply Voltage 0.7 V

Working Frequency 333 MHz

Peak Performance (GOPS) 8b × 8b 42.67

Energy Efficiency (TOPS/W) 8b × 8b 3.83

The End-to-end Latency (MobileNetV2) 20.97 ms

PIM-base
86.52%

Recover
Unit

4.79%

Adder Unit
2.73%

DFFs
5.24%

Others
0.72%

(a) Summary Table (b) Area Breakdown

Fig. 12. Summary table of DDC-PIM and area breakdown of PIM macro.

is obtained by PTPX. Aiming to evaluate the performance
of whole architecture and validate the data mapping, we
implement a customized cycle-accurate C++ simulator and
dataflow mapper.

PIM baseline. In order to assess the performance improve-
ment achieved by our algorithm/architecture co-design, we
implement a digital PIM as a baseline. Compared with our
DDC-PIM, the baseline design does not include reconfigurable
unit, dual-broadcast input structure and recover unit. Further-
more, the PIM core in the baseline design is constrained to
only operate in regular computing mode. The rest of hardware
settings are identical to those of our DDC-PIM architecture.

Benchmarks and models. We evaluate two popular com-
pact NN models, MobileNetV2 and EfficientNet-B0, on the
CIFAR10 dataset benchmark. In addition, to demonstrate the
generality and applicability of the FCC algorithm across differ-
ent neural network architectures, we also perform experiments
on three representative regular NN models, namely AlexNet,
VGG19 and ResNet18. All of these models are trained for
1000 epochs. We apply INT8 quantization on inputs and
weights for all layers.

B. DDC-PIM Implementation Summary

As shown in Fig. 12(a), the total area and power of DDC-
PIM are about 0.918 mm2 and 11.15 mW. The clock fre-
quency is 333 MHz and the peak performance is about 42.67
GOPS at 8b × 8b. The end-to-end latency of MobileNetV2
is 20.97 ms, with the MVM operations exhibiting a latency

9

TABLE II
COMPARISON WITH PRIOR WORKS FOR PIM MACROS.

PIM Macro Type Analog PIM Digital PIM

Nat. Elec.’22 [33] JETCAS’22 [34] Nat. Elec.’21 [35]
VLSI’21 [11]

(10T)
ISSCC’20 [24]

(6T+LCC)
ISSCC’21 [26]

(6T+LCC)
ISSCC’22 [14]

(6T+LCC)
This Work

PIM Device PCM PCM RRAM SRAM SRAM SRAM SRAM SRAM
Technology Node 14nm 22nm 22nm 28nm 28nm 22nm 28nm 14nm

Array Size 64Kb 64Kb 4Mb 3456Kb 64Kb 64Kb 32Kb 32Kb
Weight Capacity 64Kb 64Kb 4Mb 3456Kb 64Kb 64Kb 32Kb 64Kb

Cell Type 8T4R / 1T1R 10T1C 6T 6T 6T 6T
Macro Area (mm2) 1.392 0.83 6 20.9 0.362 0.202 0.040 0.0115

Integration Density∗ (Kb/mm2) 45.98@14nm 77.11@22nm 682.67@22nm 165.4@28nm 177@28nm 317@22nm 800@28nm 2783@14nm
Integration Density (Kb/mm2)

(Normalized to 28nm)
11.52 47.68 422.09 165.4 177 196 800 697

Weight Density† (Kb/mm2) 45.98@14nm 77.11@22nm 682.67@22nm 165.4@28nm 177@28nm 317@22nm 800@28nm 5565@14nm
Weight Density (Kb/mm2)

(Normalized to 28nm)
11.52 47.68 422.09 165.4 177 196 800 1391

Computing Units ADC ADC CW-CVS Flash ADC LMAR-SAR-ADC Logic Circuit Logic Circuit Logic Circuit
Area Efficiency (GOPS/mm2)

(Normalized to 28nm)
177.38/63 (8b/8b) 712.15 (8b/4b) 3.47 (8b/8b) 234 (1b/1b) 84.2 (8b/8b) 2802.5 (8b/8b) 133.3 (8b/8b) 231.9 (8b/8b)

Energy Efficiency (TOPS/W) 9.76/2.48 (8b/8b) 6.39 (8b/4b) 15.60 (8b/8b) 588 (1b/1b) 14.1 (8b/8b) 24.7 (8b/8b) 27.38 (8b/8b) 72.41 (8b/8b)
∗ Integration Density = Array Size / Macro Area
† Weight Density = Weight Capacity / Macro Area

of 18.02 ms. The PIM macro area breakdown analysis is
shown in Fig. 12(b). PIM macro can be divided into base
digital PIM logic (PIM-base), additional logic introduced by
our techniques (DFFs, adder units and the recover unit), and
others. PIM-base in PIM macro is equivalent to the counterpart
in [14], and the additional logic is designed for supporting our
co-design. In this work, the complementary states (Q/Q) in 6T
SRAM represent two individual bits for parallel computation.
Hence, compared with PIM-base in [14], DDC-PIM needs
extra storage units (DFFs) and computation units (adder units)
to process the additional information. These units only incur a
minor area overhead of about 5.24% and 2.73%, respectively.
Meanwhile, DDC-PIM decomposes Biased-Comp filters into
Comp filters and M, which requires extra computation units
to recover the final results, costing only about 4.79% overhead
in area consumption. The energy efficiency in our PIM macro
is 72.41 TOPS/W at 8b × 8b.

C. Comparison with PIM Macros in Prior Works

Tab. II presents a comprehensive comparison of PIM macros
among DDC-PIM and other state-of-the-art studies, which
can be categorized into the analog domain [11, 24, 33–35]
and digital domain [14, 26]. We mainly focus on comparing
weight capacity, integration density, weight density, and area
efficiency of DDC-PIM macro against the others. Generally,
the weight capacity of a PIM macro is equal to its array size,
thus its integration density and weight density are also the
same. For example, the array size and weight capacity of
[11] are both 3456 Kb. The integration density and weight
density are about 165.4 Kb/mm2 at 28 nm. Meanwhile, with
a fixed process and array size, the weight density of analog
PIM is usually much lower than digital PIM, due to the extra
area overhead introduced by ADC/DAC. For example, the
integration density of [14] and [26] are much larger than that of
[11] and [24]. In this work, by exploiting the complementary
state pairs as independent bits of information, the weight
capacity of DDC-PIM is twice its array size. To facilitate a fair
comparison, we scale both the integration density and weight

2.694

1.887

1.237

1

0 0.5 1 1.5 2 2.5 3

3

2

1

0

Speedup over PIM baseline

with FCC for std/pw

2.841

1.893

1.196

1

0 0.5 1 1.5 2 2.5 3

3

2

1

0

with FCC for std/pw

with FCC and DBIS for dw

PIM baseline

with FCC, DBIS and reconfigurable unit

(a) MobileNetV2

1.196x

1.583x

1.501x

PIM baseline

(b) EfficientNet-B0

1.237x

1.525x

1.428xwith FCC and DBIS for dw

with FCC, DBIS and reconfigurable unit

Fig. 13. Speedup analysis for MobileNetV2 and EfficientNet-B0. Here we
illustrate the speedup of the FCC algorithm for std-conv and pw-conv,
FCC algorithm for dw-conv with DBIS and reconfigurable unit over PIM
baseline.

density to 28 nm technology node. As PIM-base in PIM macro
is equivalent to the counterpart in [14], the additional logic for
supporting our co-design brings a slight decrease in integration
density. Meanwhile, due to that a pair of computing units in
DDC-PIM can support two independent AND operations, the
area efficiency is also improved by about 1.74× compared
with [14].

D. Speedup for MobileNetV2 and EfficientNet-B0

Fig. 13 clearly illustrates the acceleration in MobileNetV2
and EfficientNet-B0 gained by co-designing the FCC algo-
rithm, data mapping, and architecture. By applying the FCC
algorithm to both std-conv and pw-conv, we achieve
a speedup of about 1.196× for MobileNetV2 and 1.237×
for EfficientNet-B0, respectively. Moreover, the combination
of the FCC algorithm and DBIS improves the efficiency of
dw-conv, achieving a speedup of 1.583× for MobileNetV2
and 1.525× for EfficientNet-B0. Furthermore, the proposed
DDC-PIM architecture, which incorporates the FCC algo-

10

TABLE III
ACCURACY EVALUATION OF FCC ALGORITHM APPLIED ON DIFFERENT LAYERS AND DIFFERENT MODELS ON CIFAR10 DATASET.

Model
FCC Not Applied FCC Applied on Conv Layers FCC Applied on both Conv and FC

Param. Ratio
of FC Layers

Top-1 Accu.
Baseline (%)

Top-1 Accu. for
Conv Layers (%)

Accu. Drop for
Conv Layers (%)

Top-1 Accu. for
Conv & FC (%)

Accu. Drop for
Conv & FC (%)

Compact
NNs

MobileNetV2 96.71 95.99 0.72 95.69 1.02 0.57%
Efficient-B0 92.77 91.65 1.12 90.87 1.90 0.11%

Regular
NNs

AlexNet 93.08 92.52 0.56 91.20 1.88 79.12%
VGG19 96.29 95.64 0.65 95.11 1.18 55.71%

ResNet18 97.15 96.73 0.42 95.97 1.18 0.04%

100.00%99.98%
94.92%

87.64%

68.34%

54.31%

40.91%

18.70%

0.00%
1

1.5

2

2.5

3

S(0) S(24) S(96) S(160) S(320) S(384) S(960) S(1280) baseline
95.5

96

96.5

97

97.5

T
O

P
-1

 A
c
c
u

ra
c

y

S
p

e
e
d

u
p

Accuracy

Speedup

(a) MobileNetV2

Params. (%)

Effective Scope of FCC

100.00%98.10%
92.58%

84.84%

57.20% 56.41%

39.00%

30.87%

0.00%
1

1.5

2

2.5

3

S(0) S(48) S(112) S(192) S(240) S(320) S(672) S(1152) baseline
89.5

90.5

91.5

92.5

93.5

94.5

T
O

P
-1

 A
c
c
u

ra
c

y

S
p

e
e
d

u
p

Accuracy

Speedup

(b) EfficientNet-B0

Params. (%)

Effective Scope of FCC

Fig. 14. Speedup and accuracy tradeoff for FCC algorithm on MobileNetV2
and EfficientNet-B0. The height of bars in the bar diagram denotes the
proportion of parameters within S(i) to the overall parameters.

rithm, DBIS, and a reconfigurable unit, attains a speedup of
about 1.501× for MobileNetV2 and 1.428× for EfficientNet-
B0. For dw-conv, the speedup brought by the FCC algorithm
solely relies on the support of DBIS, thus these two approaches
must be bonded during execution. Although dw-conv has
fewer parameters and fewer computation requirements than
pw-conv and std-conv, the overall latency of compact
NNs is still dominated by dw-conv due to its low computa-
tion parallelism. With the optimization techniques tailored for
dw-conv, DDC-PIM can achieve about 2.841× and 2.694×
speedup for MobileNetV2 and EfficientNet-B0 respectively.

E. Evaluation of FCC Algorithm

Through a comprehensive set of experiments, we demon-
strate that the FCC algorithm has a heterogeneous impact on
the performance of NN model’s layers, indicating a varying

degree of susceptibility across different levels of abstraction.
This impact translates into distinct acceleration effects. For
simplicity, we introduce the effective scope S(i) as a set
composed of all the layers in a given model with more
than i filters, and apply the FCC algorithm to the layers in
S(i). Therefore, we assess the tradeoff between speedup and
accuracy by altering the S(i) of the FCC algorithm and present
the results in Fig. 14. In this case, all layers represent all
Conv layers. The results show that when FCC is applied to
all layers, DDC-PIM can obtain 2.841× and 2.694× speedup
with only 0.72% and 1.12% accuracy drop for MobileNetV2
and EfficientNet-B0 respectively. To gain more insights into
the benefits of our approach, we scrutinize the number of
parameters, accuracy, and speedup at S(112) in Fig. 14(b).
DDC-PIM can apply FCC to of most 92.58% parameters,
achieving a 2.01× speedup without any accuracy degradation.
Furthermore, we observe that applying the FCC algorithm to
a smaller S(i) may result in a deterioration of the inference
accuracy. However, applying the FCC algorithm to a larger
S(i) may exceed the baseline accuracy. For applications with
stringent requirements on model accuracy, we can investigate
a layered application of the FCC algorithm.

To demonstrate the generality of the FCC algorithm, we
also perform experiments on regular NNs such as AlexNet,
VGG19, and ResNet18. Tab. III illustrates the versatility and
robustness of FCC algorithm applied on different layers and
NN models. First, we compare the accuracy of applying the
FCC algorithm only to Conv layers as well as applying it to
both the Conv layers and FC layers. The findings indicate
that FC layers are more susceptible to the FCC algorithm
than the Conv layers, as the former setting yields higher
accuracy than the latter. Moreover, the results imply that the
FCC algorithm can handle different levels of complexity in the
NNs. Generally, regular NN models exhibit a higher degree
of compatibility with the FCC algorithm with lower accuracy
degradation due to its higher redundancy. However, due to FC
layers accounting for a significant proportion of the total num-
ber of parameters in regular NNs, applying the FCC algorithm
both to Conv layers and FC layers obtains larger accuracy
deterioration than in compact NNs. Taking AlexNet as an
example, the accuracy drop for Conv layers is 0.56%, but for
Conv layers and FC layers is up to 1.88%. Although applying
the FCC algorithm to all layers, including the Conv layers
and FC layers, can achieve better acceleration. However, this
often comes at the expense of significant accuracy degradation.
Hence, the choice of FCC algorithms should be based on the

11

TABLE IV
COMPARISON OF ACCURACY AND COMPRESSION RATIO OF

MOBILENETV2 WITH DIFFERENT METHODS ON CIFAR-100.

Model Method
Top-1
Accu.
(%)

Accu.
Drop
(%)

Compression
Ratio

MobileNetV2

Original 80.48 0 0%

2: 4 Pruning 79.94 0.54 50%

FCC algorithm
with 2: 4 Pruning

78.81 1.13 ∼ 75%

trade-off between acceleration and accuracy requirements.

V. DISCUSSIONS

Existing pruning methods. Apart from designing compact
NNs, network sparsification is another promising compression
algorithm to reduce data and computation requirements. Nu-
merous effective methods have been proposed to introduce
sparsity [36–38]. Weight pruning, indeed, holds a prominent
position among these methods. Generally, weight pruning
can be divided into fine-grained pruning and coarse-grained
pruning. Fine-grained pruning allows for precise removal of
unnecessary weights, leading to higher compression rates
compared to coarse-grained pruning. However, pruning indi-
vidual weights may introduce irregularities in the network,
leading to increased computational overhead during inference
due to non-contiguous memory access or additional indexing
operations. Coarse-grained pruning achieves significant com-
putational savings by removing entire neurons, channels, or
layers from a neural network. However, it will introduce non-
negligible accuracy loss. To further reduce memory access and
computation cost, some works apply the joint-way compres-
sion with multiple approaches. A usual case is using compact
models such as MobileNet as the base model to do additional
compression such as quantization or sparsification. However,
compact models are already size-efficient than normal mod-
els, which usually impedes further model compression. For
example, the weight pruning on MobileNet can achieve only
50% ∼ 60% sparsity without paying significant accuracy loss
[36].

Apply FCC algorithm on pruned models. FCC algorithm
is a novel compression method that is designed to reduce
the memory access and mitigate the effects of computational
irregularity. The compatibility between the FCC algorithm and
traditional pruning techniques is an intriguing question that
merits further investigation. In order to thoroughly examine
and confirm this compatibility, we have conducted addi-
tional supplementary experiments. We choose the well-known
fine-grained 2: 4 structured pruning algorithm proposed by
NVIDIA to verify the orthogonal nature of our algorithm
relative to traditional pruning techniques [39]. Specifically,
we have employed the 2: 4 pruning algorithm proposed by
NVIDIA with an accuracy of 79.94% and achieved a 50%
compression ratio, as shown in Tab. IV. Then, we have further
conducted experiments incorporating the FCC algorithm with
the 2: 4 pruning algorithm. The experimental accuracy is
78.81%. This result demonstrates the compatibility between
the FCC algorithm and the 2: 4 structured pruning technique.

TABLE V
ACCURACY COMPARISON OF MOBILEVIT-XS ON CIFAR-10.

Model Method Top-1 Accu.(%)

MobileViT-XS
Original 90.88

FCC algorithm for Conv layers 89.04

This compression method achieves an additional compression
of nearly 50% on top of the initial 50% achieved by the orig-
inal 2: 4 pruning algorithm, without introducing significant
accuracy loss.

Applicability for other DNNs. To verify the applica-
bility of the FCC algorithm, we choose MobileViT-XS, a
variant of lightweight transformer models, for supplementary
experiments. The experimental results, as shown in Tab. V,
illustrate that applying the FCC algorithm to the convolutional
layer of MobileViT-XS will not introduce a large accuracy
loss. Exploring the potential application of our algorithm to
alternative neural networks constitutes a prospective avenue
of our research. We plan to conduct a more comprehensive
analysis in the future to provide additional perspectives on
the advantages and constraints of our approach within a more
expansive framework.

VI. CONCLUSIONS

This paper presents DDC-PIM, a novel co-design of al-
gorithm and architecture that enhances the data capacity of
SRAM without altering its structure. At the algorithm level,
the proposed FCC algorithm leverages the complementary
property of filters to transform adjacent filter pairs into the
bitwise complementary format with negligible accuracy loss.
The DDC-PIM architecture exploits the intrinsic cross-coupled
structures of 6T SRAM cells to double the equivalent data
capacity. Moreover, DDC-PIM adopts a flexible data map-
ping method that adapts to various convolution operations.
Experimental results demonstrate that DDC-PIM yields about
2.84× and 2.69× speedup on MobileNetV2 and EfficientNet-
B0, compared with baseline implementations, and can increase
weight density and area efficiency up to 8.41× and 2.75×,
compared with state-of-the-art SRAM-based PIM.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Clas-
sification with Deep Convolutional Neural Networks,” Commu-
nications of the ACM, vol. 60, no. 6, pp. 84–90, 2017.

[2] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-
v4, inception-resnet and the impact of residual connections on
learning,” in Proceedings of the Association for the Advance-
ment of Artificial Intelligence (AAAI), 2017.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

[4] M. Burchi and R. Timofte, “Audio-Visual Efficient Conformer
for Robust Speech Recognition,” in Proceedings of the Winter
Conference on Applications of Computer Vision (WACV), 2023.

[5] Y. Zhang, W. Chan, and N. Jaitly, “Very deep convolutional
networks for end-to-end speech recognition,” in Proceedings of
the International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2017.

[6] W. Wang, J. Dai, Z. Chen, Z. Huang, Z. Li, X. Zhu, X. Hu,
T. Lu, L. Lu, H. Li et al., “Internimage: Exploring large-scale

12

vision foundation models with deformable convolutions,” in
Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2023, pp. 14 408–14 419.

[7] Y. Fang, W. Wang, B. Xie, Q. Sun, L. Wu, X. Wang, T. Huang,
X. Wang, and Y. Cao, “Eva: Exploring the limits of masked
visual representation learning at scale,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2023, pp. 19 358–19 369.

[8] W. Su, X. Zhu, C. Tao, L. Lu, B. Li, G. Huang, Y. Qiao,
X. Wang, J. Zhou, and J. Dai, “Towards all-in-one pre-training
via maximizing multi-modal mutual information,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2023, pp. 15 888–15 899.

[9] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applica-
tions,” arXiv preprint arXiv:1704.04861, 2017.

[10] M. Tan and Q. Le, “EfficientNet: Rethinking Model Scaling
for Convolutional Neural Networks,” in Proceedings of the
International Conference on Machine Learning (ICML), 2019.

[11] S. Yin, B. Zhang, M. Kim, J. Saikia, S. Kwon, S. Myung,
H. Kim, S. J. Kim, M. Seok, and J.-s. Seo, “PIMCA: A 3.4-Mb
Programmable In-Memory Computing Accelerator in 28nm for
On-Chip DNN Inference,” in Proceedings of the Symposium on
VLSI Circuits (VLSIC), 2021.

[12] S. K. Gonugondla, M. Kang, and N. Shanbhag, “A
42pJ/decision 3.12TOPS/W Robust In-Memory Machine Learn-
ing Classifier with On-Chip Training,” in Proceedings of the
International Solid-State Circuits Conference (ISSCC), 2018.

[13] J.-W. Su, X. Si, Y.-C. Chou, T.-W. Chang, W.-H. Huang, Y.-
N. Tu, R. Liu, P.-J. Lu, T.-W. Liu, J.-H. Wang et al., “A
28nm 64Kb Inference-Training Two-Way Transpose Multibit
6T SRAM Compute-In-Memory Macro for AI Edge Chips,” in
Proceedings of the International Solid-State Circuits Conference
(ISSCC), 2020.

[14] B. Yan, J.-L. Hsu, P.-C. Yu, C.-C. Lee, Y. Zhang, W. Yue,
G. Mei, Y. Yang, Y. Yang, H. Li et al., “A 1.041-Mb/mm2

27.38-TOPS/W Signed-INT8 Dynamic-Logic-Based ADC-less
SRAM Compute-In-Memory Macro in 28nm with Reconfig-
urable Bitwise Operation for AI and Embedded Applications,”
in Proceedings of the International Solid-State Circuits Confer-
ence (ISSCC), 2022.

[15] M. Imani, S. Gupta, Y. Kim, M. Zhou, and T. Rosing, “Dig-
italPIM: Digital-based Processing In-Memory for Big Data
Acceleration,” in Proceedings of Great Lakes Symposium on
VLSI (GLSVLSI), 2019.

[16] M. Imani, S. Gupta, Y. Kim, and T. Rosing, “FloatPIM: In-
Memory Acceleration of Deep Neural Network Training with
High Precision,” in Proceedings of International Symposium on
Computer Architecture (ISCA), 2019.

[17] X. Chen, X. Wang, X. Jia, J. Yang, G. Qu, and W. Zhao,
“Accelerating Graph-Connected Component Computation with
Emerging Processing-In-Memory Architecture,” Transactions
on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), vol. 41, no. 12, pp. 5333–5342, 2022.

[18] Y. Zhang, J. Wang, C. Lian, Y. Bai, G. Wang, Z. Zhang,
Z. Zheng, L. Chen, K. Zhang, G. Sirakoulis et al., “Time-
Domain Computing in Memory Using Spintronics for Energy-
Efficient Convolutional Neural Network,” Transactions on Cir-
cuits and Systems I: Regular Papers (TCAS-I), vol. 68, no. 3,
pp. 1193–1205, 2021.

[19] X. Wang, J. Yang, Y. Zhao, Y. Qi, M. Liu, X. Cheng, X. Jia,
X. Chen, G. Qu, and W. Zhao, “TCIM: Triangle Counting
Acceleration With Processing-In-MRAM Architecture,” in Pro-
ceedings of the Design Automation Conference (DAC), 2020.

[20] T. Kim, Y. Jang, M.-G. Kang, B.-G. Park, K.-J. Lee, and J. Park,
“SOT-MRAM Digital PIM Architecture With Extended Paral-
lelism in Matrix Multiplication,” Transactions on Computers
(TC), vol. 71, no. 11, pp. 2816–2828, 2022.

[21] M. Kang, S. K. Gonugondla, A. Patil, and N. R. Shanbhag,
“A Multi-Functional In-Memory Inference Processor Using a
Standard 6T SRAM Array,” Journal of Solid-State Circuits
(JSSC), vol. 53, no. 2, pp. 642–655, 2018.

[22] M. E. Sinangil, B. Erbagci, R. Naous, K. Akarvardar, D. Sun,
W.-S. Khwa, H.-J. Liao, Y. Wang, and J. Chang, “A 7-nm
Compute-In-Memory SRAM Macro Supporting Multi-Bit In-
put, Weight and Output and Achieving 351 TOPS/W and 372.4
GOPS,” Journal of Solid-State Circuits (JSSC), vol. 56, no. 1,
pp. 188–198, 2020.

[23] Y. Zhang, L. Xu, Q. Dong, J. Wang, D. Blaauw, and
D. Sylvester, “Recryptor: A Reconfigurable Cryptographic
Cortex-M0 Processor With In-Memory and Near-Memory Com-
puting for IoT Security,” Journal of Solid-State Circuits (JSSC),
vol. 53, no. 4, pp. 995–1005, 2018.

[24] X. Si, Y.-N. Tu, W.-H. Huang, J.-W. Su, P.-J. Lu, J.-H. Wang, T.-
W. Liu, S.-Y. Wu, R. Liu, Y.-C. Chou et al., “A 28nm 64Kb 6T
SRAM Computing-in-Memory Macro with 8b MAC Operation
for AI Edge Chips,” in Proceedings of the International Solid-
State Circuits Conference (ISSCC), 2020.

[25] Z. Yue, Y. Wang, Y. Qin, L. Liu, S. Wei, and S. Yin, “BR-CIM:
An Efficient Binary Representation Computation-In-Memory
Design,” Transactions on Circuits and Systems I: Regular
Papers (TCAS-I), vol. 69, no. 10, pp. 3940–3953, 2022.

[26] Y.-D. Chih, P.-H. Lee, H. Fujiwara, Y.-C. Shih, C.-F. Lee,
R. Naous, Y.-L. Chen, C.-P. Lo, C.-H. Lu, H. Mori et al., “An
89TOPS/W and 16.3TOPS/mm2 All-Digital SRAM-Based Full-
Precision Compute-In Memory Macro in 22nm for Machine-
Learning Edge Applications,” in Proceedings of the Interna-
tional Solid-State Circuits Conference (ISSCC), 2021.

[27] F. Tu, Z. Wu, Y. Wang, L. Liang, L. Liu, Y. Ding, L. Liu,
S. Wei, Y. Xie, and S. Yin, “TranCIM: Full-Digital Bitline-
Transpose CIM-based Sparse Transformer Accelerator With
Pipeline/Parallel Reconfigurable Modes,” Journal of Solid-State
Circuits (JSSC), pp. 1–12, 2022.

[28] J. Yue, C. He, Z. Wang, Z. Cong, Y. He, M. Zhou, W. Sun, X. Li,
C. Dou, F. Zhang et al., “A 28nm 16.9-300TOPS/W Computing-
in-Memory Processor Supporting Floating-Point NN Infer-
ence/Training with Intensive-CIM Sparse-Digital Architecture,”
in IEEE International Solid-State Circuits Conference (ISSCC),
2023, pp. 1–3.

[29] S. Liu, P. Li, J. Zhang, Y. Wang, H. Zhu, W. Jiang, S. Tang,
C. Chen, Q. Liu, and M. Liu, “A 28nm 53.8TOPS/W 8b
Sparse Transformer Accelerator with In-Memory Butterfly Zero
Skipper for Unstructured-Pruned NN and CIM-Based Local-
Attention-Reusable Engine,” in IEEE International Solid-State
Circuits Conference (ISSCC), 2023, pp. 250–252.

[30] F. Tu, Z. Wu, Y. Wang, W. Wu, L. Liu, Y. Hu, S. Wei,
and S. Yin, “MulTCIM: A 28nm 2.24µJ/Token Attention-
Token-Bit Hybrid Sparse Digital CIM-Based Accelerator for
Multimodal Transformers,” in IEEE International Solid-State
Circuits Conference (ISSCC), 2023, pp. 248–250.

[31] F. Tu, Y. Wang, Z. Wu, W. Wu, L. Liu, Y. Hu, S. Wei, and S. Yin,
“TensorCIM: A 28nm 3.7nJ/Gather and 8.3TFLOPS/W FP32
Digital-CIM Tensor Processor for MCM-CIM-Based Beyond
NN Acceleration,” in IEEE International Solid-State Circuits
Conference (ISSCC), 2023, pp. 254–256.

[32] A. Shafaei, Y. Wang, X. Lin, and M. Pedram, “FinCACTI:
Architectural Analysis and Modeling of Caches with Deeply-
scaled FinFET Devices,” in Proceedings of the Computer Soci-
ety Annual Symposium on VLSI (ISVLSI), 2014.

[33] M. Le Gallo, R. Khaddam-Aljameh, M. Stanisavljevic,
A. Vasilopoulos, B. Kersting, M. Dazzi, G. Karunaratne,
M. Brändli, A. Singh, S. M. Mueller et al., “A 64-core mixed-
signal in-memory compute chip based on phase-change memory
for deep neural network inference,” Nature Electronics, pp. 1–
14, 2023.

[34] A. Garofalo, G. Ottavi, F. Conti, G. Karunaratne, I. Boybat,
L. Benini, and D. Rossi, “A heterogeneous in-memory com-

13

puting cluster for flexible end-to-end inference of real-world
deep neural networks,” IEEE Journal on Emerging and Selected
Topics in Circuits and Systems (JETCAS), vol. 12, no. 2, pp.
422–435, 2022.

[35] J.-M. Hung, C.-X. Xue, H.-Y. Kao, Y.-H. Huang, F.-C. Chang,
S.-P. Huang, T.-W. Liu, C.-J. Jhang, C.-I. Su, W.-S. Khwa
et al., “A four-megabit compute-in-memory macro with eight-bit
precision based on cmos and resistive random-access memory
for ai edge devices,” Nature Electronics, vol. 4, no. 12, pp.
921–930, 2021.

[36] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model compression
and hardware acceleration for neural networks: A comprehen-
sive survey,” Proceedings of the IEEE, vol. 108, no. 4, pp. 485–
532, 2020.

[37] J. Yang, W. Fu, X. Cheng, X. Ye, P. Dai, and W. Zhao,
“S2Engine: A novel systolic architecture for sparse convolu-
tional neural networks,” IEEE Transactions on Computers (TC),
vol. 71, no. 6, pp. 1440–1452, 2021.

[38] P. Dai, J. Yang, X. Ye, X. Cheng, J. Luo, L. Song, Y. Chen, and
W. Zhao, “SparseTrain: Exploiting dataflow sparsity for efficient
convolutional neural networks training,” in Proceedings of 57th
ACM/IEEE Design Automation Conference (DAC), 2020, pp.
1–6.

[39] A. Mishra, J. A. Latorre, J. Pool, D. Stosic, D. Stosic,
G. Venkatesh, C. Yu, and P. Micikevicius, “Accelerating sparse
deep neural networks,” arXiv preprint arXiv:2104.08378, 2021.

Cenlin Duan received the B.S. degree in Electronic
Science and Technology from University of Elec-
tronic Science and Technology of China, Chengdu,
China, in 2015, and the M.S. degree in Software
Engineering from Xidian University, Xi’an, China,
in 2018. She is currently pursuing the Ph.D. degree
at the School of Integrated Circuit Science and
Engineering, Beihang University, Beijing, China.
Her current research interests include processing-
in-memory architectures and deep learning acceler-
ators.

Jianlei Yang (S’11-M’14-SM’20) received the B.S.
degree in microelectronics from Xidian University,
Xi’an, China, in 2009, and the Ph.D. degree in
computer science and technology from Tsinghua
University, Beijing, China, in 2014.

He is currently an Associate Professor in Bei-
hang University, Beijing, China, with the School
of Computer Science and Engineering. From 2014
to 2016, he was a post-doctoral researcher with
the Department of ECE, University of Pittsburgh,
Pennsylvania, USA. His current research interests

include deep learning accelerators and neuromorphic computing systems.
Dr. Yang was the recipient of the First/Second place on ACM TAU Power

Grid Simulation Contest in 2011/2012. He was a recipient of IEEE ICCD
Best Paper Award in 2013, ACM GLSVLSI Best Paper Nomination in 2015,
IEEE ICESS Best Paper Award in 2017, ACM SIGKDD Best Student Paper
Award in 2020.

Xiaolin He received the B.S. degree in software en-
gineering from Beihang University, Beijing, China,
in 2016. He is currently pursuing the Ph.D. degree
at the School of Computer Science and Engineering,
Beihang University, China. His research interests in-
clude in-memory computing architectures and com-
piler optimization techniques.

Yingjie Qi received the B.S. degree in computer
science and technology from Beihang University,
Beijing, China, in 2020. He is currently pursuing
the Ph.D. degree at the School of Computer Science
and Engineering, Beihang University, China. His
research interests include graph neural networks ac-
celeration, processing-in-memory architectures and
deep learning compilers.

Yikun Wang received the B.S. degree in computer
science and technology from Beihang University,
Beijing, China, in 2022. He is currently working
toward the M.S. degree at the School of Computer
Science and Engineering, Beihang University, China.
His current research interests include computing-in-
memory architectures and deep learning accelera-
tors.

Yiou Wang received the B.S. degree in computer
science and technology from Beijing University of
Technology, Beijing, China, in 2022. He is currently
working toward the M.S. degree at the School of
Computer Science and Engineering, Beihang Uni-
versity, China. His current research interests include
deep learning compilers.

Ziyan He received the B.S. degree in telecommu-
nication engineering from Xidian University, Xi’an,
China,in 2022. He is currently working toward the
M.S. degree at the School of Telecommunication En-
gineering, Xidian University, Xi’an, China. His cur-
rent research interests include processing-in-memory
architecture and domain-specified accelerators.

Bonan Yan is currently an assistant professor at In-
stitute for Artificial Intelligence, Peking University.
He received his PhD degree from Department of
Electrical and Computer Engineering, Duke Univer-
sity in 2020. Hi research interests include circuits
and systems for artificial intelligence chips, VLSI
design for emerging memory, especially processing-
in-memory technology.

He has published more than 40 papers in
renowned academic journals and conferences, in-
cluding ISSCC, Symposium on VLSI Technology,

IEDM, DAC, etc. He actively serves as a TPC member for the conferences,
including DAC, AICAS, and EDTM.

Xiaotao Jia (S’13-M’17) received the B.S. degree
in mathematics from Beijing Jiao Tong University,
Beijing, China, in 2011, and the Ph.D. degree in
computer science and technology from Tsinghua
University, Beijing, China, in 2016. He is currently
an associate professor in Beihang University, Bei-
jing, China. His current research interests include
spintronic circuits and Bayesian learning systems.

14

Xueyan Wang received the B.S. degree in computer
science and technology from Shandong University,
Jinan, China,in 2013, and the Ph.D. degree in com-
puter science and technology from Tsinghua Uni-
versity, Beijing, China, in 2018. From 2015 to 2016,
she was a visiting scholar in University of Maryland,
College Park, MD, USA.

She is currently an Assistant Professor with the
School of Integrated Circuit Science and Engineer-
ing in Beihang University, Beijing, China. Her cur-
rent research interests include processing-in-memory

architectures and hardware security.

Weitao Pan received the B.S. degree from School
of Technical Physics of Xidian University in 2004.
His Ph.D. degree was received from School of
Microelectronics of Xidian University in 2010. Now
he is an associate professor in State Key Laboratory
of Integrated Service Networks of Xidian University.
His current research interests include VLSI design
methods and post-silicon verification.

Weisheng Zhao (Fellow, IEEE) received the Ph.D.
degree in physics from the University of Paris Sud,
Paris, France, in 2007.

He is currently a Professor with the School of
Integrated Circuit Science and Engineering, Beihang
University, Beijing, China. In 2009, he joined the
French National Research Center, Paris, as a Tenured
Research Scientist. Since 2014, he has been a Dis-
tinguished Professor with Beihang University. He
has published more than 200 scientific articles in
leading journals and conferences, such as Nature

Electronics, Nature Communications, Advanced Materials, IEEE Transactions,
ISCA, and DAC. His current research interests include the hybrid integration
of nanodevices with CMOS circuit and new nonvolatile memory (40-nm
technology node and below) like MRAM circuit and architecture design.

Prof. Zhao is currently the Editor-in-Chief for the IEEE TRANSACTIONS
ON CIRCUITS AND SYSTEM I: REGULAR PAPER.

	Introduction
	Background and Motivations
	Requirements from Compact NN Models
	Capacity Issues of SRAM-based PIM

	Methodologies
	Overall Framework
	FCC Algorithm
	FCC-aware Pre-training
	FCC-aware QAT

	Architecture Design of DDC-PIM
	Top level architecture
	PIM core with dual-broadcast input structure (DBIS) and reconfigurable unit
	Merge unit

	Data Mapping
	Standard or pointwise convolution
	Depthwise convolution

	Evaluation Results
	Experimental Setup
	DDC-PIM Implementation Summary
	Comparison with PIM Macros in Prior Works
	Speedup for MobileNetV2 and EfficientNet-B0
	Evaluation of FCC Algorithm

	Discussions
	Conclusions
	Biographies
	Cenlin Duan
	Jianlei Yang
	Xiaolin He
	Yingjie Qi
	Yikun Wang
	Yiou Wang
	Ziyan He
	Bonan Yan
	Xiaotao Jia
	Xueyan Wang
	Weitao Pan
	Weisheng Zhao

