
ATA-Cache: Contention Mitigation for GPU Shared
L1 Cache with Aggregated Tag Array

Xiangrong Xu, Liang Wang, Limin Xiao, Lei Liu, Xilong Xie, Meng Han, Hao Liu
State Key Laboratory of Software Development Environment

School of Computer Science and Engineering
Beihang University, Beijing 100191, China

{xxr0930@buaa.edu.cn}

Abstract—GPU shared L1 cache is a promising architecture
while still suffering from high resource contentions. We present a
GPU shared L1 cache architecture with an aggregated tag array
that minimizes the L1 cache contentions and takes full advantage
of inter-core locality. The key idea is to decouple and aggregate
the tag arrays of multiple L1 caches so that the cache requests
can be compared with all tag arrays in parallel to probe the
replicated data in other caches. The GPU caches are only accessed
by other GPU cores when replicated data exists, filtering out
unnecessary cache accesses that cause high resource contentions.
The experimental results show that GPU IPC can be improved by
12% on average for applications with a high inter-core locality.

Index Terms—GPU, shared L1 cache, contention, tag array

I. INTRODUCTION

GPUs are widely used in various applications such as
machine learning, high performance computing, etc., because
of their massive parallelism and high energy efficiency [1]–
[5]. Cache plays a vital role in GPU architecture due to
its ability to address the memory wall problems [6]. In a
typical GPU two-level cache architecture, each GPU core has a
private L1 cache, and all GPU cores share a banked L2 cache.
However, the conventional GPU cache hierarchy results from
the inefficiencies that the same cache lines are replicated in
multiple L1 caches when requested by multiple cores (i.e.,
inter-core locality), causing a low utilization of the expensive
on-chip memory [7].

Prior studies attempt to share L1 cache for multiple cores in
GPU to better utilize the inter-core locality [8]–[11]. However,
the shared L1 cache architectures still suffer from various
side effects such as higher resource contentions, longer L1
access time, etc., which negatively degrade the overall GPU
performance. Existing shared L1 cache architectures for GPU
can be classified into remote-sharing L1 cache [8], [9] and
decoupled-sharing L1 cache [10], [11] based on the address
mapping policy of the L1 cache.

For remote-sharing L1 cache, each L1 cache is still closely
coupled to a GPU core and mapped to the entire address space.
In case of an L1 cache miss, the core sends probe requests
to remote L1 caches (L1 caches of other cores) and decides
whether to access the L2 cache based on the responses from
the remote caches. A fatal drawback is that the requests to
access the L2 cache have to wait for a long time period until
determining whether the remote caches have the replicated

data, which increases the critical path for L2 cache access
and hurts GPU performance. Moreover, these probe requests
take up a lot of NoC resources, and the remote caches require
additional resources to process these probe requests.

Decoupled-sharing L1 cache architectures [10], [11] are
proposed to solve the problem of resource contentions caused
by additional probe requests in the remote-sharing L1 cache. A
couple of cores are clustered and the L1 caches are decoupled
from the cores. Each L1 cache in the cluster is exclusively
mapped to a slice of the address range, so that all L1 caches
in the cluster are mapped to the entire address space. Requests
from different GPU cores that access the same cache line are
mapped to the same L1 cache. However, decoupled-sharing L1
cache faces serious cache bank conflicts when multiple GPU
cores access the same cache line simultaneously. The serial-
ization of access requests from different GPU cores becomes
a key bottleneck affecting the overall GPU performance.

To address these problems, we propose ATA-Cache, a GPU
shared L1 cache architecture with an aggregated tag array.
ATA-Cache can mitigate the L1 cache contentions and take
full advantage of inter-core locality. In the proposed design,
the L1 cache tag array is decoupled from the cache data
array. The tag arrays of GPU cores in a cluster are aggregated
together. Access requests from GPU cores can be compared
to all tag arrays in parallel to find the replicated data in other
L1 caches without probing requests, thus leveraging inter-core
locality with minimal NoC contentions. In order to reduce
the bank conflicts of the L1 cache, we adopt remote-sharing
cache data, i.e., each L1 cache is mapped to the entire address
space. If there is no inter-core locality, each GPU core can
still access its own L1 cache data in parallel. ATA-Cache
can take full advantage of the inter-core locality to improve
GPU performance and achieve a 12% IPC improvement on
high inter-core locality applications. For applications with poor
inter-core locality, there is no performance impairment due to
sharing.

II. BACKGROUND AND RELATED WORK

A. GPU Cache Architecture

A typical GPU architecture contains multiple cores, each
of which contains a private, dynamically partitioned GPU L1
cache and shared memory. GPU core accesses the L2 cache

ar
X

iv
:2

30
2.

10
63

8v
1

 [
cs

.A
R

]
 2

1
Fe

b
20

23

…

GPU core L1 cache

…

…

NoC (L1-L1)

NoC (L1-L2)

NoC (core-L1)

NoC (L1-L2)

(a) Remote-sharing L1 cache

…

GPU core L1 cache

…

…

NoC (L1-L1)

NoC (L1-L2)

NoC (core-L1)

NoC (L1-L2)

(b) Decoupled-sharing L1 cache

Fig. 1. Remote-sharing L1 cache and decoupled-sharing L1 cache design.
Different textures of the L1 cache represent different address ranges.

Core
 L1 cache

(Local)
 NoC
L1-L1

probe
 L1 cache
(Remote)

probe

replyreply

 NoC
L1-L2

increased critical path

long probing time due
to resource contentions

Fig. 2. Request access process for remote-sharing L1 cache.

via NoC in case of an L1 cache miss. The GPU L2 cache is
memory-side and shared by multiple GPU cores, which means
that its access latency is typically several times higher than
that of the L1 cache [12]. Due to the high L2 cache latency,
many research efforts have been devoted to improving GPU
performance by increasing L1 cache hit rate [10], [11], [13]–
[15].

Due to the GPU’s private L1 cache design, when multiple
GPU cores request data from the same cache line, the repli-
cated data is loaded into each private L1 cache of the cores.
The replicated data causes a low utilization of the expensive
on-chip memory. The inter-core locality has been explored by
sharing the L1 cache for multiple cores. In other words, when
a request misses in the L1 cache, it can access replicated data
in other L1 caches instead of going to the L2 cache, thus
improving the cache hit rate. Based on the address mapping
policy of the L1 cache, existing shared L1 cache architectures
for GPU can be classified into remote-sharing L1 cache [8],
[9] and decoupled-sharing L1 cache [10], [11].

B. Remote-sharing L1 Cache

Figure 1(a) illustrates the remote-sharing L1 cache design.
As shown in Figure 1(a), each L1 cache is still closely coupled
to a GPU core and mapped to the entire address space. Each
L1 cache is not only connected to each partition of the L2
cache but also connected to other L1 caches through NoC
(mesh, X-bar, etc.). For example, Dublish et al. [8] propose
L1 Cooperative Caching Network, a lightweight ring network
that connects L1 caches in GPU cores. When a request misses
in the L1 cache, the metadata of the request is first pushed
into the ring network to be passed to other caches. The other
caches receive the request, compare it with their own tag array,

30

60

90

120

150

b+tree cfd doitgen conv3d SN gemver gemm conv2d HS3D sradv1 mean

private cache decoupled-sharing cache

L1
 c

ac
he

 la
te

nc
y

Fig. 3. L1 cache latency for private cache and decoupled-sharing cache.

and if it hits, pass the data to the requesting GPU core using
the cache network. Ibrahim et al. [9] use a mesh network to
connect the L1 caches and introduce a prediction mechanism
when L1 caches probe remote data, thus reducing unnecessary
probe requests, reducing the bandwidth pressure on the NoC,
and improving the request response time.

To summarize, as shown in Figure 2, in the remote-sharing
cache, missed requests need to access other L1 caches before
going to the L2 cache, which increases the critical path for L2
cache access. What is worse, serious NoC resource contentions
during accessing other L1 caches can significantly increase
the L1 cache latency. These challenges make it difficult for
remote-sharing cache to make better use of inter-core locality
because of resource contentions overhead, and can even hurt
GPU performance on applications with poor inter-core locality.

C. Decoupled-sharing L1 Cache

As shown in Figure 1(b), in the decoupled-sharing cache
design, the L1 caches are decoupled from the GPU cores and
they no longer have a one-to-one correspondence. A couple of
cores are clustered with the L1 caches shared in the cluster.
Each L1 cache is exclusively mapped to a slice of the address
range. Requests from different GPU cores access the L1 cache
according to the address mapping rule. Decoupled-sharing L1
cache is first proposed in [10], where each L1 cache remains
inside the GPU core but is mapped to a different address range.
The recent work [11] removes the L1 cache from inside the
GPU core and connects it to the GPU core via the NoC,
which is more conducive to sharing. The decoupled-sharing
cache does not need to probe the replicated data of the remote
cache (replicated data in all GPU cores are mapped to the
same cache). However, requests from multiple GPU cores are
often mapped to the same cache bank at the same time, which
can lead to cache bank conflicts and serialization of parallel
requests.

Figure 3 shows the L1 cache latency for private cache
and decoupled-sharing cache. The decoupled-sharing cache,
despite of higher hit rate, incurs much longer L1 latency than
the private cache due to severe cache resource contentions.
When multiple GPU cores access the same cache bank simul-
taneously, the resource contentions lead to request serializa-
tion, thus becoming a bottleneck for the overall performance.
Therefore, to address the serious resource contention problem

TABLE I
LANDSPACE OF GPU SHARED L1 CACHE.

Cache design L1 hit rate (s) IPC for high
inter-core locality(s)

IPC for poor
inter-core locality(s)

L1 cache
latency(t)

L2 cache bandwidth
demand (t)

Resource contentions
due to sharing(t)

Private cache I I III III I N/A
Remote-sharing cache III II I I III I

Decoupled-sharing cache III II I I III I
ATA-Cache III III III III III III

s: the higher the metric, the better; t: the lower the metric, the better.

1 2 3

…1

NoC(L1-L1)

2 3

… n-1

To L2
 distributor

data array

To remote L1

n

n-1 n

request and tag
comparison results

GPU core

L1 cache

Aggregated
 tag array …

Fig. 4. ATA-Cache design.

in the decoupled-sharing cache, it becomes imperative to study
a shared L1 cache that better exploits inter-core locality.

D. Comparison of Cache Architectures

Table I presents a comparison between the existing GPU
cache architectures and the proposed cache architecture. Since
the remote-sharing cache, decoupled-sharing cache, and ATA-
Cache can take advantage of inter-core locality, they all have
a higher L1 cache hit rate and lower L2 bandwidth demand
than the private cache. However, both remote-sharing cache
and decoupled-sharing cache face resource contentions due to
sharing, making it difficult for them to exploit the benefits of
sharing on applications with high inter-core locality. Moreover,
in applications with poor inter-core locality, they are even
inferior to private cache architecture due to high contentions.
ATA-Cache outperforms existing shared cache architectures in
both applications with high inter-core locality and applications
with low inter-core locality due to lower resource contentions.

III. DESIGN AND IMPLEMENTATION

In this section, we present the design of ATA-Cache, which
can leverage inter-core locality to enhance GPU performance
while the resource contentions are mitigated.

A. Overview of ATA-Cache

Figure 4 provides a high-level overview of our shared cache
design with an aggregated tag array. To allow multiple cores
to share the L1 caches, the L1 caches are decoupled from the
GPU cores. Each decoupled L1 cache is named the local cache
of the GPU core, while the L1 caches of other GPU cores
are named remote caches. Each GPU core accesses its local
cache via a one-to-one connection after comparing tags and
accesses remote caches from the local cache via the crossbar.
For example, in Figure 4, GPU core 0 can access cache 0
(local cache) directly, or cache 1 (remote cache) through a
crossbar.

tag
tag

set0
set1

way0
data
data

tag
tag

way1
data
data

tag
tag

way2
data
data

tag
tag

way3
data
data

=
?

=
?

=
?

=
?

address tag

Multiplexerdata to core

set index

Fig. 5. The tag array architecture for the conventional private L1 cache.

To utilize the data in the remote cache, we decouple the
tag array in each cache and aggregate them together into an
aggregated tag array. Requests from the core can be compared
with multiple decoupled tag arrays in parallel to probe the
replicated data in the remote cache. In contrast to remote-
sharing cache, ATA-Cache completes replicated data probing
when comparing tags, without sending probe requests to other
caches and waiting for responses.

Different from the decoupled-sharing cache, each L1 cache
is mapped to the entire address space, avoiding additional
contentions for the same cache bank. Each GPU core’s request
is first handled by a distributor in its local cache, which
determines whether to access the data array of the local L1
cache or remote L1 caches, or even the L2 cache.

For applications with low inter-core locality, each GPU core
accesses its local cache data array in parallel. In this scenario,
ATA-Cache is almost equivalent to the private cache, so that
there are no additional cache bank conflicts. For applications
with high inter-core locality, the remote cache is accessed
only when it has replicated data, thus filtering out unnecessary
cache accesses. Note that when multiple cores access the same
remote cache, cache bank conflicts can still happen, which are
much slighter because unnecessary cache accesses are filtered
out.

When a request is sent from the GPU core, it first enters the
aggregated tag array. The request gets the location of the data
in the cache after comparing the request address tag with the
cache tags in the aggregated tag array. The request then goes
to the request distributor in the local L1 cache. In the request
distributor, the request chooses to go to the data array of the
local cache, a remote cache, or the L2 cache, depending on
the results of the tag comparison. Finally, the response data of
the request is sent back to the GPU core.

We detail the design in the aggregated tag array and L1
cache in Section III-B and Section III-C.

tagA

tagP

tag selector
set info

=
?

tagQ

tagB

tag selector

=
?

tagC

tagX

tag selector

=
?

tagD

tagY

tag selector

=
?

Address Tag from
core 1 (tagA)

tagE

tagB

tag selector

=
?

tagF

tagC

tag selector

=
?

tagG

tagM

tag selector

=
?

tagH

tagN

tag selector

=
?

Comparator result processing unit

set info

set0

set1

way0 way1 way2 way3 way0 way1 way2 way3

Tag array 1 Tag array 2

=
?

=
?

=
?

=
?

Address Tag from
core 2 (tagB)

=
?

=
?

=
?

=
?

Comparator result processing unit

Request 1

Request 2

To cache 1

To cache 2

Hit

Hit Hit

Fig. 6. Aggregated tag array design. We show a parallel comparison of a request tag with the tags in the two tag arrays.

B. Aggregated Tag Array Design

The tag array architecture for the conventional private L1
cache is shown in Figure 5, in which the tag array and data
array are closely coupled. When the request arrives at the tag
array, the request address is first decoded to the cache set
index and address tag. Then a set is selected according to
the set index, and all the cache tags in it are input to the
comparators and compared with the address tag in parallel.
Finally, according to the comparison results, a multiplexer is
used to select the required data and send it to the GPU core.

To implement the aggregated tag array, as shown in Figure
6, we take two 4-way tag arrays as an example. In the design of
aggregated tag array, we mainly need to address two problems.
First, the requests face the bank conflict problem when they
need to be compared with the tags in multiple sets in the same
tag array. Therefore, in our design, each set in the tag array
is located on a separate bank, so that there is no bank conflict
even if different sets are accessed at the same time. Second,
since different sets in the tag array are selected by requests
from different cores, it faces the problem of how to send
the tags to the correct comparators. Taking the two requests
in Figure 6 as an example, Req-1 from Core-1 needs to be
compared with the tags in set 0, and Req-2 from Core-2 needs
to be compared with the tags in set 1. For the problem of how
to send the tags in two sets to the corresponding comparators,
we design the tag selector. The input to the tag selector is
the cache tags in different sets, and the selection signal is the
set index of each request. The selector sends the cache tag to
the comparator corresponding to each request separately. After
solving the above two problems, the aggregated tag array can
compare requests from different cores with the tags in all tag
arrays in parallel to get the location of the requested data in
all L1 caches.

Working Example. We now introduce a working example
of the aggregated tag array. In Figure 6, Core-1 and Core-2
send two requests, called Req-1 and Req-2, respectively. The
set index of Req-1 is 0 and the address tag is tagA, while the
set index of Req-2 is 1 and the address tag is tagB. Then both
sets in the tag arrays are activated and the tags are sent to the
tag selectors. The tag selectors send the cache tags in set 0

Aggregated tag array

A BB

Aggregated tag array

A BB

[0,1]

Aggregated tag array

A BB

Req A Req B Req C

Core L1 cache

L2 L2 L2

[1,1] [0,0]
1 2

1 2

1 2

1 2

1 2

1 2

(a) Req hits in remote
cache

Aggregated tag array

A BB

Aggregated tag array

A BB

[0,1]

Aggregated tag array

A BB

Req A Req B Req C

Core L1 cache

L2 L2 L2

[1,1] [0,0]
1 2

1 2

1 2

1 2

1 2

1 2

(b) Req hits in remote
cache and local cache

Aggregated tag array

A BB

Aggregated tag array

A BB

[0,1]

Aggregated tag array

A BB

Req A Req B Req C

Core L1 cache

L2 L2 L2

[1,1] [0,0]
1 2

1 2

1 2

1 2

1 2

1 2

(c) Req misses in all L1
caches

Fig. 7. Three cases of request distribution.

to the comparators associated with Req-1 and send the cache
tags in set 1 to the comparators associated with Req-2. After
comparison, Req-1 hits in Tag array 1 and misses in Tag array
2, so the result of comparing Req-1 with the aggregated tag
array is [1,0]. Similarly, the result of comparing Req-2 with
the aggregated tag array is [1,1], because the address of Req-2
is hit in both Tag array 1 and Tag array 2.

C. L1 Cache Design

The L1 cache without the tag array contains the request
distributor, data array, etc. The request distributor receives the
request tag comparison results and selects the target caches
for the requests. As shown in Figure 7, for the three different
comparison results, requests go to different caches to access
the data.

First, as shown in Figure 7(a), Core-1 sends a request for
data A, which arrives at the aggregated tag array. After com-
paring the aggregated tag array, the output is [0,1], indicating
that the request should be sent to cache 2. After fetching the
data, the request returns to Cache 1, fills the data into cache
1, and returns to Core-1. Second, as shown in Figure 7(b),
since data B is available in both caches, the aggregated tag
array is compared and the output value is [1,1]. In this case,
we give priority to accessing the local cache of the GPU core.
The request directly accesses the data array in cache 1 and
then brings the data back to the GPU core. Finally, Figure
7(c) shows the case where all L1 caches are missed and the
request needs to be sent to the L2 cache via NoC.

TABLE II
CONFIGURATION PARAMETERS OF THE SIMULATED GPU.

Paremeters Value

GPU core Features 30 SIMT cores,1.365GHz, 4 GTO schedulers/core

L1 Caches/Core
64KB 64-way sector L1 data cache,
4banks, LRU, 128B cache line,
32B sector size, latency = 32 cycles

L2 Cache
16-way 128KB/memory sub partition
(3MB in total), 128B cache line size,
32B sector size, latency = 188 cycles

Memory Model

12 Memory Controllers, 16 DRAM-banks,
3.5GHz memory clock, tCL = 20, tRP = 20,
tRC = 62, tRAS = 50, tCCD = 4, tRCD = 20,
tRRD =10, tCDLR = 9, tWR = 20

Interconnect
30 × 24 crossbar topology, 1.365GHz interconnect
clock, 40B flit size, in buffer limit 512,
out buffer limit 512, iSLIP Arbiteration type

It is possible that the design of the decoupled tag array
would result in data not being available immediately after
comparing the tags. In the data array, a 1-bit dirty bit is used
to indicate whether the data block has been changed. When a
read request goes to the remote cache to fetch data, a write
request in the remote cache modifies that data, and the dirty
bit should be set to true. If the remote data is modified, the
request needs to go to the L2 cache, although the probability
of this happening is very low, and has almost no impact on
performance.

It’s worth noting that to avoid introducing additional diffi-
culties regarding cache coherency, for write requests we only
process them in the local cache of the request’s source core. By
doing so, we do not need to change the GPU cache coherency
mechanism. When handling non-data cache requests, such as
share memory requests, texture requests, atomic operations,
etc., our design is consistent with that of the private cache.

IV. EXPERIMENTAL EVALUATION

We have implemented our proposed design in GPGPU-sim
v4.0 [16]. The detailed configurations of our modeled GPU are
shown in Table II. The GPU contains 30 SIMT cores, which
are divided into three clusters. We faithfully simulate the
competition and cost of the cache access process. We select ten
applications from three benchmark suites (Rodinia 3.1 [17],
Tango [18], Polybench [19]) and classify these applications
into the high inter-core locality and low inter-core locality
applications based on the amount of replicated data across all
cores.

A. Overall Performance

We use IPC (instructions per cycle) to represent the per-
formance. Figure 8 shows the performance of different L1
cache architectures on high inter-core locality applications
and low inter-core locality applications. The decoupled-sharing
cache only performs better than the private L1 cache on two
applications(b+tree and cfd) and it is even worse than the
private L1 cache on other applications. As shown in Figure

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

b+tree cfd doitgen conv3d SN gemver gemm conv2d HS3D sradv1

private cache decoupled-sharing cache ATA-Cache

N
or

m
al

iz
ed

 IP
C

High Inter-core Locality Applications Low Inter-core Locality Applications

Fig. 8. Illustrating the benefits of the ATA-Cache in terms of overall IPC
(normalized to private cache).

8, for high inter-core locality applications, decoupled-sharing
L1 cache can reduce the data replication of L1 cache in
different GPU cores, but it leads to lower gains in exploiting
inter-core locality because multiple requests are mapped to
the same cache bank. For b+tree and cfd, the performance
profit from the decoupled-sharing cache design is higher than
the performance loss due to cache bank conflicts, resulting
in GPU performance improvement. For doitgen, conv3d, and
SN, the decoupled-sharing cache is less effective than the
private cache due to severe resource contentions. The ATA-
Cache has distinct performance improvements on all ten appli-
cations, especially on high inter-core locality applications. For
five high inter-core locality applications, ATA-Cache reduces
resource contentions caused by sharing while exploiting inter-
core locality. In ATA-Cache requests can access data from
the cache of other cores, which reduces response time and
significantly improves performance with IPC increased by
12.0% on average.

For low inter-core locality applications, the performance
loss of decoupled-sharing cache caused by resource con-
tentions is higher than the performance improvement from
exploiting inter-core locality, which is the reason why it
performs more poorly than private cache. At the same time,
for low inter-core locality applications, requests from each
core almost only can access the corresponding L1 cache in
parallel, which reduces bank conflicts. Therefore, ATA-Cache
outperforms decoupled-sharing cache by 22.9% on average for
applications with a low inter-core locality.

B. Performance per Kernel

A GPU application usually consists of multiple kernels.
These kernels have access diversity, resulting in various per-
formance improvements for different kernels in the same
application. As shown in Figure 9, we choose two high inter-
kernel locality applications(SN and conv3d) and two low inter-
kernel locality applications(HS3D and sradv1) to study the
performance of each kernel in the application. As shown in
Figure 9(a), for SN, the ATA-Cache performance improvement
is lower than that of the decoupled-sharing cache on some
kernels. However, the decoupled-sharing cache degrades per-
formance on multiple kernels due to high contentions, so the
overall performance of ATA-Cache is better than that of the

N
or

m
al

iz
ed

 IP
C

0.95

1

1.05

1.1

1.15

1 3 5 7 9 11 13 15

decoupled-sharing cache ATA-Cache
N

or
m

al
iz

ed
 IP

C

0.8

1

1.2

1.4

1.6

1 3 5 7 9 11 13 15

decoupled-sharing cache ATA-Cache

(a) SN

N
or

m
al

iz
ed

 IP
C

0.95

1

1.05

1.1

1.15

1 3 5 7 9 11 13 15

decoupled-sharing cache ATA-Cache

N
or

m
al

iz
ed

 IP
C

0.8

1

1.2

1.4

1.6

1 3 5 7 9 11 13 15

decoupled-sharing cache ATA-Cache

(b) conv3d

N
or

m
al

iz
ed

 IP
C

0.9

0.95

1

1.05

1.1

1 3 5 7 9 11 13 15

decoupled-sharing cache ATA-Cache
N

or
m

al
iz

ed
 IP

C

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15

decoupled-sharing cache ATA-Cache

(c) HS3D

N
or

m
al

iz
ed

 IP
C

0.9

0.95

1

1.05

1.1

1 3 5 7 9 11 13 15

decoupled-sharing cache ATA-Cache
N

or
m

al
iz

ed
 IP

C

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15

decoupled-sharing cache ATA-Cache

(d) sradv1

Fig. 9. Performance of kernels in four GPU applications (normalized to
private cache).

decoupled-sharing cache. Figure 9(b) and Figure 9(c) show
that the ATA-Cache outperforms the decoupled-sharing cache
on all kernels for both HS3D and conv3d. In Figure 9(d),
for kernel 4, kernel 9, and kernel 14, the decoupled-sharing
cache performance is significantly degraded, resulting in a
reduction in overall performance. In summary, ATA-Cache can
effectively improve IPC for applications with a high inter-core
locality. For applications with poor inter-core locality, IPC is
significantly better than decoupled-sharing cache due to fewer
contentions.

C. L1 Cache Latency

We also evaluate the L1 access latency, which is the
completion time of the L1 cache accesses for all requests from
a single load instruction. Figure 10 shows the experimental
results of the L1 cache latency. Higher L1 cache latency
means more severe resource contentions due to sharing, which
leads to GPU performance degradation. The decoupled-sharing
cache increases the L1 cache latency by 67.2% on average
(up to 2.74x) over the private cache in both high inter-core
locality applications and low inter-core locality applications.
ATA-Cache reduces resource contentions due to sharing, so L1
cache latency increases by only 6.0% over the private cache.
To sum up, ATA-Cache makes full use of inter-core locality
while introducing much fewer additional resource contentions
than decoupled-sharing cache, resulting in more performance
gains.

D. Hardware Overhead

The main extra area and power overhead of the special
design in ATA-Cache come from the crossbar and comparator
groups used in the aggregated tag array. We evaluate the hard-
ware overhead assuming a 45nm technology [20]. Crossbar

30

60

90

120

150

b+tree cfd doitgen conv3d SN gemver gemm conv2d HS3D sradv1 mean

private cache decoupled-sharing cache ATA-Cache

L1
 c

ac
he

 la
te

nc
y

High Inter-core Locality Applications Low Inter-core Locality Applications

Fig. 10. Illustrating the benefits of the ATA-Cache in terms of L1 cache
latency.

and comparator groups lead to area overhead of 1.02 mm2

and 0.02 mm2 and the total leakage power overhead is 5.55
mw.

V. CONCLUSION

In this article, we discuss the serious resource contention
problem in the GPU shared L1 cache. We propose ATA-Cache,
a shared L1 cache design with an aggregated tag array that
dramatically reduces resource contentions compared to the
conventional GPU shared cache. We decouple the tag arrays
from the GPU L1 caches and aggregate them into an aggregate
tag array. In the aggregated tag array, the request address
tags can be compared in parallel with the tag arrays of all
L1 caches, thus probing and leveraging the replicated data
with few contentions. The L1 cache latency of ATA-Cache is
significantly lower than that of the decoupled-sharing cache,
and the GPU performance of ATA-Cache is greatly improved.

REFERENCES

[1] E. Choukse et al., “Buddy compression: Enabling larger memory for
deep learning and hpc workloads on gpus,” in Proc. of ISCA, 2020, pp.
926–939.

[2] Y. Kwon et al., “Tensor casting: Co-designing algorithm-architecture
for personalized recommendation training,” in Proc. of HPCA, 2021,
pp. 235–248.

[3] Q. Sun et al., “Gtuner: tuning dnn computations on gpu via graph
attention network,” in Proc. of DAC, 2022, pp. 1045–1050.

[4] M. Kim et al., “A gpu-aware parallel index for processing high-
dimensional big data,” IEEE Transactions on Computers, vol. 67, no. 10,
pp. 1388–1402, 2018.

[5] Q. Wang et al., “A2-ilt: Gpu accelerated ilt with spatial attention
mechanism,” in Proc. of DAC, 2022, pp. 967–972.

[6] W. A. Wulf et al., “Hitting the memory wall: Implications of the
obvious,” ACM SIGARCH computer architecture news, vol. 23, no. 1,
pp. 20–24, 1995.

[7] D. Li et al., “Inter-core locality aware memory scheduling,” IEEE
Computer Architecture Letters, vol. 15, no. 1, pp. 25–28, 2015.

[8] S. Dublish et al., “Cooperative caching for gpus,” ACM Transactions on
Architecture and Code Optimization (TACO), vol. 13, no. 4, pp. 1–25,
2016.

[9] M. A. Ibrahim et al., “Analyzing and leveraging remote-core bandwidth
for enhanced performance in gpus,” in Proc. of PACT, 2019, pp. 258–
271.

[10] M. A. Ibrahim et al., “Analyzing and leveraging shared l1 caches in
gpus,” in Proc. of PACT, 2020, pp. 161–173.

[11] M. A. Ibrahim et al., “Analyzing and leveraging decoupled l1 caches in
gpus,” in Proc. of HPCA, 2021, pp. 467–478.

[12] X. Zhao et al., “Adaptive memory-side last-level gpu caching,” in Proc.
of ISCA, 2019, pp. 411–423.

[13] D. Tripathy et al., “Paver: Locality graph-based thread block scheduling
for gpus,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 18, no. 3, pp. 1–26, 2021.

[14] T. Baruah et al., “Valkyrie: Leveraging inter-tlb locality to enhance gpu
performance,” in Proc. of PACT, 2020, pp. 455–466.

[15] B. Li et al., “An efficient gpu cache architecture for applications with
irregular memory access patterns,” ACM Transactions on Architecture
and Code Optimization (TACO), vol. 16, no. 3, pp. 1–24, 2019.

[16] M. Khairy et al., “Accel-sim: An extensible simulation framework for
validated gpu modeling,” in Proc. of ISCA, 2020, pp. 473–486.

[17] S. Che et al., “Rodinia: A benchmark suite for heterogeneous comput-
ing,” in Proc. of IISWC, 2009, pp. 44–54.

[18] A. Karki et al., “Tango: A deep neural network benchmark suite for
various accelerators,” in Proc. of ISPASS, 2019, pp. 137–138.

[19] L.-N. Pouchet and S. Grauer-Gray, “Polybench: The polyhedral bench-
mark suite.” http://web.cs.ucla.edu/∼pouchet/software/polybench/, 2012.

[20] “Nangate inc. nangate 45nm open cell library,” http://www.nangate.com,
2008.

http://web.cs.ucla.edu/~pouchet/software/polybench/
http://www.nangate.com

	I Introduction
	II Background and Related Work
	II-A GPU Cache Architecture
	II-B Remote-sharing L1 Cache
	II-C Decoupled-sharing L1 Cache
	II-D Comparison of Cache Architectures

	III Design and Implementation
	III-A Overview of ATA-Cache
	III-B Aggregated Tag Array Design
	III-C L1 Cache Design

	IV Experimental Evaluation
	IV-A Overall Performance
	IV-B Performance per Kernel
	IV-C L1 Cache Latency
	IV-D Hardware Overhead

	V Conclusion
	References

