
DyBit: Dynamic Bit-Precision Numbers for
Efficient Quantized Neural Network Inference

Jiajun Zhou1∗, Jiajun Wu1∗, Yizhao Gao1, Yuhao Ding1, Chaofan Tao1, Boyu Li1

Fengbin Tu2, Kwang-Ting Cheng2, Hayden Kwok-Hay So1, Ngai Wong1†
1 Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong

2 Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong
{jjzhou, jjwu, yzgao, yhding}@eee.hku.hk, {cftao, liboyu}@connect.hku.hk

tufengbin@gmail.com, timcheng@ust.hk, {hso, nwong}@eee.hku.hk

Abstract—To accelerate the inference of deep neural networks
(DNNs), quantization with low-bitwidth numbers is actively
researched. A prominent challenge is to quantize the DNN
models into low-bitwidth numbers without significant accuracy
degradation, especially at very low bitwidths (< 8 bits). This
work targets an adaptive data representation with variable-
length encoding called DyBit. DyBit can dynamically adjust
the precision and range of separate bit-field to be adapted to
the DNN weights/activations distribution. We also propose a
hardware-aware quantization framework with a mixed-precision
accelerator to trade-off the inference accuracy and speedup.
Experimental results demonstrate that the inference accuracy
via DyBit is 1.997% higher than the state-of-the-art at 4-bit
quantization, and the proposed framework can achieve up to
8.1× speedup compared with the original model.

Index Terms—Deep Neural Networks, Quantization, Acceler-
ator

I. INTRODUCTION

There is an ever-growing need of accelerating deep neural
network (DNN) inference. While the de facto industrial stan-
dard is to represent network weights as single-precision (32-
bit) floating-point (FP) numbers in pre-trained DNN models,
inference hardware commonly relies on reduced bitwidth fixed
point arithmetic circuits (e.g., int8) instead for their superior
speed, area, and energy efficiency over their floating-point
counterparts. To operate with these fixed point hardware, the
original FP models must first be quantized into the target low-
precision linear fixed-point representations offline based on the
training data [1]. Although the use of low-bitwidth hardware
can significantly speed up DNN inference, this approach
suffers from significant accuracy degradation, especially on
very low bitwidth settings (< 8 bits), because it is challenging
for the fixed and linear range of the conventional fixed-point
format to capture the complex dynamic parameter distribution
changes in a DNN model during run time. A number of
recent works attempted to address this challenge by intro-
ducing mixed-precision quantization that employs fixed-point
numbers of different bitwidth in different parts of the neural
network [2]–[4]. Unfortunately, obtaining the optimal config-
uration for mixed-precision quantization that minimizes accu-

*Both authors contributed equally to this research
†Corresponding author

Run-Length Encoded Fixed Length Variable Length

Sign Regime Exponent Mantissa

Variable Length Variable Length

Fixed Length Fixed Length

Floating
Point

Posit

DyBit

r…r e1…ei f1…fks -

s
Sign Exponent Mantissa

e1…ei f1…fk

s
Sign Exponent Delimiter Mantissa

e1…ei 0 f1…fk

Fig. 1: An illustration of different N -bit numerical arithmetic
formats including FP, Posits and DyBit numbers.

racy loss remains an unsolved problem, making it difficult to
justify the hardware and speed overhead of supporting mixed-
precision operations in hardware [2]. To address the low-
bitwidth quantization challenge caused by the linear mapping
in conventional fixed-point representations, recent works have
begun to investigate in tailored made number presentations for
neural network inference that reduce the representation error
of low-bitwidth quantization [5]–[7]. Instead of affine map-
ping, they leverage additional mechanisms to adjust precision
in different ranges. For instance, Posit [5] uses run-length
encoding to dynamically define the exponent and mantissa
ranges in each data, while Adaptivfloat [6] assigns different
exponent lengths to different data blocks as an adjustment
for precision ranges. These approaches are often designed in
a way that can better represent the network based on their
distribution properties due to the dynamic precision range with
lower bitwidths than the standard FP format. However, existing
adaptive data types require additional variables for adjusting
the dynamic range. In this regard, a hardware-efficient data
format that can dynamically represent the tensor distribution
without extra variables is of research and practical value.

To this end, we propose a hardware-efficient data rep-
resentation called DyBit for low-bitwidth quantization with
a variable length in the exponent bit-field to adapt to the
distribution of DNN models. Furthermore, an efficient mixed-

ar
X

iv
:2

30
2.

12
51

0v
1

 [
cs

.L
G

]
 2

4
Fe

b
20

23

precision quantization framework is developed to tradeoff
between quantization error and latency speedup. Thanks to
the dynamically adaptive representation, the framework can
quantize activations and weights to the lowest 4 bits and 2
bits, respectively, while maintaining high accuracy. The pro-
posed framework can also be adapted to different application
requirements using different constraints on quantization error
or speedup. Finally, we design and implement a run-time
configurable mixed-precision accelerator that can efficiently
decode the DyBit and reuse computation units for different
bitwidths. The key contributions of this work are:

• We propose DyBit, an adaptive data representation that
has efficient variable-length exponent bits and can also
adjust its precision at the tensor level. Evaluation results
show the proposed representation can be adapted to the
data distributions in various DNN models and layers.

• We have developed a run-time configurable mixed-
precision accelerator that supports DyBit operations,
which fuses multiple multiply-accumulate (MAC) opera-
tions into one processing element to speed up the DNN
inference and reduce memory access in low-bitwidth
quantization.

• We propose a hardware-aware mixed-precision quantiza-
tion framework based on the adaptive DyBit to trade-off
between the inference accuracy and hardware speedup.
The proposed framework searches for optimal layer-
wise quantization based on two strategies for different
application scenarios.

II. BACKGROUND AND RELATED WORK

A. Quantization Method

Many studies have extensively explored DNN compression
and optimization on hardware using quantization. For efficient
edge deployment, binary neural networks (BNNs) exclusively
make use of the logical XNOR operation that obviates regular
multipliers binarized the network weights into {-1,+1} [8]
and replace multiplication with addition or bit-shift operations.
Jacob [1] made use of fixed-length integers to quantize weights
and activations. Many approaches only quantize static weights
with on-device storage considerations but do not deliver verifi-
able computational efficiency improvements on real hardware.
The survey paper by Qualcomm AI research [9] contains more
details about hardware-motivated methods for quantization.
Nonetheless, these conventional quantization methods simply
assign separate quantizers per group of weights and activa-
tions, whereas the proposed framework herein automates fused
multiple bits for efficient calculations.

B. Mixed-Precision Hardware Accelerator

To efficiently support mixed-precision quantization, previ-
ous works have explored different architectural designs that
can achieve scalable performances on different precisions.
Prior mixed-precision accelerators can mainly be divided into
spatial-based and temporal-based architectures depending on
how the precision-scaling operations are mapped [10]. The
spatial-based accelerators, e.g., BitFusion [11], are generally

MobileNet-V2 Activation Tensor
(5-Bit DyBit)

ViT-Large Activation Tensor
(8-Bit DyBit)

MobileNet-V2 Activation Tensor
(FP32)

ViT-Large Activation Tensor
(FP32)

Fig. 2: The diagram of the proposed DyBit quantization.

based on a configurable multiplier composed of low-bitwidth
multiply units. By splitting the full-precision input into several
low-precision data, the multiplier can process multiplications
with different bitwidths. On the other hand, temporal-based
accelerators usually leverage bit-serial MAC operations to
achieve efficient computation [12]. In general, it is challenging
to achieve good tradeoffs between bit-level compatibility,
energy efficiency, and performance without causing significant
overhead to support mixed-precision operations. In this work,
an accelerator based on a spatial-based architecture is pro-
posed to efficiently support DyBit format under low precision
(<8bits). A cycle-accurate simulator is also developed to foster
hardware-aware mixed-precision quantization.

III. METHODOLOGY
We now present more details of the proposed DyBit repre-

sentation and the efficient hardware accelerator, as well as the
mixed-precision framework and the quantization algorithm.

TABLE I: 4-Bit Unsigned DyBit Value Table

Binary Value Binary Value Binary Value Binary Value
0 0 0 0 0 0 1 0 0 0.5 1 0 0 0 1.0 1 1 0 0 2
0 0 0 1 0.125 0 1 0 1 0.625 1 0 0 1 1.25 1 1 0 1 3
0 0 1 0 0.25 0 1 1 0 0.75 1 0 1 0 1.5 1 1 1 0 4
0 0 1 1 0.375 0 1 1 1 0.875 1 0 1 1 1.75 1 1 1 1 8

A. Variable-Length Datatype

The variable-length DyBit number representation scheme
contains a mandatory sign, multiple dynamical exponent bits,
and mantissa bits. We follow the generic representation to
illustrate any DyBit value in Fig. 1. To efficiently decode
all bitwidth data points, only shift or add operations are
required to compute the bit-level number system. Specifically,
the tapered DyBit representation is defined in Eqn. (1).

f(x) =

0, 0

2n, max

(−1)s × 2i−1 ×
(
1 + x

2k

)
, others

(1)

where n refers to the total number of bits, i stands for the
variable length of exponent bits, k is the variable length of the

8b Dybit

4b Dybit

Mixed Precision (MP)

4b Dybit

2b

EXP.

ADD

MAN.

MUL

FP Accumulator

MP Decoder
s. exp. man.

XOR

2b 2b 2b

Mode

s. exp.

man.

PE

Ex
te

rn
a
l
M

e
m

o
ry

IF
 B

u
ff

e
r

OF Buffer

M
P
 D

e
co

d
e
r

MP Encoder

Weight Buffer

MP Decoder

PE

PE

PE

PE

PE PE

PE PE

PE PE

PE PE

Control

Unit

Hardware

System

Quantizer

Mode
Quan.

Type

Dybit Out 4b or 8b

s.

e
x
p
.

m
a
n.

man.

(a)

LOD-4 LOD-4

Extra Logic

X7 X6 X5 X4 X3 X2 X1 X0

B
I_

4
b

[3
]

B
I_

4
b

[2
]

B
I_

4
b

[1
]

B
I_

4
b
[0

]

BI_8b[2:0]

MUX
exp.

X7 X6 X5X4 X3 X2 X1 X0

BI_2b[3:0]

BI_2b BI_4b BI_8b

Mode

exp.Mode X7X6 …X0

MP Mantissa Shifter

X << exp + 18-bit

<< <<
<<<<<<<<

4-bit
2-bit

MUX

man.

man_2b man_4b man_8b

Mode

MP Exp detection

MUX
Signed?

X7X5X3X1 0000

s.

(b)

ADD 4-bit × 2-bit

ADD 4-bit × 4-bit

ADD 8-bit × 4-bit

ADD 8-bit × 8-bit

X0Y0X1Y0

X0Y1X1Y1

P0P1P2P3

HAHA

<< 2

X0Y0X1Y0

X0Y1X1Y1

P0P1P2P3

HAHA

<< 0

ADD

1 0 1 0

0
1

1
0

Reuse ‘1010’

1010

×10

1010

×01

Mult.

Unit

(MU)

Mult.

Unit

(MU)

Mixed Precision

Mantissa Multiplier

4-bit × 2-bit mode example

Reuse operands

MU

A
D

D

MU

MU

A
D

D

MU

ADD

MU

A
D

D

MU

MU

A
D

D

MU

ADD

A
D

D

MU

A
D

D

MU

MU

A
D

D

MU

ADD

MU

A
D

D

MU

MU

A
D

D

MU

ADD

A
D

D

ADD

2b 2b 2b 2b

2
b

2
b

2
b

2
b

8-bit

inputs

24-bit Multiplication Result24-bit Multiplication Result

Controlled by mode

(c)

Fig. 3: Mixed-precision hardware system based on the proposed DyBit representation. (a) Hardware architecture based on the
systolic array, (b) mixed-precision decoder (MP Decoder), and (c) mixed-precision mantissa multiplier (MAN. MUL).

power-of-2 scaling mantissa bits of encoded variable-length
range bits, and x represents the decimal number of the fraction
field. In the formula, when the start bit is the digit 1, the
variable-length exponent bit i is used to encode the number
of 1s and combines the hardware-oriented characteristics of
leading one detector (LOD), which counts the number of
1s before the next zero bit. If the start bit is the digit 0,
only variable-length fraction bit k represents the actual value
within {-1,1}. In this way, the exponent region of DyBit is
a variable-length encoding method instead of a fixed-length
one. Meanwhile, the fraction bits are also adaptively changed
due to the shifting of the exponent bit. We further explain
this encoding results of non-uniform distributions with a 4-
bit truth Table I that maps small and large values to tensor
distributions. Thanks to the variable-length method, DyBit is
suitable for DNN quantization as it can be adapted to tensor
distributions of the original models (cf. Fig. 2).

B. Hardware Design

To support the DyBit-based quantization and inference,
we propose a run-time configurable mixed-precision hard-
ware accelerator. This section introduces how the architecture
and circuit design efficiently support the configurable mixed-
precision requirement.

1) Architecture: The proposed hardware architecture is
based on a systolic array with an input feature (IF) buffer,
a weight buffer, and an output feature (OF) buffer, shown
in Fig. 3a. Based on the systolic dataflow, all partial results
can remain FP for MAC operations. Thereby, all processing
elements (PE) share the same decoder per row/column and the
same encoder per column so that the decoders and encoders
do not exist in PEs, which reduces the hardware overhead.

The FP intermediate results will be quantized to DyBit format
before being written back to the external memory.

2) Decoder & Encoder: Due to the mixed-precision sup-
port, decoding the input data into unified floating-point formats
will be easier for processing. As in Fig. 3b, the proposed
mixed-precision decoder extracts the exponent (exp) by de-
tecting the number of the leading 1s. Then the decoder left-
shifts exp to get the mantissa and inserts the normalized 1 in
the MSB. Take an unsigned 8-bit DyBit data 11001010 as
an example, the decoded data will be exponent(001), man-
tissa(10101000). To reduce the mixed-precision overhead,
we reuse the 4-bit leading one detector (LOD-4) for 8-bit
DyBit input, and we also reuse the logic in the dynamic
shifter for the mantissa. For the encoder part, the process is the
opposite of the decoding part, in which the circuit will insert
(exp+ 1) number of 1s in the MSB and select the remaining
bits of mantissa to fill the DyBit output.

3) Mixed-precision PE: As illustrated before, the data
processed inside PEs fit well with variable-length separate bit-
field. Implementing individual exponent adders and mantissa
multipliers for different data widths will cause huge overhead
as no computation resources are reused. For the mantissa
multiplier (MAN. MUL), we modified the BitFusion [11]
architecture to support four different multiplication modes. It
is worth noting that based on this fused strategy, the PE can
process multiple multiplications in parallel with data reuse (cf.
Fig. 3c). For the exponent adder (EXP. ADD), it is natural
and trivial to reuse the low-precision adder to build up a high-
precision adder with a small amount of overhead in the carry
chain. The run-time instructions can control the PE working
on different modes. With such mixed-precision PEs, when an
N×N systolic array is working on P1×P2 (< 8-bit) mode, it

FPGA Device DNN Models

Constraints

Architecture

S
ca

le

- Array Scale

- Buffer Size

- Bandwidth

LUTs, BRAMs… Generate Extract &

Analyze Models

Network

Topologies

Kernel Size, Feature Size …

v
Model Scheduler

R
M

S
E-α

- Tile size,

- Loop order

v

Architecture

Cycle-accurate Predictor

W: 4, A: 8

Layer Quan.

Layer Topo.

Topology

Optimal latency

Best Schedule

Layer Lat.

RMSE-constrained

Search Engine

Speedup-constrained

Search Engine

RMSE Computation

Model

RTL

Bitstream

Baseline Lat.

QAT/PTQ

Fine-tune

Dybit

0000001

1110100

Latency Pool

S
p
e
e
d
up

 β

Run-time

Instructions

Hardware Simulator

Fig. 4: DyBit-Based hardware-aware quantization framework.

is equivalent to achieving (8/P1)N×(8/P2)N scale based on
this fixed systolic array. Therefore, our hardware design can
achieve high speedup in low-precision modes.

C. Hardware-aware Quantization Framework

Fig. 4 presents the proposed novel hardware-aware quan-
tization framework based on the search-based method. The
framework first estimates the maximum hardware resource
utilization based on the DNN models and given hardware con-
straints (e.g., LUTs and BRAMs in FPGAs). Then, it searches
the layer-wise quantization bitwidths based on two variant-
constrained strategies. The hardware-aware framework uses a
cycle-accurate hardware simulator to provide latency results
to do layer-wise mixed-precision quantization dynamically.
Finally, the pre-trained 32-bit floating-point (FP32) models are
quantized into DyBit according to the layer-wise search results
using quantization-aware training (QAT) to retain accuracy.
The post-quantization DNN models can then be deployed to
our hardware accelerator.

1) Quantization Metrics: According to previous works,
Root Mean Squared Error (RMSE) is a common metric to
effectively evaluate the accuracy of the post-quantization DNN
models [6]. The smaller the RMSE, the higher accuracy a
quantized model can potentially achieve. Here we use RMSE
as a metric to measure the quantization error and facilitate the
search process, defined as:

RMSE =

√
1

n
Σn

i=1

(x− x̂
σi

)2
, (2)

x and x̂ are respectively the original FP32 and quantized val-
ues, and σi is the standard deviation of the tensor distribution.

2) Two Search Strategies: Based on the quantization error
RMSE and speedup ratio, we propose two different optimiza-
tion strategies to adapt to different application scenarios. In
the case of stringent real-time requirements, our framework
can constrain the speedup ratio as α to ensure the hardware

performance while minimizing the quantization error RMSE,
as shown in Eqn. (3).

min
A

m∑
i=1

RMSEi(a,w)

s.t. α×
m∑
i=1

Lati(a,w) ≤
m∑
i=1

Lati(8, 8).

(3)

On the other hand, if the application prioritizes accuracy, our
framework can use another constraint β to limit quantization
error while obtaining quantization with minimum latency, as in
Eqn. (4). Note that in both search strategies of our algorithm,
we select 8-bit Dybit as the baseline for latency and RMSE
metrics.

min
A

m∑
i=1

Lati(a,w)

s.t.
m∑
i=1

RMSEi(a,w) ≤ β ×
m∑
i=1

RMSEi(8, 8)

(4)

3) Quantization Search Flow: The layer-wise mixed-
precision quantization of weights and activations leads to a
vast design space. In DyBit, we support the selections for
weights/activations in 8-bit, 4-bit, and 2-bit for better hardware
efficiency since the bitwidths non-integer powers of 2 (e.g.,
6-bit) will cause additional overhead for data alignment in
off-chip memory and data transfer between accelerator and
memory. Assuming the DNN model has N layers, the total
number of possible solutions will be (3×3)N . In such a space,
we design a heuristic search algorithm to find near-optimal
solutions efficiently.

Algorithm 1 describes the proposed heuristic search algo-
rithm. In the speedup-constrained strategy, we get the layer-
wise baseline latency performances calculated by the simulator
and select the k largest layers as candidates. In other words, we
intend to quantize the slowest layer first to get a better overall
end-to-end speedup. Besides, to get the optimal solution with
the minimum RMSE, we also calculate the RMSE of each
candidate and reorder them in ascending order of RMSE.
The search engine will lower the bitwidth of each candidate
one by one so that the low-RMSE layers can be quantized
first. Whenever the speedup ratio within the k candidates is
satisfied, this iteration will stop. The engine will recalculate
the latency and select the next top-k candidates in the next
iteration. The overall process will stop when the end-to-end
speedup constraint is satisfied. This way, we can ensure the
final speedup ratio while lower the RMSE as well.

As for the RMSE-constrained strategy, the objective
and condition are exchanged compared with the speedup-
constrained one. Therefore, the search flow is similar to
the speedup-constrained strategy, except the ordering of the
candidate is based on different metrics.

4) Hardware Simulator: To support the hardware-aware
quantization, we develop a cycle-accurate simulator, shown in
Fig. 4. The simulator first generates the maximum architecture
constrained by the resources of the target device. By modifying
the backend of the systolic array GEMM dataflow [7] based
on our hardware design, it obtains the optimal latency by

Algorithm 1 Search Flow of speedup-constrained and RMSE-
constrained strategies
Input: DNN model M with N layers {L1, L2, ...LN}, search strategy m,

constraint α or β, top-k parameter k
Output: Layer-wise bitwidths of weights and activations W =

(W1,W2, ...WN),A = (A1, A2, ...AN)
1: W,A← (8, 8, ..., 8)
2: metric base← TOTAL METRIC(M,W,A), ratio← 1
3: while ratio does not meet α or β do
4: metric← LAYERWISE METRIC(M,W,A)
5: if m = speedup then
6: metric top← LAT RANK(metric, k)
7: layer list← RMSE RERANK(metric top)
8: else if m = RMSE then
9: metric top← RMSE RANK(metric, k)

10: layer list← LAT RERANK(metric top)
11: end if
12: DEGRADE LEVEL(list,W)
13: DEGRADE LEVEL(list,A)
14: end while
15:
16: procedure DEGRADE LEVEL(layer list,W or A)
17: for l = 1→ k do
18: Degrade Wlayer list[l] or Alayer list[l]: 8 → 4 or 4 → 2
19: ratio← TOTAL METRIC(M,W,A)/metric base
20: break if ratio meets α or β
21: end for
22: end procedure

calculating the latencies corresponding to all possible tiling
schedules of the current layer. During the search flow, the
search engines call the simulator to get the latency of each
layer, which will be used for ranking layer candidates.

IV. EVALUATIONS

A. Experiment Setup

1) Benchmark: We conduct the experiments based on
ResNet18/50 and the lightweight MobileNetV2 on Ima-
geNet classification. We use the pre-trained 32-bit floating-
point(FP32) model from PyTorch as the baseline. Based on
the method in Section III-C, we train 3∼5 fine-tuning epochs
for QAT. To conduct a fair comparison, the training setup, and
the hyper-parameters are kept the same for all types under
evaluation. We also test our framework on emerging models
like Vision Transformer, RegNet, and ConvNext to verify that
method is universal and efficient.

2) Baselines: We obtained evaluation results for integer
quantized models (i.e. INT4, INT8) following the same train-
ing setup. Besides, we compare our method with various
fixed-precision quantization methods including PACT [13],
AdaFloat [6], DSQ [14], Posit [5], Flint [7] and layer-wise
mixed-precision quantization methods, such as BRECQ [3].

3) Implementation: The proposed mixed-precision accel-
erator is designed and implemented with Verilog HDL. We
implemented the accelerator on the Xilinx ZCU102 platform.
As discussed in Section III-C, a cycle-accurate hardware
simulator is developed to support hardware-aware quantization
search. We also utilize this simulator to evaluate our speedup
performance compared with baselines.

TABLE II: Top-1 accuracy performance with quantization-
aware training on ImageNet dataset.

Methods (W/A) MobileNetV2 ResNet18 ResNet50

FP32 71.79 69.68 75.98
INT(4/4) 39.78 66.24 73.04
INT(8/8) 71.658 69.4 75.92

AdaFloat(4/4) [6] − − 75.1
BRECQ(4/4) [3] 66.57 69.60 −
PACT(4/4) [13] 61.40 69.20 −
DSQ(4/4) [14] 64.80 69.56 −
Flint(4/4) [7] − 67.50 74.91
Posit(8/8) [5] − − 73.61

DyBit(4/4) 69.31 69.47 75.87
DyBit(4/8) 68.17 69.57 75.82
DyBit(8/8) 69.47 69.66 75.93

TABLE III: Top-1 accuracy performance with quantization-
aware training on ImageNet with emerging models

Methods (W/A) RegNet-3.2GF ConvNext-Tiny ViT-Base

FP32 78.364 82.52 81.07
INT(4/4) 75.9 0.1 72.19

Flint(4/4) [7] - - 78.33

DyBit(4/4) 77.13 71.9 79.44
DyBit(8/8) 77.844 80.55 80.82

B. Quantization Accuracy

To validate that the adaptive DyBit data representation can
keep the accuracy in the low-precision models, we conducted
quantization-aware training. In Table II, we show the Top-1
accuracy results of three models in different bitwidth on the
ImageNet dataset, e.g., 4W4A stands for 4-bit activation and
4-bit weight tensor. We observe that our quantization achieves
1.997% inference accuracy higher than the state-of-the-art, viz.
Flint [7], on 4-bit quantization and also surpasses other fixed-
precision or mixed-precision quantization methods. Besides,
it is noteworthy that 4-bit and 8-bit quantization results are
provided in Table III to demonstrate that our method for larger
models causes less accuracy drop compared to high-precision
models after fine-tuning. FP32, INT4, and INT8 results are
also provided for a fair comparison. In addition, 8-bit DyBit
has only a 0.05 Top-1 accuracy drop compared with FP32
on ResNet50. Specifically, our quantization method performs
better at the lower-precision bitwidth.

C. Accuracy-Speedup Trade-off

To demonstrate the proposed hardware-aware quantization
framework can trade-off between accuracy and speedup, we
set up different constraints and quantize the ResNet18/50 and
MobileNetV2 models based on the two search strategies in
Section III-C, depicted in Fig. 5. Generally, an increase in the
constraint α or β leads to a speedup increase and accuracy
loss, because the framework will search for more low-precision
numbers to meet the demand. For the speedup-constrained

Dybit
=2

Dybit
=1.75

Dybit
=1.5

Dybit
=1.25

Dybit
=1

Int8 FP32
0

1

2

3

4
N

or
m

al
iz

ed
 S

pe
ed

up

Dybit
=3

Dybit
=2.5

Dybit
=2

Dybit
=1.5

Dybit
=1

Int8 FP32
0

3

6

9

12

Dybit
=3.25

Dybit
=3

Dybit
=2.5

Dybit
=2

Dybit
=1

Int8 FP32
0

3

6

9

12

Dybit
=2.5

Dybit
=2

Dybit
=1.5

Dybit
=1.25

Dybit
=1

Int8 FP32

MobileNet-v2

0

1

2

3

4

N
or

m
al

iz
ed

 S
pe

ed
up

Dybit
=2.25

Dybit
=2

Dybit
=1.5

Dybit
=1.25

Dybit
=1

Int8 FP32

ResNet18

0

3

6

9

12

Dybit
=2.5

Dybit
=2

Dybit
=1.5

Dybit
=1.25

Dybit
=1

Int8 FP32

ResNet50

0

3

6

9

12

40

50

60

70

80
Normalized Speedup Accuracy %

55

60

65

70

75
Normalized Speedup Accuracy %

66

69

72

75

78

Ac
cu

ra
cy

 %

Normalized Speedup Accuracy %

40

50

60

70

80
Normalized Speedup Accuracy %

55

60

65

70

75
Normalized Speedup Accuracy %

66

69

72

75

78

Ac
cu

ra
cy

 %

Normalized Speedup Accuracy %

Fig. 5: Speedup and accuracy evaluations on the speedup-constrained strategy (the first row) and the RMSE-constrained strategy
(the second row), based on MobileNetV2 and ResNet18/50 models. The target platform is Xilinx ZCU102.

2 4 6 8 10
Speedup

55

60

65

70

75

80

Ac
cu

ra
cy

ResNet18 ResNet50 mobilenet_v2

Fig. 6: Accuracy-speedup trade-off in DyBit quantization.

strategy, the quantized model tends to have a higher speedup
(e.g., in ResNet50, up to 8.1×) with lower accuracy. On the
contrary, the quantized model can maintain a closer accuracy
to the original model while still delivering a decent speedup in
the RMSE-constrained strategy (e.g., in ResNet50, only 0.18%
accuracy drop with 4.5 × speedup). Therefore, the proposed
framework can work for different application scenarios with
the two strategies. To further present the adjustment between
accuracy and speedup, we collect all results based on both
strategies, as shown in Fig. 6. It can be concluded that with
the growing speedup, the inference accuracy drops, and our
proposed framework can quantize the DNN models with trade-
offs along the curves. The speedup ratio is limited in the
MobileNetV2 since depth-wise operations are not efficient
based on our current GEMM systolic array.

V. CONCLUSION

This paper has proposed a novel hardware-aware quantiza-
tion framework, with a fused mixed-precision accelerator, to
efficiently support a distribution-adaptive data representation
named DyBit. The variable-length bit-fields enable DyBit to
adapt to the tensor distribution in DNNs. Evaluation results
show that DyBit-based quantization at very low bitwidths
(<8bits) consistently achieves higher accuracy than compet-
ing methods. Moreover, the proposed end-to-end framework

can effectively search for the optimal solution under vari-
ous constraints, thus achieving a trade-off between accuracy
and hardware speedup. Experiments on various DNN models
under different quantization constraints demonstrate that the
framework can quantize DNN models to achieve 2.5 ∼ 8.1×
speedup.

REFERENCES

[1] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 2704–
2713.

[2] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Haq: Hardware-aware
automated quantization with mixed precision,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 8612–8620.

[3] Y. Li, R. Gong, X. Tan, Y. Yang, P. Hu, Q. Zhang, F. Yu, W. Wang, and
S. Gu, “Brecq: Pushing the limit of post-training quantization by block
reconstruction,” arXiv preprint arXiv:2102.05426, 2021.

[4] Z. Dong, Y. Gao, Q. Huang, J. Wawrzynek, H. K. So, and K. Keutzer,
“Hao: Hardware-aware neural architecture optimization for efficient
inference,” in 2021 IEEE 29th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), 2021, pp.
50–59.

[5] H. F. Langroudi, V. Karia, Z. Carmichael, A. Zyarah, T. Pandit,
J. L. Gustafson, and D. Kudithipudi, “Alps: Adaptive quantization of
deep neural networks with generalized posits,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 3100–3109.

[6] T. Tambe, E.-Y. Yang, Z. Wan, Y. Deng, V. Janapa Reddi, A. Rush,
D. Brooks, and G.-Y. Wei, “Algorithm-hardware co-design of adaptive
floating-point encodings for resilient deep learning inference,” in 2020
57th ACM/IEEE Design Automation Conference (DAC), 2020, pp. 1–6.

[7] C. Guo, C. Zhang, J. Leng, Z. Liu, F. Yang, Y. Liu, M. Guo, and Y. Zhu,
“Ant: Exploiting adaptive numerical data type for low-bit deep neural
network quantization,” arXiv preprint arXiv:2208.14286, 2022.

[8] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
European conference on computer vision. Springer, 2016, pp. 525–542.

[9] R. Krishnamoorthi, “Quantizing deep convolutional networks for effi-
cient inference: A whitepaper,” arXiv preprint arXiv:1806.08342, 2018.

[10] V. Camus, L. Mei, C. Enz, and M. Verhelst, “Review and bench-
marking of precision-scalable multiply-accumulate unit architectures for
embedded neural-network processing,” IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, vol. 9, no. 4, pp. 697–711,
2019.

[11] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and H. Es-
maeilzadeh, “Bit fusion: Bit-level dynamically composable architecture
for accelerating deep neural network,” in 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA). IEEE,
2018, pp. 764–775.

[12] A. Li, H. Mo, W. Zhu, Q. Li, S. Yin, S. Wei, and L. Liu, “Bitcluster:
Fine-grained weight quantization for load-balanced bit-serial neural
network accelerators,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 41, no. 11, pp. 4747–4757, 2022.

[13] J. Choi, Z. Wang, S. Venkataramani, P. I.-J. Chuang, V. Srinivasan,
and K. Gopalakrishnan, “Pact: Parameterized clipping activation for
quantized neural networks,” arXiv preprint arXiv:1805.06085, 2018.

[14] R. Gong, X. Liu, S. Jiang, T. Li, P. Hu, J. Lin, F. Yu, and J. Yan, “Dif-
ferentiable soft quantization: Bridging full-precision and low-bit neural
networks,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2019, pp. 4852–4861.

	I Introduction
	II BACKGROUND AND RELATED WORK
	II-A Quantization Method
	II-B Mixed-Precision Hardware Accelerator

	III METHODOLOGY
	III-A Variable-Length Datatype
	III-B Hardware Design
	III-B1 Architecture
	III-B2 Decoder & Encoder
	III-B3 Mixed-precision PE

	III-C Hardware-aware Quantization Framework
	III-C1 Quantization Metrics
	III-C2 Two Search Strategies
	III-C3 Quantization Search Flow
	III-C4 Hardware Simulator

	IV Evaluations
	IV-A Experiment Setup
	IV-A1 Benchmark
	IV-A2 Baselines
	IV-A3 Implementation

	IV-B Quantization Accuracy
	IV-C Accuracy-Speedup Trade-off

	V Conclusion
	References

