This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3341753

JOURNAL OF KIEX CLASS FILES, VOL. XX, NO. XX, XXXX XXXX

An Efficient GCNs Accelerator Using 3D-Stacked
Processing-In-Memory Architectures

Runze Wang, Ao Hu, Long Zheng, Member, IEEE, Qinggang Wang, Jingrui Yuan, Haifeng Liu, Linchen Yu,
Xiaofei Liao, Member, IEEE, Hai Jin, Fellow, IEEE

Abstract—Graph Convolutional Networks (GCNs) hold great
promise in facilitating machine learning on graph-structured
data. However, the sparsity of graphs often results in a significant
number of irregular memory accesses, leading to inefficient data
movement for existing GCNs accelerators. With the advancement
of 3D stacked technology, the processing-in-memory (PIM) archi-
tecture has emerged as a promising solution for graph processing.
Nevertheless, existing PIM accelerators are confronted with the
challenges of irregular remote access in the aggregation phase
of GCNs and dynamic workload variations between phases. In
this paper, we present GCNim, a PIM accelerator based on 3D
stacked memory, which features two key innovations in terms of
the computation model and hardware designs. First, we present a
PIM-based hybrid computation model, which employs a remote
merging strategy to achieve the outer product in aggregation and
the row-wise product in combination. Second, GCNim builds a
three-stage aggregation and combination pipeline and integrates
unified processing elements (PEs) supporting these three stages
at the bank level, achieving load balance among PEs through a
lightweight data placement algorithm. Compared with the state-
of-the-art software frameworks running on CPUs and GPUs,
GCNim achieves an average speedup of 3,736.06x and 76.56 %,
respectively. Moreover, GCNim outperforms the state-of-the-art
GCN hardware accelerators, I-GCN, PEDAL, FlowGNN, and
GCIM, with average speedups of 3.35 %, 8.97 x, 2.24 x, and 5.58 x,
respectively.

Index Terms—3D stacked memory, accelerators, graph convo-
lutional networks, processing-in-memory.

I. INTRODUCTION

ENEFITING from deep neural networks, machine learn-
ing has shown remarkable achievements in various do-
mains, including computer vision [1]], [2] and natural language
processing [3]. However, they are restricted to representing

This work is supported by the National Key Research and Development
Program of China under Grant No.2023YFB4503400 and the National Nat-
ural Science Foundation of China under Grant No0.62322205, 62072195,
and 61825202. This work is also supported by Zhejiang Lab (Grant No.
2022P10ACO02). (Corresponding author: Long Zheng.)

Runze Wang, Ao Hu, Long Zheng, Qinggang Wang, Jingrui Yuan, and
Haifeng Liu are with the National Engineering Research Center for Big
Data Technology and System, Service Computing Technology and Sys-
tem Lab, Cluster and Grid Computing Lab, School of Computer Science
and Technology, Huazhong University of Science and Technology, Wuhan
430074, China, and also with Zhejiang Laboratory, Hangzhou 311121,
China (e-mail: rzwang @hust.edu.cn; ahu@hust.edu.cn; longzh@hust.edu.cn;
ggwang @hust.edu.cn; jryuan@hust.edu.cn; hfliu@hust.edu.cn).

Linchen Yu is with the School of Cyber Science and Engineering,
Huazhong University of Science and Technology, Wuhan 430074, China (e-
mail: linchenyu@hust.edu.cn).

Xiaofei Liao and Hai Jin are with the National Engineering Research Center
for Big Data Technology and System, Service Computing Technology and
System Lab, Cluster and Grid Computing Lab, School of Computer Science
and Technology, Huazhong University of Science and Technology, Wuhan
430074, China (e-mail: xfliao@hust.edu.cn; hjin@hust.edu.cn).

and analyzing Euclidean data, including images, text, and
audio [4], [5]. Relational data like social networks [6] and
knowledge graphs [7] arising in many applications is also
ubiquitous, which is naturally represented by graphs. Hence,
graph convolution networks (GCNs) have emerged as an
effective model for extracting and analyzing valuable infor-
mation from relational data. GCNs have exhibited superior
performance in a wide range of applications, such as node
classification [8]], [9], [10], link prediction [11], [12], and
graph recommendation [/13]].

The primary strength of GCNs lies in the two key phases
of the convolution layer: Aggregation and Combination, which
jointly dominate the GCN inference time. Each vertex gathers
feature vectors from its neighboring vertices during the ag-
gregation phase, which operates on the graph structure. The
combination phase resembles traditional neural networks [14],
as it involves performing computation operations on features
of vertices using a multi-layer perceptron (MLP). This pro-
cess is often represented by a matrix-vector multiplication
MVM) [5].

In response to the ever-increasing demands for enhanced
GCNs inference performance, several dedicated GCNs ac-
celerators have emerged in recent years. These accelerators
generally adhere to one of two design philosophies. The
first follows a divide-and-conquer design philosophy that uti-
lizes two distinct engines to enhance the efficiency of each
phase individually. An example of such an architecture is
HyGCN [15]]. The second category maps the two phases
into a uniform model of sparse-dense matrix multiplications
(SpMM) operating upon a unified hardware architecture. For
instance, GCNAX [16] adopts an outer product with the two-
stage multiply and merge pipeline. This architecture overcomes
the accelerator resource underutilization caused by dynamic
workload variations in the separate architecture [17]. However,
this procedure generates many partial matrices, leading to
repetitive off-chip memory access. Through caching reusable
data in the on-chip memory, it can provide some relief by re-
ducing off-chip accesses. However, the cache size required for
large graphs can grow exponentially, resulting in substantial
area and energy consumption. As a result, GCNs accelerators
on conventional architectures often remain bottlenecked by
off-chip memory accesses [15]], [16], [18]].

The processing-in-memory (PIM) architecture presents a
promising solution to resolving the memory bottleneck by
integrating computational logic directly into memory. In ad-
vanced 3D stacked memory, multiple DRAM dies are stacked
on top of a base die, resulting in a cube structure. This cube

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3341753

JOURNAL OF KIEX CLASS FILES, VOL. XX, NO. XX, XXXX XXXX

is partitioned into multiple vaults. The digital logic can be
integrated either at the base die or near the memory bank of
the DRAM layers [19], [20], [21]. Compared to integrating the
digital logic at the base die with sufficient computing ability,
the integration of digital logic near the memory banks can
provide lower local data access latency [22].

GCIM, a state-of-the-art PIM-based GCNs accelerator [23]],
integrates computing units at both the DRAM layer and base
die for executing the aggregation and combination phases,
respectively. Although GCIM effectively exploits both the
computation capability of the base die layer level and the
access latency advantage of the bank level, it achieves sub-
optimal performance for the following reasons. First, there
are a large number of time-consuming neighbor data accesses.
In 3D stacked memory, data, such as graph vertices and
their feature vectors, are stored in different banks of different
DRAM layers. When each processing element (PE) of the
DRAM layer performs aggregation operations, the information
of adjacent vertices they require may be irregularly distributed
across different banks. This leads to dynamic remote random
access. Compared to data access from the local bank next to
PE, this will cause a significant delay in accessing data from
other banks. Second, dynamic load variations may result in
an uneven workload distribution among computational units.
Specifically, in GCIM, the divide-and-conquer design fits well
with the scenario where the execution times for aggregation
and combination can be overlapped fully. However, due to
the dynamic variation of workloads, fast engines always have
to wait for slow engines. Even worse, data transfers between
different engines also lead to delays.

Fortunately, we observe that the output features in the
preceding layer of GCNs serve as input features for the
subsequent layer. Meanwhile, with the outer product method
in the aggregation phase, the partially generated matrices in
the multiply stage are composed of multiple partial feature
vectors from different vertices. As a result, the partial feature
vectors generated by local vertices can be directly transmitted
to the PEs next to the banks of their corresponding remote
neighbors for accumulation and obtaining the final output
feature vectors. Direct transmission of partial vectors between
PEs avoids frequent data transfer between banks and PEs
during the multiply and merge stages. Further, it is also
observed that the row-wise product in the combination phase
enables the construction of a unified PE that alternates between
executing the combination and aggregation operations. This
eliminates uneven workload issues between different phases,
and also, the delay in feature vector transmission can be
hidden behind the computation, avoiding computation stalling
caused by obtaining remote data during the vertex aggregation
process. Therefore, we are motivated to design a bank-level
PIM-based 3D stacked memory architecture, which is capable
of alternately performing two kernels of GCNs by a hybrid
matrix computation model with impressive performance and
energy gains.

In this paper, we present GCNim, a GCNs accelerator that
situates PEs near the banks of the 3D stacked memory and
incorporates three significant design aspects. First, GCNim
is equipped with a new GCNs computational model, which

adopts the execution order of aggregation after combination.
The model leverages the row-wise multiplication method in
combination and utilizes the outer product in aggregation.
The intermediate matrix generated in the multiply stage of
the outer product is subdivided into multiple partial vectors,
which are then sent to the corresponding PEs for merging. This
approach transforms irregular data access in aggregation into
directed data transmission, significantly reducing non-local
DRAM access. Second, GCNim adopts a three-stage pipeline
for parallel computations, where each stage is abstracted as
an operation of dense vectors. We integrate the identical
execution unit, prefetcher, and buffers alongside each memory
bank. This allows GCNim to eliminate any potential latency
and energy overhead arising from data movement between
different engines and avoid the problem of uneven workloads
caused by different engines. Finally, we analyze the sources of
load on each PE at each stage and propose a lightweight data
placement algorithm to improve load balance between PEs.

The contributions of this paper are summarized below:

o We present a hybrid GCNs computation model tailored
for 3D stacked memory, which employs the outer prod-
uct for the aggregation phase and utilizes the row-wise
product for the combination phase.

e We propose a novel GCNs accelerator, GCNim, inte-
grating well-designed uniform processing elements near
the memory bank. It enables efficient pipelined execu-
tion of both the combination and aggregation kernels,
avoiding underutilization of computational units caused
by dynamic load imbalance across the kernels.

o We introduce a lightweight data allocation strategy to
attain task distribution equilibrium and support the de-
signed architecture efficiently.

e We evaluate GCNim with various graph datasets. GCNim
demonstrates superior performance compared to the state-
of-the-art CPU system, GPU system, GCN accelerators
I-GCN, PEDAL, FlowGNN, and GCIM. GCNim achieves
a speedup of 3,736.06x, 76.56x, 3.35x, 8.97x, 2.24x,
and 5.58 x while achieving energy savings of 8,292.46x,
81.45x%, 1.83x, 5.53%, 1.32x, and 2.83x on average.

The remainder of this paper is as follows. Section

introduces the background and motivation of this work. Sec-
tion [III| presents the novel hybrid execution model. Section
describes the details of GCNim architecture. Section [V] intro-
duces the tailored data placement method. GCNim is evaluated
in Section Section [VII| reviews the related works, and
finally, Section concludes the paper.

II. BACKGROUND AND MOTIVATION

In this section, we first present the fundamental tenets of the
underlying GCNs. Subsequently, we comprehensively analyze
existing GCNs accelerator architectures and implementation
techniques. Afterward, we introduce the PIM approach in 3D
stacked memory and expound on our approach of integrating
GCNs with 3D stacked PIM architectures.

A. Graph Convolutional Networks

GCNs are structured as a sequence of graph convolutional
layers, where each layer is mainly composed of the aggre-

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3341753

JOURNAL OF KIEX CLASS FILES, VOL. XX, NO. XX, XXXX XXXX

Input
Feature vector
® 1T Feagxurzp\:‘etctor
S e ® oo
Frector ©) (T
% —@® 1o oo
(a)Input Graph (b)Aggregation (c)Combination

Fig. 1. An illustrative instance showcasing GCN inference, encompassing (a)
a graph, (b) an aggregation kernel, and (c) a combination kernel

gation and combination phases, as depicted in Fig. [T} From
a linear algebra perspective, the inference procedure can be
represented as follows:

XD = g(AXOWwO) (1)

where A represents the adjacency matrix of the graph. X
denotes the input feature matrix of the [-th layer. Each row
of X() represents a feature vector of a vertex. W () denotes
the weight matrix of the /-th layer, and o denotes a non-linear
activation function, such as ReLU [J5]]. A is usually normalized
to avoid scale changes. The normalization process involves
computing A:D’%X(A+I)><D’%, where [is the identity
matrix, and D is a diagonal matrix. Note that A remains
constant during the GCNs training and inference. Furthermore,
as A could be performed offline from A, it is used to represent
A throughout the rest of this paper.

Many variant GCNs models have been devised from the
GCN model, such as GraphSage [24] and Graph Isomorphism
Network (GIN) [25]]. As shown in GCNAX [16], the forward
propagation of the majority of GCNs can be generalized and
represented by Equation([I)). In this context, the efficiency of
GCNs’ inference predominantly hinges on the performance
of aggregation and combination kernels, which constitute the
primary focus of this paper.

B. Accelerator Design Exploration

Several GCNs-specific architectures [[15], [16], [26], [27]]
have been proposed to accelerate GCNs inference in recent
years. These accelerators have implemented specific compu-
tation models and are tightly co-designed with microarchi-
tecture. We next introduce the execution order of GCNs and
scrutinize the characteristics and issues of diverse approaches
used for GCNs inference.

Execution Order. Previous studies have summarized
two possible execution orders for graph convolution layers:
combination-first (i.e., Ax(X®WxW)) and aggregation-first
(.e., (AxX®)xW). The execution order does not impact
the correctness but influences the computation required [28]].
Assuming that A € R V>N X1 ¢ RNXP W ¢ RP*F and
X (41D ¢ NNXF_ The computation amount of the aggregation-
first method is (NxN) x (NxD) in the aggregation phase
and (N xD) x (DxF) in the combination phase. In compari-
son, the computation amount of the combination-first method
is (NXN) x (NxF) and (NxD) x (DxUF), respectively.
This suggests that the computation amount depends on the

Parallelism
Parallelism — Parallelism
X :EH ‘ —Ix =
I S 1 u L[]
A X (AX) A X (AX)
(a)Row-wise product (b)Outer product

Fig. 2. Comparison of (a) row-wise product and (b) outer product approach
in the aggregation. The row-wise product generates a computed row vector
in the resulting matrix, while the outer product obtains a partial matrix.

input feature vector dimensionality D and the output feature
vector dimensionality F'. For most datasets, D is larger than
that of F'. Consequently, the combination-first method gener-
ally has superior performance than the aggregation-first one.
Matrix-Multiplication-based GCNs Inference. The com-
putation pattern of a GCNs layer is the multi-layer matrix
multiplication. For the three matrices involved in the GCN
inference, A and X are sparse, while W is dense. Therefore,
changes in the execution order will correspondingly lead
to changes in the calculation kernel. For the aggregation-
first method, the aggregation kernel corresponds to sparse-
sparse matrix multiplication (SpGEMM), while the combina-
tion kernel is a regular dense-dense GEMM operation. For
the combination-first method, both aggregation and combina-
tion kernels correspond to sparse-dense matrix multiplication
(SpMM). The sparse matrix multiplication techniques used in
past accelerators can be categorized into three main types [[29]:
row-wise product, column-wise product, and outer product.

o Row-wise Product. It comprises two main steps, as shown
in Fig. [2{(a). First, the algorithm multiplies each non-zero
element in a given row of A with all elements in the
corresponding row of X. The rows in X depend on the
column index of the non-zero elements in the given row
of A. Secondly, the partial results are accumulated to
obtain a row of the final product matrix. Each row of
A is computed in parallel, resulting in the corresponding
row in the output matrix. The early GCNs accelerator,
HyGCN [15]], uses this method based on the aggregation-
first sequence, which processes SpGEMM and GEMM
operations in aggregation and combination through two
independent engines. However, the row-wise product is
not friendly for the aggregation phase. On the one hand,
X cannot be entirely stored on-chip, which may lead to
additional off-chip accesses to X that may occur for the
feature aggregation of each vertex. On the other hand,
the sparsity of features leads to a significant reduction in
arithmetic intensity during aggregation.

o Column-wise Product. In this method, the non-zero el-
ements in a single column of X are multiplied with
the corresponding columns of matrix A. The resulting
values are accumulated to form a column in the output
matrix. This method exhibits similarities to the row-wise
product. The AWB-GCN [26] leverages this method to
construct an accelerator that performs the two phases
alternately. However, it encounters similar issues as the
row-wise product method, requiring redundant off-chip
access to A and suffering from insufficient utilization of

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3341753

JOURNAL OF KIEX CLASS FILES, VOL. XX, NO. XX, XXXX XXXX 4

- 4= | Merge
unit

aggregation combination

100%

compute u fetch data

with buffer = with mappin
100% 100 pping

unit

. ~ 80% 80 X 8%
. L = X) %
- F < 60% 56 2 0%
H :‘137:* H - g a0% Lo £
B " oy = HEH E S g o
= — F 20% T o

0%
Cora CiteSeer PubMed NELL Reddit

(a)
Fig. 3. Partial matrices generated dur- Fig. 4. Effect of remote random access on (a)
ing the multiply stage are often moved ratio with a naive setting and (b) hit rate with the buffer and

frequently between processing units and mapping algorithm
DRAM.

computational resources due to graph sparsity.

e Outer Product. This method involves multiplying a col-
umn of A with a row of X, resulting in a partial matrix of
the output matrix. The final result is obtained by merging
all the partial matrices. Fig. [Jb) illustrates the outer prod-
uct approach and its parallel process. GCNAX [16] pro-
poses an optimized dataflow using a unified architecture
based on the outer product, which allows reusing input
matrices efficiently and avoiding zero-valued operations
by processing W first. However, the outer product gives
rise to a multitude of partial matrices during the process,
leading to a significant reduction in output reuse. As
these matrices cannot be entirely stored on-chip, merging
them creates redundant off-chip accesses. This results in
partial matrices undergoing repeated movement between
processing units and DRAM, as illustrated in Fig. [3]

In summary, previous works on accelerating GCNs have
utilized different matrix multiplication methods to handle
GCNs inference. However, due to the large graph scale and
the high-dimensional feature vector, A and X cannot be
entirely stored on-chip. Also, the sparsity of the graph and
feature vectors results in frequent and irregular data movement
between DRAM and the processors. All these factors jointly
lead to the fact that conventional memory architectures are of
great necessity to be innovated for efficient GCNs inference.

C. 3D Stacked Processing-In-Memory

The 3D memory architecture [30], [31] is innovative to
enable the vertical stacking of memory layers, enhancing
memory density and reducing the footprint of the memory
module. Through-silicon vias (TSVs) are employed in 3D
stacked memory to establish interconnections between the
different layers. Typically, 3D memory comprises a base logic
layer and multiple DRAM layers stacked on it. Each DRAM
layer is divided into multiple partitions, separating the entire
3D stack into several vertical vaults. These vaults possess
memory controllers located on the base logic layer, which can
simultaneously access multiple partitions on the DRAM layer.
This provides highly parallel memory access.

The concept of PIM takes advantage of the proximity
between processors and memory cells to accelerate data pro-
cessing and reduce energy consumption. Situating processing
units near the memory subsystem facilitates direct and high-
bandwidth communication between these components. This
minimizes the data transfers between processors and memory,
leading to significant improvements in performance, reduced
latency, and increased energy efficiency.

Cora CiteSeer PubMed NELL Reddit

(b) Cora CiteSeer PubMed NELL Reddit
execution time Fig. 5. Percentage distributions of the
operations in the combination and ag-
gregation kernels by benchmarking a 2-
layer GCN model

The 3D memory architecture offers two PIM solutions, with
the processor on the logic or DRAM layers. GCIM [23] is
the first accelerator that employs the PIM-based 3D-memory
architecture to handle GCNs inference. It accommodates the
unique characteristics of the two phases of GCN by placing
the aggregation engine next to the bank and integrating the
combination engine in the logic layer. The aggregation engine
uses the traditional pull-based approach of graph processing.
In contrast, the combination engine utilizes the systolic array,
similar to HyGCN, which follows the aggregation-first com-
putational order. However, this design poses challenges in im-
plementing data locality and load balancing. On the one hand,
GCN kernels with random access suffer significantly long
latency when accessing data from other vaults or even other
cubes during local vertex aggregation. Fig. [fa) illustrates that
under the naive configuration, the computing unit’s real-time
execution spans no more than 20%. Fig. f{b) demonstrates
that remote random access remains prevalent and substantial
despite employing buffer and mapping strategies to optimize
locality. Additionally, due to stringent area constraints and
the high dimensionality of features, storing replicas results in
unacceptable wastage of storage resources.

On the other hand, this separate two-phase design cannot
easily handle dynamic workload changes between phases,
leading to insufficient utilization of computational resources.
Fig. [3] depicts the percentage distributions of these two types
of operations by benchmarking a 2-layer GCN model on
the five real-world datasets. The results indicate significant
variations in the workload distribution between aggregation
and combination phases across different datasets. Particularly
for the large-scale Reddit dataset, the number of operations in
aggregation is significantly higher than in combination.

D. Combining GCNs with 3D-Stacked PIM

To address the challenges mentioned above, we introduce
GCNim, which has several innovative features:

First, GCNim employs a new GCN-specific computational
model to maximize performance gains on a 3D stacked
memory PIM architecture. Our insight is to use an outer
product multiplication method during the aggregation phase,
which splits the partial matrix obtained from the multiply stage
into vectors sent to other PEs for merging. This converts the
irregular remote data access during the aggregation phase into
regular data transfers, thus avoiding the performance impact
arising from inactive states by collecting feature information
from other vertices.

Second, GCNim exploits the 3D-stacked bank-level PIM
to build the unified hardware that supports combination and

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3341753

JOURNAL OF KIEX CLASS FILES, VOL. XX, NO. XX, XXXX XXXX

aggregation. With a specialized model that performs the row-
wise product for the combination phase and the outer product
for the aggregation phase, the entire inference process can
be abstracted into three dense vector operations supported
by a set of unified computation units. The unified PE in-
tegrated near the DRAM bank allows alternating execution
of combination and aggregation, with intermediate results
residing in the registers of the computation unit. The GCNs
architecture eliminates data transfer overhead between phases
and avoids uneven workloads caused by dynamic workload
changes between phases.

Third, since aggregation and combination are executed on a
unified architecture, GCNim does not require load balancing
between phases. Instead, we only need to design a lightweight
data placement algorithm for analyzing the workload of each
vertex in GCNs, simplifying designs.

III. THE GCNIM COMPUTATION MODEL

As elucidated in Section the aggregation and com-
bination phases of the GCNs convolutional layer can be
represented as a sequence of successive sparse-dense matrix
multiplication computations. However, the two phases exhibit
distinct and unique properties. This provides two opportunities
for designing a GCNs inference computation model. The first
lies within each phase, where the design needs to account
for the specific characteristics of both phases to accommodate
the varying demands of computational and memory resources.
Notably, the execution of the aggregation exhibits significant
differences compared to the combination, with the highly
sparse kernel normally the bottleneck in GCNs processing.
Therefore, GCNim prioritizes the method of aggregation. The
second opportunity arises in the interaction design between
phases. GCNs allows any phase to precede another phase.
Although each phase can adopt any matrix multiplication
method, the choice of one phase may impact the next one.
This is because the chosen method affects memory access to
transfer data to the next phase. Therefore, careful consideration
should be given to selecting an appropriate matrix multiplica-
tion approach for each phase, considering its impact on the
overall pipelining and data reuse.

A. Remote Merging in Aggregation

Compared to storage-and-compute decoupled architectures
and designs with processing elements located in the logic
layer, the most significant advantage of architecture with
PEs near banks in the DRAM layer is its proximity to data
storage. As a result, PEs can read and write data from local
banks with lower latency. However, the graph’s vertices and
feature vectors are distributed across different banks. In the
aggregation phase, if the neighboring information required by
a vertex is not stored locally, it results in random remote data
access, which leads to the loss of the advantage of processing
data close to memory.

To address this issue, we devise a method in the aggregation
phase that utilizes the outer product to achieve local multiplica-
tion and remote merging. The aggregation phase is subdivided

. /H

X = u X[= \+—»-PE0
.
= X = x(TD= +— B PE,
[HENNE EEN x

= Hl | |><I = -
H /+ @D PE,
X(l) W Xw A XW X(I+1)

(a)combination stage (b)multiply stage (c)merge stage

Fig. 6. The computation model of GCNim follows the combination-first order.
The GCNs inference process is redefined as a three-stage process, where
the combination stage utilizes the row-wise product method. The aggregation
phase is split into a multiply and merge stage using the outer product method.

into multiply and merge stages based on the explicit phase
change of the outer product.

The multiply stage is carried out thoroughly in parallel
within local PEs. Each PE computes a column of A and
the corresponding rows of X or (XW) to generate a partial
matrix. Instead of immediately merging the partial matrices
or storing them in their respective banks, we divide the
partial matrix into multiple row vectors. These row vectors
correspond to the partial output features. In multi-layer GCNs
models, the output features of the preceding layer serve as
the input for the subsequent layer. Therefore, we eliminate
all zero-valued row vectors and send the remaining vectors
to the corresponding PE with a matching row index for
merging, called remote merging. The complete output feature
vector is obtained through iterative accumulating during the
merge stage and is stored in nearby banks. In other words,
we transformed instruction-driven data retrieval into data-
driven data transmission, shifting from sending instructions
and waiting for data to directly transmitting data. This change
has significantly reduced access latency and saved costs.

B. Combined Execution Model

In order to support the remote merging and enable data
reuse across stages while ensuring the overall efficiency of
GCNs, we shall contemplate two aspects: the execution order
between phases and the matrix multiplication method in the
combination phase.

Execution Order. GCNim employs a combination-first
execution order. This is because parallel tasks involved in the
multiply stage do not produce complete matrices, leading to
the combination having to wait until the entire multiply and
merge stages are completed before they can start. If partial
results are directly sent to the combination, it could result
in redundant computations. Furthermore, the combination first
results in lower computational overhead for most datasets.

Combination Phase. We propose employing the row-wise
product during the combination phase instead of utilizing
either the outer or inner products. The fundamental idea
behind our choice is that row-wise products can load the
corresponding rows of matrix W based on the non-zero
element indices within each row of matrix X. Thus, there’s no

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3341753

JOURNAL OF KIEX CLASS FILES, VOL. XX, NO. XX, XXXX XXXX

need to access the entirety of W. Moreover, the complete row
of XW obtained through row-wise product computations can
immediately engage in computations during the aggregation
phase, ensuring the comprehensive spatial reuse of the XW
matrix.

On one hand, the outer product method fails to yield
a complete matrix, necessitating the aggregation phase to
await the completion of the entire combination phase before
commencing. Directing partial results to the aggregation would
lead to redundant computations. On the other hand, employing
the inner product method would require computing each row
of X with every column of W, causing X to access the entirety
of W during each row computation. However, due to the
sparsity in the feature matrix X, a portion of the data within
each loaded column of W is unnecessary for computation.
Furthermore, the inner product method involves element-wise
calculations, which, to be implemented, demand additional
reduction operations. Introducing dedicated hardware for these
reduction operations would result in significant area overhead.
Neither the outer product nor the row-wise product methods
impose such requirements.

The overview computational model of GCNim is depicted
in Fig. [0} which embodies the critical processes of GCNs
inference through a sequence of matrix operations. The model
adheres to the combination-first execution order and comprises
three consecutive stages: combination, multiply, and merge.
Specifically, during the combination, the rows of X are
multiplied with matrix W in parallel, employing the row-wise
product method, to obtain rows of X W. This ensures that each
non-zero element of X, typically sparse, is accessed only once.
In the multiply stage, the multiplication of rows of XW and
columns of A yields several partial matrices, further divided
into partial vectors. These vectors are dispatched to different
PEs, where all partial vectors with the same row indices are
accumulated during the merge stage, and the final complete
output features are obtained.

IV. GCNIM ARCHITECTURE

This section presents the GCNim architecture to support
the proposed computation model. It aims to facilitate GCNs
inference by executing three phases in a data-parallel manner.
The section first presents a comprehensive exposition of the
overarching architecture of GCNim, succeeding by exploring
the design of its DRAM layers and base logic layers. Finally,
this section provides a detailed description of the complete
workflow for GCNs inference on GCNim.

A. Accelerator Overview

We observe that by redividing the inference of each GCNs
layer into three stages: the combination stage involves dense
vector multiply-accumulate (MAC) operations, the multiply
stage involves scalar multiplication of dense vectors, and the
merge stage is dense vector accumulation operations. All three
operations can be seen as dense vector operations, allowing us
to use a set of MAC units to support these three operations,
thus enabling the design of a unified PE architecture.

’/’ GDL
e Bank H H Bank
i 1 ’*\

V ! E Col dec Col dec
Al U0
i E i E 3 A TSVs PE
et
' /! IDRAM Die
St
: i

Logic Die
Vault

Vault
Controller

Fig. 7. The architecture overview of the GCNim

Fig. [/| provides an overview of the GCNim architecture,
comprising a base logic layer and several DRAM layers.
The entire memory cube is partitioned into multiple vaults.
Within each vault, the memory cells in the DRAM layers
are partitioned into bank groups that share a common TSV,
allowing for communication between the vault layers. GCNim
incorporates a processing element alongside each bank and
a vault controller in the logic layer. The PEs are primarily
responsible for the execution of GCNs inference computations,
while the vault controller manages communication and data
forwarding between various DRAM layers across different
vaults.

B. DRAM Layer PE Design

As illustrated in Fig. Eka), the architecture of the PE in
the DRAM layer consists of five main components, namely
the Execution Units, the Controller, the MatW Memory, the
MatX Fetcher, and the VecX Buffer. In the subsequent, we
will present a comprehensive description of each component
of a PE.

1) Execution Unit (EU). Each EU comprises a dual set of
16 FP32 multipliers and adders, as depicted in Fig.[9(b). These
enable the execution of three fundamental operations: MAC,
MUL, and ADD. Data is directed from different memory hi-
erarchies to the EU, which the controller organizes. Moreover,
the EU is equipped with several registers that are employed
for instruction decoding and data staging.

2) Controller. The controller has two primary responsi-
bilities: firstly, it manages the transfer of data between the
bank, PE, and logic layer, and the internal data transfer within
the PE. Secondly, it orchestrates three computational stages.
As the merge stage involves handling data from remote PEs,
arrival time and sequence are uncertain. Hence, the controller
needs to coordinate when to start the merge stage.

3) MatW Memory (MWM). The MWM is mainly com-
posed of a content addressable memory (CAM), and it also
supports direct mapping, as illustrated in Fig. Ofa). Due to
the sparsity in feature vectors, the row-wise product approach
in the combination stage results in repetitive and random
access to weight parameters. These parameters may be shared
among all vertices. To improve data reusability and reduce
access to the logic layer, we implement a specialized CAM-
based scratchpad within the PE to store and buffer the weight
parameters. This serves to alleviate the bandwidth pressure on
the TSV.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3341753

JOURNAL OF KIEX CLASS FILES, VOL. XX, NO. XX, XXXX XXXX

’ Bank ‘ other vaults
T
MatX
VecX . v
Butter | EXecution fetche Buffer
i Controller
< I TSVs >
() (b)

Fig. 8. The detailed hardware architecture of GCNim: (a) PE of the DRAM
layer and (b) vault controller in the base logic layer

4) MatX Fetcher (MXF). The MXF is a buffer for prefetch-
ing and storing the feature vectors. Its primary objective is to
allow the PE to predict which weight parameters are needed
for matrix multiplication and preload them into the MWM
before computation begins based on the column indexes of
the non-zero elements of feature vectors. However, due to
the constrained area allocation resulting from the integration
of PE next to the bank, it may not be possible for the
MXF and MWM to store an entire feature vector and the
corresponding weight parameters. Consequently, the controller
iterates through the elements in the MXF to verify if the weight
parameters are present in the MWM.

5) VectorX Buffer (VXB). The VXB serves to receive
partial feature vectors transmitted from other PEs and arranges
them in order according to their corresponding row indices.
When a certain number of these partial vectors are received,
and the other two stages have been completed, the partial
vectors are then sent to the EU for accumulation.

In addition, to maintain generality, a nonlinear function unit
(NFU) is also configured within each PE. Each layer’s final
complete output vectors will be activated through NFU and
written back to the banks.

C. Logic Layer Design

The composition of the logic layer in each vault is consistent
and includes a router, a memory controller, and a buffer,
as depicted in Fig. [§[b). Its primary function is to manage
requests and forward and deliver data to the relevant PE. The
matrix W is stored in the buffer. When W is small enough, it
can be entirely stored in each logic layer. In contrast, when W
is relatively large, GCNim distributes the weight parameters
evenly among different vaults.

The Logic layer handles two primary types of data requests
and forwarding. The first is retrieving and forwarding the
weight parameters required during the combination stage. The
memory controller retrieves the necessary parameters from the
buffer and transmits them to the corresponding PE based on
the request. If each vault stores the entire IV, there is no need
for inter-vault communication. However, if "W needs to be
stored separately, the controller of each vault maintains the
distribution information of W. The controller is firstly based
on the index of the required weight parameters to ascertain
whether they are located in the local buffer or other vaults.
Then, it will either directly transmit the data or request them

| Controller | | EU | from 3;::/ JW;/ F
Output { Bank
Read Data |
Index
Table
Write
Direct s h to Contoller to
irec earc o i
b Itipl
TSV Mode Mode coms‘:;aetlon msl;a"gpey ,;e;gg:

(a) (b)
Fig. 9. Microarchitecture of (a) MatW Memory and (b) Execution Unit

from other vaults. The second type of data forwarding is
partial vectors generated in the multiply stage. This includes
sending vectors to and receiving vectors from other vaults
and forwarding them to different PEs of DRAM layers. Each
vault controller maintains the correspondence between the
feature vectors in the local vault and the banks and between
non-local feature vectors and the vault. This information is
assigned statically before the computation begins and remains
unchanged during execution.

D. Workflow

In this section, we explain how GCNim performs the infer-
ence task of GCNs comprehensively and systematically. The
three matrices are stored in different formats. The adjacency
matrix A is stored in a compressed sparse column (CSC)
format, and the feature matrix X is stored in a compressed
sparse row (CSR) format. Column and row vectors of A
and X, which share the same indices for the outer product
multiplication, are stored in the same memory bank. For the
row vectors of X (1) the merging and access occur within
the same bank with matching X (V) indices. The weight matrix
W is stored in a dense row-major format in the Buffer of the
logic layer. Smaller weight matrices are entirely stored in one
vault, while larger ones are evenly distributed across multiple
vaults.

In the first combination stage, matrix multiplication is
performed between X and W. Each PE involves taking all
non-zero elements in a row of X and performing scalar
multiplication with multiple rows of the required W matrix,
followed by vector addition to obtain an intermediate result,
a row of XW. The non-zero elements of X are cached in
MXEF, and the rows of W are stored in MWM. The lack of
caching of the corresponding rows of W in the MWM, when
non-zero elements of X are computed sequentially, can lead to
calculation pauses. Therefore, GCNim employs a non-blocking
method to handle this issue.

The controller of GCNim cyclically checks each element
in MXF and verifies whether the corresponding W row exists
in MWM based on its column index. If a match is found,
the element and the corresponding row of W are immediately
sent to the execution unit for MAC operations. Specifically, as
shown in Fig. Ekb), the non-zero element of X is broadcasted

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3341753

JOURNAL OF KIEX CLASS FILES, VOL. XX, NO. XX, XXXX XXXX

to all MAC units, while the elements in the row vector
of W are sequentially forwarded to each MAC unit. Each
execution unit provisioned eight multipliers and adders. The
dimensionality of the weight parameters determines the length
of the output feature vector. The time required for each MAC
operation also depends on this length. If the length exceeds the
number of multipliers and adders, the entire operation will be
iterated for multiple rounds. If a match is not found in MWM,
the controller sends a command to the logic layer to retrieve
the corresponding W row while skipping the current element
and moving on to the next one. This design is supported by
the fact that the execution order of the elements in a feature
does not impact the correctness of the result using the row-
wise method. However, for sparse matrix X, the distribution
of non-zero elements is irregular. Some feature vectors may
have an unusually high number of non-zero elements (nnz)
that cannot fit entirely in MXF. Moreover, the poor locality
in X may result in frequent data requests, putting excessive
pressure on TSV. To address this issue, for feature vectors with
a large nnz, GCNim no longer traverses and searches MXF
but instead divides MXF and MWM into double buffers, with
half the data involved in the processing and the other half in
data preparation. In this case, multiple rows of W are loaded
into the buffer simultaneously, and the controller operates in
order directly without verifying the rows of W.

After processing all non-zero elements in a row of X,
the intermediate result X W row is temporarily stored in the
register of the execution unit. In the multiply stage, columns
of A are fetched from the banks to the execution unit, then
multiplied by the XW to generate partial matrices through
the outer product. In other words, the data generated in the
combination stage remains stored in the registers instead of
entering the global buffer or DRAM and is directly involved
in the multiply stage calculation. This can reduce the area
overhead caused by caching intermediate matrices or avoid
expensive DRAM access, providing dual benefits of energy
and performance.

The partial matrices are fragmented into multiple partial
vectors, and the controller subsequently forwards these partial
vectors to the logical layer, which then assigns them to the
corresponding PE via row indexing. Upon receiving the partial
vectors, each PE accumulates them in the merge stage.

We employ a vector buffer VXB and a data reordering
technique to prevent potential conflicts. Partial output vectors
are temporarily stored in VXB instead of being immediately
merged. The merging process occurs after the combination
and multiply stages when the data in VXB reaches a specific
threshold. If there is limited data in VXB, the combination
and multiply stages proceed consecutively, bypassing the
merge stage. During merging, the execution unit retrieves the
data from VXB, matches them based on their indices, and
accumulates them with the old partial sums stored in the
bank. Subsequently, the new partial sums are written back
to their original positions in the banks. To minimize data
movement within the bank, we reorder the partial output
vectors according to their indices rather than relying on the
order of vector arrivals. Once all partial vectors have been
merged, the resulting output vector is activated by the NFU

destination vertexes o
1234 56738 1
1] | 2 PE1
9 2 e T S +*
g3 Il L] : N
g4 »® . - .
> T - -
o5
§ 6 vid
8 7 1 1 1 U
8V | T ow), = PE2
PE1 PE2 1 I
8
) phase2 [phase3

Fig. 10. An example of the allocation of workload for the second and third
stage PEs
and stored back in the bank.

GCNim system does not stagnate in computation due to data
waiting, as the data either resides in the EU or is prepared
in the memory of the PE. The controller orchestrates the
computational pipeline and data movement across the three
stages. The combination and multiply stages are closely cou-
pled. Inter-stage pipelining is achieved by having the output of
the combination stage reside in the registers of the execution
unit, participating in the subsequent multiply stage. Merging
doesn’t occur after every multiply stage; its execution depends
on the amount of data in VXB. Therefore, the combination
or merging stage can execute after the multiply stage, and
the execution unit is reused across these three stages. The
combination and multiply stages use computations performed
in other stages to hide the latency of data transfer in these
stages. These approaches improve the utilization of both PE
and DRAM bandwidths and minimize the number of incoming
memory accesses.

V. PREPROCESSING

In this section, we introduce a lightweight workload map-
ping method to distribute the non-zero elements of matrices
A and X into GCNim’s memory banks for execution units
to process. GCNim integrates a PE next to each memory
bank, and all PEs simultaneously handle non-zero elements.
Therefore, performance is bounded by the slowest PE, which
needs workload balance among the PEs.

In prior research, offline preprocessing tech-
niques [32]], [33], [34] were employed to reconstruct
the graph and partition the vertices. This approach aimed
to enhance data locality and achieve a balanced workload
distribution. However, this approach introduced significant
latency overheads based on complex software reordering
algorithms and was only feasible during offline processing.
Instead of relying on software algorithms, we harness data
locality by designing our hardware architecture. Firstly, in
the combination stage, we utilize prefetchers, buffer for
W matrices, and hidden data transfers after calculations to
provide locality advantages. Secondly, in the multiply stage,
all elements of the adjacency matrix are parallel without data
dependencies, while in the merge stage, we achieve complete
data locality by sending partial vectors to the corresponding
storage PE for merging.

After static data allocation, the A and X(® do not move
during system runtime, and all PEs execute in parallel.
Performance depends on the slowest PE, so balancing the
workload among all PEs through preprocessing is necessary.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3341753

JOURNAL OF KIEX CLASS FILES, VOL. XX, NO. XX, XXXX XXXX

Algorithm 1 Matrices A and X assignment to banks

Input: The adjacency matrix A, feature matrix X, the number
of PEs #PFE;

Output: The partitioned A and X
1: n < the number of vertices of A
2: P <+ MinFirstQueue(#PE;)

> Initialize each container

3: for i < 0 ton do
4: D; < the degree of vertex
5. N; < nnz in i-th row of X
6: p <« P.extract_min() > Filling the container
7. pwertex.idrset(i)
8: p.workload < p.workload + D; + N;
9: P.ansert(p)

10: end for

11: count =0

12: for each p € P do

13: for each v € p.vertex do

> Renumber the vertices

14: v.index < count
15: count < count + 1
16: end for

17: end for

By analyzing the workload of each PE in the three stages, we
propose an efficient and lightweight processing method.

The workload of each PE in each stage depends on nnz
in X allocated in its bank, nnz in A, and the number of
X partial vectors received. Specifically, for the first stage,
the multiplication and addition operations time depends on
nnz in X and the length of the W vector. As the length of
the dense matrix W row is fixed, only X’s nnz needs to be
considered. For the second stage, the time for multiplication
operations is similar to the first stage and depends on nnz in
A and the length of the (XW) vector. For directed graphs,
nnz in A’s column represents the in-degree of a vertex,
which determines the workload of the second stage. Although
partial vectors are received from remote PEs for the third
stage, the total computation for the third stage can be pre-
known. This is because the partial vectors are sent based
on A and X’s row indices. The number of generated partial
vectors in the second stage depends on the nnz in A’s row
vectors, representing the out-degree of a vertex in the directed
graph. Therefore, the total computation of the PE depends on
the degree of the assigned vertices and nnz in their feature
vectors. Fig[I0] provides an example of workload allocation
for PEs in the second and third stages. Based on this, we
propose a simple heuristic data placement algorithm. Typically,
the algorithm employs a greedy strategy, and the pseudo-code
is demonstrated in Algorithm [I]

Firstly, we allocate an empty container for each bank. We
compute each vertex’s workload as the sum of its degree
and nnz in its feature vector. Then, we place the vertices
into different containers according to the capacity of each
container and use a minimum priority rule. Once all vertices
are assigned, we will renumber the vertex IDs of the entire
graph to ensure that vertices in the same container have
continuous indexes, making it easier for the logic layer’s vault

TABLE I
GRAPH DATASET
Datasets Cora Citeseer Pubmed Nell Reddit
#Vertex 2,708 3327 19,717 65,755 232,965
#Edge 10,556 9,104 88,648 266,144 | 114,615,892

Feature length 1.433 3,703 500 5415 602
Density of A 0.18% 0.11% 0.028% | 0.0073% 0.21%
Density of X© | 1.27% 0.85% 10.0% 0.011% 51.6%
Density of X | 78.0% 89.1% 77.6% 86.4% 60.0%
Density of W 100% 100% 100% 100% 100%

controller to store corresponding information.

VI. EVALUATION

In this section, we begin by introducing the experimental
setup. Subsequently, we elaborate on the comprehensive per-
formance, power, and area results of GCNim against state-
of-the-art GCNs software and hardware solutions. Following
that, we discuss the scalability of GCNim and the sensitivity
studies of hardware configurations.

A. Experimental Methodology

Hardware Configuration: We follow the specification [35]]
for 3D stacking memory to implement our architecture design.
We use the configuration specified in the previous 3D stacking
memory characterization study [36]. A memory cube consists
of a logic die, and eight DRAM dies. The cube is segregated
into 32 vaults, each graced with its controller positioned at
the logic die. These controllers establish connections with the
DRAM dies via 32 TSVs. Each DRAM layer contains two
banks per partition, each with a capacity of 16MB. Hence,
the number of banks within each cube entity amounts to 512,
boasting a collective capacity of 8GB. We set a PE next to each
bank; the FPU of each PE contains 16 pairs of multipliers and
adders, a 2 KB MatX Fetcher, and the size of the VecX Buffer
is also 2 KB. The size of the DRAM layer MatW Memory
and logic layer Buffer is 4 KB and 128 KB, respectively.

Simulation Configuration: We implement an in-house
cycle-accurate simulator to perform performance and power
simulations of our architecture. It also supports the prior
work [16], [23]] for bank-level computing. We use CACTI-
3DD [37] to model 3D stacked DRAM, interconnect com-
ponents(including TSVs and routers), and on-chip memory
elements(including MatX Fetcher, VecX Buffer, PMatW Mem-
ory, and logic layer MatW Buffer) and estimate its area,
power, and latency. To estimate the overhead of GCNim’s
logic parts, we implemented them using Verilog RTL and
synthesized them using the Synopsys toolchain with the TMSC
28nm standard library. Furthermore, we estimate the power
consumption using Synopsys PrimeTime PX. GCNim runs at
a frequency of 312.5MHz.

Datasets: The five datasets most widely used in GCNs
studies are shown in Table m Among the datasets utilized,
we incorporate Cora (CR), Citeseer (CS), and Pubmed (PB).
They represent three widely recognized collections of paper
citation networks. Nell (NE) is a knowledge graph. Reddit
(RD) is a social network graph extracted from various Reddit
forums [38].

Baselines: We comnpared GCNim and the state-of-the-art
graph neural network framework PyG [39] on CPU and GPU

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3341753

JOURNAL OF KIEX CLASS FILES, VOL. XX, NO. XX, XXXX XXXX

PyG-CPU m PyG-GPU m I-GCN m GCIM m FlowGNN m PEDAL = GCNim
104
103
$5
TF % 10
550
EEL 100
65 ¢
- | | | |
ws q I
0 " .
Cora CiteSeer PubMed NELL Reddit Gmean
Fig. 11. Execution times of GCNim against the state-of-the-art GCNs

solutions. All results are normalized to GCNim.

platforms. PyG is a library built on top of PyTorch for writing
and training graph neural networks easily and powerfully. We
evaluated PyG-CPU and PyG-GPU using a Linux workstation
with two Intel(R) Xeon(R) CPUs E5-2680 v4 and one Nvidia
Tesla V100 GPU.

Furthermore, we compared GCNim with four other ad-
vanced solutions: a novel hardware accelerator I-GCN [18]],
a generic dataflow architecture FlowGNN [40], a power-
efficient accelerator PEDAL [41]] and a PIM-based accelerator
GCIM [23]. To ensure fairness, we integrated the I-GCN and
PEDAL solution into 3D-stacked PIM architecture, establish-
ing them as the baseline scheme.

B. Overall Performance

We begin by assessing the performance of GCNim. Fig. [IT]
illustrates the comprehensive performance outcomes of GC-
Nim compared to PyG-CPU, PyG-GPU, I-GCN, FlowGNN,
PEDAL, and GCIM.

1) GCNim vs. PyG-CPU: In contrast to PyG-CPU, GCNim
demonstrates a significantly faster performance, ranging from
976.36x~ 6862.84x (3736.06x on average) due to the hybrid
execution model and the near-data processing method adopted
by GCNim architecture. The speedup obtained by GCNim
is closely associated with the shape of the graph. Notably,
NE shows the highest speedup ratio (6862.84x) due to the
sparsity of its graph and input features. This means that most
of the aggregation and first layer combination phases will
show irregular memory access, resulting in poor performance
for PyG-CPU. GCNim mitigates irregular memory access by
splitting the aggregation into two stages, where data from
the previous stage is directly transmitted to other PEs for the
subsequent computation in the next stage. In the combination
phase, we hide memory access latency by designing two-layer
buffers and pipelines in three stages.

2) GCNim vs. PyG-GPU: GCNim outperforms PyG-GPU
by a factor of 11.02x~121.82x (76.56x on average). Despite
the GPU’s vast number of cores, the sparsity of the graph
during GCNs inference causes the GPU to generate strided
memory access, resulting in multiple memory transactions
during a single computation step. This makes it challenging
for PyG-GPU to leverage the available parallelism fully. For
GCNim, through the static mapping before execution and the
outer product method adopted in the aggregation phase, FPU
only needs to multiply or accumulate data stored in the local
bank and buffers to avoid irregular memory access and achieve

10

a reasonably high execution efficiency. Similarly, GCNim
performs best on the NE graph, where the large graph size
prevents complete on-chip memory storage in the GPU, thus
incurring off-chip communication overhead. GCNim’s near-
data processing architecture can effectively solve this problem.

3) GCNim vs. I-GCN: I-GCN suggests a dynamic re-
ordering scheme called Islandization based on a breadth-first
search. In addition, it reuses the overlapping computations
within the aggregation phase to reduce the computational
complexity. In comparison, GCNim outperforms I-GCN by
1.73x~5.61x (3.35x on average). GCNim performs best on
the NE graph but less well on the RD graph. This is due to
the sparsity of the feature vectors in the first layer of NE. In
contrast, the overall sparsity of it in RD is between 50% and
60%, resulting in the calculation in the combination phase of
the RD not being memory-bound. This provides no advantage
for the 3D stacked memory with fewer processing units.

4) GCNim vs. GCIM: GCIM integrates MAC arrays in the
logic and DRAM layers to support the two phases. In com-
parison, GCNim achieves a better speedup of 1.52x~9.08x
(5.58x on average) compared to GCIM. Although GCIM
employs a bank-level approach for aggregation, accessing
vertices and their feature vectors can result in severe cross-
vault communication between different vaults. Despite the use
of replicas to reduce remote communication, this approach
is ineffective for GCNs as long vertex feature vectors can
lead to unaffordable storage overhead. GCNim performs better
on the NE graph with sparse feature vectors, with the most
extended feature vector length. GCIM follows an aggregation-
combination execution order, whereas GCNim employs a
combination-aggregation sequence. In most datasets, initiating
with combination reduces computations due to the smaller
output feature dimension than the input feature dimension.
However, there’s an exception: in the NE dataset’s second
layer, output features are longer than input features. Despite
this, GCNim performs better on the NE dataset. This indi-
cates that our performance enhancement is not solely due to
reducing operations by changing the execution order.

5) GCNim vs. FlowGNN: FlowGNN is a novel and scalable
dataflow architecture with a configurable dataflow optimized
for GNN models with a message-passing mechanism. In
comparison, GCNim outperforms FlowGNN by 1.43 x ~3.66x
(2.24x on average). FlowGNN targets real-time applications
with zero preprocessing and partitioning. GCNim is tailored
for GCNs and achieves load balancing through a lightweight
preprocessing strategy. Our design significantly reduces la-
tency during the aggregation phase, particularly for large
graphs like NE.

6) GCNim vs. PEDAL: PEDAL is a power-efficient ac-
celerator supporting multiple dataflows. PEDAL chooses the
best-fit dataflow and phase ordering based on input graph
characteristics and GCNs algorithm, achieving both efficiency
and flexibility. We compare the best-performing dataflows
and phase order of PEDAL in GCN. In comparison, GCNim
outperforms PEDAL by 3.10x~23.06x (8.97x on average).
The architecture of PEDAL with separate engines and a
design that supports multiple dataflows makes the execution
of GCN less efficient. But in terms of generality, PEDAL can

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3341753

JOURNAL OF KIEX CLASS FILES, VOL. XX, NO. XX, XXXX XXXX

PyG-CPU ® PyG-GPU m |-GCN = GCIM ® FlowGNN B PEDAL = GCNim

103

102

101

L0 e i ko

Cora CiteSeer PubMed NELL Reddit Gmean

Normalized
Energy (lower is better)

Fig. 12. The energy consumption of GCNim against the state-of-the-art GCN
solutions. All results are normalized to GCNim.

TABLE I
THE AREA AND POWER OF COMPONENTS IN A BANK OR A VAULT.

Module Component Area(mm?) Power(mW)
MACs 0.1328 32.9041
MatX Fetcher 0.0059 0.4107
DRAM layer VecX Buffer 0.0078 0.3441
MatW Memory 0.0356 1.5575
NFU 0.0022 0.4826
logic layer Buffer 0.3564 49.2936

also support the GCN that employs non-linear aggregation
functions.

C. Energy Consumption and Area

We estimate energy consumption mainly from four main
factors: execution unit, DRAM bank access, on-chip SRAM
access, and I/O link in the network. Fig. [T2] depicts the energy
results. Thanks to GCNim’s near-data processing capability
significantly reduces the cost of data movement, GCNim
consumes 2704.27 x ~ 14445.72 x (8292.46x on average)
less than PyG-CPU. GCNim saves 13.43 x ~ 124.17x
(81.45x on average) more energy than PyG-GPU. GCNim
exhibits a notable energy advantage over PEDAL, consuming
2.46x to 8.86x (with an average of 5.53x) less energy.
Similarly, compared to I-GCN, FlowGNN, and GCIM, GC-
Nim showcases superior energy efficiency, averaging 1.83x,
1.32%, and 2.83x less energy consumption. Compared with
GCIM, GCNim adopts different multiplication methods to
eliminate data movement overhead between the two phases
while avoiding high energy consumption caused by irregular
and redundant cross-partition communication through remote
merging.

Area: Table [lI| shows the area of the hardware components
in each bank. The PE area cost of GCNim in each bank of the
DRAM layer is only 0.1843mm?, accounting for just 7.58%
of the bank area. The total area of all components in the logic
layer is only 11.4048mm?, representing 11.88% of the logic
layer area. The base logic die in the 3D memory has a 10%
to 30% area budget . Therefore, our design is within the
acceptable range of the 3D stacked memory area budget.

D. Execution Time and Energy Breakdown

To gain a deeper understanding of the effectiveness of
our design, we conducted an evaluation that included the

m static
DRAM Dynamic
= Interconnect Dynamic

MAC Dynamic

. R SRAM Dynamic
aggregation = combination

100 m T . 100%
80%
60%
40%

20%

Ratio of Execution
time
8
Normalized Energy

o
Cora CiteSeer PubMed NELL Reddit Cora CiteSeer PubMed NELL Reddit

(a) (b)

Fig. 13. The breakdown of (a) execution time for the aggregation and
combination and (b) energy breakdown for GCNim

Cube=1 mCube=2 Cube=4 mCube=8 mCube=16
16
14
- 12
& 510
B
5& 6
4
4
2
0
Cora CiteSeer PubMed NELL Reddit

Fig. 14. The scalability of GCNim with the increase of the number of cubes

decomposition of execution time and energy consumption at
different phases.

Latency Breakdown. Fig. [T3|a) illustrates the decomposi-
tion of the execution time ratio for the two phases of GCN. The
findings indicate that GCNim’s main performance advantage
comes from significantly reducing latency in aggregation.
Except for the RD graph, the combination phase exhibits a
higher proportion in the remaining datasets.

Energy Breakdown. Fig. [I3(b) depicts the detailed de-
composition of energy consumption for GCNim. We estimate
energy consumption mainly from five main factors: 1) static;
2) MAC dynamic; 3) DRAM dynamic; 4) SRAM dynamic;
and 5) interconnect dynamic. For small graphs, the energy
consumption of static and SRAM dynamics is relatively high.
With the graph size expanding, the overhead from interconnec-
tions grows, leading to a decrease in the proportion of energy
consumption of the computing units.

E. Scalability

Previous works [43]], [44], [45] have also studied the ar-
chitecture of multiple 3D stacked memory interconnects. The
cubes can be connected to other devices or each other, with ex-
ternal bandwidth between cubes reaching 320GB per second.
We measured the scalability of GCNim as the number of cubes
increased, as shown in Fig. @ When the number of cubes
is small, all graphs show good scalability with near-linear
expansion. However, when the number of cubes increases to
more than 8, the performance growth of small graphs slows
down while large graphs continue to perform well. When the
number of cubes increases to 16, our architecture still shows
a nearly 14x speedup compared to a single cube.

Our design exhibits good scalability on large graphs because
we avoid remote random access during execution. In the
combination phase, the weight matrix required for PE is

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3341753

JOURNAL OF KIEX CLASS FILES, VOL. XX, NO. XX, XXXX XXXX

Latency=4 m Latency=8 = Latency=12 W Latency=24 #8 #16 #32

Normalized

ExecuOon Time
e
Normalized
Speedup

o =

°

Cora CiteSeer PubMed NELL Reddit Cora CiteSeer PubMed NELL Reddit

@) (b)

Fig. 15. The sensitivity of performance to (a) TSV transfer latency and (b)
the number of MAC

obtained mainly from the local cube and read from the local
vault. During the aggregation phase, the latency of sending
remote feature vectors can be hidden through computation,
avoiding computational stagnation caused by vertex aggrega-
tion randomly accessing remote data.

FE. Sensitivity to Hardware Parameters

We conducted a sensitivity study to examine the impact of
a subset of architectural parameters on inference latency.

The vast majority of data requests and accesses occur in
local vaults, making the transfer latency of TSVs crucial. We
study the sensitivity of TSV delay in 3D stacked memory by
setting the data transmission delay in the simulator. Fig. [I5|a)
shows the trend of increasing execution time for different
datasets as TSV latency increases. When the transmission
delay of TSV increases from 4 to 8, the actual execution
time increases by only about 6%. When the delay increases
to 12, the execution time increases by about 18%. When the
delay increases to 24, the execution time increases by an
average of 40%, with a maximum rise of 60% in some graphs.
This indicates that when the TSV transmission capacity is
strong, the data transmission can overlap with calculation,
and when the delay increases, the time spent waiting for data
will increase. However, due to our three-stage pipelining, our
architecture design remains resistant to high latency.

On the other hand, different datasets have different lengths
of feature vectors, and changes in the number of execution
units can have different impacts. Fig. [I5(b) showcases the
performance outcomes obtained by augmenting the number
of multipliers and adders. The results showed that when the
number of logical components increased from 8 to 16, the
average acceleration ratio was 1.784x. When the number
continued to expand to 32, it only increased by an average
of 1.523x compared to 16. This is because a multiplier and
an adder process one feature element at a time. In the case
of small graphs, the length of the output feature vector is
usually less than or equal to 16. Therefore, the acceleration
is insignificant when the number of computing components
increases to 32. However, for large graphs, the output feature
vector expands to a point where augmenting the number of
logical components becomes advantageous.

VII. RELATED WORK

GCNs Accelerators. In recent years, numerous efficient
architectures have been proposed to accelerate GCNs. Among
them, HyGCN [15]] proposes a hybrid engine accelerator. It
elucidates the necessity of GCNs accelerators and discusses
the distinctive critical features of the two phases of GCNs

inference. AWB-GCN [26] relies on the column-wise prod-
uct execution method and explores the impact of execution
order. It transforms GCNs inference into SpMM and employs
various dynamic load-balancing strategies. I-GCN [18]] adopts
a novel online graph reordering algorithm, Islandization, to
improve data locality and minimize repetitive calculations.
GCNAX [16] proposes a flexible GCNs dataflow to maxi-
mize the utilization of computing engines and minimize data
movement. Additionally, GCoD [46] introduces a co-design
framework that requires retraining GCNs to obtain dense and
sparse regions amenable to acceleration. FlowGNN [40] is the
first generic and flexible accelerator framework for a wide
range of GNNs. PEADL [41]is a power-efficient accelerator
for GCNs inference supporting multiple dataflows.

PIM Accelerators Related to Graph Processing. Many
PIM-based 3D stacked memory graph processing accelerators
have typically integrated digital logic units into the logic layer.
Tesseract [42] represents the first graph accelerator based on
3D stacked memory, a scalable PIM accelerator used for
extensive graph computation. GraphPIM [47]] demonstrates
that PIM’s key performance advantage in graph processing is
reducing atomic overheads by offloading expensive atomic op-
erations into 3D memory with an extended minor architecture.
GraphP [45] is a software and hardware co-design accelerator
that proposes a graph partition method and further optimizes
communication between cubes. GraphQ [44]] is an enhanced
PIM-based graph processing architecture that achieves static
and structured communication through batched communica-
tion orders and simplified processing models, fundamentally
eliminating irregular data movements. Another exploration
is integrating processing units near the bank of the DRAM
layer. GCIM [23] is the first accelerator to utilize bank-level
processing of GCNs. It leverages the unique characteristics
of the aggregation and combination phase to perform at both
the logic and DRAM layers. SpaceA [22f is a customized
accelerator for SpMV that integrates processing elements near
the banks to utilize bank-level bandwidth. In a vertex-centric
paradigm, the graph algorithm can be represented in numerous
rounds of SpMV.

VIII. CONCLUSION

In this paper, we propose GCNim, an accelerator designed
for graph convolutional networks on the 3D stacked memory
PIM architecture. GCNim adopts a novel GCNs computational
model based on the PIM architecture, which employs different
multiplication methods in the aggregation and combination
phases of GCNs, enabling remote merging and pipelined
inter-phase fusion. This approach significantly reduces data
movement within and between stages. Additionally, GCNim
integrates unified processing elements at the bank level, con-
currently supporting alternating computations of aggregation
and combination kernels, thereby obliterating load imbalances
caused by dynamic workload variations between phases. Our
experiments demonstrate that GCNim exhibits superior per-
formance and energy efficiency compared to state-of-the-art
CPU, GPU, and accelerator solutions.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3341753

JOURNAL OF KIEX CLASS FILES, VOL. XX, NO. XX, XXXX XXXX

[1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

A. Voulodimos, N. Doulamis, A. D. Doulamis, and E. Protopapadakis,
“Deep learning for computer vision: A brief review,” Comput. Intell.
Neurosci., vol. 2018, pp. 7068 349:1-7 068 349:13, 2018.

J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only
look once: Unified, real-time object detection,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 779-788.

S. Vashishth, “Neural graph embedding methods for natural language
processing,” CoRR, vol. abs/1911.03042, 2019.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770-778.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proceedings of the Confer-
ence on Neural Information Processing Systems, 2012, pp. 1106-1114.
A. Lerer, L. Wu, J. Shen, T. Lacroix, L. Wehrstedt, A. Bose, and
A. Peysakhovich, “Pytorch-biggraph: A large-scale graph embedding
system,” CoRR, vol. abs/1903.12287, 2019.

T. Hamaguchi, H. Oiwa, M. Shimbo, and Y. Matsumoto, “Knowledge
transfer for out-of-knowledge-base entities: A graph neural network
approach,” CoRR, vol. abs/1706.05674, 2017.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” CoRR, vol. abs/1609.02907, 2016.

A. Garcfa-Durdn and M. Niepert, “Learning graph representations with
embedding propagation,” CoRR, vol. abs/1710.03059, 2017.

H. Wang, L. Dong, and M. Sun, “Local feature aggregation algorithm
based on graph convolutional network,” Frontiers Comput. Sci., vol. 16,
no. 3, p. 163309, 2022.

D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gdémez-
Bombarelli, T. Hirzel, A. Aspuru-Guzik, and R. P. Adams, “Con-
volutional networks on graphs for learning molecular fingerprints,”
in Proceedings of the Conference on Neural Information Processing
Systems, 2015, pp. 2224-2232.

A. Fout, J. Byrd, B. Shariat, and A. Ben-Hur, “Protein interface
prediction using graph convolutional networks,” in Proceedings of the
Conference on Neural Information Processing Systems, 2017, pp. 6530—
6539.

H. Dai, Z. Kozareva, B. Dai, A. J. Smola, and L. Song, “Learning
steady-states of iterative algorithms over graphs,” in Proceedings of the
35th International Conference on Machine Learning, vol. 80, 2018, pp.
1114-1122.

M. Yan, X. Hu, S. Li, A. Basak, H. Li, X. Ma, I. Akgun, Y. Feng, P. Gu,
L. Deng, X. Ye, Z. Zhang, D. Fan, and Y. Xie, “Alleviating irregularity in
graph analytics acceleration: a hardware/software co-design approach,”
in Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2019, pp. 615-628.

M. Yan, L. Deng, X. Hu, L. Liang, Y. Feng, X. Ye, Z. Zhang, D. Fan,
and Y. Xie, “Hygcen: A GCN accelerator with hybrid architecture,” in
Proceedings of the IEEE International Symposium on High Performance
Computer Architecture, 2020, pp. 15-29.

J. Li, A. Louri, A. Karanth, and R. C. Bunescu, “GCNAX: A flexible and
energy-efficient accelerator for graph convolutional neural networks,” in
Proceedings of the IEEE International Symposium on High-Performance
Computer Architecture, 2021, pp. 775-788.

Y. Huang, L. Zheng, P. Yao, Q. Wang, X. Liao, H. Jin, and
J. Xue, “Accelerating graph convolutional networks using crossbar-
based processing-in-memory architectures,” in Proceedings of the IEEE
International Symposium on High-Performance Computer Architecture,
2022, pp. 1029-1042.

T. Geng, C. Wu, Y. Zhang, C. Tan, C. Xie, H. You, M. C. Her-
bordt, Y. Lin, and A. Li, “I-GCN: A graph convolutional network
accelerator with runtime locality enhancement through islandization,”
in Proceedings of the 54th Annual IEEE/ACM International Symposium
on Microarchitecture, 2021, pp. 1051-1063.

S. H. Lee, S. Kang, J. Lee, H. Kim, E. Lee, S. Seo, H. Yoon, S. Lee,
K. Lim, H. Shin, J. Kim, S. O, A. Iyer, D. Wang, K. Sohn, and N. S. Kim,
“Hardware architecture and software stack for PIM based on commercial
DRAM technology : Industrial product,” in Proceedings of the 48th
ACM/IEEE Annual International Symposium on Computer Architecture,
2021, pp. 43-56.

M. Lenjani, P. Gonzalez, E. Sadredini, S. Li, Y. Xie, A. Akel, S. Eilert,
M. R. Stan, and K. Skadron, “Fulcrum: A simplified control and
access mechanism toward flexible and practical in-situ accelerators,”
in Proceedings of the 2020 IEEE International Symposium on High
Performance Computer Architecture, 2020, pp. 556-569.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

[37]

(38]

[39]

[40]

[41]

13

S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “DRISA:
a dram-based reconfigurable in-situ accelerator,” in Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture,
2017, pp. 288-301.

X. Xie, Z. Liang, P. Gu, A. Basak, L. Deng, L. Liang, X. Hu, and Y. Xie,
“Spacea: Sparse matrix vector multiplication on processing-in-memory
accelerator,” in Proceedings of the IEEE International Symposium on
High-Performance Computer Architecture, 2021, pp. 570-583.

J. Chen, Y. Lin, K. Sun, J. Chen, C. Ma, R. Mao, and Y. Wang,
“GCIM: toward efficient processing of graph convolutional networks in
3d-stacked memory,” IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst., vol. 41, no. 11, pp. 3579-3590, 2022.

W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proceedings of the Conference on Neural
Information Processing Systems, 2017, pp. 1024-1034.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” in Proceedings of the 7th International Conference
on Learning Representations, 2019.

T. Geng, A. Li, R. Shi, C. Wu, T. Wang, Y. Li, P. Haghi, A. Tumeo,
S. Che, S. K. Reinhardt, and M. C. Herbordt, “AWB-GCN: A graph
convolutional network accelerator with runtime workload rebalancing,”
in Proceedings of the 53rd Annual IEEE/ACM International Symposium
on Microarchitecture, 2020, pp. 922-936.

J. Chen, G. Lin, J. Chen, and Y. Wang, “Towards efficient allocation
of graph convolutional networks on hybrid computation-in-memory
architecture,” Sci. China Inf. Sci., vol. 64, no. 6, pp. 1-14, 2021.

M. Wang, L. Yu, D. Zheng, Q. Gan, Y. Gai, Z. Ye, M. Li, J. Zhou,
Q. Huang, C. Ma, Z. Huang, Q. Guo, H. Zhang, H. Lin, J. Zhao, J. Li,
A.J. Smola, and Z. Zhang, “Deep graph library: Towards efficient and
scalable deep learning on graphs,” CoRR, vol. abs/1909.01315, 2019.
N. K. Srivastava, H. Jin, J. Liu, D. H. Albonesi, and Z. Zhang,
“Matraptor: A sparse-sparse matrix multiplication accelerator based
on row-wise product,” in Proceedings of the 53rd Annual IEEE/ACM
International Symposium on Microarchitecture, 2020, pp. 766-780.

C. Weis, N. Wehn, I. Loi, and L. Benini, “Design space exploration for
3d-stacked drams,” in Proceedings of the Design, Automation and Test
in Europe, 2011, pp. 389-394.

X. Qian, “Graph processing and machine learning architectures with
emerging memory technologies: a survey,” Sci. China Inf. Sci., vol. 64,
no. 6, pp. 1-25, 2021.

K. Li, W. Yang, and K. Li, “Performance analysis and optimization
for spmv on GPU using probabilistic modeling,” IEEE Trans. Parallel
Distributed Syst., vol. 26, no. 1, pp. 196-205, 2015.

N. Sedaghati, T. Mu, L. Pouchet, S. Parthasarathy, and P. Sadayappan,
“Automatic selection of sparse matrix representation on gpus,” in Pro-
ceedings of the 29th ACM on International Conference on Supercom-
puting, 2015, pp. 99-108.

P. Fang, F. Wang, Z. Shi, D. Feng, Q. Yi, X. Xu, and Y. Zhang, “An
efficient memory data organization strategy for application-characteristic
graph processing,” Frontiers Comput. Sci., vol. 16, no. 1, p. 161607,
2022.

Micron Technology, Inc., “Hybrid memory cube
specification 2.1 2015. [Online]. Available: https:
/Iwww.nuvation.com/sites/default/files/Nuvation- Engineering- Images/
Articles/FPGAs-and-HMC/HMC-30G- VSR_HMCC_Specification.pdf
R. Hadidi, B. Asgari, B. A. Mudassar, S. Mukhopadhyay, S. Yala-
manchili, and H. Kim, “Demystifying the characteristics of 3d-stacked
memories: A case study for hybrid memory cube,” in Proceedings of
the IEEE International Symposium on Workload Characterization, 2017,
pp. 66-75.

K. Chen, S. Li, N. Muralimanohar, J. H. Ahn, J. B. Brockman, and N. P.
Jouppi, “CACTI-3DD: architecture-level modeling for 3d die-stacked
DRAM main memory,” in Proceedings of the Design, Automation &
Test in Europe Conference & Exhibition, 2012, pp. 33-38.

W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec, “Open graph benchmark: Datasets for machine learning
on graphs,” in Proceedings of the Conference on Neural Information
Processing Systems, 2020, pp. 6—12.

M. Fey and J. E. Lenssen, “Fast graph representation learning with
pytorch geometric,” CoRR, vol. abs/1903.02428, 2019.

R. Sarkar, S. Abi-Karam, Y. He, L. Sathidevi, and C. Hao, “Flowgnn:
A dataflow architecture for real-time workload-agnostic graph neural
network inference,” in Proceedings of the IEEE International Symposium
on High-Performance Computer Architecture, 2023, pp. 1099-1112.

Y. Chen, A. Khadem, X. He, N. Talati, T. A. Khan, and T. N. Mudge,
“PEDAL: A power efficient GCN accelerator with multiple dataflows,”

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.nuvation.com/sites/default/files/Nuvation-Engineering-Images/Articles/FPGAs-and-HMC/HMC-30G-VSR_HMCC_Specification.pdf
https://www.nuvation.com/sites/default/files/Nuvation-Engineering-Images/Articles/FPGAs-and-HMC/HMC-30G-VSR_HMCC_Specification.pdf
https://www.nuvation.com/sites/default/files/Nuvation-Engineering-Images/Articles/FPGAs-and-HMC/HMC-30G-VSR_HMCC_Specification.pdf

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3341753

JOURNAL OF KIEX CLASS FILES, VOL. XX, NO. XX, XXXX XXXX

[42]

[43]

[44]

[45]

[46]

[47]

in Proceedings of the Design, Automation & Test in Europe Conference
& Exhibition, 2023, pp. 1-6.

J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
in-memory accelerator for parallel graph processing,” in Proceedings of
the 42nd Annual International Symposium on Computer Architecture,
2015, pp. 105-117.

X. Zhang, S. L. Song, C. Xie, J. Wang, W. Zhang, and X. Fu,
“Enabling highly efficient capsule networks processing through A pim-
based architecture design,” in Proceedings of the IEEE International
Symposium on High Performance Computer Architecture, 2020, pp. 542—
555.

Y. Zhuo, C. Wang, M. Zhang, R. Wang, D. Niu, Y. Wang, and X. Qian,
“Graphq: Scalable pim-based graph processing,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture,
2019, pp. 712-725.

M. Zhang, Y. Zhuo, C. Wang, M. Gao, Y. Wu, K. Chen, C. Kozyrakis,
and X. Qian, “Graphp: Reducing communication for pim-based graph
processing with efficient data partition,” in Proceedings of the IEEE
International Symposium on High Performance Computer Architecture,
2018, pp. 544-557.

H. You, T. Geng, Y. Zhang, A. Li, and Y. Lin, “Gcod: Graph convo-
lutional network acceleration via dedicated algorithm and accelerator
co-design,” in Proceedings of the IEEE International Symposium on
High-Performance Computer Architecture, 2022, pp. 460—474.

L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim, “Graphpim:
Enabling instruction-level PIM offloading in graph computing frame-
works,” in Proceedings of the IEEE International Symposium on High
Performance Computer Architecture, 2017, pp. 457-468.

Runze Wang is currently a Ph.D. candidate in
the School of Computer Science and Technology
at Huazhong University of Science and Technology
(HUST), Wuhan. His current research interests in-
sl S clude graph processing and processing-in-memory.

&
I

Ao Hu received the BS degree from Huazhong Uni-
versity of Science and Technology (HUST), China,
in 2021. He is now working toward the MS degree
in the School of Computer Science and Technology,
HUST, in China. His research interests focus on
processing-in-memory architecture and hypergraph
processing.

o
f

Long Zheng (Member, IEEE) received a Ph.D.
degree from the Huazhong University of Science
and Technology (HUST), in 2016. He is an associate
— professor with the School of Computer Science and
Nt Technology, HUST. His current research interests
include program analysis, runtime systems, and het-

-
o

-
erogeneous computing with a particular focus on
“ graph processing. He is a member of the IEEE.

Qinggang Wang received the PhD degree from the
Huazhong University of Science and Technology
(HUST), in 2023. He is currently working toward the
postdoctoral fellow with Zhejiang Lab, in China. His
current research interests include graph processing
and reconfigurable computing.

Jingrui Yuan is currently a Ph.D. candidate in
the School of Computer Science and Technology
at Huazhong University of Science and Technology
(HUST), Wuhan. His current research interests in-
clude techniques and applications of graph process-
ing.

Haifeng Liu is currently a Ph. D candidate in
the school of Computer Science and Technology
at Huazhong University of Science and Technology
(HUST), Wuhan. He received his B.E. degree in
computer science from Wuhan University (WHU),
‘Wuhan, in 2020. His current research interests in-
clude the techniques and applications of in/near
memory processing.

Linchen Yu received a Ph.D. degree in computer
science from Huazhong University of Science and
Technology(HUST) in 2012. Now, she is an asso-
ciate professor with the School of Cyber Science and
Engineering, Huazhong University of Science and
Technology (HUST), Wuhan, China. Her research
interests include graph processing, system security,
etc.

Xiaofei Liao (Member, IEEE) received a Ph.D.
degree in computer science and engineering from
Huazhong University of Science and Technology
(HUST), China, in 2005. He is currently a professor
with the School of Computer Science and Technol-
ogy, HUST. His research interests are in the areas
of system virtualization, system software, and cloud
computing.

Hai Jin (Fellow, IEEE) is a Chair Professor of

computer science and engineering at Huazhong Uni-

versity of Science and Technology (HUST) in China.
- Jin received his PhD in computer engineering from
HUST in 1994. In 1996, he was awarded a German
Academic Exchange Service fellowship to visit the
Technical University of Chemnitz in Germany. Jin
worked at The University of Hong Kong between
1998 and 2000, and as a visiting scholar at the
University of Southern California between 1999 and
2000. He was awarded Excellent Youth Award from
the National Science Foundation of China in 2001. Jin is a Fellow of IEEE,
Fellow of CCF, and a life member of the ACM. He has co-authored more
than 20 books and published over 900 research papers. His research interests
include computer architecture, parallel and distributed computing, big data
processing, data storage, and system security.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

	Introduction
	Background and Motivation
	Graph Convolutional Networks
	Accelerator Design Exploration
	3D Stacked Processing-In-Memory
	Combining GCNs with 3D-Stacked PIM

	The GCNim Computation Model
	Remote Merging in Aggregation
	Combined Execution Model

	GCNim Architecture
	Accelerator Overview
	DRAM Layer PE Design
	Logic Layer Design
	Workflow

	Preprocessing
	Evaluation
	Experimental Methodology
	Overall Performance
	Energy Consumption and Area
	Execution Time and Energy Breakdown
	Scalability
	Sensitivity to Hardware Parameters

	Related Work
	Conclusion
	References
	Biographies
	Runze Wang
	Ao Hu
	Long Zheng
	Qinggang Wang
	Jingrui Yuan
	Haifeng Liu
	Linchen Yu
	Xiaofei Liao
	Hai Jin

