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Abstract—We propose a systematic framework to conduct
design-technology pathfinding for PPAC in advanced nodes. Our
goal is to provide configurable, scalable generation of process
design kit (PDK) and standard-cell library, spanning key scaling
boosters (backside PDN and buried power rail), to explore
PPAC across given technology and design parameters. We build
on [6], which addressed only area and cost (AC), to include
power and performance (PP) evaluations through automated
generation of full design enablements. We also improve the use of
artificial designs in the PPAC assessment of technology and design
configurations. We generate more realistic artificial designs by
applying a machine learning-based parameter tuning flow to
[16]. We further employ clustering-based cell width-regularized
placements at the core of routability assessment, enabling more
realistic placement utilization and improved experimental effi-
ciency. We demonstrate PPAC evaluation across scaling boosters
and artificial designs in a predictive technology node.

I. INTRODUCTION

Due to the slowdown of dimension scaling relative to the
trend of the traditional Moore’s Law, scaling boosters, such
as backside power delivery networks (BSPDN), buried power
rails (BPR), are introduced at advanced technology nodes.
Since scaling boosters play an important role to optimize
power, performance, area and cost (PPAC) of advanced tech-
nologies, accurate and fast evaluations and predictions of
PPAC are critical at an early stage of technology develop-
ment. Also, use of scaling boosters makes evaluations and
predictions of technology more difficult since they introduce
a large number of knobs to contribute PPAC improvement.

Design-Technology Co-Optimization (DTCO) is now a
well-known key element to develop advanced technology
nodes and designs in the modern VLSI chip design. Today’s
DTCO spans assessment and co-optimization across almost all
components of semiconductor technology and design enable-
ment. As described in Figure 1, the DTCO process consists
of three stages: Technology, Design Enablement, and Design.
First, the technology stage includes modeling and simulation
methodologies for process and device technology. Second, the
design enablement stage includes creation of required process
design kits (PDK) for the ensuing design stage; these include
device models, standard-cell libraries, routing technology files
and interconnect parasitic (RC) models. Last, the design stage
includes logic synthesis and place-and-route (P&R) based on
the generated PDKs from the design enablement stage.

To evaluate and predict technology and design at advanced
nodes, all three stages must be correctly performed, and PDKs

Fig. 1. The DTCO process consists of three main stages: Technology, Design
Enablement, and Design. Figure is redrawn from [47].

must be generated from technology and design enablement
stages. However, the DTCO process is not simple: feedback
from design stage to technology stage takes weeks to months
of turnaround time, along with immense engineering efforts.
Also, based on the design feedback, additional PDKs may need
to be generated at the design enablement stage, which requires
additional weeks to months. In order to reduce the turnaround
time and maximize the benefit of the DTCO process, a fast
and accurate DTCO methodology is needed to assess PPAC
with reasonable turnaround time, and to more precisely guide
multi-million dollar decisions at an early stage of technology
development.
Contributions of Our Work. Compared to the previous
works PROBE1.0 [13] and PROBE2.0 [6], our new framework
provides three main technical achievements.
(1) We establish the first comprehensive end-to-end design
and technology pathfinding framework. [6][13] focus on
area and cost without considering power and performance.
Thus, there is a significant discrepancy between [6][13] and
the actual DTCO process in the industry. In this work, we
propose a more complete and systematic PROBE3.0 frame-
work, which incorporates power and performance aspects for
design-technology pathfinding at an early stage of technology
development. PROBE3.0 enables fast and accurate PPAC eval-
uations by generating configurable PDKs, including standard-
cell libraries.
(2) We improve our designs for PPAC explorations. Design
is a critical factor for PPAC explorations, and artificially
generated designs enable us to explore a wider solution
space. We leverage [16] to generate artificial designs. To
create more realistic artificial designs, we develop a machine
learning (ML)-based parameter tuning flow built on [16] to
find the best input parameters for generating such designs.
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Fig. 2. Scope of PROBE-related works. PROBE1.0 [13] and PROBE2.0 [6]
address AC given BEOL and FEOL/BEOL, respectively. PROBE-3nm [7]
studies routability (AC) with sub-3nm technology configurations. PROBE3.0
provides true full-stack PPAC pathfinding with automatic generation of EDA
tool enablements.

Section V details our artificial design generation flow. Further,
cell width-regularization is employed in [6][13] to prevent
illegal placements when swapping neighboring cells to assess
the routability metric, Kth. We propose a clustering-based cell
width-regularization to achieve more realistic utilization (and
faster routability assessment) as described in Section VI.
(3) We demonstrate the PPAC exploration of scaling boost-
ers. We incorporate scaling boosters (BSPDN and BPR) to
support P&R and IR drop analysis flows within the framework,
as detailed in Section IV. Our results show that incorporating
BSPDN and BPR leads to a reduction in power consumption
by up to 8% and area by up to 24% based on our predictive
3nm technology. The area reduction results are consistent with
those reported in previous industry works [10][22][29][31],
which have demonstrated area reductions of 25% to 30%
through the use of BSPDN and BPR techniques.

Due to limited access to advanced technology for academic
research, we build our predictive 3nm technology, named
the PROBE3.0 technology. To calibrate the technology, we
refer to the International Roadmap for Devices and Struc-
tures (IRDS) [40], open-sourced PDKs, and other publica-
tions [2][8][23][37]. We open-source our work, including
process design kits (PDKs), standard-cell libraries, and scripts
for P&R and IR drop analysis; this is available in our
GitHub repository [48]. In Section III, we provide details
on the automated PDKs and library generation flows, while
in Section VII, we present three experiments to demonstrate
the effectiveness of the PROBE3.0 framework for PPAC
pathfinding.

II. RELATED WORK

In this section, we divide the relevant previous works
into the three categories of (i) advanced-technology research
PDKs, (ii) design-technology co-optimization and (iii) scaling
boosters, along with (iv) “PROBE” frameworks.
Advanced Technology Research PDKs. PDKs of advanced
node technologies are highly confidential. Academic research
can be blocked by limited access to relevant information. To
unblock academic research, predictive advanced-node PDKs
have been published. ASAP7 [8] is a predictive PDK for 7nm
FinFET technology that includes standard cells which support
commercial logic synthesis and P&R. FreePDK3 [23][37] and

FreePDK15 [2] are open-source PDKs for 3nm and 15nm
technology. [15] proposes a 3nm predictive technology called
NS3K with nanosheet FETs (NSFET). The authors of [15]
also create 5nm FinFET and 3nm NSFET libraries to compare
power, performance and area.

Design-Technology Co-Optimization. Previous DTCO works
evaluate block-level PPAC and optimize design and tech-
nology simultaneously. [25] proposes UTOPIA to evaluate
block-level PPAC with thermally limited performance, and to
optimize device and technology parameters. [18] proposes a
fast pathfinding DTCO flow for FinFET and complementary
FET (CFET). [3] also proposes a fast and agile technology
pathfinding platform with compact device models to accelerate
the DTCO process. [12] describes power delivery network
pathfinding for 3D IC technology to study tradeoffs between
IR drop and routability. [5] uses ML to predict sensitivities to
changes for DTCO.

Scaling Boosters. As described in Section I, scaling boosters
are used in advanced nodes to maximize benefit of new
technology. BSPDN and BPR are among the most promising
scaling boosters in sub-5nm nodes. [21] carries out a CPU
implementation with BSPDN and BPR in their 3nm tech-
nology, demonstrating a reduction of up to 7X in worst IR
drop. Similarly, [22] investigates BSPDN and BPR at sub-3nm
nodes and finds that they can lead to a 30% reduction in area
based on IR drop mitigation. [4] also explores the impact of
BSPDN and BPR on design, concluding that their use can lead
to a 43% reduction in area with 4X less IR drop. [10] studies
BSPDN configurations with µTSVs, and observes 25% to 30%
reduction in area using BSPDN and BPR. Additionally, [24]
investigates BSPDN with nTSVs and µTSVs and finds that
the average IR drop with BSPDN improves by 69% compared
to traditional frontside PDN (FSPDN). Finally, [27] conducts
holistic evaluations for BSPDN and BPR, demonstrating that
FSPDN with BPR achieves a 25% lower on-chip IR drop,
while BSPDN with BPR achieves an 85% lower on-chip IR
drop with iso-performance and iso-area. In contrast to these
previous DTCO works, here we propose a highly configurable
framework that enables more efficient investigation of scaling
boosters in advanced nodes.

“PROBE” Frameworks. Prior “PROBE” [6][13] works pro-
pose systematic frameworks for assessing routability with
different FEOL and BEOL configurations. Specifically, [13]
begins with an easily-routable placement and increases the
routing difficulty by random neighbor-swaps until the routing
fails with greater than a threshold number of design rule
violations (DRCs). The normalized number of swaps at which
routing failure occurs, denoted by Kth, is a metric used
to measure the inherent routability of the given parameters.
On the other hand, [6] introduces an automatic standard-cell
layout generation using satisfiability modulo theory (SMT) to
support explorations of both FEOL and BEOL configurations.
The authors of [6] also employ machine learning (ML)-based
Kth prediction to expedite the DTCO pathfinding process.
Additionally, [7] employs PROBE2.0 in a routability study
with sub-3nm technology configurations.
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Fig. 3. Automatic standard-cell library and PDK generation (Design En-
ablements) in the PROBE3.0 framework. In addition to technology and
design parameters in the PROBE3.0 framework, other technology-related
inputs are required: (i) Device model cards, (ii) Liberty templates, (iii)
Process/Voltage/Temperature (PVT) conditions, (iv) Interconnect technology
files (ICT or ITF formats), (v) LVS rules, and (vi) SPICE netlists.

III. STANDARD-CELL LIBRARY AND PDK GENERATION

Expediting the DTCO process requires automation of the
standard-cell library and PDK generation flows. Therefore,
the PROBE2.0 framework [6] introduces standard-cell layout
and PDK generation flows and utilizes them for routability as-
sessments. In this work, we extend the PROBE2.0 framework
to include proper electrical models of standard-cell libraries
and interconnect layers for design-technology pathfinding.
Additionally, we enhance the PDK generation flow to support
advanced nodes. While the PROBE2.0 framework solely fo-
cuses on the physical layout of standard cells, the PROBE3.0
framework enables true full-stack PPAC pathfinding through
automated, configurable standard-cell and PDK generation
flows for advanced nodes. To demonstrate use of PROBE3.0
for advanced-node PPAC pathfinding, we use a technology
that incorporates cutting-edge (3nm FinFET) technology pre-
dictions based on the works of [8][40].

A. Overall flow
Figure 3 describes our overall flow of standard-cell and PDK

generation. Technology and design parameters are defined as
input parameters for the flow. Beyond these input parameters,
there are additional inputs required to generate standard-
cell libraries and PDKs, as follows: (i) SPICE model cards,
(ii) Liberty template and PVT conditions, (iii) Interconnect
technology files (ICT/ITF), (iv) LVS rule deck, and (v)
SPICE netlists. Given the inputs, our SMT-based standard-
cell layout generation and GDS/LEF generation are executed
sequentially. Generation of timing and power models (Liberty)
requires additional steps including LVS, parasitic extraction
and library characterization flow. Aside from the standard-cell
library generation, we also generate interconnect models from
ICT/ITF, and P&R routing technology files from technology
and design parameters. The PDK elements that we generate
feed seamlessly into commercial logic synthesis and P&R
tools. Further, to the best of our knowledge, ours is the first-
ever work that is able to disseminate all associated EDA tool
scripts for research purposes.
B. PROBE3.0 Technology

We build our own predictive 3nm technology node, called
the PROBE3.0 technology. Based on [8], we define our FEOL

TABLE I
LAYER DEFINITION IN THE PROBE3.0 TECHNOLOGY.

Layer Name Description

FEOL

WELL N-Well
FIN Fin

GATE Poly (gate)
GCUT Gate cut

ACTIVE Active area for fin definition
NSELECT N-implant
PSELECT P-implant

CA Contact (via) between LIG/LISD and M0
LIG Gate interconnect layer

LISD Source-drain interconnect layer
SDT Source-drain trench (ACTIVE to LIG/LISD)

BOUNDARY Boundary layer for P&R

BEOL M0-M13 Metal layers
V0-V12 Via layers

TABLE II
KEY FEATURES OF THE PROBE3.0 TECHNOLOGY.

Layer Feature Value

FEOL

Fin Pitch 24 nm
Fin Width 6 nm

Gate Pitch (CPP) 45 nm
Gate Width 16 nm

Standard-Cell Height 100 / 120 / 144 nm
Dielectric constant 3.9

BEOL

Aspect Ratio (width/thickness) 1.5
Power/Ground Pin Width (M0) 36 nm

M0/M2/M3 pitch 24 nm
M1 pitch 30 nm

M4-M11 pitch 64 nm
M12-M13 / BM1-BM2 pitch 720 nm

V0-V3 via resistance 50 ohm/via
V4-V11 via resistance 5 ohm/via

V12 via resistance 0.06294 ohm/via
Dielectric constant 2.5-3

and BEOL layers as described in Table I. We assume that all
BEOL layers are unidirectional routing layers. Hence, we first
change M1 to a unidirectional routing layer with vertical pre-
ferred direction, since the work of [8] has a bidirectional M1
routing layer. We add an M0 layer with horizontal preferred
direction below the modified M1 layer, and we add contact
layers V0 and CA which respectively connect between M1
and M0, and between gate/source-drain and M0.

Also, electrical features of technologies are critical to ex-
plore “PP” aspects. Therefore, parasitic extractions of standard
cells and BEOL metal stacks are important steps. To extract
parasitic elements, interconnect technology files are required
to use commercial RC extraction, P&R and IR drop analysis
tools. In this work, we use commercial tools [35][43][46]
for extractions, and each tool has its own technology file
format.1 Interconnect technology files include layer structures
of technology and electrical parameters, such as thickness,
width, resistivity, dielectric constant and via resistance. We
refer to the values of physical features in the 3nm FinFET
technology of [40], such as fin pitch, fin width, gate pitch,
gate width, metal pitch and aspect ratio. We also refer to [40]
for the values for electrical parameters such as via resistance
and dielectric constant. Table II describes key features of the
PROBE3.0 technology.

1The file formats for each tool are unique. The MIPT file format is for
Siemens Calibre [43] for extraction, and is converted to an RC rule file
for standard-cell layout extractions. On the other hand, the ICT and ITF
file formats are for Cadence and Synopsys extraction tools, respectively. We
convert ICT to QRC techfile, and ITF to TLUPlus file, to enable P&R tools
and IR drop analysis.
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TABLE III
LIST OF 41 STANDARD CELLS PER GENERATED LIBRARY.

Cell List Size
Inverter (INV), Buffer (BUF) X1, X2, X4, X8

2-input AND/OR/NAND/NOR (AND2/OR2/NAND2/NOR2) X1, X2
3-input AND/OR/NAND/NOR (AND3/OR3/NAND3/NOR3) X1, X2

4-input NAND/NOR (NAND4/NOR4) X1, X2
2-1 AND-OR-Inverter (AOI21), 2-2 AND-OR-Inverter (AOI22) X1, X2
2-1 OR-AND-Inverter (OAI21), 2-2 OR-AND-Inverter (OAI22) X1, X2

D flip-flop (DFFHQN), D flip-flop with reset (DFFRNQ) X1
2-input MUX/XOR (MUX2/XOR2), Latch (LHQ) X1

C. Improved Standard-Cell Library Generation

We generate standard-cell libraries via several steps illus-
trated in Figure 3: (i) SMT-based standard-cell layout genera-
tion, (ii) generation of GDS and LEF files, (iii) LVS and PEX
flow, and (iv) library characterization flow.
SMT-Based Standard-Cell Layout Generation. In recent
technology nodes, standard-cell architectures use a variety of
pitch values for different layers in order to optimize power,
performance, area and cost (PPAC). To accommodate this,
PROBE3.0 improves the SMT-based layout generation used
in PROBE2.0 to support non-unit gear ratios for M1 pitch
(M1P) and contacted poly pitch (CPP).

Our standard-cell layouts are generated using SPICE
netlists, technology and design parameters from [6]. However,
in PROBE3.0 we change two key parameters: metal pitch (MP)
and power delivery network (PDN). Instead of using MP, we
define parameters for pitch values of each layer. Since M0, M1
and M2 layers are used for standard-cell layouts, we define
M0P, M1P and M2P as pitches of M0, M1 and M2 layers,
respectively. Table 4 shows four layouts of AND2 X1 cells
with four parameter settings. The four standard-cell libraries
(Lib1, Lib2, Lib3 and Lib4) along with their corresponding
parameter sets are used for our experiments in Section VII.
For our PPAC exploration, we generate 41 standard cells for
each standard-cell library as shown in Table III.
GDS/LEF Generation and LVS/PEX Flow. While [6]
only supports LEF generation for P&R, PROBE3.0 generates
standard-cell layouts in both GDS and LEF formats. The
GDS files are used to extract parasitics from standard-cell
layouts and check LVS between layouts and schematics. We
use Calibre [43] to check LVS and generate extracted netlists
for standard cells with intra-cell RC parasitics. Scripts for
GDS/LEF generation and LVS/PEX flows are open-sourced
in [48].
Library Characterization Flow. We perform library char-
acterization to generate standard-cell libraries in the Liberty
format. The inputs to the flow are model cards for FinFET
devices, Liberty template including PVT conditions, and in-
terconnect technology files. We use model cards from [37].
For the Liberty template, we define the PVT conditions, and
the capacitance and transition time indices of (7×7) tables for
electrical models (delay, output transition time, and power).
We use 5, 10, 20, 40, 80, 160, and 320ps as the transition
time indices. For the input capacitance, we obtain the input
pin capacitance Cinv of an X1 inverter, then multiply this
value by predefined multipliers, 2, 4, 8, 16, 24, 32, and 64.
For characterization, we use the PVT corner (TT, 0.7V, 25◦C).

Fig. 4. Example standard cells (AND2 X1) in this work. The cells are gen-
erated by our SMT-based standard-cell layout generation with the following
parameters (Fin, RT , PGpin, CH): (a) Lib1 (2Fin, 4RT , BPR, 5T );
(b) Lib2 (2Fin, 4RT , M0, 6T ); (c) Lib3 (3Fin, 5RT , BPR, 6T ); and (d)
Lib4 (3Fin, 5RT , M0, 7T ).

IV. POWER DELIVERY NETWORK

We study PDN scaling boosters to showcase the DTCO
and pathfinding capability of PROBE3.0. There are two key
challenges of traditional PDNs at advanced technologies:
• High resistance of BEOL [19]: Elevated resistance in

BEOL layers exacerbates IR drop issues, necessitating
denser PDN topologies.

• Routing overheads (routability) [26]: PDN occupies rout-
ing resources that are shared with signal and clock
distribution. The routability and area density impact of
PDN becomes more severe with denser PDN at advanced
nodes.

To overcome these challenges, multiple foundries have be-
gun implementing backside power delivery networks (BSPDN)
and buried power rails (BPR) as scaling boosters in their sub-
5nm technologies. We use these scaling boosters, BSPDN and
BPR, to demonstrate use of PROBE3.0. We establish four
options for PDN parameter in the PROBE3.0 framework: (i)
Frontside PDN without BPR (PFS); (ii) Frontside PDN with
BPR (PFB); (iii) Backside PDN without BPR (PBS); and (iv)
Backside PDN with BPR (PBB). Figure 5 illustrates the four
PDN configurations in the PROBE3.0 framework.

A. Frontside and Backside Power Delivery Network
We have defined realistic structures for both frontside power

delivery networks (FSPDN) and backside power delivery net-
works (BSPDN), and enabled IR drop analysis within our
framework. Table IV shows the configurations for FSPDN
and BSPDN. Since BEOL layers with smaller pitches (e.g.,
24nm-pitch layer) have high resistance, we add power stripes
for every layer. While the work of [6] has multiple options
for FSPDN, the PROBE3.0 framework has only one PDN
structure for FSPDN. Instead, we add other options such as
PFB , PBS and PBB . Furthermore, while the Backside option
in [6] assumes no PDN at the frontside for the BSPDN option,
we add power stripes at the backside for BSPDN in the
PROBE3.0 framework to enable IR drop analysis for BSPDN.

Figures 5(a) and (c) respectively show cross-section views
of PFS and PBS options. The PFS option has M0 power and
ground pins for standard cells, which connect to power stripes
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Fig. 5. Cross-section view of four PDN options in the PROBE3.0 framework:
(a) Frontside PDN (PFS ); (b) Frontside PDN with BPR (PFB); (c) Backside
PDN (PBS ); and (d) Backside PDN with BPR (PBB).

TABLE IV
PDN CONFIGURATIONS FOR FSPDN AND BSPDN. A PAIR OF POWER

(VDD) AND GROUND (VSS) STRIPES ARE PLACED EVERY PITCH, WHILE
MAINTAINING THE SPACING BETWEEN VDD AND VSS. Density DENOTES

THE PERCENTAGE OF ROUTING TRACKS OCCUPIED BY PDN.

PDN Layer Pitch Width Spacing Density
(um) (um) (um) (%)

FSPDN

M3 1.08 0.012 0.508 4
M4 1.152 0.032 0.544 11

M5-M11 5.0 1.0 1.5 20
M12-M13 4.32 1.8 0.36 100

BSPDN BM1-BM2 4.32 1.8 0.36 100

at the frontside of the die. The PBS option uses the same
M0 power and ground pins for standard cells but connects to
power stripes at the backside of the die. For the PBS option,
we employ two backside metal layers (BM1 and BM2) and one
via layer (BV1) between the backside metal layers. The layer
characteristics (width, pitch and spacing) are identical to the
top two layers (M12 and M13) of FSPDN. Additionally, the
M0 pins of standard cells and BSPDN are connected using
Through-Silicon Vias (TSVs). We assume nano-TSVs with
90nm [24] width for the PBS option, and 1:10 width-to-height
aspect ratio. For the PBS option, TSV insertions necessitate
reserved spaces in front-end-of-line (FEOL) layers, including
keepout margins surrounding the TSVs. To accommodate this,
we insert power tap cells prior to standard-cell placement.

B. Frontside and Backside PDN with Buried Power Rail

In advanced nodes, power rails on BEOL metal layers can
be “buried” into FEOL levels with shallow-trench isolation
(STI). Using deep trench and creating space between devices
lowers the resistance of power rails. In addition to the re-
sistance benefits, standard-cell height (area) can be further
reduced with deep and narrow widths of power and ground
pins. Figures 5(b) and (d) respectively show cross-section
views of FSPDN with BPR (PFB) and BSPDN with BPR
(PBB) options. In the case of PFB , connections between
FSPDN and BPR are made through nano-TSVs with the same
90nm width as in the PBS option (but, with 1:7 aspect ratio).
These nano-TSVs also necessitate insertion of reserved spaces.

Fig. 6. Power tap cells for (a) PFB and (b) PBS .

C. Power Tap Cell Insertion
Although use of BSPDN and BPR can reduce area and

mitigate IR drop problems, connecting frontside layers to
BSPDN and/or BPR remains a critical challenge. To establish
“tap” connections from frontside metals to BPR, or from
backside to frontside metals, space must be reserved on device
layers – e.g., [21] proposes power tap cells for the connection
between BPR to MINT (M0) layers. More frequent “taps” will
mitigate IR drop problems, but occupy more placement area.
In PROBE3.0, we define two types of power tap cells for the
PFB and PBS options. Tap cells for PFB connect BPR to M1,
and tap cells for PBS connect BM1 to M0. By contrast, PFS
and PBB do not require power tap cells.
Power Tap Cell Structure. Figure 6(a) shows a structure of
power tap cells for PFB . Double-height power tap cells for
PFB have 2CPP cell width. The connection between BPR and
M0 is through a 1×2 via array, and the two M1 metals are
aligned with M1 vertical routing tracks. There are also two
types of power tap cells for PFB according to starting power
and ground pins: power/ground pins on the double-height
power tap cells are ordered as Power-Ground-Power (VDD-
VSS-VDD) or Ground-Power-Ground (VSS-VDD-VSS). On
the other hand, Figure 6(b) shows a structure of power tap cells
for PBS . While power tap cells for PFB have 2CPP width,
double-height power tap cells for PBS have 6CPP width due to
the ∼90nm width of nano-TSVs [24]. We also assume a 50nm
keepout spacing around nano-TSVs. Similar to power tap cells
for PFB , there are two types of double-height power tap cells
for PFB , Power-Ground-Power and Ground-Power-Ground.
Power Tap Cell Insertion Scheme. Power tap cell insertion
affects routability and IR drop, and hence affect PPAC of
designs. In this work, we define five tap cell insertion pitches
and two power tap insertion schemes, as follows.
• Ipitch: 24, 32, 48, 96 and 128CPP
• Ischeme: Column and Staggered
Ipitch and Ischeme denote tap cell insertion pitch and tap

cell insertion scheme, respectively. Tap cell insertion scheme
Column places double-height power tap cells on every two
placement rows with the given tap cell pitch. Conversely, tap
cell insertion scheme Staggered places double-height power
tap cells on every four placement rows with the given tap cell
pitch. Figure 7 shows four power tap cell insertion results for
PFB and PBS with Column and Staggered insertion schemes.

D. IR Drop Analysis Flow
We develop two IR drop analysis flows for FSPDN and

BSPDN. Figure 8(a) presents our IR drop analysis flow for
FSPDN. After P&R, we generate DEF and SPEF files for
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Fig. 7. Four power tap cell insertion results. (a) Power tap cells for PFB

(2CPP width) with Column; (b) power tap cells for PFB with Staggered; (c)
power tap cells for PBS (6CPP width) with Column; and (d) power tap cells
for PBS with Staggered.

Fig. 8. IR drop analysis flow for (a) FSPDN and (b) BSPDN. For the IR
drop flow for BSPDN, we delete all the signal and clock routing after P&R
and build power stripes for BSPDN.

routed designs using a commercial P&R tool to perform
standalone vectorless dynamic IR drop analysis. Additionally,
an interconnect technology file (QRC techfile) is needed for
RC extraction as input for the IR drop analysis flow. In
contrast, Figure 8(b) depicts our IR drop analysis flow for
BSPDN. After P&R, we only create a SPEF file from routed
designs. We then remove all routed signals and clocks from the
P&R database and construct new power stripes for BSPDN.
Since the standalone IR drop analysis tool obtains power
stripe information from a DEF file, we generate a DEF file
after creating power stripes on the backside. There are two
backside metal layers, BM1 and BM2. When creating PDN
on backside metal layers, we consider M1 as BM1 and M2 as
BM2, respectively. For RC extraction with BSPDN, the QRC
techfile must be scaled for backside metals since we assume
BM1 and BM2 have the same pitches as M12 and M13. Full
details are visible in open-source scripts at [48].

V. ENHANCED ARTIFICIAL DESIGNS FOR PPAC
EXPLORATION

The use of specific real designs in DTCO and PPAC
exploration can bring risk of biases and incorrect decisions
regarding technology configurations (e.g., cell architecture or
BEOL stack). To avoid such biases, the PROBE1.0 [13] bases
its routability assessment on a mesh-like netlist topology, and
PROBE2.0 [6] similarly uses a knight’s tour-based topology.
However, these artificial topologies have two main limitations
as we bring “PP” aspects of PPAC into the picture. First, they
are highly regular and cannot capture a wide range of circuit
types. Second, they do not mimic timing and power properties
of real netlists, as they target routability assessment without
regard to timing path structure.

TABLE V
DEFINITION OF TOPOLOGICAL PARAMETERS IN ANG [16][30].

Parameter Definition
Ninst (T1) Number of instances.
Nprim (T2) Number of primary inputs/outputs.

Davg (T3) Average net degree. The net degree of a net is the number of
terminals of the net.

Bavg (T4) Average size of net bounding box. The placed (or routed) layout is
divided into a bin grid where each bin contains

√
Ninst instances.

Tavg (T5)
Average depth of timing paths. The depth of a given timing endpoint
is the maximum number of stages in any fanin combinational path
of that endpoint. Tavg is the average of all endpoint depths.

Sratio (T6)
Ratio of the number of sequential cells to the total number of cells.
Sratio equals to number of sequential cells over total number of
instances.

PROBE3.0 overcomes these limitations by generating arti-
ficial but realistic netlists with the Artificial Netlist Generator
(ANG) of [16][30], for use in PPAC studies. We use the six
topological parameters of ANG (see Table V) to generate and
explore circuits with various sizes, interconnect complexity,
routed wirelengths and timing. Moreover, we apply machine
learning (AutoML) to improve the match of generated artificial
netlists to targeted (real) netlists.

A. Comparison of ANG and Real Designs
In this subsection, we study four real designs from Open-

Cores [41] and the corresponding artificial netlists generated
by ANG [16]. Each design is taken through commercial
logic synthesis and P&R tools [44][45] in the PROBE3.0
technology, to obtain a final-routed layout. For AES, JPEG,
LDPC and VGA, we respectively use target clock periods of
0.2ns, 0.2ns, 0.6ns and 0.2ns, and utilizations of 0.7, 0.7,
0.2 and 0.7. We then extract the six topological parameters
from the routed designs and use these parameters to generate
artificial netlists with ANG.

We introduce a Score metric to quantify similarity between
artificial and real netlists, as defined in Equation (1).

Score = ΠN
i=1max(

T targeti

T outi

,
T outi

T targeti

) (1)

where: T targeti = Ti in target parameter set
T outi = Ti of output parameter set
N = number of parameters (N = 6)

In Equation (1), target and output parameters are elements
T targeti and T outi of the target and output parameter sets. For
each parameter, we calculate the discrepancy (ratio) between
target and output values. The Score value is the product
of these ratios. Ideally, if output parameters are exactly the
same as target parameters, Score is 1. Larger values of Score
indicate greater discrepancy between ANG-generated netlists
and the target netlists.

Table VI shows the input parameters, extracted parameters
and Score metric in our comparison of real and artificial
designs. The causes of discrepancy are complex, e.g., [16] has
steps that heuristically adjust average depths of timing paths
Tavg and the ratio of sequential cells Sratio. Also, performing
P&R will change the number of instances Ninst, the average
net degree Davg, and the routing which determines Bavg .
Hence, it is difficult to identify the input parameterization
of ANG that will yield artificial netlists whose post-route
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TABLE VI
TOPOLOGICAL PARAMETERS FOR REAL NETLISTS FROM OPENCORES [41]

AND ARTIFICIAL NETLISTS GENERATED BY [16]. DESIGN NAMES
FOLLOWED BY ∗ INDICATE ANG-GENERATED ARTIFICIAL NETLISTS.

Design Parameters Score
Ninst Nprim Davg Bavg Tavg Sratio

AES 12318 394 3.28 0.55 7.98 0.04 -
JPEG 70031 47 3.09 0.21 10.36 0.07 -
LDPC 77379 4102 2.85 1.00 12.94 0.03 -
VGA 60921 185 3.71 0.42 8.25 0.28 -

AES* 10371 394 3.28 0.79 5.19 0.13 8.53
JPEG* 63185 47 3.16 0.70 6.97 0.15 12.03
LDPC* 58699 4106 3.10 0.78 6.96 0.13 14.8
VGA* 64412 188 3.32 0.26 6.39 0.25 2.8

properties match those of (target) real netlists. We use machine
learning to address this challenge.

B. Machine Learning-Based ANG Parameter Tuning
We improve the realism of generated artificial netlists with

ML-based parameter tuning for ANG. Figure 9(a) shows the
training flow in the parameter tuning. First, to generate training
data, we sweep the six ANG input parameters to generate
21,600 combinations of input parameters, as described in
Table VII. Second, we use ANG with these input parameter
combinations to generate artificial gate-level netlists. Third, we
perform P&R with the (21,600) artificial netlists and extract
the output parameters. The extracted output parameters are
used as output labels for the ML model training. We use the
open-source H2O AutoML package [39] (version 3.30.0.6) to
predict the output parameters; the StackedEnsemble AllModels
model consistently returns the best model. The model training
is a one-time overhead which took 4 hours using an Intel
Xeon Gold 6148 2.40GHz server. Executing commercial P&R
required just over 7 days in our academic lab setting, and is
again a one-time overhead.2

Figure 9(b) shows our inference flow. First, we define
ranges around the target parameter and sweep the parameters
to generate multiple combinations of input parameters as
candidates, which are shown in Table VII. Second, we use
our trained model to predict the output parameters from each
input parameter combination. Note that although there are
12.3M combinations as specified in the rightmost two columns
of Table VII, this step requires less than 10 minutes on an
Intel Xeon Gold 6148 2.40GHz server.3 Third, we calculate
a predicted Score per each input parameter combination, and
then choose the parameter combination with lowest predicted
Score. Finally, we use ANG and the chosen parameter com-
bination to generate an artificial netlist for P&R and PPAC
explorations.

2The average P&R runtime on our 21,600 ANG netlists is 0.4 hours on
an Intel Xeon Gold 6148 2.40GHz server. The data generation used 50
concurrently-running licenses of the P&R tool, with each job running single-
threaded. (21,600 × 0.4 / 50 / 24 ∼= 7.2 days. With multi-threaded runs,
we estimate that data generation would have taken 3 to 4 days.)

311 × 11 × 21 × 21 × 11 × 21 = 12,326,391. We apply simple filtering
based on lower and upper bounds, to avoid parameter values for which ANG
does not work properly. Specifically, parameter values are restricted to be
within: 0 < Bavg ≤ 1.0; 0 < Sratio ≤ 1.0; 1 < Davg < 2.6; and
3 < Tavg . For example, the AES testcase then has ∼3M input parameter
combinations, and predicting output parameters for all of these takes 441
seconds of runtime.

TABLE VII
PARAMETER SETS FOR TRAINING AND TESTING. WE TRAIN OUR ML

MODEL WITH ANG INPUT PARAMETERS AND POST-P&R OUTPUT
PARAMETERS. THE TOTAL NUMBER OF DATAPOINTS IS

4× 6× 6× 5× 5× 6 = 21600. TESTING IS PERFORMED IN THE RANGES
AROUND GIVEN TARGET PARAMETERS, ACCORDING TO THE STEP SIZES.

Parameter Training Value Testing Value
Range Step

Ninst (T in
1 ) 10000, 20000, 40000, 80000 T target

1 ± 500 100
Nprim (T in

2 ) 100, 200, 500, 1000, 2000, 4000 T target
2 ± 5 1

Davg (T in
3 ) 1.8, 2.0, 2.2, 2.4, 2.6 T target

3 ± 0.2 0.02
Bavg (T in

4 ) 0.70, 0.75, 0.80, 0.85, 0.90, 0.95 T target
4 ± 0.2 0.02

Tavg (T in
5 ) 6, 8, 10, 12, 14, 16 T target

5 ± 10 2
Sratio (T in

6 ) 0.2, 0.4, 0.6, 0.8, 1.0 T target
6 ± 0.2 0.02

Fig. 9. ML-based parameter tuning for ANG.

Table VIII shows the benefit from ML-based ANG param-
eter tuning. Columns 2-5 show parameters from real netlists,
which we use as target parameters. The trained ML model
and the inference flow produce the tuned parameters for ANG
shown in Columns 6-9 of the table, and corresponding results
are shown in Columns 10-13. The average Score decreases
from to 4.89 from the original value of 8.87 for ANG without
ML-based parameter tuning (Table VI).

The ML-enabled improvement of realism in ANG netlists
can be seen using t-SNE visualization [20] from P&R results.
We perform P&R for the four real designs by sweeping initial
utilization from 0.6 to 0.8 with a 0.01 step size, and target
clock period from 0.15 to 0.25ns with a 0.01ns step size;
this results in 21 × 11 = 231 P&R runs. (For LDPC, we
sweep utilization from 0.1 to 0.3 with a 0.01 step size, and
clock period from 0.55 to 0.65ns with a 0.01ns step size.)
We then perform P&R for artificial netlists with and without
our parameter tuning flow, with 0.7 utilization (0.2 for LDPC)
and 0.2ns (0.6ns LDPC) target clock period. Figure 10 shows
t-SNE visualization4 of the real and artificial designs. The
231 real datapoints per design form well-defined clusters. In
Figure 10(a), the datapoints of the artificial AES and JPEG
designs are located in the corresponding designs’ clusters.
However, the artificial LDPC and VGA designs are not close
to the corresponding clusters of real designs. By contrast,

4For t-SNE visualization, we collect ten features from P&R results: Number
of instances, number of nets, number of primary input/output pins, average
fanout, number of sequential cells, wirelength, area, number of design rule
violations, worst negative slack, total negative slack, and number of failing
endpoints.
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TABLE VIII
TOPOLOGICAL PARAMETERS FOR TARGET, INPUT AND OUTPUT NETLISTS. THE DESIGN NAMES FOLLOWED BY ∗∗ INDICATE ANG-GENERATED

ARTIFICIAL NETLISTS WITH ML-BASED ANG PARAMETER TUNING.

Parameter Parameters of Target Netlists ANG Input Parameters (ML Inference) Parameters from Artificial Netlists
AES JPEG LDPC VGA AES JPEG LDPC VGA AES** JPEG** LDPC** VGA**

Ninst 12318 70031 77379 60921 12718 69531 76979 60421 10200 64296 64796 65113
Nprim 394 47 4102 185 390 42 4106 199 394 46 4110 202
Davg 3.28 3.09 2.85 3.71 3.40 3.10 3.03 3.53 3.26 3.13 3.18 3.30
Bavg 0.55 0.21 1.00 0.42 0.49 0.31 1.98 0.28 0.72 0.21 0.73 0.36
Tavg 7.98 10.36 12.94 8.25 13.98 18.36 20.94 12.25 8.01 9.29 11.64 8.54
Sratio 0.04 0.07 0.03 0.28 0.01 0.27 0.01 0.16 0.11 0.20 0.13 0.16
Score - - - - - - - - 4.39 3.59 2.77 8.81

Fig. 10. Comparison between real and artificial designs by t-SNE [20].
(a) t-SNE visualization for real and artificial (ANG) designs without our
parameter tuning flow. (b) Real and artificial (ANG) designs with our ML-
based parameter tuning flow. Design names followed by ∗ indicate artificial
designs.

Figure 10(b) shows that with our ML-based ANG parameter
tuning, datapoints of all four artificial designs are located
within the corresponding clusters of real designs. This sug-
gests that the ML-based ANG parameter tuning helps create
artificial netlists that better match targeted design parameters
– including parameters that are relevant to PPAC exploration.

VI. CELL WIDTH-REGULARIZED PLACEMENTS FOR
MORE REALISTIC ROUTABILITY ASSESSMENT

Recall that in the PROBE approach, routability (“AC”) is
evaluated using the K-threshold (Kth) metric [13]. That is,
given a placed netlist, routing difficulty is gradually increased
by iteratively swapping random pairs of neighboring instances.
The cell-swaps progressively “tangle” the placement until it
becomes unroutable (> 500 DRCs post-detailed routing). The
number of swaps K – expressed as a multiple of the instance
count – at which routing fails is the Kth metric. Larger Kth

implies greater routing capacity or intrinsic routability.
Both PROBE1.0 [13] and PROBE2.0 [6] enable the study

of real netlists through the concept of a cell width-regularized
placement. In this approach, combinational cells are inflated
(by LEF modification) to match the maximum width among
all the combinational cells in the cell library. This process,
called cell width-regularization, prevents illegal placements
(i.e., cell overlaps due to varying widths) from arising due to
neighbor-swaps during Kth evaluation. Unfortunately, while
cell width-regularization permits real designs to be placed and
then tangled by random neighbor-swaps, it also forces low
utilizations that harm the realism of the study. (Moreover, high
whitespace leads to high Kth values that require more P&R
runs to determine.)

We now describe a clustering-based cell width-
regularization methodology that generates placements
with realistic utilizations, based on real designs. Our

Fig. 11. Two example clustered cells NAND X1 AND X1, and
INV X1 OR X1 in clustering-based cell width-regularization. (a) Schematic
view, and (b) physical layout view assuming Lib2. Here, the maximum
clustered cell width wmax is 12CPP.

experiments in Section VII-D show that clustering-based
cell width-regularization obtains the same Kth rank-ordering
of design enablements, with less P&R expense, than the
previous cell width-regularization approach.

A. Clustering-Based Cell Width-Regularization
We propose clustering-based cell width-regularization using

bottom-up hypergraph clustering, as detailed in Algorithm 1.
In the following, we refer to standard cells of the original
netlist as cellsorig, and (clustered) cells of the clustered netlist
as cellsclustered.
Clustered Hypergraph Creation. For a given design, we
first obtain a netlist hypergraph using OpenDB [42]. We
perform cell width-regularized clustering, where cells cellsorig
(vertices) in the original netlist hypergraph are clustered such
that clustered cell width5 does not exceed wmax, the maximum
cell width in the library. The inputs to cell width-regularized
clustering are (i) a hypergraph H(V,E,W ) with vertices V ,
hyperedges E and cell widths W , (ii) the maximum cell width,
wmax, and (iii) a limit on number of clustering iterations,
Niter.6 The output is a clustered hypergraph (Hout). We use
First-Choice (FC) clustering [14] and refer to our clustering
method as cell width-regularized clustering with FC, or CWR-
FC.

CWR-FC first sorts vertices in increasing order of cell
widths (Line 4) and initializes cluster assignments (Line 6).
The cluster assignment cmap is the mapping of vertices
to clusters (Vk to Vk+1). Clustered cell widths Wk+1 are
initialized in Line 7. Next, vertices are traversed in order to

5Given vertex set V with cell widths W , clustering vertices vi, vj ∈ V
yields a clustered cell with width W [vi] + W [vj ].

6In our experiments, we set Niter = 20. However, the cell width-
regularized clustering is strongly constrained by wmax, and we observe on
our testcases that clustering stops after ∼ 3 iterations.
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Algorithm 1 Cell width-regularization by clustering.
Inputs: HypergraphH(V,E,W ), Maximum cell widthwmax, Number of iterations
Niter

Outputs:, Clustered hypergraph Hout(Vout, Eout,Wout)

1: Ncluster ← |V |
2: Hypergraph at iteration 0, H0(V0, E0,W0)← H(V,E,W )
3: for k ← 0; k < Niter ; k + + do
4: Vordered ← Sorted Vk in increasing order of Wk

5: visited[v]← false ∀v ∈ Vk

6: Cluster assignments, cmap[v]← v ∀v ∈ Vk

7: Clustered cell widths, Wk+1 ← Wk

8: for vi ∈ Vordered do
9: if visited[vi] == true or vi is a sequential cell then

10: continue
11: Vneighbor ← Find adjacent vertices of vi
12: Best cluster score, φbest ← 0; Best cluster candidate, vbest ← −1
13: for vj in Vneighbor do
14: if Wk[vi] +Wk+1[cmap[vj ]] ≤ wmax then

15: φ(vi, vj)←
∑

vi∈e,vj∈e
weighte
|e|−1

Wk[vi]+Wk+1[cmap[vj ]]
// Cluster Score

16: if φ(vi, vj) > φbest then vbest ← vj

17: if vbest == −1 then
18: Wk+1[vi]← Wk[vi]
19: visited[vi]← true
20: else
21: cmap[vi]← cmap[vbest]
22: Wk+1[vbest]← Wk[vi] +Wk+1[cmap[vbest]]
23: visited[vi]← true; visited[vbest]← true
24: Ncluster ← Ncluster − 1

25: if Ncluster == |Vk−1| then
26: break
27: else
28: Hk+1(Vk+1, Ek+1,Wk+1)← Build clustered hypergraph using cmap
29: Hc ← Clustered hypergraph generated at last iteration
30: Hout ← Best-fit bin packing on Hc

31: Return Hout

perform pairwise clustering; note that only combinational cells
are considered for clustering (Line 8). For each vertex vi that
is traversed, we find its neighbors vj in the hypergraph (Line
11). Each vj is considered only if it does not violate the wmax
limit (Line 14); a cluster score φ(vi, vj) is calculated in Line
15. In the cluster score, weighte is the weight of hyperedge e
and Wk[vi] is the width of vertex vi. The numerator aims
to cluster vertices that are strongly connected (i.e., share
many hyperedges) while the denominator promotes clusters
of similar widths. If all neighboring vertices vj violate the
threshold width constraint, then no new clusters are formed
(Lines 17-19). Otherwise, the vertex with the highest cluster
score is selected, and a new cluster is created (Lines 21-
24). After all vertices are visited, we construct the clustered
hypergraph and proceed with subsequent iterations (Line 28).
If no further clustering is feasible, the process terminates (Line
26).

Note that CWR-FC clusters vertices that are adjacent to each
other in the hypergraph. However, if all pairings of vertices
selected for clustering violate the wmax width constraint,
the algorithm can stall (Line 25). To address this issue and
improve the uniformity of cluster contents, we perform best-
fit bin-packing [11] with bins having capacity wmax (Line
30).7 Finally, the output is the clustered hypergraph Hout.
Clustered Netlist Creation. We convert the clustered hyper-
graph Hout into Verilog using OpenDB. Then, to run P&R we
require a new LEF file that captures the cluster assignments

7The choice of best-fit is motivated by its simplicity and intuitiveness. Best-
fit also enjoys a better approximation ratio compared to first-fit or next-fit
alternatives [11].

Fig. 12. Cell width distributions pre-clustering (i.e., original netlist) and post-
clustering (i.e., by CWR-FC) for (a) AES, (b) JPEG, (c) LDPC and (d) VGA.

from cell width-regularized clustering. I.e., we require a new
netlist over the clusters, cellsclustered.

Figure 11(a) provides a schematic view of two clustered
cells, NAND X1 AND X1 and INV X1 OR X1. These cor-
respond to two clusters of original cells: NAND X1 and
AND X1, and INV X1 and OR X1. How the clustered cells
are composed from original standard-cell layouts is shown in
Figure 11(b). In this case, a non-integer gear ratio between
M1P (30nm) and CPP (45nm) forces cells in cellsclustered to
be positioned at even CPP sites, to avoid M1 pin misalignment.
In the first cluster, NAND X1 width (3CPP) is an odd number
of CPPs, necessitating addition of 1CPP padding between
the two cells. In the second cluster, the total cell width is
less than wmax, so whitespace is included along with the
clustered original cells. We distribute whitespace uniformly,
(i) at the sides of cellsclustered and (ii) between consecutive
cells in each cluster, as illustrated in Figure 11(b). During this
whitespace allocation, we first allocate whitespace at junctions
(between consecutive original cells) where no extra padding
has been previously allocated.

B. Performance of Clustered Cell Width-Regularization
We now document advantages of our proposed clustered

cell width-regularization, i.e., more realistic utilization in P&R
blocks, and realistic topological and wirelength characteristics
of P&R outcomes.
Comparison to Previous Cell Width-Regularization. Fig-
ure 12 compares cell width distributions for instances in the
clustered netlist and instances in the original netlist. The blue
lines show the distribution of cell widths in the original netlist,
where smaller cell widths predominate. The red lines indicate
that CWR-FC increases the prevalence of cells with larger
widths through creation of the merged cellsclustered. The
larger amount of actual cell widths in cellsclustered leads to
smaller amounts of added whitespace needed to regularize cell
widths.

As anticipated, clustered cell width-regularization signifi-
cantly reduces whitespace in the placed designs. With Lib2 and
FSPDN for P&R, placing cell width-regularized instances used
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TABLE IX
COMPARISON OF THE WIDTH-REGULARIZED CLUSTERED NETLIST

PRODUCED BY CWR-FC ([C]) WITH THE ORIGINAL FLAT NETLIST ([A])
AND A WIDTH-REGULARIZED CLUSTERED NETLIST INDUCED FROM A

PLACEMENT OF THE FLAT NETLIST ([B]).

Stage Design #Insts Area (um2) Util WL (um) Avg. FO

[A]

AES 12318 426.254 0.83 30849 2.32
JPEG 70031 2781.981 0.73 112605 2.15
LDPC 77379 6250.563 0.43 567630 1.85
VGA 60921 4238.205 0.76 208845 2.71

[B]

AES 4275 426.254 0.83 32632 1.96
JPEG 23281 2781.981 0.73 111241 1.86
LDPC 42383 6250.563 0.43 585923 1.43
VGA 40084 4238.205 0.76 189612 2.14

[C]

AES 4661 426.254 0.83 32679 2.08
JPEG 25961 2781.981 0.73 143693 1.76
LDPC 30636 6250.563 0.43 637417 1.29
VGA 32768 4238.205 0.76 220915 2.02

in PROBE2.0 at 90% density achieves actual utilizations of
0.21, 0.21 and 0.40 for AES, JPEG and VGA, respectively. For
LDPC, placing cell width-regularized instances at 30% density
achieves actual utilization of 0.08. By contrast, with clustered
cell width-regularization, we achieve actual utilizations of
0.71, 0.74 and 0.71 for AES, JPEG and VGA, respectively. For
LDPC, we achieve actual utilization of 0.23. In this way, our
new methodology enables Kth evaluation by iterated neighbor-
swapping while preserving realistic placement utilizations.
Topological and Wirelength Comparisons to Real Designs.
We have confirmed additional similarities between between
clustered cell width-regularized netlists and the original real
designs. Table IX compares characteristics of our clustering-
based cell width-regularized netlists and placements ([C]),
versus analogous characteristics of real netlists and placements
([A]). We also implement another plausible clustering method-
ology, which is to induce clusters from a placement of the
original design ([B]). In [B], clusters from the placement are
induced by (i) traversing combinational cells left-to-right in
each standard cell row, and (ii) clustering maximal contiguous
sets of cells without exceeding Wmax.

We run P&R using Lib2 and PFS for PDN, maintaining
the same core area and utilization. Clustering decreases the
number of instances and average fanouts for [B] and [C],
relative to [A]. However, wirelengths exhibit no significant
changes. The similarities between [A], [B] and [C] suggest
that our CWR-FC methodology can preserve netlist properties
relevant to P&R outcomes, with more realistic placement
utilizations.

VII. EXPERIMENTAL SETUP AND RESULTS

We have extensively studied the design-technology pathfind-
ing capability of the PROBE3.0 framework using the
PROBE3.0 technology. In this section, we report three main
experiments. Expts 1 and 2 show PROBE3.0’s capability to
assess PPAC trends and tradeoffs, using real and artificial de-
signs respectively. Expt 3 performs assessments of routability
and achievable utilization.

In Expts 1 and 2, we analyze four tradeoffs. (i) We present
Performance-Power plots that quantify tradeoffs between per-
formance (maximum frequency) and power. (ii) We present
Performance-Area plots to quantify the tradeoffs between
performance and area. (iii) To address PP aspects, we use
the Energy-Delay Product (EDP) [18] as a single metric

for power and performance. EDP-Area plots depict tradeoffs
between performance/power and area. (iv) We present IR
drop-Area plots to demonstrate tradeoffs between IR drop
and area. We also compare results obtained using artificial
designs with those obtained using real designs. Expt 3 assesses
routability and achievable utilization using our clustering-
based cell width-regularized placements.

A. Experimental Setup
Based on the definition of technology and design parameters

in [6], we define ten technology parameters and eight design
parameters as the input parameters for the PROBE3.0 frame-
work. Table X describes the definitions of these parameters and
the options used in our experiments. Also, we use commercial
tools for PDK generation, logic synthesis, P&R, and IR
drop analysis. We use open-source tools for GDT-to-GDS
translation [38] and SMT solver [49]. Table XI summarizes
the tools and versions that we use in our experiments.
Criteria for Valid Result. In our experiments, for given
Design, PDN and technology parameters, we perform logic
synthesis, P&R and IR drop analysis with multiple sets of
parameters including Ipitch, Ischeme, Util and Clkp. We use
24, 32, 48, 96 and 128 CPP for Ipitch, and Column and
Staggered for Ischeme. For Util, we use values ranging from
0.70 to 0.94 with a step size of 0.02, and for Clkp, we use
values ranging from 0.12 to 0.24ns with a step size of 0.02ns.
Importantly, after the implementation and the analysis steps,
we filter out results that are deemed invalid – in that they
are likely to fail signoff criteria even with additional human
engineering efforts.

To be precise, a “valid” result must satisfy three conditions:
(i) the worst negative slack is larger than -50ps; (ii) the
number of post-route DRCs is less than 500; and (iii) the
99.7 percentile of the effective instance voltage is greater than
80% of the operating voltage (Vop). To assess (iii), we use
a commercial IR drop analysis tool [36] to measure vector-
less dynamic IR drop, and calculate the effective instance
voltage as Vop − Vdrop per each instance, where Vop is an
operating voltage (0.7V) and Vdrop is the worst voltage drop
per instance. We take the 99.7 percentile of effective instance
voltage as representative of IR drop for the post-P&R result,
as it is within three standard deviations from the mean per the
empirical rule [28].

B. Expt 1 (PPAC Exploration with Real Designs)
Performance versus Power. We first present PPAC explo-
rations that show tradeoffs between performance and power.
(We assume that area is proportional to cost, since chip area
is closely related to cost.) In this study, we show results for
JPEG with four standard-cell libraries (Lib1-4). Also, we use
four PDN structures, PFS , PFB , PBS and PBB , and measure
improvements due to scaling boosters relative to the traditional
frontside PDN (PFS).

Figure 13(a) gives Performance-Power plots that show
tradeoffs between performance and power for JPEG, and
improvements from the traditional FSPDN. We calculate the
maximum achievable frequency (fmax) as 1/(Clkp−WNS)
where Clkp is the target clock period and WNS is the worst
negative slack. Also, we add up leakage and dynamic power



11

TABLE X
TECHNOLOGY AND DESIGN PARAMETERS IN OUR EXPERIMENTS.

Type Parameter Description Option

Technology

Fin The number of fins for devices of standard cells. 2, 3
CPP Contacted poly pitch for standard cells in nm. 45
M0P M0 (horizontal) layer pitch in nm. 24
M1P M1 (vertical) layer pitch in nm. 30
M2P M2 (horizontal) layer pitch in nm. 24
RT The number of available M0 routing tracks in standard cells. 4, 5

PGpin Power/ground pin layer for standard cells. BPR, M0

CH
Cell height of standard cells, expressed as a multiple of M0P . For example, when the cell height in
nm is 120nm and M0P is 24nm, the cell height (CH) is 5. The cell height value is calculated
as RT + 2 for M0 PGpin and RT + 1 for BPR PGpin.

5, 6, 7

MPO The number of minimum pin openings (access points). 2

DR

Design rules. We define the same grid-based design rules, minimum area rule (DR-MAR), end-of-line
spacing rule (DR-EOL) and via spacing rule (DR-VR) as [6]. We use the EUV-tight (ET ) design
rule set, which includes DR-MAR = 1, DR-EOL = 2 and DR-VR = 1. EUV-Tight

Design

BEOL
Metal stack options. We define 14M metal option which contains 14 metal layers (M0 to M13). We
define 1.2X, 2.6X, 3.2X and 30X layer pitches based on 24nm as the 1X pitch. 14M

PDN Power delivery network options. PFS , PFB , PBS , PBB

Ipitch Power tap cell pitch in CPP. 24, 32, 48, 96, 128
Ischeme Power tap cell insertion scheme. Column, Staggered
Tool Commercial P&R tools. Synopsys IC Compiler II
Util Initial placement utilization. 0.70 to 0.94 with a 0.02 step size

Design
Designs studied in our experiments. We conduct experiments with four open-source designs from
OpenCores [41] and artificial netlists generated by ANG with our ML-based parameter tuning. AES, JPEG

Clkp
Target clock period for logic synthesis and P&R. We define target clock periods that reflect maximum
achievable frequencies of the designs. 0.12 to 0.24ns with a 0.02ns step size

TABLE XI
TOOLS AND VERSIONS IN OUR EXPERIMENTS.

Purpose Tool Version Ref.
Format Conversion GDT-to-GDS translator 4.0.4 [38]
IR Drop Analysis Cadence Voltus 19.1 [36]

Library Characterization Cadence Liberate 16.1 [33]

Logic Synthesis Cadence Genus 21.1 [32]
Synopsys Design Compiler R-2020.09 [44]

LVS Siemens Calibre 2017.4 19 [43]
P&R Synopsys IC Compiler-II R-2020.09 [45]

PEX
Cadence QRC Extraction 19.1 [35]

Synopsys StarRC O-2018.06 [46]
Siemens Calibre 2017.4 19 [43]

SMT solver Z3 4.8.5 [9][49]

to obtain the total power. To measure the improvement from
PFS , we compare the second-largest value (on the x-axis)
attained with each PDN configuration. From the result, we
make two main observations. (i) Power consumption with
PBS and PBB decreases by 7 to 8%, compared to PFS with
the same performance. (ii) Power consumption with PFB is
similar to PFS , with the same performance. We observe power
reductions from use of scaling boosters, BSPDN and BPR.
However, use of BPR without BSPDN does not reduce power
consumption.
Performance versus Area. Performance-area tradeoffs for
JPEG are shown in Figure 13(b). We make two main ob-
servations. (i) Area with PFB , PBS and PBB decreases by
up to 8%, 5% and 24%, respectively, as compared to PFS ,
while maintaining the same level of performance. (ii) We find
that use of scaling boosters results in area reductions across
all four standard-cell libraries. The area reduction results
obtained using the PROBE3.0 framework are consistent with
previous industry works [10][22][29][31], which show that use
of BSPDN and BPR techniques can result in area reductions
of 25% to 30%.
Energy-Delay Product (EDP) versus Area. Given the trade-
offs among PPAC criteria, a simpler metric is useful to
comprehend multiple aspects simultaneously. The Energy-
Delay Product (EDP) is adopted by, e.g., [18] as a single-
value metric that captures both power efficiency and maximum
achievable frequency (performance). EDP is calculated as

P × fmax
2, where P denotes power consumption and fmax

denotes maximum achievable frequency. Lower EDP means
more energy-efficient operations for the chip. Since we address
power, performance and area (cost), we draw EDP-Area plots
to show PPAC tradeoffs of various PDN structures. We again
use four standard-cell libraries (Lib1-4).

From Figure 13(c), we derive four key observations. (i)
For 4RT (Lib1 and Lib2), EDP with PFB , PBS and PBB
decreases by 0.2, 0.2 and 0.4 mW ·ns2, respectively, compared
to PFS with the same area. (ii) For 5RT (Lib3 and Lib4),
EDP with PBB decreases by 0.3 mW ·ns2, compared to PFS
with the same area. (iii) For 5RT , EDP with PFB shows no
improvements, and EDP with PBS increases by 0.1 mW ·ns2,
as compared to PFS with the same area. (iv) Use of PBB better
optimizes area than other PDN structures with the same EDP.
Supply Voltage (IR) Drop versus Area. With recent ad-
vanced technologies and designs, denser PDN structures are
required due to large resistance seen in tight-pitch BEOL metal
layers. The denser PDN structures bring added routability
challenges which critically impact area density. In light of
this, we measure IR drop and area from valid runs, and plot IR
drop-Area tradeoffs in Figure 14. In the plots, we compare the
points with the minimum area for each PDN configuration in
terms of area and 99.7 percentile (three-sigma) of effective
instance voltage (EIV). Note that larger effective instance
voltage means better IR drop mitigation. Figures 14(a) and
(b) show IR drop-Area tradeoffs for JPEG with 4RT (Lib1
and Lib2) and 5RT (Lib3 and Lib4), respectively. From the
results, we make four main observations. (i) Area with PFB
decreases by 2 to 6% compared to PFS , while the effective
instance voltage (EIV) increases by 3 to 4%. (ii) Area with
PBS increases by 1 to 4% compared to PFS , while EIV
decreases by 4 to 12%. (iii) Area with PBB decreases by 15 to
18% compared to PFS , while EIV decreases by 17%. (iv) We
observe that there is IR drop mitigation from use of backside
PDN, while use of BPR (PFB) worsens IR drop. This implies
that more power tap cells will need to be inserted to mitigate
IR drop. However, the area overhead of power tap cells will
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Fig. 13. PPAC tradeoffs for JPEG with four standard-cell libraries (Lib1, Lib2, Lib3 and Lib4). We compare four PDN structures in terms of performance
and area and measure improvements relative to traditional frontside PDN (PFS ), in order to show the benefits of the scaling boosters (BSPDN and BPR).
We draw plots for (a) Performance-Power, (b) Performance-Area, and (c) Energy-Delay Product-Area.

Fig. 14. IR drop-Area plots for JPEG with four standard-cell libraries (Lib1,
Lib2, Lib3 and Lib4). (a) JPEG with 4RT (Lib1/2), and (b) JPEG with 5RT
(Lib3/4).

degrade the IR drop quality achieved by use of BPR.

C. Expt 2 (PPAC Exploration with Artificial Design)
Our second main experiment uses the artificial JPEG design

generated by ANG using our ML-based parameter tuning. We
conduct the same studies as in Expt 1 and analyze the results.
Performance versus Power. Figure 15(a) shows the tradeoffs
between performance and power with the artificial JPEG
design. From the result, we make three main observations.
(i) Power consumption with PBS and PBB decreases by 6
to 14%, compared to PFS with the same performance. (ii)
Power consumption with PFB is similar to PFS with the same
performance. (iii) Results with the artificial JPEG show up to
7% differences, but with similar trends, compared to the results
obtained with the real JPEG design.
Performance versus Area. Figure 15(b) shows tradeoffs
between performance and area with the artificial JPEG design.
We make three main observations. (i) Area with PFB and
PBB decreases up to 14% and 21% compared to PFS with
the same performance. (ii) Area with PBS increases by 0% to
3% compared to PFS with the same performance. This area
penalty is caused by power tap cell insertion for PBS . (iii)
We observe that the results with the artificial JPEG show up
to 9% differences, but with similar trends, compared to the
results obtained with the real JPEG design. However, area for
PBS shows opposite trends to what we observe with the real
design, although the discrepancy is not too large.
Energy-Delay Product (EDP) versus Area. From Fig-
ure 15(c), we make three main observations. (i) For 4RT
(Lib1 and Lib2), EDP with PBB decreases by 0.5 mW · ns2,
compared to PFS with the same area. However, EDP with
PFB and PBS shows no improvements. (ii) For 5RT (Lib3

and Lib4), EDP with PFB and PBB decreases by 0.6 and 0.9
mW · ns2, compared to PFS with the same area. However,
EDP with PBS shows no improvements. (iii) We observe that
results with the artificial JPEG show similar trends as results
obtained with the real JPEG design.
Supply Voltage (IR) Drop versus Area. Figures 16(a) and
(b) show tradeoffs between IR drop and area for the artificial
JPEG design with 4RT (Lib1 and Lib2) and 5RT (Lib3 and
Lib4), respectively. We make four main observations. (i) Area
with PFB decreases by 9 to 14%, compared to PFS , while
the effective instance voltage (EIV) increases by 1 to 6%. (ii)
Area with PBS increases by 2%, compared to PFS , while EIV
decreases by 2 to 3%. (iii) Area with PBB decreases by 14 to
18%, compared to PFS , while EIV decreases by 6 to 11%. (iv)
We observe that results with the artificial JPEG show similar
trends as results obtained with the real JPEG design, and that
discrepancies are reasonably small.

D. Expt 3 (Routability Assessment and Achievable Utilization)
Our third main experiment measures Kth using our

clustering-based cell width-regularized placements (Section
VI), and explores the relationship between Kth and achievable
utilization. We note that the previous work of [6] introduced
Achievable Utilization as the maximum utilization for which
the number of DRCs is less than a predefined threshold of
500 DRCs. Here, we include all three criteria for a valid
result (Section VII-A), and define Achievable Utilization as
the maximum utilization among all valid runs seen.

Figure 17 shows experimental results for Kth and achiev-
able utilization. We conduct our experiment with artificial
JPEG and four cell width-regularized libraries (Lib1-4). From
the plots, we make two observations. (i) We compare the
results with 2Fin/4RT standard-cell libraries (Lib1/2) to those
with 3Fin/5RT standard-cell libraries (Lib3/4). The data
show that a larger number of M0 routing tracks brings better
routability. (ii) Compared to PFS , PFB and PBB , the plots for
PBS are skewed to the right for each design, showing better
routability than the other PDN configurations. We observe that
the routability improvement of PBS comes from regularly-
placed power tap cells: the power tap cell placement eases
routing congestion caused by high cell and/or pin density.

Finally, we compare the Kth results obtained with the previ-
ous cell width-regularized placements used in the PROBE2.0
work ([A]) and clustering-based cell width-regularized place-
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Fig. 15. PPAC tradeoffs for “artificial” JPEG with four standard-cell libraries (Lib1, Lib2, Lib3 and Lib4). Shown: (a) Performance-Power, (b) Performance-
Area, and (c) Energy-Delay Product-Area.

Fig. 16. IR drop-Area plots for “artificial” JPEG with four standard-cell
libraries (Lib1, Lib2, Lib3 and Lib4). (a) JPEG with 4RT (Lib1/2), and (b)
JPEG with 5RT (Lib3/4).

Fig. 17. Kth and achievable utilization for (a) AES and (b) JPEG, with
various libraries and power delivery methodologies.

ments obtained using the CWR-FC algorithm of Section VI-A
([C]). We perform routability assessments as summarized in
Table XII. We rank-order Kth across the eight combinations
of four PDN and two RT with the JPEG design. The
main observation from this comparison is that the ordering of
enablements based on Kth is the same for both placements,
even as the area utilization of the clustering-based cell width-
regularized placements is closer to the initial utilization (0.6).
We conclude that our clustering-based cell width-regularized
placement methodology successfully provides more realistic
placements without disrupting the Kth-based rank-ordering of
enablements. Moreover, the generally smaller Kth values seen
in the rightmost two columns of Table XII imply fewer P&R
trials needed to evaluate the Kth metric.

VIII. CONCLUSION

We have presented PROBE3.0, a systematic and con-
figurable framework for “full-stack” PPAC exploration and
pathfinding in advanced technology nodes. We introduce au-
tomated PDK and standard-cell library generation, along with
enablement of scaling boosters in a predictive 3nm technology.
Our work is permissively open-sourced in GitHub [48], and

TABLE XII
Kth COMPARISON FOR THE JPEG DESIGN WITH cell width-regularized

placements ([A]) AND clustering-based cell width-regularized placements
([C]). Util DENOTES REAL UTILIZATION WITH 0.6 INITIAL UTILIZATION.

Rank PDN RT Library [A] [C]
Kth Util Kth Util

1 PFB 4 Lib1 6 0.14 3 0.50
2 PFS 4 Lib2 9 0.14 5 0.49
3 PBB 4 Lib1 12 0.14 7 0.50
4 PFS 5 Lib4 15 0.14 8 0.50
5 PFB 5 Lib3 16 0.14 9 0.50
6 PBS 4 Lib2 17 0.14 13 0.49
7 PBB 5 Lib3 18 0.14 16 0.50
8 PBS 5 Lib4 23 0.14 26 0.50

includes open-sourceable PDKs and EDA tool scripts that
incorporate power and performance considerations into the
framework.

We employ artificial netlist generation with a machine
learning-based parameter tuning to mimic properties of ar-
bitrary real designs. Along with a new CWR-FC clustering-
based width-regularized netlist and placement methodology,
this enables PPAC exploration of a much wider space of
technology, design enablement, and design options. From our
experiments, we find that the use of backside power delivery
network (BSPDN) and buried power rails (BPR) can lead
to up to 8% reduction in power consumption and up to
24% reduction in area using our predictive 3nm technology.
These results from PROBE3.0 closely match previous works
[10][22][29][31] which estimated 25% to 30% area reduction
from use of BSPDN and BPR.

Ongoing and future directions include the following. (i)
Improving the software architecture of PROBE3.0 will make
it more accessible and flexible for users to pursue their own
PPAC explorations. Supporting the addition of user-defined
variables can help capture and study variant technology and
design assumptions. (ii) To improve robustness of the frame-
work, and its usefulness as a “proxy” in real-world advanced
technology development and DTCO, improved device models,
parasitic extraction models, signoff corner definitions, relevant
design examples, etc. will be beneficial. It will also be nec-
essary to add generation of DRC rule decks for commercial
tools. (iii) While our scripts for commercial tools are shared
publicly in our GitHub repository, using these tools still
requires valid licenses. Incorporation of open-source tools into
the PROBE3.0 framework can potentially lead to highly-scaled
deployments, shorter turnaround times, and improved utility to
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a broader audience.
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