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NicePIM: Design Space Exploration for
Processing-In-Memory DNN Accelerators with

3D-Stacked-DRAM
Junpeng Wang, Mengke Ge, Bo Ding, Qi Xu, Song Chen, Yi Kang

Abstract—With the widespread use of deep neural net-
works(DNNs) in intelligent systems, DNN accelerators with high
performance and energy efficiency are greatly demanded. As
one of the feasible processing-in-memory(PIM) architectures, 3D-
stacked-DRAM-based PIM(DRAM-PIM) architecture enables
large-capacity memory and low-cost memory access, which is a
promising solution for DNN accelerators with better performance
and energy efficiency. However, the low-cost characteristics of
stacked DRAM and the distributed manner of memory access
and data storing require us to rebalance the hardware design and
DNN mapping. In this paper, we propose NicePIM to efficiently
explore the design space of hardware architecture and DNN
mapping of DRAM-PIM accelerators, which consists of three
key components: PIM-Tuner, PIM-Mapper and Data-Scheduler.
PIM-Tuner optimizes the hardware configurations leveraging
a DNN model for classifying area-compliant architectures and
a deep kernel learning model for identifying better hardware
parameters. PIM-Mapper explores a variety of DNN mapping
configurations, including parallelism between branches of DNN,
DNN layer partitioning, DRAM capacity allocation and data
layout pattern in DRAM to generate high-hardware-utilization
DNN mapping schemes for various hardware configurations.
The Data-Scheduler employs an integer-linear-programming-
based data scheduling algorithm to alleviate the inter-PIM-node
communication overhead of data-sharing brought by DNN layer
partitioning. Experimental results demonstrate that NicePIM
can optimize hardware configurations for DRAM-PIM systems
effectively and can generate high-quality DNN mapping schemes
with latency and energy cost reduced by 37% and 28% on
average respectively compared to the baseline method.

Index Terms—Processing-in-memory, DNN accelerator, design
space exploration.
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I. INTRODUCTION

Deep neural networks(DNNs) have been used in many fields
including image recognition, object detection and natural lan-
guage processing, showing unprecedented accuracy. The ma-
jority of operations in DNNs are multiply-accumulate(MAC)
operations with a large amount of data reuse, which makes
DNNs compute-intensive and memory-intensive. With the
scale of DNNs increasingly growing, the acceleration becomes
a critical issue in the application of DNNs. Many domain-
specific DNN accelerators have been proposed to get improved
performance and energy efficiency [1]–[5]. Due to the large
memory footprint of DNNs, one of the major concerns of these
DNN accelerators is the costly off-chip DRAM access. The
memory hierarchy of DNN accelerators is elaborately designed
to reduce off-chip DRAM access. A large part of the area of
the chip is spent on buffers to make data more reused on chip.
Elaborate scheduling strategies are often employed to make
sufficient use of the capacity of the on-chip memory [6]–[8].

The technology of 3D-stacked memories enables the inte-
gration of large-capacity memory with low access cost [9]–
[11], which provides a promising solution to the memory wall
problem [12]. In systems with 3D-stacked memory, the stacked
logic die has the same area as the memory die and they
are integrated by 3D-stacking technologies such as through
silicon via(TSV) [9], hybrid bonding [10], etc. Among the
widely used memory technologies, DRAM has relatively high
density, so 3D-stacked-DRAM-based processing-in-memory
system(DRAM-PIM system) is one of the promising choices
for systems with high memory bandwidth and energy effi-
ciency. The DRAM die contains an array of DRAM banks
[10](or vaults [9]) and each DRAM bank can be accessed
independently in parallel instead of through the standard DDR
interface. The 3D integration technology enables the stacked
DRAM to have an order of magnitude higher bandwidth
compared to conventional off-chip DRAM, and the closer
distance between the memory and the logic makes the energy
efficiency more than 5x better than off-chip DRAM [10].
3D-stacked DRAM has been used in many systems for the
acceleration of memory-intensive applications [13]–[15]. Due
to the array-architecture of the DRAM, typically, as shown
in Figure 1, the logic die is divided into an array and each
part is combined with the corresponding DRAM bank(s) to
form a function unit, which is denoted as a PIM-node. In
each PIM-node, the logic part has independent access to the
counterpart DRAM but each PIM-node has no direct access
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to the DRAM of other PIM-nodes. PIM-nodes communicate
with each other through the on-chip-interconnect in the logic
die such as network-on-chip(NoC). This distributed manner
of computation and data storing benefits the utilization of the
DRAM bandwidth of the DRAM-PIM system, but requires
rebalancing the architecture design and the mapping algorithm.

DRAM Die

Logic Die

Bonding 

Interface PIM-Node

Fig. 1. The PIM system with 3D-stacked DRAM.

Recently proposed DRAM-PIM-based DNN accelerators
are typically organized into a homogeneous tiled architecture
[13], [16]–[19], which is in coordination with the array archi-
tecture of 3D-stacked DRAM. Each PIM-node can do DNN
computation independently and the NN engine in each PIM-
node contains SRAM buffers and a processing-element(PE)
array which can do MAC operations. The aforementioned
works mainly focus on the architecture design and scheduling
within one PIM-node, and they use simple DNN mapping
strategies, paying little attention to the overhead brought by
the distributed manner of computation and data storing. Be-
sides, these works are customized designs for their workloads
and targets, and may require manual tuning if the hardware
constraints or the design target change.

To meet the requirements of different targets under different
hardware constraints, design space exploration(DSE) methods
that generate high-quality hardware configurations and DNN
mappings are necessary. The diverse choices of software map-
ping and hardware architecture of DRAM-PIM accelerators
lead to a huge design space, making it impossible to find
the optimal architecture by exhaustive search. In this work,
given the configuration of the stacked DRAM with a certain
number of DRAM banks and area, the following design space
of DRAM-PIM accelerators is considered:
For hardware configuration, the granularity of PIM-nodes,
PE array size and buffer sizes are taken into account: (1)
For a DRAM-PIM system with a certain number of DRAM
banks, larger but fewer PIM-nodes have fewer inter-PIM-
node communication requirements while more but smaller
PIM-nodes enable more mapping flexibility. The number of
allocated DRAM banks for one PIM-node determines its
DRAM bandwidth, DRAM capacity and area. (2)For one PIM-
node with a certain number of allocated DRAM banks, the size
of the PE array and sizes of SRAM buffers require a trade-off
since a larger PE array increases the computing power and
larger buffers allow more data reuse.
For DNN mapping, we consider the parallelism between
branches of DNN, DNN layer partitioning, DRAM capacity
allocation and data layout pattern in DRAM: (1) Many popular
DNNs have multi-branch architecture such as multi-head-
attention in Transformers [20] and the inception block in

GoogLeNet [21]. Making the branches processed in parallel
rather than processing them serially on the PIM-node array
can reduce the overhead brought by layer partitioning but
may suffer from load imbalance between PIM-nodes. (2) A
DNN layer needs to be partitioned so that it can be processed
in parallel on multiple PIM-nodes. Different layer partition
schemes correspond to different computation tasks of PIM-
nodes and inter-PIM-node communication, which result in
differences in performance. (3) The width of DRAM banks
is larger than the data width of data of DNNs, especially
when a PIM-node has many DRAM banks, thus proper data
layout pattern in DRAM is required to achieve full use of dram
bandwidth. (4) Due to the distributed manner of data storing,
the DRAM of one PIM-node may not have enough capacity
to store all weights of the whole DNN. If DRAM capacity
is not sufficient for a PIM-node to store a whole replication
of the weights of a layer, weights can be stored distributively
and PIM-nodes share the weights when using. Sharing weights
will require extra communication overhead while replicating
the weights requires more DRAM capacity, so it is required to
coordinate the weight replication values for all layers of the
DNN.

Existing design space exploration methods for DNN accel-
erators [22]–[26] have diverse prior definitions on the architec-
ture for effectively searching for DNN mapping and efficiently
selecting hardware configuration, and thus are not suitable
for DRAM-PIM architectures with the aforementioned design
space. In this paper, we propose a framework named NicePIM
to optimize the hardware design and DNN mapping of DRAM-
PIM-based DNN accelerators, and the main contributions of
this paper are as follows:

(1) We propose NicePIM, a design space exploration frame-
work for generating high-quality hardware design param-
eters and DNN mapping for DRAM-PIM-based DNN ac-
celerators. NicePIM consists of a hardware design param-
eter optimizer(PIM-Tuner) that iteratively optimizes the
hardware parameters and a DNN mapper(PIM-Mapper)
with a Data-Scheduler to achieve high hardware utiliza-
tion for various hardware configurations.

(2) The PIM-Tuner searches for better hardware configura-
tions that make proper use of the limited area of the logic
die of the DRAM-PIM accelerator, taking the granularity
of PIM-nodes, size of PE array and sizes of buffers
into account. PIM-Tuner consists of a DNN model for
classifying area-compliant architectures and a deep kernel
learning model [27] for identifying hardware parameters
with better quality.

(3) The PIM-Mapper explores a variety of DNN mapping
configurations, including parallelism between branches
of the DNN, DNN layer partitioning, DRAM capacity
allocation and data layout pattern in DRAM, for gener-
ating mapping schemes with high hardware utilization for
various hardware configurations.

(4) To reduce the inter-PIM-node communication overhead
of data-sharing due to DNN layer partitioning, the Data-
Scheduler builds an integer linear programming(ILP)
model to schedule the data transfer process, trying to
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balance the load of NoC links.
(5) Experimental results demonstrate that NicePIM can effec-

tively optimize hardware configurations for DRAM-PIM
systems and the proposed PIM-Mapper with the Data-
Scheduler can reduce latency and energy cost by 37%
and 28% on average respectively compared to the baseline
method.

The remainder of this paper is organized as follows. Sec-
tion II presents preliminaries about DRAM-PIM systems and
DNNs. Section III introduces the defined design space. Sec-
tion IV presents the overall flow of NicePIM with the fol-
lowing Section V, Section VI and Section VII introducing the
details of the PIM-Tuner, PIM-Mapper and Data-Scheduler re-
spectively. The experimental results are shown in Section VIII.
Section IX lists some related works on 3D-stacked-memory-
based PIM systems and design space exploration methods for
DNN accelerators, followed by the conclusion in Section X.

II. PRELIMINARY

A. PIM systems based on 3D-stacked DRAM

3D-stacked DRAM is a feasible solution for PIM systems
with high performance and energy efficiency. We use the 3D-
stacked DRAM from UnilC [10] as the substrate of the PIM
system in this work. In this architecture, the DRAM banks in
the DRAM die are organized into an array architecture. Each
DRAM bank is connected to a controller in the corresponding
part of the logic die and all controllers work independently.
The function units of the DRAM-PIM system are placed in the
remaining area of the logic die. Due to the array architecture
of the DRAM banks, the function units in the logic die are
divided into several parts and each part can directly access the
DRAM bank(s) in the companion DRAM die. The function
units and the corresponding DRAM bank(s) can be considered
as an individual module denoted as a PIM-node. Each PIM-
node accesses its own DRAM bank(s) with high speed and
low cost but cannot directly access the DRAM banks of
other PIM-nodes. We choose network-on-chip(NoC) as the
on-chip-interconnect of the PIM-nodes for its feature of good
extensibility and high-bandwidth.

B. DNN fundamentals

A deep neural networks(DNN) consists of multiple layers
to process data in a certain order. The first layer receives the
input data and the output of each layer is forwarded to the
following layers according to the network topology. Various
kinds of layers are used in modern DNNs including convolu-
tion layer, matrix-multiplication layer(fully connected layer),
pooling layer, normalization layer, etc. A DNN may contain
multiple kinds of layers but in most DNNs, convolution layers
and matrix-multiplication layers account for the dominant part
of the computation [21], [28]–[32].

A convolution layer has a set of filters that slide on the
input feature maps(ifmaps) to generate the output feature
maps(ofmaps), which is shown in Figure 2-(a). During the
sliding process, a window of C ×HK ×WK, which is the
same shape as the filter, is selected from the ifmaps and one

for b=0 to B; 
 for p=0 to P; 
  for q=0 to Q; 
   for k=0 to K; 
    for c=0 to C; 
     for r=0 to R; 
      for s=0 to S; 
       Ofm[b][k][p][q]+=
         Ifm[b][c][p+r][q+s]*
         Fil[k][c][r][s]

(a) (b)
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Fig. 2. The computation process of a convolution layer. (a)filters slide on
the input feature maps to generate output feature maps. (b)7 nested loops
representing the computation process.

point of the ofmap is generated after the dot-product of the
selected window and the filter. For ifmaps of one sample in a
batch, the sliding process of each filter is repeated for P ×Q
times. The computation process can be represented by the
nested loops in Figure 2-(b). The feature maps generated by
a convolution layer constitute a 4-D tensor, and we use B, C,
H , W to represent its batch size, number of channels, height
and width, respectively. Most convolution layers are followed
by activation functions to add non-linearity to the ofmaps.

Matrix multiplication layers perform linear transformation
for the inputs with the weight matrix. This kind of layer
multiplies the input matrix of dimension B×C with the weight
matrix of dimension C×K to generate the output matrix with
dimension B×K. Since the computation process can also be
represented with the nested loops in Figure 2-(b) by setting
the filter window size and ofmap size to 1× 1, in this paper,
we use the representations of convolution layers to represent
matrix multiplication layers for simplicity, including the loop
dimensions and data dimensions.

The topologies of DNNs are becoming more and more
complicated. Most DNNs have linear structure and many
popular DNNs have multi-branch architectures such as multi-
head-attention in Transformers [20] and the inception block
in GoogLeNet [21]. Many kinds of auxiliary layers are used
to do down-sampling, concatenating, point-wise adding, point-
wise multiplication, etc. These layers have simple computing
processes and the number of operations is small so they are
not major concerns in the design of DNN accelerators.

III. DESIGN SPACE DEFINITION OF THE DRAM-PIM
ACCELERATOR

This section introduces the considered design factors for the
DRAM-PIM accelerator. The hardware architecture and the
hardware design parameters are introduced in Section III-A.
The following Section III-B, Section III-C, Section III-D and
Section III-E introduce the DNN mapping configurations that
should be considered for getting high hardware utilization on
DRAM-PIM accelerators with various hardware parameters.

A. Hardware configurations

The hardware configuration mainly involves the granularity
of PIM-nodes, PE array and buffers. As shown in Figure 3,
the DRAM-PIM system is a homogeneous 2-D PIM-node
array, which is a widely used structure in many 3D-stacking-
memory-based PIM systems [13], [16], [18], [33]. A PIM-node
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Fig. 3. The architecture of a 4× 4 DRAM-PIM accelerator.

consists of the stacked DRAM and the corresponding logic,
and the logic part of the PIM-node has a NN engine, a DRAM
bank controller and a router. PIM-nodes communicate with
each other through the routers organized into mesh topology.
A PIM-node can be allocated with one or several DRAM
banks, and if a PIM-node has more than one DRAM bank,
the ports of these DRAM banks are bound together so that
the DRAM banks work in the same manner as one DRAM
bank but with larger port-width. Besides, the total number of
DRAM banks is constant so the number of allocated DRAM
banks determines the number of PIM-nodes. The NN engine
consists of a PE array and SRAM buffers for inputs, weights
and outputs(and the partial-sums). The PE array is organized
into parallel multiply-accumulation units, which is a widely
used architecture [24], [34], [35].

The defined hardware design parameters are shown in
Table I. We use the number of PIM-nodes to represent the
granularity of PIM-nodes. The area, DRAM bandwidth and
DRAM capacity of one PIM-node are proportional to the num-
ber of allocated DRAM banks. Larger but fewer PIM-nodes
have fewer inter-PIM-node communication requirements since
a DNN layer does not have to be partitioned into many parts
to map on the PIM-node array. On the contrary, more but
smaller PIM-nodes have more inter-PIM-node communication
overhead, but enable more mapping flexibility. For a PIM-node
with a certain number of allocated DRAM banks, a larger
PE array enables larger computing power, and increasing
the sizes of buffers allows more data reuse. However, too
large PE arrays and buffer sizes make the area dissatisfy the
constraint. We have the following constraints for the hardware
configurations:

1) The total area of the PIM-nodes should be no larger than
the area of the DRAM die.

2) NArow and NAcol can exactly divide the rows and
columns of the DRAM bank array to ensure homoge-
neous PIM-nodes.

B. Parallelism between branches of DNN

Since most DNNs have a linear structure and many popu-
lar DNNs have multi-branch architecture, we can make the
branches processed on different regions of the PIM-node
array to get inter-branch parallelism. We let the DRAM-
PIM accelerator process the DNN in a timestep-by-timestep
manner, which is shown in Figure 4. A DNN is partitioned
into the smallest serial pieces possible and these parts of the

TABLE I
THE HARDWARE DESIGN PARAMETERS OF THE DRAM-PIM

ACCELERATOR.

Parameters Type Comment
NArow Int Number of rows of the PIM-node array
NAcol Int Number of columns of the PIM-node array
PEArow Int Number of rows of the PE array of a PIM-node
PEAcol Int Number of columns of the PE array of a PIM-node
Sizeibuf Int The input buffer size of a PIM-node
Sizewbuf Int The weight buffer size of a PIM-node
Sizeobuf Int The accumulation buffer size of a PIM-node

Layer1

Layer2 Timestep 2

Layer9

Timestep 3

Timestep 4

DNN PIM-node Array

Timestep 1

Layer5

Layer6

Layer3

Layer4

Layer7

Layer8

Fig. 4. The example mapping of a DNN onto a 4 × 4 PIM-node array. In
each timestep, the layer is mapped onto the PIM-nodes with the same color.
In timestep3, the PIM-node array is partitioned into 2 regions. One branch of
the 3-rd segment is mapped onto the left part and the remaining two branches
are mapped to the right part.

DNN are denoted as segments. The total number of segments
of a DNN is denoted as Nseg , which also means the DRAM-
PIM accelerator requires Nseg timesteps to process them. If
the nseg-th segment has a multi-branch structure, the different
branches can be processed in parallel and we denote the
number of branches as N

nseg

br . Layers in one branch are
processed serially on the same region and for the n

nseg

br -th
branch, we denote the number of layers as Lnbr,nseg . For
example, in Figure 4, the Nbr of the 3-rd segment is 3 and all
branches have 2 layers.

In the mapping process, we can make the branches pro-
cessed with different parallelism. Making more branches pro-
cessed in parallel on the PIM-node array can reduce the
overhead brought by layer partitioning but may suffer from
load imbalance between PIM-nodes. For the nseg-th segment,
the PIM-node array can be partitioned into at most N

nseg

br

regions and we use N
nseg
reg (1 ≤ N

nseg
reg ≤ N

nseg

br ) to denote the
number of regions. For the n

nseg

br -th branch, it can be mapped
onto a region of nseg-th timestep and we denote the index
of that region as IRnbr,nseg (1 ≤ IRnbr,nseg ≤ N

nseg
reg ). For

example, in Timestep3 in Figure 4,there are two regions and
the IR of the three branches are 1, 2 and 2. In this work,
we only consider mapping layers onto rectangular-shaped
regions of the PIM-node array, so we use a position-shape
pair, ((hpos, wpos), (hshape, wshape))

nreg,nseg , to represent the
n
nseg
reg -th region, Regionnreg,nseg . The hpos and wpos indicate

the smallest index on height and width dimension of the PIM-
nodes of the region respectively, and the hshape and wshape

indicate the height and width of the region of PIM-nodes
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respectively.
In summary, the parameters for inter-branch parallelism of

the nseg-th segment are: (1) N
nseg
reg , (2) Regionnreg,nseg and

(3) IRnbr,nseg . Since for each segment, the Nreg , Region
and IR together determine the mapping, we use SM(Segment
Mapping Scheme) to represent them for simplicity.

C. Layer partitioning

b0~3
k0~3

(0)A convolution 

layer
(1)Partitioned with 

(PhB, PwB) = (2, 2)

(3)Mapped onto the 

PIM-node array

(2)Partitioned with 

(PhK, PwK) = (2, 2)

b1

k0

b1

k1

b1

k2

b1

k3

b2

k0

b2

k1

b3

k0

b3

k1

b2

k2

b2

k3

b3

k2

b3

k3

b0

k0

b0

k1

b0

k2

b0

k3

b0
k1~3

b1
k1~3

b2
k1~3

b3
k1~3

b1
k0

b1
k1

b1
k2

b1
k3

b2
k0

b2
k1

b3
k0

b3
k1

b2
k2

b2
k3

b3
k2

b3
k3

b0
k0

b0
k1

b0
k2

b0
k3

Fig. 5. An example of the partitioning and mapping process of a convolution
layer onto a 4 × 4 PIM-node array. The non-1 partition numbers are
(PhB , PwB) = (2, 2) and (PhK , PwK) = (2, 2) and the Porder is
BPQKC. The layer is firstly partitioned on the loop B into 2 × 2 part-
layers (0)→(1). Then each part-layer is partitioned on loop K so that there
are 4 × 4 part-layers (1)→(2). Finally, the part-layers are mapped onto the
4× 4 PIM-nodes correspondingly(2)→(3).

A DNN layer needs to be partitioned so that it can be
processed in parallel on the allocated PIM-node array [13],
[16]. Mapping a layer onto a hshape×wshape PIM-node array
means the layer should be partitioned into hshape × wshape

part-layers. Different partition schemes result in different-
shaped part-layers and different data requirements of the PIM-
nodes, which influence the computing efficiency in each PIM-
node and the amount of inter-PIM-node communication.

To represent how the loops of a DNN layer are parti-
tioned, we use five bi-tuples ((PhB , PwB), (PhP , PwP ),
(PhQ, PwQ), (PhK , PwK), (PhC , PwC)) to denote the
number of partitions for loop B, P , Q, K and C, respectively.
An example of layer partitioning is shown in Figure 5. For
each loop of the layer, the loop length is divided by Ph×Pw
to get the corresponding loop length of the part-layer. Loop
KH and KW are not partitioned since they are relatively
small.

The spatial mapping of the part-layers determines the
communication distance for transferring data of each PIM-
node and thus influences the inter-PIM-node communication
overhead. The order of spatial mapping of the part-layers,
Porder, can be represented by a sequence of the loops B,
P , Q, K and C. An example of the spatial order is shown in
Figure 5.

For simplicity, we use LM(Layer Mapping Scheme) to
denote the mapping scheme of a layer, which includes par-
tition numbers ((PhB , PwB), (PhP , PwP ), (PhQ, PwQ),
(PhK , PwK), (PhC , PwC)) and Porder.

D. DRAM capacity allocation

The distributed data storing of DRAM-PIM systems makes
the DRAM capacity of one PIM-node a constraint. Since
NicePIM focuses on the inference process of DNNs, inter-
mediate data can be discarded after being consumed while

all the weights of the DNN should be stored in the DRAM-
PIM system. The limited capacity of the DRAM may not be
sufficient for one PIM-node to hold a whole replication of all
weights of the DNN.

If the DRAM capacity allocated for one layer is not enough
for each PIM-node to store a full replication of the weights, we
make each PIM-node only store one part of the weights and
PIM-nodes share the weights through NoC before processing
the layer. The weight-sharing process introduces extra inter-
PIM-node communication cost. The less weight stored in PIM-
nodes, the more required communication, which means we
need to specify the number of weight replication for each
layer. We use the number WR(Weight Replication number)
to represent the allowed number of replications of weights
of one layer. Denoting the number of PIM-nodes that require
the same weights as Nnode, if WR is smaller than Nnode,
each PIM-node stores 1

⌈Nnode/WR⌉ part of the weights and
the remainder parts are got from other PIM-nodes. Denoting
the DRAM capacity of a PIM-node as CAP , for each PIM-
node, the summation of the stored weights of all layers in that
PIM-node should be smaller than CAP .

E. Data layout pattern in DRAM

……  

1 1 1 1

2 2 2 2

3 3 3 3

7 7 7 7

Data Layout-BHWC

1 2 3 4

5 6 7 8

9 10 11 12

25 1 2 3

……  

Data Layout-BCHW

21 22 23 24 25

16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

Feature Map Data Layout-BCHW[C2]

……  

1 1 2 2

3 3 4 4

5 5 6 6

13 13 14 14

Fig. 6. Four 5×5 feature maps with different data layout patterns in DRAM,
assuming four numbers per DRAM access. In the figure with BCHW, the data
is mapped in DRAM in the order of W-H-C-B. In the figure with BCHW[C2],
the data is firstly grouped every 2 channels and then mapped in DRAM. The
two-channel 3 × 3 window of the feature map covered with slashed lines
illustrates the data access patterns with different data layout patterns.

The pattern that the high-dimensional data of DNNs are
flattened and stored in DRAM affects the efficiency of DRAM
access. DRAM reaches its best performance and efficiency at
sequential access since data access are performed via the row
buffer. Row buffer miss or conflict will introduce extra energy
and latency [36] and the energy and latency cost of DRAM can
be summarized as the summation of the cost of data access and
row buffer updating. Besides, with DNN quantization widely
used, the data width in DNNs is often much smaller than the
width of DRAM banks(8/16-bit per data v.s. 128bit per DRAM
bank). If a PIM-node has more than one DRAM bank, the
width difference between data and DRAM banks is even more
critical. Since weights are read-only and can be re-arranged
according to the access pattern in advance before being stored
into the DRAM banks, we only focus on the data layout of
input data and output data of DNN layers.

To make DRAM access requirements more sequential, two
data layout orders, BCHW and BHWC, are taken into account,
which is illustrated in Figure 6. To make full use of the width
of DRAM banks, data grouping is employed before storing
them into DRAM. An example of data grouping is shown in
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Figure 6 where the [C2] indicates 2 channels of feature maps
are grouped. If a 3 × 3 window of the first two channels is
selected to do convolution, the data layout with BCHW[C2]
requires 6 times DRAM access while the data layout with
BCHW and BHWC requires 9 and 8 times respectively. We
use DLi and DLo(Data Layout Pattern) to represent the data
grouping and layout order of the input and output data of
a layer. The DLi and DLo of a layer can be different but
for layers with data dependency, the DLo of the predecessor
layer should be the same as the DLi of the successor layer
since they stand for the same data. For simplicity, we use DL,
which includes DLi and DLo, to represent the data grouping
and layout order of a DNN layer.

IV. OVERVIEW OF NICEPIM
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Fig. 7. Overall flow of NicePIM.

The overall flow of NicePIM is shown in Figure 7. The
inputs of NicePIM include the hardware constraints, the de-
sign goal and the workload DNNs. The hardware constraints
specify the attributes of the substrate of the hardware, such
as the technology node, the total available area(Cstrarea), the
shape of the array of DRAM banks(BArow × BAcol), the
data width of each DRAM bank(Widthbank), the capacity of
one DRAM bank(CAPbank), etc. The design goal quantifies
the hardware quality with given hardware design parameters,
which can be expressed by a cost function related to energy
and latency of each workload DNN:

Cost =
∑
DNN

Energyα×Latencyβ × γ,

α ≥ 0, β ≥ 0, γ > 0

(1)

α and β are to adjust the preference on latency and energy
and γ assigns different importance for each workload DNN.

The design space exploration process of NicePIM is itera-
tive, which is shown in Figure 7: (1) The PIM-Tuner samples
a large batch of hardware parameters from the whole design
space. Then hardware parameters that are predicted to exceed
the area constraint according to the filter model are discarded.
The remaining hardware parameters are sorted by the sugges-
tion model so that the ones with better predicted performance
are selected. (2)For each set of hardware parameters given by
PIM-Tuner, the DNN mapper generates corresponding DNN

mapping schemes for all workload DNNs. (3)Each mapping
scheme produced by PIM-Mapper is translated into tasks of
PIM-nodes, during which the data-sharing process is scheduled
by the Data-Scheduler. (4)The selected architectures from
PIM-Tuner are sent to the simulator to get the area one-by-
one until one architecture with legal area is obtained. Then
that architecture and the corresponding tasks of PIM-nodes
are passed to the simulators to get the latency and energy of
each workload DNN. (5)If the ending condition is not met,
the simulation results of area, latency and energy are added
to the datasets of the PIM-Tuner for updating its two models
and then the iteration is repeated.
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Fig. 8. The flow of the PIM-Tuner in one iteration.

The design space of hardware parameters illustrated in
Section III-A is so large(for example, about 1010 in Table II)
that it is infeasible to find the optimal one by enumerating all
points in the whole design space. For effectively characterizing
the complicated design space of hardware parameters, in PIM-
Tuner, we build a filter model to predict the area and a
suggestion model to identify better architectures. The flow of
PIM-Tuner is shown in Figure 8. The simulation results from
previous iterations of the design space exploration flow are
collected to form datasets for updating the models.

The suggestion model is a deep kernel learning model [27],
which combines the robustness and non-parametric flexibil-
ity of Gaussian process with the expressive power of deep
learning models. The input of the suggestion model is the
normalized vector of hardware parameters and the model is
fitted with the costs of the architectures with the corresponding
hardware parameters, which are calculated by the function
in Equation (1). In the updating process of the suggestion
model, we learn the Gaussian process model and the DNN
model jointly by maximizing the log marginal likelihood of
the Gaussian process.

The DNN-based filter model is employed for identifying
architectures that exceed the area constraint. Due to the 3D-
stacking pattern of DRAM and logic, the area of the logic part
of the DRAM-PIM accelerator is constrained by the DRAM
part. Checking the area with simulators is time-consuming, so
the filter model is necessary for reducing the times of invoking
the simulators. The filter model gets hardware parameters as
the input and outputs the corresponding area. We train the
filter model using stochastic gradient descent algorithm with
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the mean squared error(MSE) between the output area and the
simulated area as the loss function.

VI. PIM-MAPPER

For a DRAM-PIM accelerator with certain hardware pa-
rameters, the performance of DNNs on it depends on the
DNN mapping scheme. As illustrated in Section III, different
DNN layer partition schemes(LM ) result in different com-
munication overhead and computing efficiency in each PIM-
node. Proper parallelism between branches(SM ) can reduce
the overhead of layer partitioning while maintaining a balanced
load of PIM-nodes. The DRAM capacity allocation(WR)
influences the inter-PIM-node communication brought by
weight-sharing among PIM-nodes. The data layout pattern in
DRAM(DL) affects the cost of DRAM access. The effect of
each dimension in the mapping space is affected by the other
dimensions, so only by considering all the dimensions in the
design space of mapping can we get the optimal mapping
scheme.

The PIM-Mapper considers all the aforementioned di-
mensions of mapping spaces and generates high-hardware-
utilization DNN mappings on DRAM-PIM accelerators with
given hardware parameters, the flow of which is shown in
Algorithm 1. At the beginning of the optimization process,
the PIM-Mapper firstly partitions the input DNN into segments
as illustrated in Section III-B. Considering the constraint on
DL between adjacent layers illustrated in Section III-E, we
cannot only optimize the DL for one single layer but have
to consider the detailed data dependency between layers of
the DNN and choose DL for all layers. Thus, we employ
an iterative alternated optimization process to optimize the
mapping schemes, in which PIM-Mapper firstly optimizes all
the SM , LM and WR with DL of all layers obtained in the
previous iteration and then PIM-Mapper searches for the DL
of all layers with the newly solved SM , LM and WR.

A dynamic programming algorithm is leveraged for opti-
mizing SM , LM and WR. As illustrated in Section III-D,
the value of WR of layers in the DNN is constrained by
the DRAM capacity of the PIM-node. WR and LM together
affect the latency of a layer and the effect of SM is influenced
by the WR and LM of the corresponding layers. So we need
to solve SM , LM and WR for the whole network simulta-
neously. To make full use of the DRAM capacity and explore
a variety of SM with different parallelism between branches,
we firstly generate several candidate SM , LM and WR for
all segments and layers(line7˜16 in Algorithm 1, illustrated
in Section VI-A). Then we select the best combination of the
candidates using a dynamic programming algorithm(line17˜20
in Algorithm 1, illustrated in Section VI-B). Section VI-C
explains the optimization process of DL of all the layers.

A. Mapping scheme candidate generation

In this step, for each segment, we generate candidate SMs
with different parallelism between branches, and for each
SM candidate, we generate candidate LM -WR-pairs with
different DRAM capacity requirements for making full use of
the DRAM capacity of the PIM-node.

Algorithm 1 Flow of the PIM-Mapper
Input: Configuration of the DRAM-PIM system, a DNN;
Output: DNN mapping configuration

1: Partition the DNN into Nseg segments.
2: // Initialize mapping schemes
3: for each nseg ∈ [1, Nseg], l ∈ [1, Lnseg ] do
4: INIT : SM

nseg

obj , LM
nseg,l

obj ,WR
nseg,l

obj , DL
nseg,l

obj
5: end for
6: for each optim iter ∈ [1,MAX OPTIM ITER] do
7: // Generate candidates of SM , LM and WR{Section VI-A}
8: for each nseg ∈ [1, Nseg] do
9: SM

nseg
can [1, .., N

nseg

SM ]← Generate SMnseg with different
parallelism of branches

10: for each nSM ∈ [1, Nseg
SM ], nreg ∈ [1, N

nSM ,nreg
seg ], l ∈

[1, Lnseg,nSM ,nreg ] do
11: Select the layer with index (nseg, nSM , nreg, l)
12: WRcan[1, .., Ncan]← Generate different WR values
13: LMcan[1, .., Ncan]← Search for LM with WRcan

14: Calculate Perfncan and Sizencan with LMcan[ncan]
and WRcan[ncan], ncan ∈ [1, Ncan]

15: end for
16: end for
17: // Select SM , LM and WR from candidates{Section VI-B}
18: CS,CL← MappingSelect(Perf, Size, Cap)

{Algorithm 2}
19: Update SM

nseg

obj with CS[nseg], nseg ∈ [1, Nseg]

20: Update LM
nseg,l

obj and WR
nseg,l

obj with CL[nseg][l], nseg ∈
[1, Nseg], l ∈ [1, Lnseg ]

21: // Update DL with new LM and WR {Section VI-C}
22: Search for DL

nseg,l

obj with LM
nseg,l

obj and WR
nseg,l

obj , nseg ∈
[1, Nseg], l ∈ [1, Lnseg ]

23: end for
24: return SMobj of each segment; LMobj , WRobj , DLobj of

each layer

For each segment, we set different values of Nreg to get can-
didate SMs with different parallelism between its branches.
For each Nreg value, the IR of each branch is determined
by the number of operations with the objective of balancing
the workloads of the Regions. We leverage the slicing tree
representation [37] to determine the positions and shapes of
the Regions, which means we iteratively partition the PIM-
node array by two until all the Regions are determined. The
partitioning process follows the principle of maintaining the
size of each Region proportional to the amount of operation
of the layers to map so that the PIM-nodes in all Regions
can get a balanced load. The generated different mapping
schemes of the nseg-th segment, denoted as SM

nseg

candidate, are
the candidates from which the final SM of that segment is
chosen.

For each candidate SM of a segment, we set several WR
values for each layer, ranging from the maximum value to 1, to
set different DRAM capacity requirements for the layer. For
each WR, we get the corresponding layer mapping scheme
LM by traversing all possible LM choices and choosing the
one with the lowest latency. The different WR values and the
corresponding LMs form WR-LM -pairs, and they are the
candidates with different latency values and DRAM capacity
requirements from which the final WR and LM of the layer
are chosen. In the first iteration of PIM-Mapper when DF of
all layers is not selected yet, we use the amount of DRAM
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access to estimate the latency of DRAM access and in the
remainder iterations, both the amount of access and the data
layout pattern are considered.

B. Dynamic-programming-based mapping scheme selection

The problem of selecting from the candidate SMs of all
segments and LM -WR-pairs of all layers is similar to the
multiple-choice knapsack problem [38], which is to choose
exactly one item from each class such that the profit sum is
maximized without exceeding the capacity of the knapsack.
We use a dynamic programming algorithm to solve the map-
ping scheme selection problem and the flow of the algorithm
is shown in Algorithm 2. The inputs of the algorithm are the
capacity(CAP ) of DRAM of one PIM-node, different candi-
date SMs denoted as SMcan, different candidate LM -WR-
pairs of each layer under each SMcan and the corresponding
latency(Perf ) and required DRAM capacity(Size) of each
layer of each candidate. The output of the algorithm is the
choice indexes of the candidates.

We use two tables, PerfTab and PerfTabseg , to store the
latency with all DRAM capacity values. PerfTab[cap][nseg]
stores the latency of the first nseg segments under the DRAM
capacity requirement cap. Updated together with PerfTab,
two tables, CSTab and CLTab, are used to store the index
of chosen SMcan for each segment and the index of chosen
LM -WR-pair for each layer, respectively. Another table,
PerfTabseg[cap][nreg][l] stores the latency result of the first
l layers in the nreg-th Region of a segment under the DRAM
capacity requirement cap. The choice index of LM -WR-
pair of each layer in that segment is stored in CLTabseg
correspondingly.

Table PerfTabseg is used to collect the latency of layers
in one segment. For a segment with a certain SM , we add the
latency results of all candidate LM -WR-pairs of all layers
in the segment into the PerfTabseg and record the choice
index in the CLTabseg , which is illustrated in line9˜17 in Al-
gorithm 2. During the process, each LM -WR-pair candidate
of each layer in the region is selected to calculate the new
latency. If the new latency is better than the existing value in
the table, that candidate is chosen and the PerfTabseg and
CLTabseg are updated.

Table PerfTab is used to collect the latency of all seg-
ments. After the latency of a segment with all DRAM ca-
pacity values is obtained in the PerfTabseg , we add the
PerfTabseg into PerfTab, which is illustrated in line18˜24
in Algorithm 2. The latency result that best improves the
total latency under each DRAM capacity value is chosen to
update the PerfTab, and the CSTab and CLTab are updated
correspondingly.

After all SM candidates of all segments are visited, the best
choices can be acquired in CSTab[CAP ] and CLTab[CAP ].

C. Optimization for data layout pattern

With chosen SM for each segment and LM -WR-pairs for
all layers, we then update the data layout pattern, DL, for
each layer. Firstly, for each layer with the updated LM and
WR, we enumerate all possible choices of DL and select the

Algorithm 2 Dynamic Programming for Mapping Selection
Input: The Perf and Size of Ncan candidate LM -WR-pairs of

each layer in each segment with each candidate SM . The
capacity constraint of one PIM-node CAP .

Output: The choice index of SMcan for each segment CS[nseg]
the choice index of LM and WR for each layer CL[lnseg ].

1: // Initialize table of Perf and choices
2: INIT : PerfTab[1, .., CAP ][0] = 0
3: INIT : CSTab[1, .., CAP ][1, .., Nseg]
4: INIT : CLTab[1, .., CAP ][1, .., Nseg][1, .., Lnseg ]
5: for each nseg ∈ [1, Nseg], nSM ∈ [1, N

nseg

SM ] do
6: // Initialize tableseg of nseg-th segment and nSM -th SM
7: INIT :

PerfTabseg[1,..,N
nseg,nSM
reg ][1,..,CAP ][0] = 0

8: INIT :
CLTabseg[1,..,N

nseg,nSM
reg ][1,..,CAP ][1,..,Lnseg,nSM,nreg ]

9: // Build the tableseg layer-by-layer
10: for each nreg ∈ [1, N

nSM ,nreg
seg ], l ∈ [1, Lnseg,nSM ,nreg ],

cap ∈ [1, CAP ], ncan ∈ [1, Ncan] do
11: Perfcur ← Perfnseg,nSM ,nreg,l,ncan+

PerfTabseg[cap][nreg][l − 1]
12: Sizecur ← Sizenseg,nSM ,nreg,l,ncan + cap
13: if Perfcur ≤ PerfTabseg[nreg][cap][l] then
14: PerfTabseg[nreg][cap][l][Sizecur]=Perfcur
15: Update CLTabseg
16: end if
17: end for
18: // Update the table with the tableseg
19: for each cap ∈ [1, CAP ], capseg ∈ [1, CAP − cap] do
20: Perfcur ← PerfTab[cap][nseg − 1]+

maxnreg (
∑

l PerfTabseg[capseg][nreg][l])
21: Sizecur ← cap+ capseg
22: if Perfcur ≤ PerfTab[Sizecur][nseg] then
23: PerfTab[Sizecur][nseg] = Perfcur
24: Update CLTab[Sizecur] and CSTab[Sizecur]
25: end if
26: end for
27: end for
28: return CSTab[CAP ] and CLTab[CAP ]

one with the lowest latency without considering the DL of
other layers. Then we check the DL of each layer pair with
data dependency and make the DLi of the successor layer the
same as the DLo of the predecessor layer. If the DLi of a
layer is changed, we re-select its DLo.

VII. DATA-SCHEDULER

In convolution layers and matrix-multiplication layers, there
is a large amount of data reuse, and with layer partition
methods illustrated in Section III-C, the temporal reuse of data
is converted to spatial data-sharing between PIM-nodes. For
example, if a layer is partitioned on K, the PIM-nodes need
to share inputs; if a layer is partitioned on B, the PIM-nodes
need to share weights. To reduce the latency of data-sharing
by balancing the load of NoC links, we use a Hamilton-
cycle-based data transfer strategy and build an ILP model to
determine the Hamilton cycles. The data-sharing problem is
defined in Definition 1. Note that a layer can be partitioned on
more than one dimension, so there may be multiple sharing-
sets during one data-sharing process.

Definition 1: For a piece of data that is stored distributively
in a set of PIM-nodes, each PIM-node gets the remaining data
from the other PIM-nodes in the set so that eventually the
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PIM-node has the whole piece of data. The PIM-node set to
share data is denoted as a sharing-set and the process for the
PIM-nodes to get the data is the data-sharing process.

To achieve a balanced load of PIM-nodes, we use a
Hamilton-cycle-based data transfer strategy to schedule the
data-sharing process: for the PIM-nodes in a sharing-set with
a Hamilton cycle connecting them, each PIM-node transfers
the newly received data to the next PIM-node in the Hamilton
cycle and the process is repeated until all PIM-nodes receive
all the data. This strategy makes all PIM-nodes in the sharing-
set have equal-sized data to send and receive from NoC.

In each step of the Hamilton-cycle-based data-sharing pro-
cess, the load of the NoC links is determined by the specific
Hamilton cycle thus different Hamilton cycle leads to different
data transfer latency. We build an ILP model to determine
the Hamilton cycles simultaneously for all sharing-sets in
one data-sharing process. For Nss sharing-sets where each
set has Nns PIM-nodes, we denote the coordinate of each
PIM-node as Coordnns,nss . We use a binary decision variable
Cnss,n

a
ns,n

b
ns to denote the selected connection from na

ns to
nb
ns in the nss-th sharing-set. The following constraints ensure

the selected connections form Hamilton cycles, where integer
auxiliary variables U are introduced for eliminating subtours
[39].

na
ns≤Nns∑
na
ns=1

Cnss,n
a
ns,n

b
ns = 1, nb

ns ∈ [1, Nns], nss ∈ [1, Nss]

nb
ns≤Nns∑
nb
ns=1

Cnss,n
a
ns,n

b
ns = 1, na

ns ∈ [1, Nns], nss ∈ [1, Nss]

(2)

Unss,n
a
ns − Unss,n

b
ns + (Nns − 1)× Cnss,n

a
ns,n

b
ns ≤ Nns − 2,

na
ns, n

b
ns ∈ [2, Nns], n

a
ns ̸= nb

ns, nss ∈ [1, Nss]
(3)

The latency of data transfer is determined by the link with
the heaviest load, so the objective function is to minimize the
maximum load of all links in the NoC, which is as follows:

Objds= max
Lnk∈Links

nss≤Nss∑
nss=1

na
ns,n

b
ns≤Nns∑

na
ns,n

b
ns=1

Ps(na
ns,n

b
ns,Lnk)×Cnss,n

a
ns,n

b
ns

(4)
Ps(na

ns, n
b
ns, Lnk) is 1 if the routing path from PIM-node

with index na
ns to the PIM-node with index nb

ns passes Lnk,
and otherwise its value is 0.

VIII. EXPERIMENTS

We implement NicePIM on a Linux server with four 18-
core Intel Xeon CPUs and four nVidia Tesla V100 GPUs.
We use Pytorch [40] and Botorch [41] to build and train the
models of the PIM-Tuner. The PIM-Mapper is implemented
using Python language. We use Gurobi [42] to solve the ILP
model in the Data-Scheduler.

A. Evaluation methods

We leverage the DNN accelerator evaluation tool,
Timeloop+Accelergy [22], [23], to get the area of the NN
engine of the DRAM-PIM architecture. The intra- and inter-
PIM-node DRAM access is simulated by the Ramulator-
PIM [43], [44] integrated with BookSim2.0 [45], which are
both cycle-accurate simulation tools. The DRAMPower [46]
integrated into Ramulator-PIM helps to get the energy cost of
DRAM. The latency and energy cost of PE array and buffers
for computation tasks are simulated by Timeloop+Accelergy.

B. Experiment setup

The input hardware constraints of NicePIM are shown in
Table II. The stacked 3D-DRAM has 256 banks with 25nm
technology node and each bank has 8MiB capacity. The
energy cost of DRAM access is 0.88pJ/bit according to the
test result in [10]. The DRAM banks are organized into a
16 × 16 array so that the PIM-node array has a maximum
height and width of both 16. The total available area of the
logic die for the NN engines is 48mm2, which is inferred
from a fabricated PIM chip [15]. PIM-nodes run with a clock
frequency of 400 MHz and the technology node of logic die
is 28nm. Each PIM-node can have an up to 256 × 256 PE
array and up to 2048KiB buffers for inputs, weights and
outputs. The data width of input data and output data of DNN
layers is set to 16-bit and the intermediate partial-sums are
32-bit. The width of NoC flits is set to half the total width of
DRAM banks of a PIM-node and the energy cost is estimated
as 1.1pJ/bit/hop [47]. The routers are organized into mesh
topology and the dimension-order routing strategy is leveraged
with 8 virtual channels.

The MLP of the filter model of the PIM-Mapper has four
layers with 256, 64, 16 and 1 output neurons and the MLP
of the suggestion model has three layers with 256, 64 and 16
output neurons. The activation functions of both models are
ReLU. Adam optimizer [48] is leveraged to train the models.
In each iteration, PIM-Tuner randomly samples architectures
from the design space until gets 16384 legal architectures by
the filter model. The MAX OPTIM ITER of the PIM-
Mapper is set to 3.

Several DNNs from different fields are used as workloads
for evaluation, including GoogLeNet [21], ResNet [29], VGG
[30], DarkNet53 [31] and BERT [20]. GoogLeNet, VGG16
and ResNet152 are CNNs for classifying images. VGG16
has a straight-line structure while ResNet152 and GoogLeNet
have multi-branch structures with short-cut connections and
inception-blocks, respectively. DarkNet53 is the backbone of
the YOLOv3 network used for object detection which has
short-cut structures similar to ResNet152. BERT is a kind
of Transformer network for natural language processing and
we use the BERT-Base model which has 12 heads in one
Transformer block.

C. Results of NicePIM

Figure 9 shows the achieved design quality of NicePIM
along with iteration process. The optimization goal in Equa-
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TABLE II
THE HARDWARE CONSTRAINTS

Type Hardware Parameter Value

Constant

Technology node 28nm
BArow ×BAcol 16× 16
WidthBank 128bit
CAPBank 8MiB
Cstrarea 48mm2

Variable

NArow 2 ∼ 16
NAcol 2 ∼ 16
PEArow 1 ∼ 256
PEAcol 1 ∼ 256
Sizeibuf 1KiB ∼ 2048KiB
Sizewbuf 1KiB ∼ 2048KiB
Sizeobuf 1KiB ∼ 2048KiB

tion (1) is set to α = 1 and β = 1, which indicates the energy-
delay-product(EDP). We use the reciprocal of the summed cost
of the five DNNs as the metric of the design quality.

Some other design space exploration methods are evaluated
as comparisons, the results of which are shown in Figure 9.
PIM-Mapper and Data-Scheduler are also used with these
algorithms for fair comparison. In the Random method, the
architecture to evaluate is randomly chosen in each iteration.
Another widely used random search algorithm, simulated
annealing, is also evaluated. Besides, we replace the sugges-
tion model of the PIM-Tuner with other machine learning
models. In the GaussianProcess and XGBoost method, the
suggestion model is replaced by Gaussian process and XG-
Boost [49], respectively. The result in Figure 9 shows that
the NicePIM achieves the most significant improvement in
design quality. The random search algorithms cannot obtain
enough information from the already explored architectures
while the other two machine learning models are less accurate
in characterizing the design space than the suggestion model
in the PIM-Mapper.

Besides, we compare the performance of the nVidia Tesla
V100 GPU with the DRAM-PIM architecture given by
NicePIM, which has 4×8 PIM-nodes and each PIM-node has
a 128 × 8 PE array with 16KiB, 144KiB and 32KiB buffers
for inputs, weights and outputs, respectively. We try different
batch sizes for both systems and choose the best averaged
latency per sample as the final performance. For DRAM-PIM
accelerator, the batch size is changed from 1 to 16, and for
GPU, we try batch size from 1 to 1024. For fair comparison,
we scale the latency results with the area, frequency and
technology node. The simulated latency of the DRAM-PIM
architecture given by NicePIM is 25x smaller than the tested
latency on GPU on average, which means NicePIM makes
proper use of the area of the DRAM-PIM system.

D. Effectiveness of the PIM-Mapper
We evaluate the five DNNs with a batch size of 1 to illustrate

the effectiveness of the PIM-Mapper on two DRAM-PIM
systems with 4×4 and 16×16 PIM-node arrays. In the 4×4
PIM system, we set a 32 × 32 PE array and 128KiB for all
SRAM buffers in a PIM-node. As for the 16×16 PIM system,
the settings are 8× 8 and 8KiB.

The results are compared with a baseline method with
sequential mapping scheme. In baseline method, each layer is
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Fig. 9. The achieved design quality with NicePIM and other design space
exploration methods. The design quality at each iteration is the averaged value
of the best three architectures of all evaluated architectures.

mapped onto the whole PIM-node array and we use Timeloop
[22] to solve the LM of the layers with the optimization goal
set to “Delay”. The WR of each layer in the baseline method is
initially set to the maximum value and if the DRAM capacity
is not enough, we iteratively reduce the WR value from the
layers with the largest number of weights until the DRAM
capacity constraint is met. The DL of all layers is set to
be the same. We try several DL such as NCHW , NHWC
and NCHW [C8], and select the one with the best latency
result. The data-sharing process in the baseline method is also
scheduled by our proposed Data-Scheduler.

The experimental results in Figure 10 show that the PIM-
Mapper can generate high-utilization and low-energy map-
pings for PIM systems with different hardware configurations.
The latency is reduced by 37% on average and the energy
cost is reduced by 28% on average. On the 4 × 4 PIM
system, where each PIM-node has 16 DRAM banks, the
energy cost on DRAM of PIM-Mapper is significantly better
than that of the baseline, which means PIM-Mapper better
optimizes the DL of layers and makes more sufficient use
of the bandwidth of DRAM. On the 16 × 16 PIM system
where there are more but smaller PIM-nodes, the energy cost
on NoC of PIM-Mapper is much lower than the baseline
method, which indicates PIM-Mapper achieves lower inter-
PIM-node communication overhead. One reason is that PIM-
Mapper better utilizes the parallelism between DNN branches.
Besides, the better DRAM capacity allocation strategy in PIM-
Mapper also helps to reduce the overhead for sharing weights.

We also compare the PIM-Mapper with DDAM, a CNN
mapping framework for DRAM-PIM systems [47]. DDAM
partitions the CNN into several parts and maps them onto
different regions of the DRAM-PIM system. A dynamic
programming algorithm is employed to balance the load of
the regions of the DRAM-PIM system for high throughput.
Since DDAM makes CNNs processed in a pipeline manner,
we compare the performance on throughput of the two frame-
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Fig. 10. The energy(columns) and latency(lines) of PIM-Mapper(M) and
baseline method(B) on DRAM-PIM systems with different-sized PIM-node
arrays. The latency and energy results are normalized with that of the PIM-
Mapper.

works by changing the batch size from 1 to 16 and choosing
the best result. The experimental results in Figure 11 show
that PIM-Mapper achieves better throughput with an average
improvement of 11%. Mapping configurations such as data
layout pattern and inter-branch parallelism are not taken into
account in DDAM which affects its throughput. Moreover,
DDAM cannot achieve perfect load balance for regions so the
utilization of the PIM-node array decreases. DDAM and PIM-
Mapper have similar energy cost except that of NoC, which is
much smaller in the result of DDAM. The pipeline-mapping
manner leveraged by DDAM can make each layer mapped
onto a small region of the DRAM-PIM system and thus the
inter-PIM-node communication can be reduced a lot. But it is
worth noting that the pipeline-mapping scheme employed in
DDAM can only be used to optimize the throughput and the
latency is 10x worse than PIM-Mapper.
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Fig. 11. The energy(columns) and throughput(lines) of PIM-Mapper(M) and
DDAM(D). The throughput and energy results are normalized to that of the
PIM-Mapper.

E. Effectiveness of the Data-Scheduler

Figure 12 shows the comparison of the proposed Data-
Scheduler against the other two scheduling methods(TSP and
SHP). The method named TSP proposed in [47] also uses a
Hamilton-cycle-based data-transfer pattern while the Hamilton
cycle is built by formulating a traveling-sales-man problem.
The SHP method finds the shortest path for each part of the
data and then the part-data is transferred along the path, which
ensures the smallest hops to transfer all the data. We set three
sizes for the PIM-node array for evaluation, which are 4× 4,
8 × 8 and 16 × 16 and the sizes of sharing set are all 16.
On the 8× 8 and 16× 16 PIM-node array, there are multiple
sharing sets and they are placed in an interleaving manner:
the distances on height and width of adjacent PIM-nodes in
the same sharing set are all 2 and 4, respectively. For all the
PIM-node array sizes, each PIM-node has 8 KiB data to share
and the flit width of NoC is 64-bit.

The results in Figure 12 illustrate that the proposed ILP-
based scheduling method achieves the smallest latency since
the load of links is taken into account. The SHP method only
reduces the hops to transfer data but cannot balance the load
of both PIM-nodes and links. The TSP method also uses the
Hamilton path to schedule the data transfer process so that the
load of PIM-nodes is balanced. However, the load of links is
not taken into account in the TSP method, so the latency is
still large in some cases.

IX. RELATED WORK

A. PIM accelerators with tiled architecture

Tiled architecture is employed by many 3D-stacking-based
PIM accelerators since it has good scalability and matches well
with 3D-stacking pattern. Kim et al. designed a programmable
neuromorphic architecture based on Micron’s HMC [9] named
Neurocube [13] as well as a simple mapping strategy that
partitions the feature maps of CNNs. Gao et al. designed
TETRIS [16], an HMC-based NN accelerator with data-bypass
and in-memory accumulation. TETRIS employs a greedy
layer-by-layer partitioning strategy to map CNNs. Wang et
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Fig. 12. Normalized latency of data-sharing on different-sized PIM-node
arrays with different scheduling methods.

al. [18] proposed a memory-efficient data allocation strategy
for CNNs on 3D-stacked PIM architecture. QUEST [33] is a
3D-stacked-SRAM-based DNN accelerator and supports log-
quantized DNN processing. These works mainly focus on
the architecture design and scheduling of one PIM-node and
use simple DNN mapping strategies. DDAM [47] is a CNN
mapping framework that partitions the CNN into many parts
and maps each part onto the different region of the DRAM-
PIM system, making the parts processed in a pipeline manner.
DDAM can achieve high throughput of CNNs but cannot be
used to optimize the latency. The hardware design parameters
in these aforementioned works and their mapping strategies
may not be suitable when the hardware configuration or the
target workloads changes.

B. Design space exploration for DNN accelerators

The widespread use of DNNs introduces various perfor-
mance and energy requirements of the accelerators and DNN
accelerators have many design parameters to choose. Many
works are proposed to efficiently explore the design space
and find proper design parameters for their target DNN ac-
celerator architectures. Timeloop+Accelergy [22], [23] uses a
constraint-driven random search method with a fine-grained
model for analyzing DNN accelerators to generate valid map-
pings for DNN layers. MAGNet [24] has a highly configurable
architecture template for DNN accelerators and used Bayesian
optimization and random sampling to optimize the hardware
configuration, DNN mapping and DNN model. ZigZag [25]
employs the Memory-Centric Design Space Representation for
DNN accelerators and provides heuristic and iterative search
strategies to rapidly locate optimal mapping. ZigZag is also
able to generate the optimal architecture by exhaustive search.
FAST [26] is a framework that jointly explores the hardware
datapath configuration, software schedule, and compiler oper-
ations for DNN accelerators with detailed DNN performance
characterization and a novel op fusion technique. To search for
effective DNN mapping and efficient hardware configuration,
these works have diverse prior definitions on the architecture

and DNN mapping, which make them not suitable when facing
the design space of DRAM-PIM architectures.

X. CONCLUSION

This paper proposes a framework that optimizes the DNN
mapping and hardware parameters for DRAM-PIM-based
DNN accelerators. The PIM-Mapper together with the Data-
Scheduler can effectively reduce the inference latency and
the energy cost of DNNs on DRAM-PIM architectures with
various hardware parameters. The PIM-Tuner is effective to
extract features from the hardware design space so that the
obtained architecture has higher quality compared to other
design space exploration methods.
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