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Multiseed lossless filtration

Gregory Kucherov, Laurent Noé, Mikhail Roytberg

Abstract

We study a method of seed-based lossless filtration for approximate string matching and related

bioinformatics applications. The method is based on a simultaneous use of several spaced seeds rather

than a single seed as studied by Burkhardt and Karkkainen [1]. We present algorithms to compute

several important parameters of seed families, study theircombinatorial properties, and describe several

techniques to construct efficient families. We also report alarge-scale application of the proposed

technique to the problem of oligonucleotide selection for an EST sequence database.

Index Terms

filtration, string matching, gapped seed, gapped Q-gram, local alignment, sequence similarity, seed

family, multiple spaced seeds, dynamic programming, EST, oligonucleotide selection.

I. INTRODUCTION

F ILTERING is a widely-used technique in biosequence analysis. Applied to the approximate

string matching problem [2], it can be summarized by the following two-stage scheme: to

find approximate occurrences (matches) of a given string in asequence (text), one first quickly

discards (filters out) those sequence regions where matchescannot occur, and then checks out

the remaining parts of the sequence for actual matches. The filtering is done according to small

patterns of a specified form that the searched string is assumed to share, in the exact way, with

its approximate occurrences. A similar filtration scheme isused by heuristic local alignment
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algorithms ([3], [4], [5], [6], to mention a few): they first identify potential similarity regions

that share some patterns and then actually check whether those regions represent a significant

similarity by computing a corresponding alignment.

Two types of filtering should be distinguished –losslessand lossy. A lossless filtration

guarantees to detectall sequence fragments under interest, while a lossy filtrationmay miss

some of them, but still tries to detect a majority of them. Local alignment algorithms usually

use a lossy filtration. On the other hand, the lossless filtration has been studied in the context of

approximate string matching problem [7], [1]. In this paper, we focus on the lossless filtration.

In the case of lossy filtration, its efficiency is measured by two parameters, usually called

selectivityand sensitivity. The sensitivity measures the part of sequence fragments ofinterest

that are missed by the filter (false negatives), and the selectivity indicates what part of detected

candidate fragments don’t actually represent a solution (false positives). In the case of lossless

filtration, only the selectivity parameter makes sense and is therefore the main characteristic of

the filtration efficiency.

The choice of patterns that must be contained in the searchedsequence fragments is a key

ingredient of the filtration algorithm.Gapped seeds(spaced seeds, gappedq-grams) have been

recently shown to significantly improve the filtration efficiency over the “traditional” technique

of contiguous seeds. In the framework of lossy filtration forsequence alignment, the use of

designed gapped seeds has been introduced by the PATTERNHUNTER method [4] and then used

by some other algorithms (e.g. [5], [6]). In [8], [9], spacedseeds have been shown to improve

indexing schemes for similarity search in sequence databases. The estimation of the sensitivity

of spaced seeds (as well as of some extended seed models) has been subject of several recent

studies [10], [11], [12], [13], [14], [15]. In the frameworkof lossless filtration for approximate

pattern matching, gapped seeds were studied in [1] (see also[7]) and have also been shown to

increase the filtration efficiency considerably.

In this paper, we study an extension of the lossless single-seed filtration technique [1]. The

extension is based on usingseed familiesrather than individual seeds. The idea of simultaneous

use of multiple seeds for DNA local alignment was already envisaged in [4] and applied in
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PATTERNHUNTER II software [16]. The problem of designing efficient seed families has also

been studied in [17]. In [18], multiple seeds have been applied to the protein search. However,

the issues analysed in the present paper are quite different, due to the proposed requirement for

the search to be lossless.

The rest of the paper is organized as follows. After formallyintroducing the concept of multiple

seed filtering in Section II, Section III is devoted to dynamic programming algorithms to compute

several important parameters of seed families. In Section IV, we first study several combinatorial

properties of families of seeds, and, in particular, seeds having a periodic structure. These results

are used to obtain a method for constructing efficient seed families. We also outline a heuristic

genetic programming algorithm for constructing seed families. Finally, in Section V, we present

several seed families we computed, and we report a large-scale experimental application of the

method to a practical problem of oligonucleotide selection.

II. M ULTIPLE SEED FILTERING

A seedQ (called alsospaced seedor gappedq-gram) is a list {p1, p2, . . . , pd} of positive

integers, calledmatching positions, such thatp1 < p2 < . . . < pd. By convention, we always

assumep1 = 0. The spanof a seedQ, denoteds(Q), is the quantitypd + 1. The numberd of

matching positions is called theweightof the seed and denotedw(Q). Often we will use a more

visual representation of seeds, adopted in [1], as words of lengths(Q) over the two-letter alphabet

{#,-}, where# occurs at all matching positions and- at all positions in between. For example,

seed{0, 1, 2, 4, 6, 9, 10, 11} of weight 8 and span12 is represented by word###-#-#--###.

The character- is called ajoker. Note that, unless otherwise stated, the seed has the character

# at its first and last positions.

Intuitively, a seed specifies the set of patterns that, if shared by two sequences, indicate a

possible similarity between them. Two sequences are similar if the Hamming distance between

them is smaller than a certain threshold. For example, sequencesCACTCGT andCACACTT are

similar within Hamming distance 2 and this similarity is detected by the seed##-# at position

2. We are interested in seeds that detectall similarities of a given length with a given Hamming

distance.
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Formally, agapless similarity(hereafter simplysimilarity) of two sequences of lengthm is

a binary wordw ∈ {0, 1}m interpreted as a sequence of matches (1’s) and mismatches (0’s) of

individual characters from the alphabet of input sequences. A seedQ = {p1, p2, . . . , pd} matches

a similarityw at positioni, 1 ≤ i ≤ m− pd + 1, iff for every j ∈ [1..d], we havew[i+ pj] = 1.

In this case, we also say that seedQ has an occurrencein similarity w at positioni. A seedQ

is said todetect a similarityw if Q has at least one occurrence inw.

Given a similarity lengthm and a number of mismatchesk, consider all similarities of length

m containingk 0’s and (m − k) 1’s. These similarities are called(m, k)-similarities. A seed

Q solves the detection problem(m, k) (for short, the(m, k)-problem) iff all of
(

m

k

)

(m, k)-

similaritiesw are detected byQ. For example, one can check that seed#-##--#-## solves

the (15, 2)-problem.

Note that the weight of the seed is directly related to theselectivityof the corresponding

filtration procedure. A larger weight improves the selectivity, as less similarities will pass through

the filter. On the other hand, a smaller weight reduces the filtration efficiency. Therefore, the

goal is to solve an(m, k)-problem by a seed with the largest possible weight.

Solving (m, k)-problems by a single seed has been studied by Burkhardt and Kärkkäinen [1].

An extension we propose here is to use afamily of seeds, instead of a single seed, to solve the

(m, k)-problem. Formally, a finite family of seedsF =< Ql >
L
l=1 solves an(m, k)-problemiff

for any (m, k)-similarity w, there exists a seedQl ∈ F that detectsw.

Note that the seeds of the family are used in the complementary (or disjunctive) fashion, i.e.

a similarity is detected if it is detected byone of the seeds. This differs from the conjunctive

approach of [7] where a similarity should be detected by two seedssimultaneously.

The following example motivates the use of multiple seeds. In [1], it has been shown that a seed

solving the(25, 2)-problem has the maximal weight 12. The only such seed (up to reversal) is

###-#--###-#--###-#. However, the problem can be solved by the family composed ofthe

following two seeds of weight 14:#####-##---#####-## and#-##---#####-##---####.

Clearly, using these two seeds increases the selectivity ofthe search, as only similarities having

14 or more matching characters pass the filter vs 12 matching characters in the case of single
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seed. On uniform Bernoulli sequences, this results in the decrease of the number of candidate

similarities by the factor of|A|2/2, whereA is the input alphabet. This illustrates the advantage

of the multiple seed approach: it allows to increase the selectivity while preserving a lossless

search. The price to pay for this gain in selectivity is multiplying the work on identifying the

seed occurrences. In the case of large sequences, however, this is largely compensated by the

decrease in the number of false positives caused by the increase of the seed weight.

III. COMPUTING PROPERTIES OF SEED FAMILIES

Burkhardt and Kärkkäinen [1] proposed a dynamic programming algorithm to compute the

optimal thresholdof a given seed – the minimal number of its occurrences over all possible

(m, k)-similarities. In this section, we describe an extension ofthis algorithm for seed families

and, on the other hand, describe dynamic programming algorithms for computing two other

important parameters of seed families that we will use in a later section.

Consider an(m, k)-problem and a family of seedsF =< Ql >
L
l=1. We need the following

notation.

• smax = max{s(Ql)}
L
l=1, smin = min{s(Ql)}

L
l=1,

• for a binary wordw and a seedQl, suff (Ql, w)=1 if Ql matchesw at position(|w|−s(Ql)+1)

(i.e. matches a suffix ofw), otherwisesuff (Ql, w)=0,

• last(w) = 1 if the last character ofw is 1, otherwiselast(w) = 0,

• zeros(w) is the number of0’s in w.

A. Optimal threshold

Given an(m, k)-problem, a family of seedsF =< Ql >
L
l=1 has theoptimal thresholdTF (m, k)

if every (m, k)-similarity has at leastTF (m, k) occurrences of seeds ofF and this is the maximal

number with this property. Note that overlapping occurrences of a seed as well as occurrences

of different seeds at the same position are counted separately. For example, the singleton family

{###-##} has threshold 2 for the(15, 2)-problem.

Clearly,F solves an(m, k)-problem if and only ifTF (m, k) > 0. If TF (m, k) > 1, then one

can strengthen the detection criterion by requiring several seed occurrences for a similarity to
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be detected. This shows the importance of the optimal threshold parameter.

We now describe a dynamic programming algorithm for computing the optimal threshold

TF (m, k). For a binary wordw, consider the quantityTF (m, k, w) defined as the minimal number

of occurrences of seeds ofF in all (m, k)-similarities which have the suffixw. By definition,

TF (m, k) = TF (m, k, ε). Assume that we precomputed valuesTF (j, w) = TF (smax, j, w), for all

j ≤ max{k, smax}, |w| = smax. The algorithm is based on the following recurrence relations on

TF (i, j, w), for i ≥ smax.

TF (i, j, w[1..n]) =















































TF (j, w), if i=smax,

TF (i−1, j−1, w[1..n−1]), if w[n]=0,

TF (i−1, j, w[1..n−1]) + [
∑L

l=1 suff(Ql, w)], if n=smax,

min{TF (i, j, 1.w), TF (i, j, 0.w)}, if zeros(w)<j,

TF (i, j, 1.w), if zeros(w)=j.

The first relation is an initial condition of the recurrence.The second one is based on the fact

that if the last symbol ofw is 0, then no seed can match a suffix ofw (as the last position of

a seed is always assumed to be a matching position). The thirdrelation reduces the size of the

problem by counting the number of suffix seed occurrences. The fourth one splits the counting

into two cases, by considering two possible characters occurring on the left ofw. If w already

containsj 0’s, then only1 can occur on the left ofw, as stated by the last relation.

A dynamic programming implementation of the above recurrence allows to compute

TF (m, k, ε) in a bottom-up fashion, starting from initial valuesTF (j, w) and applying the above

relations in the order in which they are given. A straightforward dynamic programming im-

plementation requiresO(m · k · 2(smax+1)) time and space. However, the space complexity can

be immediately improved: if values ofi are processed successively, then onlyO(k · 2(smax+1))

space is needed. Furthermore, for eachi and j, it is not necessary to consider all2(smax+1)

different stringsw, but only those which contain up toj 0’s. The number of thosew is

g(j, smax) =
∑j

e=0

(

smax

e

)

. For eachi, j ranges from0 to k. Therefore, for eachi, we need

to storef(k, smax) =
∑k

j=0 g(j, smax) =
∑k

j=0

(

smax

j

)

· (k − j + 1) values. This yields the same

space complexity as for computing the optimal threshold forone seed [1].
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The quantity
∑L

l=1 suff(Ql, w) can be precomputed for all considered wordsw in timeO(L ·

g(k, smax)) and spaceO(g(k, smax)), under the assumption that checking an individual match is

done in constant time. This leads to the overall time complexity O(m·f(k, smax)+L·g(k, smax))

with the leading termm · f(k, smax) (asL is usually small compared tom and g(k, smax) is

smaller thanf(k, smax)).

B. Number of undetected similarities

We now describe a dynamic programming algorithm that computes another characteristic of a

seed family, that will be used later in Section IV-D. Consider an (m, k)-problem. Given a seed

family F =< Ql >
L
l=1, we are interested in the numberUF (m, k) of (m, k)-similarities that are

not detected byF . For a binary wordw, defineUF (m, k, w) to be the number of undetected

(m, k)-similarities that have the suffixw.

Similar to [10], letX(F ) be the set of binary wordsw such that(i) |w| ≤ smax, (ii) for any

Ql ∈ F , suff (Ql, 1
smax−|w|w) = 0, and (iii) no proper suffix ofw satisfies(ii) . Note that word

0 belongs toX(F ), as the last position of every seed is a matching position.

The following recurrence relations allow to computeUF (i, j, w) for i ≤ m, j ≤ k, and

|w| ≤ smax.

UF (i, j, w[1..n]) =















































(

i−|w|
j−zeros(w)

)

, if i < smin,

0, if ∃l ∈ [1..L], suff (Ql, w) = 1,

UF (i− 1, j − last(w), w[1..n− 1]), if w ∈ X(F ),

UF (i, j, 1.w) + UF (i, j, 0.w), if zeros(w) < j,

UF (i, j, 1.w), if zeros(w) = j.

The first condition says that ifi < smin, then no word of lengthi will be detected, hence the

binomial coefficient. The second condition is straightforward. The third relation follows from

the definition ofX(F ) and allows to reduce the size of the problem. The last two conditions

are similar to those from the previous section.

The setX(F ) can be precomputed in timeO(L·g(k, smax)) and the worst-case time complexity

of the whole algorithm remainsO(m · f(k, smax) + L · g(k, smax)).
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C. Contribution of a seed

Using a similar dynamic programming technique, one can compute, for a given seed of the

family, the number of(m, k)-similarities that are detected only by this seed and not by the

others. Together with the number of undetected similarities, this parameter will be used later in

Section IV-D.

Given an(m, k)-problem and a familyF =< Ql >
L
l=1, we defineSF (m, k, l) to be the number

of (m, k)-similarities detected by the seedQl exclusively (through one or several occurrences),

andSF (m, k, l, w) to be the number of those similarities ending with the suffixw. A dynamic

programming algorithm similar to the one described in the previous sections can be applied to

computeSF (m, k, l). The recurrence is given below.

SF (i, j, l, w[1..n]) =



















































































0 if i<smin or∃l′6= l suff (Ql′,w)=1

SF (i−1, j−1, l, w[1..n−1]) if w[n] = 0

SF (i−1, j, l, w[1..n−1]) if n = |Ql| andsuff (Ql, w) = 0

SF (i−1, j, l, w[1..n−1]) if n = smax andsuff (Ql, w) = 1

+ UF (i−1, j, w[1..n−1]) and∀l′ 6= l, suff (Ql′, w) = 0,

SF (i, j, l, 1.w[1..n])

+ SF (i, j, l, 0.w[1..n]) if zeros(w) < j

SF (i, j, l, 1.w[1..n]) if zeros(w) = j

The third and fourth relations play the principal role: ifQl does not match a suffix ofw[1..n],

then we simply drop out the last letter. IfQl matches a suffix ofw[1..n], but no other seed does,

then we count prefixes matched byQl exclusively (termSF (i−1, j, l, w[1..n−1])) together with

prefixes matched by no seed at all (termUF (i − 1, j, w[1..n − 1])). The latter is computed by

the algorithm of the previous section.

The complexity of computingSF (m, k, l) for a given l is the same as the complexity of

dynamic programming algorithms from the previous sections.
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IV. SEED DESIGN

In the previous Section we showed how to compute various useful characteristics of a given

family of seeds. A much more difficult task is to find an efficient seed family that solves a given

(m, k)-problem. Note that there exists a trivial solution where the family consists of all
(

m

k

)

position combinations, but this is in general unacceptablein practice because of a huge number

of seeds. Our goal is to find families of reasonable size (typically, with the number of seeds

smaller than ten), with a good filtration efficiency.

In this section, we present several results that contributeto this goal. In Section IV-A, we start

with the case of single seed with a fixed number of jokers and show, in particular, that for one

joker, there exists one best seed in a sense that will be defined. We then show in Section IV-B

that a solution for a larger problem can be obtained from a smaller one by a regular expansion

operation. In Section IV-C, we focus on seeds that have a periodic structure and show how those

seeds can be constructed by iterating some smaller seeds. Wethen show a way to build efficient

families of periodic seeds. Finally, in Section IV-D, we briefly describe a heuristic approach to

constructing efficient seed families that we used in the experimental part of this work presented

in Section V.

A. Single seeds with a fixed number of jokers

Assume that we fixed a class of seeds under interest (e.g. seeds of a given minimal weight).

One possible way to define the seed design problem is to fix a similarity length m and find

a seed that solves the(m, k)-problem with the largest possible value ofk. A complementary

definition is to fix k and minimizem provided that the(m, k)-problem is still solved. In this

section, we adopt the second definition and present an optimal solution for one particular case.

For a seedQ and a number of mismatchesk, define thek-critical length for Q as the minimal

valuem such thatQ solves the(m, k)-problem. For a class of seedsC and a valuek, a seed is

k-optimal in C if Q has the minimalk-critical length among all seeds ofC.

One interesting class of seedsC is obtained by putting an upper bound on the possible number

of jokers in the seed, i.e. on the number(s(Q) − w(Q)). We have found a general solution of
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the seed design problem for the classC1(n) consisting of seeds of weightd with only one joker,

i.e. seeds#d−r-#r.

Consider first the case of one mismatch, i.e.k = 1. A 1-optimal seed fromC1(d) is #d−r-#r

with r = ⌊d/2⌋. To see this, consider an arbitrary seedQ = #p-#q, p + q = d, and assume

by symmetry thatp ≥ q. Observe that the longest(m, 1)-similarity that is not detected byQ

is 1p−101p+q of length (2p + q). Therefore, we have to minimize2p + q = d + p, and since

p ≥ ⌈d/2⌉, the minimum is reached forp = ⌈d/2⌉, q = ⌊d/2⌋.

However, fork ≥ 2, an optimal seed has an asymmetric structure described by the following

theorem.

Theorem 1:Let n be an integer andr = [d/3] ([x] is the closest integer tox). For every

k ≥ 2, seedQ(d) = #d−r-#r is k-optimal among the seeds ofC1(d).

Proof: Again, consider a seedQ = #p-#q, p + q = d, and assume thatp ≥ q. Consider

the longest wordS(k) from (1∗0)k1∗, k ≥ 1, which is not detected byQ and letL(k) is the

length ofS(k). By the above remark,S(1) = 1p−101p+q andL(1) = 2p+ q.

It is easily seen that for everyk, S(k) starts either with1p−10, or with 1p+q01q−10. Define

L′(k) to be the maximal length of a word from(1∗0)k1∗ that is not detected byQ and starts

with 1q−10. Since prefix1q−10 implies no additional constraint on the rest of the word, we have

L′(k) = q + L(k − 1). Observe thatL′(1) = p + 2q (word 1q−101p+q). To summarize, we have

the following recurrences fork ≥ 2:

L′(k) = q + L(k − 1), (1)

L(k) = max{p+ L(k − 1), p+ q + 1 + L′(k − 1)}, (2)

with initial conditionsL′(1) = p+ 2q, L(1) = 2p+ q.

Two cases should be distinguished. Ifp ≥ 2q + 1, then the straightforward induction shows

that the first term in (2) is always greater, and we have

L(k) = (k + 1)p+ q, (3)

and the corresponding longest word is

S(k) = (1p−10)k1p+q. (4)
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If q ≤ p ≤ 2q + 1, then by induction, we obtain

L(k) =















(ℓ+ 1)p+ (k + 1)q + ℓ if k = 2ℓ,

(ℓ+ 2)p+ kq + ℓ if k = 2ℓ+ 1,

(5)

and

S(k) =















(1p+q01q−10)ℓ1p+q if k = 2ℓ,

1p−10(1p+q01q−10)ℓ1p+q if k = 2ℓ+ 1.

(6)

By definition of L(k), seed#p-#q detects any word from(1∗0)k1∗ of length (L(k) + 1) or

more, and this is the tight bound. Therefore, we have to findp, q which minimizeL(k). Recall

that p+ q = d, and observe that forp ≥ 2q + 1, L(k) (defined by (3)) is increasing onp, while

for p ≤ 2q + 1, L(k) (defined by (5)) is decreasing onp. Therefore, both functions reach its

minimum whenp = 2q+1. Therefore, ifd ≡ 1 (mod 3), we obtainq = ⌊d/3⌋ andp = d−q. If

d ≡ 0 (mod 3), a routine computation shows that the minimum is reached atq = d/3, p = 2d/3,

and if d ≡ 2 (mod 3), the minimum is reached atq = ⌈d/3⌉, p = d− q. Putting the three cases

together results inq = [d/3], p = d− q.

To illustrate Theorem 1, seed####-## is optimal among all seeds of weight6 with one

joker. This means that this seed solves the(m, 2)-problem for allm ≥ 16 and this is the smallest

possible bound over all seeds of this class. Similarly, thisseed solves the(m, 3)-problem for all

m ≥ 20, which is the best possible bound, etc.

B. Regular expansion and contraction of seeds

We now show that seeds solving larger problems can be obtained from seeds solving smaller

problems, and vice versa, using regular expansion and regular contraction operations.

Given a seedQ , its i-regular expansioni ⊗ Q is obtained by multiplying each matching

position byi. This is equivalent to insertingi−1 jokers between every two successive positions

along the seed. For example, ifQ = {0, 2, 3, 5} (or #-##-#), then the2-regular expansion of

Q is 2⊗Q = {0, 4, 6, 10} (or #---#-#---#). Given a familyF , its i-regular expansioni⊗F

is the family obtained by applying thei-regular expansion on each seed ofF .
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Lemma 1: If a family F solves an(m, k)-problem, then the(im, (i + 1)k − 1)-problem is

solved both by familyF and by itsi-regular expansionFi = i⊗ F .

Proof: Consider an(im, (i+1)k−1)-similarity w. By the pigeon hole principle, it contains

at least one substring of lengthm with k mismatches or less, and thereforeF solves the(im, (i+

1)k− 1)-problem. On the other hand, consideri disjoint subsequences ofw each one consisting

of m positions equal moduloi. Again, by the pigeon hole principle, at least one of them contains

k mismatches or less, and therefore the(im, (i+ 1)k − 1)-problem is solved byi⊗ F .

The following lemma is the inverse of Lemma 1, it states that if seeds solving a bigger problem

have a regular structure, then a solution for a smaller problem can be obtained by the regular

contraction operation, inverse to the regular expansion.

Lemma 2: If a family Fi = i⊗F solves an(im, k)-problem, thenF solves both the(im, k)-

problem and the(m, ⌊k/i⌋)-problem.

Proof: One can even show thatF solves the(im, k)-problem with the additional restriction

for F to match inside one of the position intervals[1..m], [m+ 1..2m], . . . , [(i− 1)m+ 1..im].

This is done by using the bijective mapping from Lemma 1: given an (im, k)-similarity w,

consideri disjoint subsequenceswj (0 ≤ j ≤ i−1) of w obtained by pickingm positions equal

to j modulo i, and then consider the concatenationw′ = w1w2 . . . wi−1w0.

For every(im, k)-similarity w′, its inverse imagew is detected byFi, and thereforeF detects

w′ at one of the intervals[1..m], [m + 1..2m], . . . , [(i − 1)m + 1..im]. Futhermore, for any

(m, ⌊k/i⌋)-similarity v, considerw′ = vi and its inverse imagew. As w′ is detected byFi, v is

detected byF .

Example 1:To illustrate the two lemmas above, we give the following example pointed out

in [1]. The following two seeds are the only seeds of weight12 that solve the(50, 5)-problem:

#-#-#---#-----#-#-#---#-----#-#-#---# and###-#--###-#--###-#. The first

one is the2-regular expansion of the second. The second one is the only seed of weight12 that

solves the(25, 2)-problem.

The regular expansion allows, in some cases, to obtain an efficient solution for a larger problem

by reducing it to a smaller problem for which an optimal or a near-optimal solution is known.
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C. Periodic seeds

In this section, we study seeds with a periodic structure that can be obtained by iterating

a smaller seed. Such seeds often turn out to be among maximally weighted seeds solving a

given(m, k)-problem. Interestingly, this contrasts with the lossy framework where optimal seeds

usually have a “random” irregular structure.

Consider two seedsQ1,Q2 represented as words over{#,-}. In this section, we lift the

assumption that a seed must start and end with a matching position. We denote[Q1,Q2]
i the

seed defined as(Q1Q2)
iQ1. For example,[###-#,--]2=###-#--###-#--###-#.

We also need a modification of the(m, k)-problem, where(m, k)-similarities are considered

modulo a cyclic permutation. We say that a seed familyF solves acyclic (m, k)-problem, if for

every (m, k)-similarity w, F detects one of cyclic permutations ofw. Trivially, if F solves an

(m, k)-problem, it also solves the cyclic(m, k)-problem. To distinguish from a cyclic problem,

we call sometimes an(m, k)-problem alinear problem.

We first restrict ourselves to the single-seed case. The following lemma demonstrates that

iterating smaller seeds solving a cyclic problem allows to obtain a solution for bigger problems,

for the same number of mismatches.

Lemma 3: If a seedQ solves acyclic (m, k)-problem, then for everyi ≥ 0, the seedQi =

[Q,−(m−s(Q))]i solves the linear(m · (i+ 1) + s(Q)− 1, k)-problem. If i 6= 0, the inverse holds

too.

Proof: ⇒ Consider an(m · (i+1)+s(Q)−1, k)-similarity u. Transformu into a similarity

u′ for the cyclic(m, k)-problem as follows. For each mismatch positionℓ of u, set0 at position

(ℓ mod m) in u′. The other positions ofu′ are set to1. Clearly, there are at mostk 0’s in u.

As Q solves the(m, k)-cyclic problem, we can find at least one positionj, 1 ≤ j ≤ m, such

thatQ detectsu′ cyclicly.

We show now thatQi matches at positionj of u (which is a valid position as1 ≤ j ≤ m and

s(Qi) = im + s(Q)). As the positions of1 in u are projected modulom to matching positions

of Q, then there is no0 under any matching element ofQi, and thusQi detectsu.

⇐ Consider a seedQi = [Q,−(m−s(Q))]i solving the(m · (i+ 1) + s(Q)− 1, k)-problem. As
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i > 0, consider(m · (i+1)+ s(Q)− 1, k)-similarities having all their mismatches located inside

the interval[m, 2m−1]. For each such similarity, there exists a positionj, 1 ≤ j ≤ m, such that

Qi detects it. Note that the span ofQi is at leastm + s(Q), which implies that there is either

an entire occurrence ofQ inside the window[m, 2m− 1], or a prefix ofQ matching a suffix of

the window and the complementary suffix ofQ matching a prefix of the window. This implies

thatQ solves the cyclic(m, k)-problem.

Example 2:Observe that the seed###-# solves the cyclic(7, 2)-problem. From Lemma 3,

this implies that for everyi ≥ 0, the(11+7i, 2)-problem is solved by the seed[###-#,--]i of

span5 + 7i. Moreover, fori = 1, 2, 3, this seed is optimal (maximally weighted) over all seeds

solving the problem.

By a similar argument based on Lemma 3, the periodic seed[#####-##,---]i solves the

(18 + 11i, 2)-problem. Note that its weight grows as7
11
m compared to4

7
m for the seed from

the previous paragraph. However, whenm → ∞, this is not an asymptotically optimal bound,

as we will see later.

The (18 + 11i, 3)-problem is solved by the seed(###-#--#,---)i, as seed###-#--#

solves the cyclic(11, 3)-problem. Fori = 1, 2, the former is a maximally weighted seed among

all solving the(18 + 11i, 3)-problem.

One question raised by these examples is whether iterating some seed could provide an

asymptotically optimal solution, i.e. a seed of maximal asymptotic weight. The following theorem

establishes a tight asymptotic bound on the weight of an optimal seed, for a fixed number of

mismatches. It gives a negative answer to this question, as it shows that the maximal weight

grows faster than any linear fraction of the similarity size.

Theorem 2:Consider a constantk. Let w(m) be the maximal weight of a seed solving the

cyclic (m, k)-problem. Then(m− w(m)) = Θ(m
k−1

k ).

Proof: Note first that all seeds solving cyclic a(m, k)-problem can be considered as seeds

of spanm. The number of jokers in any seedQ is thenn = m−w(Q). The theorem states that

the minimal number of jokers of a seed solving the(m, k)-problem isΘ(m
k−1

k ) for every fixed

k.
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Lower boundConsider a cyclic(m, k)-problem. The numberD(m, k) of distinct cyclic(m, k)-

similarities satisfies
(

m

k

)

m
≤ D(m, k), (7)

as every linear(m, k)-similarity has at mostm cyclicly equivalent ones. Consider a seedQ. Let

n be the number of jokers inQ andJQ(m, k) the number of distinct cyclic(m, k)-similarities

detected byQ. Observe thatJQ(m, k) ≤
(

n

k

)

and if Q solves the cyclic(m, k)-problem, then

D(m, k) = JQ(m, k) ≤

(

n

k

)

(8)

From (7) and (8), we have
(

m

k

)

m
≤

(

n

k

)

. (9)

Using the Stirling formula, this givesn(k) = Ω(m
k−1

k ).

Fig. 1

CONSTRUCTION OF SEEDSQi FROM THE PROOF OFTHEOREM 2. JOKERS ARE REPRESENTED IN WHITE AND MATCHING

POSITIONS IN BLACK.

Upper boundTo prove the upper bound, we construct a seedQ that has no more thenk ·m
k−1

k

joker positions and solves the cyclic(m, k)-problem.

We start with the seedQ0 of spanm with all matching positions, and introduce jokers into it

in k steps. After stepi, the obtained seed is denotedQi, andQ = Qk.
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Let B = ⌈m
1

k ⌉. Q1 is obtained by introducing intoQ0 individual jokers with periodicityB

by placing jokers at positions1, B + 1, 2B + 1, . . .. At step 2, we introduce intoQ1 contiguous

intervals of jokers of lengthB with periodicity B2, such that jokers are placed at positions

[1 . . . B], [B2 + 1 . . . B2 +B], [2B2 + 1 . . . 2B2 +B], . . ..

In general, at stepi (i ≤ k), we introduce intoQi intervals ofBi−1 jokers with periodicity

Bi at positions[1 . . .Bi−1], [Bi + 1 . . . Bi +Bi−1], . . . (see Figure 1).

Note thatQi is periodic with periodicityBi. Note also that at each stepi, we introduce at

most ⌊m1− i
k ⌋ intervals ofBi−1 jokers. Moreover, due to overlaps with already added jokers,

each interval adds(B − 1)i−1 new jokers.

This implies that the total number of jokers added at stepi is at mostm1− i
k · (B − 1)i−1 ≤

m1− i
k ·m

1

k
·(i−1) = m

k−1

k . Thus, the total number of jokers inQ is less thank ·m
k−1

k .

By induction oni, we prove that for any(m, i)-similarity u (i ≤ k), Qi detectsu cyclicly, that

is there is a cyclic shift ofQi such that alli mismatches ofu are covered with jokers introduced

at steps1, . . . , i.

For i = 1, the statement is obvious, as we can always cover the single mismatch by shifting

Q1 by at most(B − 1) positions. Assuming that the statement holds for(i− 1), we show now

that it holds fori too. Consider an(m, i)-similarity u. Select one mismatch ofu. By induction

hypothesis, the other(i− 1) mismatches can be covered byQi−1. SinceQi−1 has periodBi−1

and Qi differs from Qi−1 by having at least one contiguous interval ofBi−1 jokers, we can

always shiftQi by j ·Bi−1 positions such that the selected mismatch falls into this interval. This

shows thatQi detectsu. We conclude thatQ solves the cyclic(m, i)-problem.

Using Theorem 2, we obtain the following bound on the number of jokers for the linear

(m, k)-problem.

Lemma 4:Consider a constantk. Let w(m) be the maximal weight of a seed solving the

linear (m, k)-problem. Then(m− w(m)) = Θ(m
k

k+1 ).

Proof: To prove the upper bound, we construct a seedQ that solves the linear(m, k)-

problem and satisfies the asymptotic bound. Consider somel < m that will be defined later,

and letP be a seed that solves the cyclic(l, k)-problem. Without loss of generality, we assume
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s(P ) = l.

For a real numbere ≥ 1, defineP e to be the maximally weighted seed of span at mostle of

the formP ′ · P · · ·P · P ′′, whereP ′ andP ′′ are respectively a suffix and a prefix ofP . Due to

the condition of maximal weight,w(P e) ≥ e · w(P ).

We now setQ = P e for some reale to be defined. Observe that ife · l ≤ m− l, thenQ solves

the linear(m, k)-problem. Therefore, we sete = m−l
l

.

From the proof of Theorem 2, we havel − w(P ) ≤ k · l
k−1

k . We then have

w(Q) = e · w(P ) ≥
m− l

l
· (l − k · l

k−1

k ). (10)

If we set

l = m
k

k+1 , (11)

we obtain

m− w(Q) ≤ (k + 1)m
k

k+1 − km
k−1

k+1 , (12)

and ask is constant,

m− w(Q) = O(m
k

k+1 ). (13)

The lower bound is obtained similarly to Theorem 2. LetQ be a seed solving a linear(m, k)-

problem, and letn = m− w(Q). From simple combinatorial considerations, we have
(

m

k

)

≤

(

n

k

)

· (m− s(Q)) ≤

(

n

k

)

· n, (14)

which impliesn = Ω(m
k

k+1 ) for constantk.

The following simple lemma is also useful for constructing efficient seeds.

Lemma 5:Assume that a familyF solves an(m, k)-problem. LetF ′ be the family obtained

from F by cutting outl characters from the left andr characters from the right of each seed of

F . ThenF ′ solves the(m− r − l, k)-problem.

Example 3:The (9+ 7i, 2)-problem is solved by the seed[###,-#--]i which is optimal for

i = 1, 2, 3. Using Lemma 5, this seed can be immediately obtained from the seed[###-#,--]i

from Example 2, solving the(11 + 7i, 2)-problem.

We now apply the above results for the single seed case to the case of multiple seeds.
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For a seedQ considered as a word over{#,-}, we denote byQ[i] its cyclic shift to the left by

i characters. For example, ifQ = ####-#-##--, thenQ[5] = #-##--####-. The following

lemma gives a way to construct seed families solving bigger problems from an individual seed

solving a smaller cyclic problem.

Lemma 6:Assume that a seedQ solves a cyclic(m, k)-problem and assume thats(Q) = m

(otherwise we padQ on the right with(m − s(Q)) jokers). Fix somei > 1. For someL > 0,

consider a list ofL integers0 ≤ j1 < · · · < jL < m, and define a family of seedsF =<

‖(Q[jl])
i‖ >L

l=1, where‖(Q[jl])
i‖ stands for the seed obtained from(Q[jl])

i by deleting the joker

characters at the left and right edges. Defineδ(l) = ((jl−1 − jl) mod m) (or, alternatively,

δ(l) = ((jl − jl−1) mod m)) for all l, 1 ≤ l ≤ L. Let m′ = max{s(‖(Q[jl])
i‖) + δ(l)}Ll=1 − 1.

ThenF solves the(m′, k)-problem.

Proof: The proof is an extension of the proof of Lemma 3. Here, the seeds of the family

are constructed in such a way that for any instance of the linear (m′, k)-problem, there exists at

least one seed that satisfies the property required in the proof of Lemma 3 and therefore matches

this instance.

In applying Lemma 6, integersjl are chosen from the interval[0, m] in such a way that values

s(||(Q[jl])
i||) + δ(l) are closed to each other. We illustrate Lemma 6 with two examples that

follow.

Example 4:Let m = 11, k = 2. Consider the seedQ = ####-#-##-- solving the cyclic

(11, 2)-problem. Choosei = 2, L = 2, j1 = 0, j2 = 5. This gives two seedsQ1 = ‖(Q[0])
2‖ =

####-#-##--####-#-## andQ2 = ‖(Q[5])
2‖ = #-##--####-#-##--#### of span20

and 21 respectively,δ(1) = 6 and δ(2) = 5. max{20 + 6, 21 + 5} − 1 = 25. Therefore, family

F = {Q1, Q2} solves the(25, 2)-problem.

Example 5:Let m = 11, k = 3. The seedQ = ###-#--#--- solving the cyclic(11, 3)-

problem. Choosei = 2, L = 2, j1 = 0, j2 = 4. The two seeds areQ1 = ‖(Q[0])
2‖ =

###-#--#---###-#--# (span19) and Q2 = ‖(Q[4])
2‖ = #--#---###-#--#---###

(span21), with δ(1) = 7 and δ(2) = 4. max{19 + 7, 21 + 4} − 1 = 25. Therefore, family

F = {Q1, Q2} solves the(25, 3)-problem.
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D. Heuristic seed design

Results of Sections IV-A-IV-C allow one to construct efficient seed families in certain cases, but

still do not allow a systematic seed design. Recently, linear programming approaches to designing

efficient seed families were proposed in [19] and in [18], respectively for DNA and protein

similarity search. However, neither of these methods aims at constructing lossless families.

In this section, we outline a heuristic genetic programmingalgorithm for designing lossless

seed families. The algorithm will be used in the experimental part of this work, that we present in

the next section. Note that this algorithm uses dynamic programming algorithms of Section III.

Since the algorithm uses standard genetic programming techniques, we give only a high-level

description here without going into all details.

The algorithm tries to iteratively improve characteristics of a population of seed families

until it finds a small family that detects all(m, k)-similarities (i.e. is lossless). The first step of

each iteration is based on screening current families against a set ofdifficult similarities that

are similarities that have been detected by fewer families.This set is continually reordered and

updated according to the number of families that don’t detect those similarities. For this, each

set is stored in a tree and the reordering is done using thelist-as-a-treeprinciple [20]: each time

a similarity is not detected by a family, it is moved towards the root of the tree such that its

height is divided by two.

For those families that pass through the screening, the number of undetected similarities is

computed by the dynamic programming algorithm of Section III-B. The family is kept if it

produces a smaller number than the families currently known. An undetected similarity obtained

during this computation is added as a leaf to the tree of difficult similarities.

To detect seeds to be improved inside a family, we compute thecontribution of each seed by

the dynamic programming algorithm of Section III-C. The seeds with the least contribution are

then modified with a higher probability. In general, the population of seed families is evolving

by mutatingandcrossing overaccording to the set of similarities they do not detect. Moreover,

random seed families are regularly injected into the population in order to avoid local optima.

The described heuristic procedure often allows efficient oreven optimal solutions to be
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computed in a reasonable time. For example, in ten runs of thealgorithm, we found 3 of the 6

existing families of two seeds of weight 14 solving the(25, 2)-problem. The whole computation

took less than 1 hour, compared to a week of computation needed to exhaustively test all seed

pairs. Note that the randomized-greedy approach (incremental completion of the seed set by

adding the best random seed) applied a dozen of times to the same problem yielded only sets

of three and sometimes four, but never two seeds, taking about 1 hour at each run.

V. EXPERIMENTS

We describe two groups of experiments that we made. The first one concerns the design

of efficient seed families, and the second one applies a multi-seed lossless filtration to the

identification of unique oligos in a large set of EST sequences.

Seed design experiments

TABLE I

SEED FAMILIES FOR(25, 2)-PROBLEM

size weight family seeds δ

1 12e,p,g ###-#--###-#--###-# 5.96 · 10−8

2 14e,p,g ####-#-##--####-#-## 7.47 · 10−9

#-##--####-#-##--####

3 15p #--##-#-######--##-#-## 2.80 · 10−9

#-######--##-#-#####

####--##-#-######--##

4 16p ###-##-#-###--####### 9.42 · 10−10

##-#-###--#######-##-#

###--#######-##-#-###

#######-##-#-###--###

6 17p ##-#-##--#######-####-# 3.51 · 10−10

#-##--#######-####-#-##

#######-####-#-##--###

###-####-#-##--#######

####-#-##--#######-###

##--#######-####-#-##--#

We considered several(m, k)-problems. For each problem, and for a fixed number of seeds

in the family, we computed families solving the problem and realizing the largest possible seed
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TABLE II

SEED FAMILIES FOR(25, 3)-PROBLEM

size weight family seeds δ

1 8 e,p,g ###-#-----###-# 1.53 · 10−5

2 10p ####-#-##--#---## 1.91 · 10−6

##--#---####-#-##

3 11p #---####-#-##--#---## 7.16 · 10−7

###-#-##--#---####

##--#---####-#-##--#

4 12p #---####-#-##--#---### 2.39 · 10−7

###-#-##--#---####-#

#-##--#---####-#-##--#

##--#---####-#-##--#---#

weight (under a natural assumption that all seeds in a familyhave the same weight). We also

kept track of the ways (periodic seeds, genetic programmingheuristics, exhaustive search) in

which those families can be computed.

Tables I and II summarize some results obtained for the(25, 2)-problem and the(25, 3)-

problem respectively. Families of periodic seeds (that canbe found using Lemma 6) are marked

with p, those that are found using a genetic algorithm are marked with g, and those which are

obtained by an exhaustive search are marked withe. Only in this latter case, the families are

guaranteed to be optimal. Families of periodic seeds are shifted according to their construction

(see Lemma 6).

Moreover, to compare the selectivity of different familiessolving a given(m, k)-problem, we

estimated the probabilityδ for at least one of the seeds of the family to match at a given position

of a uniform Bernoulli four-letter sequence. This has been done using the inclusion-exclusion

formula.

Note that the simple fact of passing from a single seed to a two-seed family results in a

considerable gain in efficiency: in both examples shown in the tables there a change of about

one order magnitude in the selectivity estimatorδ.



22

Oligo selection using multi-seed filtering

An important practical application of lossless filtration is the selection of reliable oligonu-

cleotides for DNA micro-array experiments. Oligonucleotides (oligos) are small DNA sequences

of fixed size (usually ranging from10 to 50) designed to hybridize only with a specific region

of the genome sequence. In micro-array experiments, oligosare expected to match ESTs that

stem from a given gene and not to match those of other genes. Asthe first approximation, the

problem of oligo selection can then be formulated as the search for strings of a fixed length

that occur in a given sequence but do not occur, within a specified distance, in other sequences

of a given (possibly very large) sample. Different approaches to this problem apply different

distance measures and different algorithmic techniques [21], [22], [23], [24]. The experiments we

briefly present here demonstrate that the multi-seed filtering provides an efficient computation of

candidate oligonucleotides. These should then be further processed by complementary methods

in order to take into account other physico-chemical factors occurring in hybridisation, such as

the melting temperature or the possible hairpin structure of palindromic oligos.

Here we adopt the formalization of the oligo selection problem as the problem of identifying

in a given sequence (or a sequence database) all substrings of lengthm that have no occurrences

elsewhere in the sequence within the Hamming distancek. The parametersm and k were set

to 32 and 5 respectively. For the(32, 5)-problem, different seed families were designed and

their selectivity was estimated. Those are summarized in the table in Figure 2, using the same

conventions as in Tables I and II above. The family composed of 6 seeds of weight 11 was

selected for the filtration experiment (shown in Figure 2).

The filtering has been applied to a database of rice EST sequences composed of 100015

sequences for a total length of 42,845,242 bp1. Substrings matching other substrings with5

substitution errors or less were computed. The computationtook slightly more than one hour

on a PentiumTM4 3GHz computer. Before applying the filtering using the family for the (32, 5)-

problem, we made a rough pre-filtering using one spaced seed of weight 16 to detect, with a high

selectivity, almost identical regions. 65% of the databasehas been discarded by this pre-filtering.

1source :http://bioserver.myongji.ac.kr/ricemac.html, The Korea Rice Genome Database
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family size weight δ

1 7e 6.10 · 10−5

2 8e 3.05 · 10−5

3 9e 1.14 · 10−5

4 10g 3.81 · 10−6

6 11g 1.43 · 10−6

10 12g 5.97 · 10−7

{ ####---#---------#---#--#### ,

###--#--##--------#-#### ,

####----#--#--##-### ,

###-#-#---##--#### ,

###-##-##--#-#-## ,

####-##-#-#### }

Fig. 2

COMPUTED SEED FAMILIES FOR THE(32, 5)-PROBLEM AND THE CHOSEN FAMILY(6 SEEDS OF WEIGHT11)

Another 22% of the database has been filtered out using the chosen seed family, leaving the

remaining 13% as oligo candidates.

VI. CONCLUSION

In this paper, we studied a lossless filtration method based on multi-seed families and demon-

strated that it represents an improvement compared to the single-seed approach considered in [1].

We showed how some important characteristics of seed families can be computed using the

dynamic programming. We presented several combinatorial results that allow one to construct

efficient families composed of seeds with a periodic structure. Finally, we described a large-

scale computational experiment of designing reliable oligonucleotides for DNA micro-arrays.

The obtained experimental results provided evidence of theapplicability and efficiency of the

whole method.

The results of Sections IV-A-IV-C establish several combinatorial properties of seed families,

but many more of them remain to be elucidated. The structure of optimal or near-optimal

seed families can be reduced to number-theoretic questions, but this relation remains to be

clearly established. In general, constructing an algorithm to systematically design seed families

with quality guarantee remains an open problem. Some complexity issues remain open too:

for example, what is the complexity of testing if a single seed is lossless for givenm, k?

Section III implies a time bound exponential on the number ofjokers. Note that for multiple

seeds, computing the number of detected similarities is NP-complete [16, Section 3.1].
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Another direction is to consider different distance measures, especially the Levenstein distance,

or at least to allow some restricted insertion/deletion errors. The method proposed in [25] does

not seem to be easily generalized to multi-seed families, and a further work is required to improve

lossless filtering in this case.
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