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Multiseed lossless filtration
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Abstract

We study a method of seed-based lossless filtration for appede string matching and related
bioinformatics applications. The method is based on a $anaebus use of several spaced seeds rather
than a single seed as studied by Burkhardt and KarkkainenWe] present algorithms to compute
several important parameters of seed families, study dweitbinatorial properties, and describe several
techniques to construct efficient families. We also repotarge-scale application of the proposed

technique to the problem of oligonucleotide selection fore25T sequence database.
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I. INTRODUCTION

ILTERING is a widely-used technique in biosequence analyspplied to the approximate
F string matching probleni_[2], it can be summarized by theofeihg two-stage scheme: to
find approximate occurrences (matches) of a given stringsaecuence (text), one first quickly
discards (filters out) those sequence regions where matarest occur, and then checks out
the remaining parts of the sequence for actual matches. liéeniy is done according to small
patterns of a specified form that the searched string is asgumshare, in the exact way, with

its approximate occurrences. A similar filtration schemaised by heuristic local alignment
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algorithms ([3], [4], [5], [6], to mention a few): they firstiéntify potential similarity regions
that share some patterns and then actually check whethse tlegions represent a significant
similarity by computing a corresponding alignment.

Two types of filtering should be distinguished lesslessand lossy A lossless filtration
guarantees to deteall sequence fragments under interest, while a lossy filtrati@y miss
some of them, but still tries to detect a majority of them. &loalignment algorithms usually
use a lossy filtration. On the other hand, the lossless fdtratas been studied in the context of
approximate string matching problem [7]) [1]. In this papee focus on the lossless filtration.

In the case of lossy filtration, its efficiency is measured Wy parameters, usually called
selectivityand sensitivity The sensitivity measures the part of sequence fragmeniisterest
that are missed by the filter (false negatives), and the tbatgdndicates what part of detected
candidate fragments don't actually represent a solutials€fpositives). In the case of lossless
filtration, only the selectivity parameter makes sense antierefore the main characteristic of
the filtration efficiency.

The choice of patterns that must be contained in the searsbgdence fragments is a key
ingredient of the filtration algorithmGapped seedéspaced seeds, gappedjrams) have been
recently shown to significantly improve the filtration eféiocy over the “traditional” technique
of contiguous seeds. In the framework of lossy filtration $®quence alignment, the use of
designed gapped seeds has been introduced byatiiaRNHUNTER method [4] and then used
by some other algorithms (e.d.! [5].][6]). Inl[8]./[9], spaceekeds have been shown to improve
indexing schemes for similarity search in sequence dagsbde estimation of the sensitivity
of spaced seeds (as well as of some extended seed modelsg¢drasubject of several recent
studies [[10], [[11], [[12],[113],[[14],[I15]. In the framewordf lossless filtration for approximate
pattern matching, gapped seeds were studied!in [1] (seq&)sand have also been shown to
increase the filtration efficiency considerably.

In this paper, we study an extension of the lossless siregé-iltration technique _[1]. The
extension is based on usisged familiesather than individual seeds. The idea of simultaneous

use of multiple seeds for DNA local alignment was alreadyisaged in [[4] and applied in



PATTERNHUNTER |l software [16]. The problem of designing efficient seed ile@a has also
been studied in [17]. In_[18], multiple seeds have been adpid the protein search. However,
the issues analysed in the present paper are quite diffeteatto the proposed requirement for
the search to be lossless.

The rest of the paper is organized as follows. After formadtyoducing the concept of multiple
seed filtering in Sectionlll, Sectignllll is devoted to dynamiogramming algorithms to compute
several important parameters of seed families. In SeC¥pnvk first study several combinatorial
properties of families of seeds, and, in particular, seed#nlg a periodic structure. These results
are used to obtain a method for constructing efficient seeliés. We also outline a heuristic
genetic programming algorithm for constructing seed fasilFinally, in Sectioh V, we present
several seed families we computed, and we report a larde-egperimental application of the

method to a practical problem of oligonucleotide selection

[I. MULTIPLE SEED FILTERING

A seed() (called alsospaced seedr gappedqg-gram) is a list {p, ps,...,pq} Of positive
integers, callednatching positionssuch thatp; < p, < ... < pg. By convention, we always
assumep; = 0. The spanof a seed?, denoteds(Q), is the quantityp, + 1. The numberd of
matching positions is called theeightof the seed and denoted (9). Often we will use a more
visual representation of seeds, adopted|in [1], as wordsnofths () over the two-letter alphabet
{#,-}, where# occurs at all matching positions ardat all positions in between. For example,
seed{0,1,2,4,6,9,10,11} of weight8 and spani2 is represented by word##—#—#——#4##.
The character is called ajoker. Note that, unless otherwise stated, the seed has the tdrarac
# at its first and last positions.

Intuitively, a seed specifies the set of patterns that, iresthdy two sequences, indicate a
possible similarity between them. Two sequences are ginfithe Hamming distance between
them is smaller than a certain threshold. For example, $E®3$€ACTCGT and CACACTT are
similar within Hamming distance 2 and this similarity is eetied by the seeél#—# at position
2. We are interested in seeds that detdkcsimilarities of a given length with a given Hamming

distance.



Formally, agapless similarity(hereafter simplysimilarity) of two sequences of length is
a binary wordw € {0,1}™ interpreted as a sequence of matchis) (@nd mismatche)§) of
individual characters from the alphabet of input sequengeseed® = {p1, po, - . ., pa} Matches
a similarity w at positions, 1 <1i < m —p,+ 1, iff for every j € [1..d], we havew[i + p;] = 1.

In this case, we also say that se@dchas an occurrencén similarity w at positioni. A seed@
is said todetect a similarityw if () has at least one occurrencetn

Given a similarity lengthn and a number of mismatchés consider all similarities of length
m containingk 0's and (m — k) 1's. These similarities are calle@n, k)-similarities. A seed
Q solves the detection problefm, k) (for short, the(m, k)-problem) iff all of (') (m,k)-
similaritiesw are detected by). For example, one can check that seledt#-—#-## solves
the (15, 2)-problem.

Note that the weight of the seed is directly related to s$leéectivityof the corresponding
filtration procedure. A larger weight improves the selattj\as less similarities will pass through
the filter. On the other hand, a smaller weight reduces thatfdinh efficiency. Therefore, the
goal is to solve arim, k)-problem by a seed with the largest possible weight.

Solving (m, k)-problems by a single seed has been studied by Burkhardt arik&nen[[1].
An extension we propose here is to ustamily of seedsinstead of a single seed, to solve the
(m, k)-problem. Formally, a finite family of seeds =< @, >, solves an(m, k)-problemiff
for any (m, k)-similarity w, there exists a see@, € F' that detectso.

Note that the seeds of the family are used in the complemefwardisjunctive) fashion, i.e.
a similarity is detected if it is detected mpne of the seedsThis differs from the conjunctive
approach of([7] where a similarity should be detected by teedssimultaneously

The following example motivates the use of multiple seed{l], it has been shown that a seed
solving the(25, 2)-problem has the maximal weight 12. The only such seed (uguersal) is
#H#-#——###-#——###—#. However, the problem can be solved by the family composedeof
following two seeds of weight 14k # ### —##———# ### #—## and# —## ———HF## ##—FH———F##4.

Clearly, using these two seeds increases the selectivibieadearch, as only similarities having

14 or more matching characters pass the filter vs 12 matchiagacters in the case of single



seed. On uniform Bernoulli sequences, this results in tlwedse of the number of candidate
similarities by the factor of A|?/2, where A is the input alphabet. This illustrates the advantage
of the multiple seed approach: it allows to increase thectieity while preserving a lossless
search. The price to pay for this gain in selectivity is npifing the work on identifying the
seed occurrences. In the case of large sequences, howases targely compensated by the

decrease in the number of false positives caused by theaseref the seed weight.

[1I. COMPUTING PROPERTIES OF SEED FAMILIES

Burkhardt and Karkkainer [1] proposed a dynamic programgnalgorithm to compute the
optimal thresholdof a given seed — the minimal number of its occurrences ouepaasible
(m, k)-similarities. In this section, we describe an extensionhig algorithm for seed families
and, on the other hand, describe dynamic programming #hgaesi for computing two other
important parameters of seed families that we will use interlaection.

Consider an(m, k)-problem and a family of seeds =< @, > ,. We need the following
notation.

o Smaw = maz{s(Q1) H1, Smin = min{s(Qi) H.1,

. for abinary wordw and a seed),, suff (Q;, w)=1Iif ), matchesv at position(|w|—s(Q;H1)

(i.e. matches a suffix ofy), otherwisesuff (Q);, w)=0,

last(w) = 1 if the last character ofv is 1, otherwiselast(w) = 0,

« zeros(w) is the number of)’s in w.

A. Optimal threshold

Given an(m, k)-problem, a family of seeds =< @, >/, has theoptimal thresholdl'(m, k)
if every (m, k)-similarity has at least’»(m, k) occurrences of seeds 6fand this is the maximal
number with this property. Note that overlapping occuresnof a seed as well as occurrences
of different seeds at the same position are counted separfate example, the singleton family
{###—#4#} has threshold 2 for thél5, 2)-problem.

Clearly, ' solves an(m, k)-problem if and only ifTz(m, k) > 0. If Tr(m, k) > 1, then one

can strengthen the detection criterion by requiring séwvead occurrences for a similarity to



be detected. This shows the importance of the optimal tbtdgtarameter.

We now describe a dynamic programming algorithm for conmuutihne optimal threshold
Tr(m, k). For a binary wordv, consider the quantity’=(m, k, w) defined as the minimal number
of occurrences of seeds &f in all (m, k)-similarities which have the suffix». By definition,
Tp(m, k) = Tr(m, k,c). Assume that we precomputed valugsj, w) = Tr(Smaz, J, w), for all
J < max{k, Smaz}, |W| = Smaz. The algorithm is based on the following recurrence retegion

Tr(i,j,w), for i > Smae-

(

Tr(j,w), if = Smaz,
To(i—1,j—1,w[l.n—1)), if wln]=0,
Tp(i, gy wl.n]) = $ Tp(i—1, j,wll.n—=1]) + [, suff(Q,w)], if n="Smaz,
min{Tx (i, j, L.w), Tr(i, j, 0.w)}, if zeros(w) <,
| Tr (i, 1), if 2eros(w)=J.

The first relation is an initial condition of the recurrendde second one is based on the fact
that if the last symbol oiv is 0, then no seed can match a suffixwof(as the last position of
a seed is always assumed to be a matching position). Thertlation reduces the size of the
problem by counting the number of suffix seed occurrences. fdarth one splits the counting
into two cases, by considering two possible charactersraoguon the left ofw. If w already
contains;j 0’s, then onlyl can occur on the left ofv, as stated by the last relation.

A dynamic programming implementation of the above recueerallows to compute
Tr(m, k,e) in a bottom-up fashion, starting from initial valugs(j, w) and applying the above
relations in the order in which they are given. A straightfard dynamic programming im-
plementation require®(m - k - 2=z 1)) time and space. However, the space complexity can
be immediately improved: if values afare processed successively, then ol - 2(smast1)
space is needed. Furthermore, for edchnd j, it is not necessary to consider &lfma=+1
different stringsw, but only those which contain up t¢ 0's. The number of thosev is
97, Smaz) = i:o (S"e) For eachi, j ranges from0 to k. Therefore, for each, we need

to Store f(k, Smaz) = 31— 9(J: Smaz) = D10 ("me<) - (k — 7 + 1) values. This yields the same

space complexity as for computing the optimal thresholdofoe seed[]1].
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The quantityZlL:1 suff(Q,w) can be precomputed for all considered woud# time O(L -
9(k, Smaz)) @and space®(g(k, smax)), under the assumption that checking an individual match is
done in constant time. This leads to the overall time compleX(m - f(k, Smaz) + L 9(k, Smaz))
with the leading termm - f(k, Syue.) (@S L is usually small compared tov and g(k, Syaz) 1S

smaller thanf (k, Syax))-

B. Number of undetected similarities

We now describe a dynamic programming algorithm that coeganother characteristic of a
seed family, that will be used later in Section IV-D. Conside (m, k)-problem. Given a seed
family FF =< Q; >L ,, we are interested in the numbgf.(m, k) of (m, k)-similarities that are
not detected byt. For a binary wordw, defineUg(m, k,w) to be the number of undetected
(m, k)-similarities that have the suffiw.

Similar to [10], let X (F') be the set of binary words such that(i) |w| < s, (ii) for any
Qi € F, suff(Qy, 1°m=~1"lyy) = 0, and (i) no proper suffix ofw satisfies(ii). Note that word
0 belongs toX (F'), as the last position of every seed is a matching position.

The following recurrence relations allow to compute (z, j,w) for : < m, j < k, and

[w| < Smaz-
((j—,i;"‘g;'(w))’ if 7 < Smin,
0, if 3l € [1..L], suff (Qi,w) =1,
Up(i, j,w[l.n]) = CUp(i — 1,7 — last(w), w[l.n —1]), if we X(F),
Ur(i, j, 1.w) + Up(i, j,0.w), if zeros(w) < j,
\Ur (i, j; Lw), if zeros(w) = j.

The first condition says that if < s,,;,, then no word of length will be detected, hence the
binomial coefficient. The second condition is straightfard: The third relation follows from
the definition of X (/') and allows to reduce the size of the problem. The last two itiond
are similar to those from the previous section.

The setX (F') can be precomputed in tint@(L-g(k, s..)) and the worst-case time complexity

of the whole algorithm remain®(m - f(k, Syaz) + L - g(k, Smaz))-



C. Contribution of a seed

Using a similar dynamic programming technique, one can ead&dor a given seed of the
family, the number of(m, k)-similarities that are detected only by this seed and nothey t
others. Together with the number of undetected similaitiis parameter will be used later in
Section1V-D.

Given an(m, k)-problem and a family" =< Q; >£ |, we defineSr(m, k, ) to be the number
of (m, k)-similarities detected by the seég exclusively (through one or several occurrences),
and Sg(m, k, [, w) to be the number of those similarities ending with the suffixA dynamic
programming algorithm similar to the one described in thevimus sections can be applied to
computeSg(m, k,1). The recurrence is given below.

(0 if i <smin OF AL suff (Quaw)=1
Sp(i—1,j—1,,w[l.n—1]) if wn]=0

Sp(i—1, 4,1, w[l.n—1]) if n=1Q;] andsuff (Q;,w) =0
Sp(i—1,7,l,w[l.n—1]) if n = s andsuff (Q,w) =1

+ Up(i—1,j,w[l.n—1]) andVl' # [, suff (Qr,w) = 0,
Sr(i, 7,1, 1.w[l..n])

Sr(i,j,l,w[l..n]) =

+ Sr(i, 4,1, 0.w[l..n]) if zeros(w) < j

Sr(i, 4,1, L.w[l..n]) if zeros(w) =j

The third and fourth relations play the principal roletJf does not match a suffix af[1..n],
then we simply drop out the last letter.df, matches a suffix ofv[1..n], but no other seed does,
then we count prefixes matched Qy exclusively (termSg(i—1, 7,1, w[l..n —1])) together with
prefixes matched by no seed at all (tetip(i — 1, j, w[l..n — 1])). The latter is computed by
the algorithm of the previous section.

The complexity of computingSr(m, k,l) for a givenl is the same as the complexity of

dynamic programming algorithms from the previous sections



IV. SEED DESIGN

In the previous Section we showed how to compute variousulsbfracteristics of a given
family of seeds. A much more difficult task is to find an efficiseed family that solves a given
(m, k)-problem. Note that there exists a trivial solution where tamily consists of all(’})
position combinations, but this is in general unacceptableractice because of a huge number
of seeds. Our goal is to find families of reasonable size €blpi, with the number of seeds
smaller than ten), with a good filtration efficiency.

In this section, we present several results that contritautbis goal. In Section TV-A, we start
with the case of single seed with a fixed number of jokers amavsin particular, that for one
joker, there exists one best seed in a sense that will be defiie then show in Sectidn TViB
that a solution for a larger problem can be obtained from allsmane by a regular expansion
operation. In Section IV-IC, we focus on seeds that have agerstructure and show how those
seeds can be constructed by iterating some smaller seedhiewshow a way to build efficient
families of periodic seeds. Finally, in Sectibn IV¥-D, weddly describe a heuristic approach to
constructing efficient seed families that we used in the expntal part of this work presented

in Section_V.

A. Single seeds with a fixed number of jokers

Assume that we fixed a class of seeds under interest (e.gs sé@dgiven minimal weight).
One possible way to define the seed design problem is to fix dasity length m and find
a seed that solves then, k)-problem with the largest possible value lof A complementary
definition is to fix & and minimizem provided that thgm, k)-problem is still solved. In this
section, we adopt the second definition and present an dpsiohation for one particular case.

For a seed) and a number of mismatchésdefine thek-critical lengthfor ¢ as the minimal
valuem such that) solves the(m, k)-problem. For a class of seedsand a valuet, a seed is
k-optimal inC if @) has the minimak-critical length among all seeds 6t

One interesting class of see@ss obtained by putting an upper bound on the possible number

of jokers in the seed, i.e. on the numhbef@) — w(Q)). We have found a general solution of
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the seed design problem for the cl&sén) consisting of seeds of weightwith only one joker,
i.e. seedstd"—#".

Consider first the case of one mismatch, ke= 1. A 1-optimal seed fronC,(d) is #¢7"—#"
with » = |d/2]. To see this, consider an arbitrary se@d= #”-#%, p + ¢ = d, and assume
by symmetry thatpy > ¢. Observe that the longestn, 1)-similarity that is not detected bg)
is 1771017 of length (2p + ¢). Therefore, we have to minimiz&p + ¢ = d + p, and since
p > [d/2], the minimum is reached fqr = [d/2], ¢ = |d/2].

However, fork > 2, an optimal seed has an asymmetric structure describedebfpllowing
theorem.

Theorem 1:Let n be an integer anad = [d/3] ([z] is the closest integer t@). For every
k> 2, seedQ(d) = #7"—#" is k-optimal among the seeds 6f(d).

Proof: Again, consider a see@ = #’-#7, p + ¢ = d, and assume that > ¢. Consider
the longest wordS(k) from (1*0)*1*, k > 1, which is not detected by) and letL(k) is the
length of S(k). By the above remark$(1) = 17710177 and L(1) = 2p + q.

It is easily seen that for everl, S(k) starts either with1?~!0, or with 1779019710. Define
L'(k) to be the maximal length of a word froif1*0)*1* that is not detected byp) and starts
with 19710. Since prefix1¢—10 implies no additional constraint on the rest of the word, \agen
L'(k) = q+ L(k — 1). Observe that’/(1) = p + 2¢ (word 197'017"%). To summarize, we have

the following recurrences fok > 2:
L'(k) = q+L(k-1), 1)
L(k) = max{p+L(k—1),p+q+1+L(k—1)}, 2)

with initial conditionsL/(1) = p + 2q, L(1) = 2p + q.
Two cases should be distinguishedplf> 2¢ + 1, then the straightforward induction shows

that the first term in[(2) is always greater, and we have
L(k) = (k+1)p+q, (3)
and the corresponding longest word is

S(k) = (1P7r0)k1Pe, (4)
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If ¢ <p<2q+ 1, then by induction, we obtain

(

C+Dp+(k+ g+ if k=20,
TEEE A (5)
(L+2)p+kqg+ ¢ if k=20+1,
\
and
(
(1Pra019-10) 1P+ if k=20,
S(k) = (6)
1P=10(1Pa019710)1Pte if k=20 + 1.
\

By definition of L(k), seed#”—#7 detects any word fronf1*0)*1* of length (L(k) + 1) or
more, and this is the tight bound. Therefore, we have to findwhich minimize L(k). Recall
thatp + ¢ = d, and observe that fgr > 2¢ + 1, L(k) (defined by[(B)) is increasing gn while
for p < 2¢ + 1, L(k) (defined by [(b)) is decreasing gn Therefore, both functions reach its
minimum whenp = 2¢+ 1. Therefore, ifd =1 (mod 3), we obtaing = |d/3| andp = d—q. If
d =0 (mod 3), a routine computation shows that the minimum is reached-=atl/3, p = 2d/3,
and ifd = 2 (mod 3), the minimum is reached at= [d/3], p = d — ¢. Putting the three cases
together results ig = [d/3], p =d — q. u

To illustrate Theorend]1, seegh##—## is optimal among all seeds of weightwith one
joker. This means that this seed solves (the 2)-problem for allm > 16 and this is the smallest
possible bound over all seeds of this class. Similarly, $ksd solves thén, 3)-problem for all

m > 20, which is the best possible bound, etc.

B. Regular expansion and contraction of seeds

We now show that seeds solving larger problems can be obt&iom seeds solving smaller
problems, and vice versa, using regular expansion andaegahtraction operations.

Given a seed) , its i-regular expansion ® () is obtained by multiplying each matching
position by:. This is equivalent to inserting— 1 jokers between every two successive positions
along the seed. For example,(f = {0, 2,3,5} (or #-##—#), then the2-regular expansion of
Qis2®Q ={0,4,6,10} (or #———#-#———4#). Given a familyF, its i-regular expansion® F

is the family obtained by applying theregular expansion on each seedraf
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Lemma 1:If a family F' solves an(m, k)-problem, then theim, (i + 1)k — 1)-problem is
solved both by familyF” and by itsi-regular expansiot; = i ® F.

Proof: Consider ar(im, (i+ 1)k —1)-similarity w. By the pigeon hole principle, it contains
at least one substring of length with £ mismatches or less, and therefdresolves theim, (i+
1)k — 1)-problem. On the other hand, considatisjoint subsequences af each one consisting
of m positions equal modula Again, by the pigeon hole principle, at least one of thentaios
k mismatches or less, and therefore the, (i + 1)k — 1)-problem is solved by ® F'. [

The following lemma is the inverse of Lemiih 1, it states thateds solving a bigger problem
have a regular structure, then a solution for a smaller prabtan be obtained by the regular
contraction operation, inverse to the regular expansion.

Lemma 2:If a family F; = i ® F' solves anim, k)-problem, then/" solves both théim, k)-
problem and thém, |k/i|)-problem.

Proof: One can even show thét solves the(im, k)-problem with the additional restriction
for F' to match inside one of the position intervéls.m], [m + 1..2m], ..., [(i — 1)m + 1..im].
This is done by using the bijective mapping from Lemma 1: giem (im, k)-similarity w,
consider: disjoint subsequences; (0 < j <1i—1) of w obtained by pickingn positions equal
to j moduloi, and then consider the concatenation= wyws, . . . w;_;wo.

For every(im, k)-similarity w’, its inverse imagev is detected by;, and therefore” detects
w' at one of the intervalgl..m],[m + 1.2m],...,[(i — 1)m + 1..im|. Futhermore, for any
(m, | k/i])-similarity v, considerw’ = v* and its inverse image. As v’ is detected by}, v is
detected byF'. m

Example 1:To illustrate the two lemmas above, we give the followingrapée pointed out
in [1]. The following two seeds are the only seeds of weitghthat solve thg 50, 5)-problem:
#——F———F—————F—F—F———F—————F—F—F———F AndF # F—F——FH#F—#——H# ##—#. The first
one is the2-regular expansion of the second. The second one is the ealy af weightl2 that
solves the(25, 2)-problem.

The regular expansion allows, in some cases, to obtain ameetfisolution for a larger problem

by reducing it to a smaller problem for which an optimal or @meptimal solution is known.
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C. Periodic seeds

In this section, we study seeds with a periodic structuré taa be obtained by iterating
a smaller seed. Such seeds often turn out to be among maximeighted seeds solving a
given (m, k)-problem. Interestingly, this contrasts with the lossyrfeavork where optimal seeds
usually have a “random” irregular structure.

Consider two seed§);,()» represented as words ové#.—}. In this section, we lift the
assumption that a seed must start and end with a matchingogmosiVe denotg@;,Q,]’ the
seed defined af)1Q2)'Q;. For example[###—# —— | =###—#——###—#——###—#.

We also need a modification of tH{e:, k)-problem, wheregm, k)-similarities are considered
modulo a cyclic permutation. We say that a seed familgolves acyclic (m, k)-problem if for
every (m, k)-similarity w, F' detects one of cyclic permutations @f Trivially, if F' solves an
(m, k)-problem, it also solves the cyclien, k)-problem. To distinguish from a cyclic problem,
we call sometimes afn, k)-problem alinear problem.

We first restrict ourselves to the single-seed case. Thewoly lemma demonstrates that
iterating smaller seeds solving a cyclic problem allows litao a solution for bigger problems,
for the same number of mismatches.

Lemma 3:If a seed(@ solves acyclic (m, k)-problem, then for every > 0, the seed); =
[Q, —(m=5(@)]7 solves the lineatm - (i + 1) + s(Q) — 1, k)-problem. Ifi # 0, the inverse holds
too.

Proof: = Consider an(m - (i+1)+s(Q) — 1, k)-similarity u. Transformu into a similarity
u’ for the cyclic(m, k)-problem as follows. For each mismatch positioof «, set0 at position
(¢ mod m) in «’. The other positions of’ are set tol. Clearly, there are at mogt0's in w.
As () solves the(m, k)-cyclic problem, we can find at least one positignl < j < m, such
that Q detectsu’ cyclicly.

We show now that); matches at position of « (which is a valid position as$ < 57 < m and
s(Q;) = im + s(Q)). As the positions ofl in « are projected module: to matching positions
of @), then there is n® under any matching element ¢f;, and thus(); detectsu.

« Consider a see@); = [Q, —™*@)]" solving the(m - (i + 1) + s(Q) — 1, k)-problem. As



14

i > 0, consider(m - (i+ 1) 4+ s(Q) — 1, k)-similarities having all their mismatches located inside
the interval[m, 2m — 1]. For each such similarity, there exists a positjpnn < j < m, such that
Q); detects it. Note that the span € is at leastm + s(@Q), which implies that there is either
an entire occurrence @ inside the windowym, 2m — 1], or a prefix of@ matching a suffix of
the window and the complementary suffix @f matching a prefix of the window. This implies
that @ solves the cycliqm, k)-problem. u

Example 2:Observe that the seegt#-# solves the cycliq7, 2)-problem. From Lemmal 3,
this implies that for every > 0, the (11 + 74, 2)-problem is solved by the seé###-#, —-]’ of
spanb + 7i. Moreover, fori = 1,2, 3, this seed is optimal (maximally weighted) over all seeds
solving the problem.

By a similar argument based on Lemia 3, the periodic $eéd##-## ——-]° solves the
(18 + 114, 2)-problem. Note that its weight grows g§5m compared toim for the seed from
the previous paragraph. However, when— oo, this is not an asymptotically optimal bound,
as we will see later.

The (18 + 114, 3)-problem is solved by the segd##—#——#,——-)', as seed###—#——+#
solves the cycliq11, 3)-problem. Fori = 1, 2, the former is a maximally weighted seed among
all solving the(18 + 114, 3)-problem.

One question raised by these examples is whether iteratinge sseed could provide an
asymptotically optimal solution, i.e. a seed of maximalmapyotic weight. The following theorem
establishes a tight asymptotic bound on the weight of anm@gltseed, for a fixed number of
mismatches. It gives a negative answer to this questiont sisows that the maximal weight
grows faster than any linear fraction of the similarity size

Theorem 2:Consider a constant. Let w(m) be the maximal weight of a seed solving the
cyclic (m, k)-problem. Thenm — w(m)) = @(m%).

Proof: Note first that all seeds solving cyclic(a, k)-problem can be considered as seeds
of spanm. The number of jokers in any seéglis thenn = m —w(Q). The theorem states that
the minimal number of jokers of a seed solving the, k)-problem is©(m "+ ) for every fixed

k.



15

Lower boundConsider a cycli¢m, k)-problem. The numbeb(m, k) of distinct cyclic(m, k)-
similarities satisfies

) 2 D), @)

m
as every lineafm, k)-similarity has at mostn cyclicly equivalent ones. Consider a segdLet
n be the number of jokers iy and J,(m, k) the number of distinct cycli¢m, k)-similarities

detected byQ. Observe that/y(m, k) < (}) and if Q solves the cycliqm, k)-problem, then

D) = Jglm. ) < () ©
From [7) and[(B), we have
() _ (n
m — \k ©)
Using the Stirling formula, this gives(k) = Q(m"%).
. B :
- : : : : : : : 3
step 1 T T T T T W
e s
T : s
: Bl : .
step i [ I I
sop k. [ —
s |
N e B

Q ##-##- - - -#H#-##

Fig. 1
CONSTRUCTION OF SEED%); FROM THE PROOF OFTHEOREM. JOKERS ARE REPRESENTED IN WHITE AND MATCHING
POSITIONS IN BLACK.
Upper boundTo prove the upper bound, we construct a s@etthat has no more thel- m &
joker positions and solves the cyclig, k)-problem.
We start with the see@), of spanm with all matching positions, and introduce jokers into it

in k steps. After step, the obtained seed is denotéd, and@Q = Q.
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Let B = [mﬂ. (2, is obtained by introducing int@), individual jokers with periodicityB
by placing jokers at positions, B+ 1,2B +1,.... At step 2, we introduce int@); contiguous
intervals of jokers of length3 with periodicity 52, such that jokers are placed at positions
[1...B|,[B*+1...B>+ B],[2B*+1...2B>+ B], .. ..

In general, at step (i < k), we introduce intoQ; intervals of B°~! jokers with periodicity
B at positions[1... B1| [B'+1...B"+ B!] ... (see Figuréll).

Note that(Q); is periodic with periodicity3‘. Note also that at each stépwe introduce at
most [m!~* | intervals of B! jokers. Moreover, due to overlaps with already added jokers

each interval addéB — 1)"~! new jokers.

This implies that the total number of jokers added at stépat mostm! =+ - (B — 1)"! <
m =% -m# (=1 = %" Thus, the total number of jokers i@ is less thark - m =

By induction oni, we prove that for anym, i)-similarity « (: < k), @); detectsu cyclicly, that
is there is a cyclic shift of); such that alk mismatches of. are covered with jokers introduced
at stepsl, . .., 1.

For i = 1, the statement is obvious, as we can always cover the singl@atch by shifting
@)1 by at most(B — 1) positions. Assuming that the statement holds(for 1), we show now
that it holds fori too. Consider arim, i)-similarity . Select one mismatch of. By induction
hypothesis, the othgfi — 1) mismatches can be covered By ;. SinceQ,_; has periodBi~!
and Q; differs from Q;_, by having at least one contiguous interval Bf ! jokers, we can
always shiftQ; by j - B! positions such that the selected mismatch falls into thirial. This
shows that); detectsu. We conclude thaf) solves the cycliqm, i)-problem. [ ]

Using Theorenil2, we obtain the following bound on the numidfejokers for thelinear
(m, k)-problem.

Lemma 4:Consider a constankt. Let w(m) be the maximal weight of a seed solving the
linear (m, k)-problem. Thenm — w(m)) = @(mk%).

Proof: To prove the upper bound, we construct a séedhat solves the lineatm, k)-
problem and satisfies the asymptotic bound. Consider doren that will be defined later,

and letP be a seed that solves the cycfick)-problem. Without loss of generality, we assume
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s(P) =1.

For a real numbee > 1, define P¢ to be the maximally weighted seed of span at nmosif
the formP’- P--- P - P"”, where P’ and P” are respectively a suffix and a prefix 6f Due to
the condition of maximal weighty(P¢) > e - w(P).

We now set) = P¢ for some reak to be defined. Observe thatdf ! < m — [, then( solves
the linear(m, k)-problem. Therefore, we set= ™~.

l
l
From the proof of Theorerfl 2, we have- w(P) < k- 1'% . We then have

w(Q):e-w(P)zmT_l-(l—k-lkkl). (10)
If we set
| = mwiT, (11)
we obtain
m—w(Q) < (k+ l)kaH — l{:m%, (12)
and ask is constant,
m—w(Q) = O(m#+), (13)

The lower bound is obtained similarly to Theoréim 2. Lebe a seed solving a lineém, k)-

problem, and lek = m — w(Q). From simple combinatorial considerations, we have

(T,’j) < (Z) (m—5(Q)) < (Z) . (14)

which impliesn = Q(mﬁl) for constantk. u

The following simple lemma is also useful for constructirfficeent seeds.

Lemma 5:Assume that a family' solves an(m, k)-problem. Let/” be the family obtained
from F' by cutting out! characters from the left andcharacters from the right of each seed of
F. Then F’ solves the(m — r — [, k)-problem.

Example 3:The (9 + 7i, 2)-problem is solved by the seéé##, —#--]* which is optimal for
i =1,2,3. Using Lemmadb, this seed can be immediately obtained fravséed # ##—#, -]’
from Example R, solving théll + 7i, 2)-problem.

We now apply the above results for the single seed case toatte af multiple seeds.
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For a seed) considered as a word ové#,-}, we denote by)y; its cyclic shift to the left by
i characters. For example, @ = ####-#-##--, thenQ5) = #-##——####-. The following
lemma gives a way to construct seed families solving biggeblpms from an individual seed
solving a smaller cyclic problem.

Lemma 6: Assume that a see@ solves a cycliqm, k)-problem and assume thatQ) = m
(otherwise we pad) on the right with(m — s(Q)) jokers). Fix some > 1. For someL > 0,
consider a list ofL integers0O < j; < --- < j. < m, and define a family of seeds =<
1(Qu)'ll >, where||(Q,)’|| stands for the seed obtained frd@;,) by deleting the joker
characters at the left and right edges. Defit® = ((j,—1 — j;) mod m) (or, alternatively,
5(1) = ((ji — ji_x) mod m)) for all £, 1 < I < L. Let m’ = max{s(|[(Quy)l|) + 6(1)}ey — 1.
Then F' solves the(m/, k)-problem.

Proof: The proof is an extension of the proof of Lemfda 3. Here, thelseé the family
are constructed in such a way that for any instance of thatife’, k)-problem, there exists at
least one seed that satisfies the property required in thef pfd.emmal3 and therefore matches
this instance. u

In applying Lemmal, integerg are chosen from the intervill, m] in such a way that values
s(I1(Q[7])]]) + (1) are closed to each other. We illustrate Lemmha 6 with two exesnthat
follow.

Example 4:Let m = 11, k = 2. Consider the see@ = ####-#-##—-— solving the cyclic
(11,2)-problem. Chooseé = 2, L = 2, j; = 0, j = 5. This gives two seed®; = |(Qp)*|| =
H#E—f—#d——F #4444 and Qs = ||(Qp))?|| = #—##——####—#—##——#4#4# of span20
and 21 respectivelyd(1) = 6 and(2) = 5. max{20 + 6,21 + 5} — 1 = 25. Therefore, family
F ={Q1,Q-} solves the(25,2)-problem.

Example 5:Let m = 11, k£ = 3. The seed) = ###-#—-—#-—- solving the cyclic(11, 3)-
problem. Choose = 2, L = 2, j; = 0, j» = 4. The two seeds ar€); = |(Qu)’|l =
B4 —#——#———4#—#——# (Span19) and Q; = |[(Qu)?|| = #——#———###—#——#———H#4#
(span21), with (1) = 7 and §(2) = 4. max{19 + 7,21 + 4} — 1 = 25. Therefore, family
F = {Q1,Q2} solves the(25, 3)-problem.
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D. Heuristic seed design

Results of Sectioris IVAA-IV-C allow one to construct effitiseed families in certain cases, but
still do not allow a systematic seed design. Recently, lipeagramming approaches to designing
efficient seed families were proposed In][19] and [in] [18],pesdively for DNA and protein
similarity search. However, neither of these methods aitrastructing lossless families.

In this section, we outline a heuristic genetic programmaigprithm for designing lossless
seed families. The algorithm will be used in the experimigpdiet of this work, that we present in
the next section. Note that this algorithm uses dynamic narogning algorithms of Sectidn]lIl.
Since the algorithm uses standard genetic programminguicpeds, we give only a high-level
description here without going into all details.

The algorithm tries to iteratively improve characteristiof a population of seed families
until it finds a small family that detects &lin, k)-similarities (i.e. is lossless). The first step of
each iteration is based on screening current families agairset ofdifficult similarities that
are similarities that have been detected by fewer familiéss set is continually reordered and
updated according to the number of families that don’t detiease similarities. For this, each
set is stored in a tree and the reordering is done usingighas-a-treeprinciple [20]: each time
a similarity is not detected by a family, it is moved towartie oot of the tree such that its
height is divided by two.

For those families that pass through the screening, the auwmibundetected similarities is
computed by the dynamic programming algorithm of SecfidmBll The family is kept if it
produces a smaller number than the families currently knéwnundetected similarity obtained
during this computation is added as a leaf to the tree of diffisimilarities.

To detect seeds to be improved inside a family, we computedahg&ibution of each seed by
the dynamic programming algorithm of Section TlI-C. Thedse®ith the least contribution are
then modified with a higher probability. In general, the pagion of seed families is evolving
by mutatingand crossing overaccording to the set of similarities they do not detect. Mueg,
random seed families are regularly injected into the pdpanian order to avoid local optima.

The described heuristic procedure often allows efficienteeen optimal solutions to be
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computed in a reasonable time. For example, in ten runs ohltaithm, we found 3 of the 6

existing families of two seeds of weight 14 solving 5, 2)-problem. The whole computation
took less than 1 hour, compared to a week of computation deedexhaustively test all seed
pairs. Note that the randomized-greedy approach (increxheompletion of the seed set by
adding the best random seed) applied a dozen of times to the peoblem yielded only sets

of three and sometimes four, but never two seeds, takingtadbbour at each run.

V. EXPERIMENTS

We describe two groups of experiments that we made. The firet amncerns the design
of efficient seed families, and the second one applies a +segid lossless filtration to the

identification of unique oligos in a large set of EST sequence

Seed design experiments
TABLE |

SEED FAMILIES FOR (25, 2)-PROBLEM

size  weight family seeds é

1 126029 -4 ——#44 -4 #4444 5.96-10~8

2 14%P:9 4444 ——H4H4 -4 H4 7.47-107°
Lank E abet £ S Al et £ bl £ 2 2 1

3 15P Ltk £ it et £ 2R 2 Rt £k et £ 4 2.80-10~°

e e 22
e S T T
4 16P L e e L il 9.42 - 1010
e e R e A
B
S
6 17p B 3.51-1010
S ia e e T e
S S et T 1
R
O e T s R L
A ——

We considered severain, k)-problems. For each problem, and for a fixed number of seeds

in the family, we computed families solving the problem agdlizing the largest possible seed
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TABLE Il

SEED FAMILIES FOR (25, 3)-PROBLEM

size  weight family seeds é
1 8EPI ik —H————— #H#—# 1.53-107°
2 107 R Bt 1.91-1076
e et T S S
3 117 o h 44 7.16-10~7
e e et T 2
B4
4 12p o h 2.39-1077
e e A 2t
e et e B e e
e At SR

weight (under a natural assumption that all seeds in a fahale the same weight). We also
kept track of the ways (periodic seeds, genetic programrhimgyistics, exhaustive search) in
which those families can be computed.

Tables[l and’]l summarize some results obtained for (e 2)-problem and the25, 3)-
problem respectively. Families of periodic seeds (thatlmafiound using Lemmia 6) are marked
with 7, those that are found using a genetic algorithm are markéd 4viand those which are
obtained by an exhaustive search are marked wit@nly in this latter case, the families are
guaranteed to be optimal. Families of periodic seeds afeedrccording to their construction
(see Lemmalo).

Moreover, to compare the selectivity of different familesdving a given(m, k)-problem, we
estimated the probability for at least one of the seeds of the family to match at a givesitipa
of a uniform Bernoulli four-letter sequence. This has beenedusing the inclusion-exclusion
formula.

Note that the simple fact of passing from a single seed to aswea family results in a
considerable gain in efficiency: in both examples shown @ tbles there a change of about

one order magnitude in the selectivity estimaior
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Oligo selection using multi-seed filtering

An important practical application of lossless filtratian the selection of reliable oligonu-
cleotides for DNA micro-array experiments. Oligonuclées (oligos) are small DNA sequences
of fixed size (usually ranging from0 to 50) designed to hybridize only with a specific region
of the genome sequence. In micro-array experiments, obgesexpected to match ESTs that
stem from a given gene and not to match those of other genetheAfirst approximation, the
problem of oligo selection can then be formulated as theckefor strings of a fixed length
that occur in a given sequence but do not occur, within a pdailistance, in other sequences
of a given (possibly very large) sample. Different apprascio this problem apply different
distance measures and different algorithmic technidugs [22], [23], [24]. The experiments we
briefly present here demonstrate that the multi-seed filjgorovides an efficient computation of
candidate oligonucleotides. These should then be furttmegsed by complementary methods
in order to take into account other physico-chemical factwscurring in hybridisation, such as
the melting temperature or the possible hairpin structdineatindromic oligos.

Here we adopt the formalization of the oligo selection peoblas the problem of identifying
in a given sequence (or a sequence database) all substfitegyth that have no occurrences
elsewhere in the sequence within the Hamming distancehe parameters: and & were set
to 32 and 5 respectively. For thd32, 5)-problem, different seed families were designed and
their selectivity was estimated. Those are summarizedentdble in Figuré ]2, using the same
conventions as in Tabld$ | and Il above. The family compodefl seeds of weight 11 was
selected for the filtration experiment (shown in Figlle 2).

The filtering has been applied to a database of rice EST seqsetomposed of 100015
sequences for a total length of 42,845,242Hb[55ubstrings matching other substrings with
substitution errors or less were computed. The computdtiok slightly more than one hour
on a PentiunM4 3GHz computer. Before applying the filtering using the fgrfor the (32, 5)-
problem, we made a rough pre-filtering using one spaced dagedight 16 to detect, with a high
selectivity, almost identical regions. 65% of the databdea®been discarded by this pre-filtering.

lsource :http://bioserver.myongji.ac.kr/ricemac.html, The Korea Rice Genome Database
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family size | weight g
1 7€ 6.10-10° [ T
) . #HE—— #-HtE
2 8E 3.05-1075 bR h— R EE
e et
6 119 1.43-1076 L
° o | sor10o7 R )

Fig. 2

COMPUTED SEED FAMILIES FOR THE32, 5)-PROBLEM AND THE CHOSEN FAMILY (6 SEEDS OF WEIGHTL1)

Another 22% of the database has been filtered out using theenhseed family, leaving the

remaining 13% as oligo candidates.

VI. CONCLUSION

In this paper, we studied a lossless filtration method basethwti-seed families and demon-
strated that it represents an improvement compared torléesseed approach considered.in [1].
We showed how some important characteristics of seed fndan be computed using the
dynamic programming. We presented several combinatagmllts that allow one to construct
efficient families composed of seeds with a periodic stmgctérinally, we described a large-
scale computational experiment of designing reliable avligcleotides for DNA micro-arrays.
The obtained experimental results provided evidence ofagi@icability and efficiency of the
whole method.

The results of Sectioris TVAA-IVAC establish several comalbimial properties of seed families,
but many more of them remain to be elucidated. The structirepimal or near-optimal
seed families can be reduced to number-theoretic questmmristhis relation remains to be
clearly established. In general, constructing an algorith systematically design seed families
with quality guarantee remains an open problem. Some codityplessues remain open too:
for example, what is the complexity of testing if a single ¢sae lossless for givenn, k?
SectionIl implies a time bound exponential on the numbejoskrs. Note that for multiple

seeds, computing the number of detected similarities iscdiRplete [16, Section 3.1].
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Another direction is to consider different distance measuespecially the Levenstein distance,
or at least to allow some restricted insertion/deletioomtr The method proposed in [25] does
not seem to be easily generalized to multi-seed familied gafiurther work is required to improve
lossless filtering in this case.
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