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Abstract. Graphs obtained from a binary leaf labelled (‘phyloge-

netic’) tree by adding an edge so as to introduce a cycle provide a

useful representation of hybrid evolution in molecular evolutionary bi-

ology. This class of graphs (which we call ‘unicyclic networks’) also

has some attractive combinatorial properties, which we present. We

characterize when a set of binary phylogenetic trees is displayed by a

unicyclic network in terms of tree rearrangement operations. This leads

to a triple-wise compatibility theorem, and a simple, fast algorithm

to determine 1-cycle compatibility. We also use generating function

techniques to provide closed-form expressions that enumerate unicyclic

networks with specified or unspecified cycle length, and we provide an

extension to enumerate a class of multi-cyclic networks.
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1. Introduction

Although phylogenetic trees provide a useful representation of many

evolutionary relationships, and have been well studied (see, for example,

[4, 20]), there is increasing interest in using non-tree graphs to model reticu-

late evolution. Indeed during the last few years there has been a burst of ac-

tivity in phylogenetic bioinformatics in developing methods to reconstruct

and model reticulation—for example, see [1, 2, 6, 11, 7, 8, 9, 10, 15, 22, 23].

Reticulate evolution can be due to a variety of biological processes, includ-

ing recombination, horizontal gene transfer, genome fusion, and the forma-

tion of hybrid species (as occurs in certain plant, insect and animal species)

[14, 18]. The simplest type of non-tree graph are those that contain a single

cycle, and it is this class that we study here.

This class has recently come to prominence in the description by Rivera

and Lake [17] of a “ring of life” to better understand the origin of eukary-

otes. These authors analysed ten complete genomes from prokaryotic and

eukaryotic organisms, and found support for five conflicting trees – nev-

ertheless, these five unrooted trees fitted perfectly into a network with a

single cycle (for further details, see also [13]).
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Figure 1. A binary phylogenetic tree.

To describe these types of single-cycle networks further, and to outline

our results, we first introduce some definitions.

A binary phylogenetic tree (on X) is a tree T in which every interior ver-

tex has degree three and whose leaf set is X. The set X is often referred

to as the label set of T and its elements as labels. For example, a binary

phylogenetic tree is shown in Fig. 1. Here X = {a, b, . . . , l}. A unicyclic

network (on X) is a graph G that has exactly one cycle (of length at least

three), every interior vertex has degree three, and the set of degree-one

vertices is X. Thus, by deleting a single edge of the cycle in G and sup-

pressing the resulting degree-two vertices, we obtain a binary phylogenetic

X-tree. Indeed, we say G displays a binary phylogenetic X-tree T if T can

be obtained from G in this way. In general, let P be a collection of phylo-

genetic X-trees. Then G displays P if G displays each tree in P, in which

case we say that P is 1-cycle compatible. To illustrate these definitions,

the unicyclic network shown in Fig. 2 displays the binary phylogenetic tree

shown in Fig. 1.
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Figure 2. A unicyclic network.

Note that if G is a unicyclic network on X whose cycle has length k, then

G displays exactly k − 2 binary phylogenetic trees on X. In particular, if

k = 3, then G displays just one binary phylogenetic tree, namely the tree

obtained from G by collapsing the cycle of length 3 to a single vertex.

Although one could exclude cycles of length 3, we have found it convenient

(particularly for enumerating galled-trees) to allow them.

Two unicyclic networks G and G′ on X are isomorphic if there is a graph

isomorphism from G to G′ which when restricted to X is the identity map.

One of the main questions that motivates this study is the following:

Given a collection P of binary phylogenetic trees on X when is P 1-

cycle compatible? For |P| = 2, this question is closely related to tree

rearrangement operations, and the number of possible unicyclic networks

that display P is either 0, 1, or 3. When P has arbitrary size, the 1-cycle
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compatibility question can be reduced to consideration of triples of trees

from P, allowing for a simple polynomial-time algorithm.

In this paper we also consider the enumeration of unicyclic networks,

where the cycle length is either specified or left unspecified, and we use

this to derive further enumerative results. We then provide an extension

to count a certain class of networks (“galled-trees”) where multiple cycles

are allowed

1.1. Biological relevance. The modelling and analysis of reticulate evo-

lution is currently a topical problem in systematic biology and bioinfor-

matics. Most studies to date have dealt only with rooted trees as their

input ([12, 16, 18]). Although certain processes (such as the formation of

hybrid species) are normally viewed as requiring some time scale (i.e. at

some time in the past two species exchanged genetic material), it is often

desirable to have techniques for describing reticulate evolution when the

input trees are unrooted. This is because most tree reconstruction meth-

ods (such as neighbour joining and maximum likelihood) output unrooted

trees. We can formally ask whether conflicting unrooted trees (perhaps

from different genes) can be reconciled by a single cycle, as in the study by

Rivera and Lake [17]. We show that this unrooted compatibility question
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has a concise mathematical and algorithmic description. In general, a uni-

cyclic network may display more trees than those provided as input to the

algorithm, however, these additional trees need not be regarded as having

any particular biological significance. We also describe exact formulae for

enumerating unicyclic networks and generalizations to allow several dis-

joint cycles. The underlying decomposition that leads to these formulae

may in turn be useful for sampling uniformly from the set of such networks.

Of course, one may wish to consider more general and complex struc-

tures for modelling reticulate evolution than those considered in this paper

– for example, by allowing multiple inter-twining cycles, or by allowing

non-binary trees and networks. However our aim here is to provide an

attractive mathematical foundation for a simple model of reticulate evolu-

tion, rather than an algorithmic analysis of a more complex scenario (for

some approaches to the latter, see [6, 10]).

We end this section with some preliminaries that will be used throughout

the paper.

1.2. Preliminaries. Throughout the paper, the notation and terminology

follows [20]. An X-split is a partition of X into two non-empty sets. We

denote the X-split whose blocks are A and B by A|B. Associated with
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every phylogenetic X-tree T is a particular collection of X-splits. This

collection consists of those X-splits A|B that are induced by the compo-

nents of the graph resulting from the deletion of a single edge e of T . We

say that the X-split A|B corresponds to e and let Σ(T ) denote the set of

X-splits that correspond to the edges of T .

Let π = (x1, x2, . . . , xn) be a cyclic permutation of X. For all 1 ≤ i ≤

j ≤ n, let Aij = {xk : i ≤ k ≤ j} and let Σ◦(π) denote the set

Σ◦(π) = {Aij|(X − Aij) : 1 ≤ i ≤ j ≤ n− 1}

of X-splits. Arranging the elements x1, x2, . . . , xn clockwise in a circle in

the plane, we may view Σ◦(π) as the set of X-splits that can be obtained by

separating these elements according to which side of a line segment in the

plane they lie on. Consequently, |Σ◦(π)| =
(

n

2

)

. A collection Σ of X-splits

is said to be circular if Σ ⊆ Σ◦(π) for some cyclic permutation π of X. In

case Σ(T ) ⊆ Σ◦(π) for some phylogenetic X-tree T , we say that π provides

a circular ordering for T . This last definition has an equivalent formulation

as follows. Suppose we embed T in the plane, and trace around the outside

of T beginning at some leaf x ∈ X and eventually returning to x (in this

way each edge of T is traversed exactly twice—once in each direction). The

order in which the elements of X are met in this tracing induces a circular

ordering for T . The set of circular orderings for T is precisely the set of
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orderings on X that are induced by tracing across all planar embeddings

of T . Similarly, we have an analogous notion of a circular ordering for a

unicyclic network.

2. 1-Cycle Compatibility

In this section, we investigate the problem of determining precisely when

a collection P of binary phylogenetic X-trees is 1-cycle compatible. This

problem is motivated by the analysis in [17]. In the case |P| = 2, this

problem has an attractive solution in terms of tree rearrangements which

we describe next. This solution will enable us to handle the case |P| ≥ 3

later in the section.

Let T be a binary phylogenetic X-tree and let e = {u, v} be an edge of

T . Let T ′ be the binary phylogenetic X-tree that is obtained from T by

deleting e, and then attaching the component Cv that contains v to the

component Cu that contains u by adjoining a new edge f from Cv to Cu so

that, once degree-two vertices are suppressed, the resulting tree is a binary

phylogenetic X-tree. The two tree rearrangement operations that we now

describe are restricted by how this new edge is adjoined. We begin with

the least restrictive operation.
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Figure 3. A schematic diagram of a TBR operation.

(i) We say that T ′ has been obtained from T by a tree bisection and

reconnection (TBR) if there is no restriction on f .

(ii) We say that T ′ has been obtained from T by an (unrooted) subtree

prune and regraft (SPR) if one end-vertex of f is v.

Observe that SPR is a special case of TBR. For further details of tree

rearrangement operations, see [20].

The diagram shown in Fig. 3 is a schematic representation of a single

TBR operation, where T1 and T2 are two binary phylogenetic X-trees. If

B and E are both empty, then T1 is isomorphic to T2, and so the TBR

operation is redundant. Furthermore, it is easily checked that the TBR

operation is an SPR operation precisely if either |A∪B∪C| = 1 or |D∪E∪

F | = 1, or one of B or E is empty. We will make use of this diagram in the

next section and we may assume that, provided |A∪B∪C|, |D∪E∪F | ≥ 2,

we have |A|, |C|, |D|, |F | ≥ 1.
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Tree rearrangement operations play an important role in phylogenetics.

One reason for this is that they each induce a metric on the collection of

binary phylogenetic X-trees and thus enable one to quantify the “close-

ness” of any pair of such trees. In particular, let T1 and T2 be two binary

phylogenetic X-trees and let Θ ∈ {SPR,TBR}. The Θ-distance between

T1 and T2 is the minimum number of operations that is required to trans-

form T1 into T2. We denote this distance by dΘ(T1, T2). It is well-known

that, for each Θ, one can always get from T1 to T2 by such a sequence of

operations and dTBR(T1, T2) ≤ dSPR(T1, T2) ≤ 2dTBR(T1, T2).

Theorem 2.1. Let T1 and T2 be two distinct binary phylogenetic X-trees.

Then there is a unicyclic network G on X that displays {T1, T2} if and only

if dTBR(T1, T2) = 1. Moreover, in that case, there are unique edges e1 and

e2 such that, up to suppressing degree-two vertices, G\e1 is isomorphic to

T2 and G\e2 is isomorphic to T1.

Proof. Suppose that there is a unicyclic network G on X that displays both

T1 and T2. Then, as T1 and T2 are distinct, it follows by definition that there

are two distinct edges e1 and e2 such that, up to suppressing degree-two

vertices, G\e1 and G\e2 are isomorphic to T1 and T2. This implies that, for

each i, Ti can be obtained from G\{e1, e2} by adding ei in the appropriate

way. By the definition of TBR, we deduce that dTBR(T1, T2) = 1.
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Now suppose that dTBR(T1, T2) = 1. Then, up to suppressing degree-two

vertices, T2 can be obtained from T1 by deleting an edge e1 say in T1, and

then joining the resulting components by a new edge e2 say. Now let G be

the graph that is obtained from T1 by adding e2 so that G\e1 is isomorphic

to T2. Since adding e2 creates exactly one cycle, it follows that G is a

unicyclic network on X. Moreover, up to suppressing degree-two vertices,

G\e1 and G\e2 are isomorphic to T1 and T2, respectively. Thus G displays

T1 and T2.

Lastly, suppose there is a unicyclic network G on X that displays T1 and

T2. Since no two distinct edges f and f ′ of the cycle of G have the property

that G\f is isomorphic to G\f ′, it follows that the choice of e1 and e2 is

unique. This completes the proof of the theorem. 2

Proposition 2.2. Let T1 and T2 be two distinct binary phylogenetic X-

trees. If {T1, T2} is 1-cycle compatible, then Σ(T1) ∪ Σ(T2) is circular.

Proof. Let G be a unicyclic network on X that displays T1 and T2. Let

x ∈ X. Viewing G drawn in the plane with its leaves on the outside of the

cycle, trace around the outside of G beginning at x, eventually returning

to x. Let π be the cyclic permutation of X induced by the order in which

the elements of X are met in this tracing. It is now easily checked that π
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Figure 4. A counterexample to the converse of Proposition 2.2.

is a circular ordering for both T1 and T2, thus completing the proof of the

proposition. 2

We remark here that the converse of Proposition 2.2 does not hold. For

a counterexample, consider the pair of trees {T1, T2} in Fig. 4. Then, with

π = (1, 2, . . . , 6), we have Σ(T1) ∪ Σ(T2) ⊆ Σ◦(π), and so Σ(T1) ∪ Σ(T2)

is circular. However, dTBR(T1, T2) ≥ 2, and therefore, by Theorem 2.1,

{T1, T2} is not 1-cycle compatible.

We now consider the problem of determining precisely when an arbitrary

collection of binary phylogenetic X-trees is 1-cycle compatible. To this end,

we begin with the following proposition.

Proposition 2.3. Let T1 and T2 be two binary phylogenetic trees on X,

and suppose that {T1, T2} is 1-cycle compatible. Then
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Figure 5. A schematic view of the unicyclic network de-

scribed in (i) of Proposition 2.3.

(i) If dSPR(T1, T2) 6= 1, then there is exactly one unicyclic network on

X that displays T1 and T2.

(ii) If dSPR(T1, T2) = 1 and the pruned subtree consists of a single leaf,

then there is exactly one unicyclic network on X that displays T1

and T2.

(iii) If dSPR(T1, T2) = 1 and the pruned subtree has at least two leaves,

then there are exactly three unicyclic networks on X that display T1

and T2.

Proof. It follows by the definition of display that all unicyclic networks

on X that display both T1 and T2 can be obtained by starting with T1

and adjoining a new edge e2. The edge e2 is added in such a way that

T2 can be obtained from the resulting unicyclic network on X by deleting

an edge e1. By Theorem 2.1, there is exactly one choice for e1. Thus to

prove the proposition, it suffices to consider the possible ways by which e2
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can be added to T1. In establishing each of (i)—(iii), we make use of the

schematic diagram of a TBR operation shown in Fig. 3. With regards to

this diagram, it is clear that e2 must join an edge of the minimal subtree

of T1 that connects A∪B ∪C to an edge of the minimal subtree of T1 that

connects D∪E ∪F . Furthermore, as dTBR(T1, T2) = 1 or dSPR(T1, T2) = 1,

we have |X| ≥ 4.

First consider (i). Since dTBR(T1, T2) = 1, but dSPR(T1, T2) 6= 1, we

may assume that |A|, |B|, |C|, |D|, |E|, |F | ≥ 1 in Fig. 3. By noting that

A|(X − A), C|(X − C), D|(X −D), F |(X − F ) are all X-splits of T2, this

added edge cannot be joined to edges in any of the subtrees labelled A, C,

D, and F . Furthermore, as (A∪B)|(X−(A∪B)) and (E∪F )|(X−(E∪F ))

are both X-splits of T2, this added edge cannot be joined to edges in B

or E. It now follows that there is exactly one way in which e2 can be

appropriately added to T1. Thus there is exactly one unicyclic network on

X that displays both T1 and T2. This unicyclic network is schematically

shown in Fig. 5, where B1, . . . , Bi (i ≥ 1) are the subtrees of B attached

to the path from e1 to e2, and E1, . . . , Ej (j ≥ 1) are the subtrees of E

attached to the path from e2 to e1.

Now consider (ii). Without loss of generality, we may assume that, in

Fig. 3, |A| = 1, and B and C are both empty. Using an approach similar
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Figure 6. A schematic view of the unicyclic networks de-

scribed in (iii) of Proposition 2.3.

to that in (i), it is easily seen that in this case there is also exactly one

unicyclic network on X that displays both T1 and T2.

Lastly, consider (iii). In this case, as dSPR(T1, T2) = 1 and the pruned

subtree has at least two leaves, precisely one of B or E is empty, and

|A|, |C|, |D|, |F | ≥ 1. Without loss of generality, we may assume that B is

empty, in which case E is non-empty. Again using the approach used in

(i), we deduce, in this case, that there are exactly three unicyclic networks

on X that display both T1 and T2. These three unicyclic networks are

schematically shown in Fig. 6. This completes the proof of the proposition.

2

Theorem 2.4. Let P ′ be a collection of binary phylogenetic trees on X

with |P ′| ≥ 3. Then P ′ is 1-cycle compatible if and only if, for all subsets

P of size three, P is 1-cycle compatible, in which case there is a unique

unicyclic network on X that displays P ′.
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Proof. If there is a unicyclic network G on X that displays P ′, then every

3-element subset of P ′ is displayed by G. This proves one direction of the

theorem.

For the converse, suppose that P is 1-cycle compatible for every 3-

element subset P of P ′. First assume that there is a pair T1 and T2 in

P ′ such that either the assumptions of (i) or (ii) in the statement of Propo-

sition 2.3 hold. In either case, it follows by Proposition 2.3 that there is

exactly one unicyclic network, G say, on X that displays T1 and T2. Since

G is unique and every 3-element subset of P ′ is 1-cycle compatible, we now

deduce that, for each i ∈ {3, 4, . . . , |P ′|}, there is exactly one unicyclic net-

work that displays {T1, T2, Ti} and that this unicyclic network is always G.

Hence, in this case, P ′ is 1-cycle compatible and there is a unique unicyclic

network on X that displays P ′.

Now assume that, for every pair of trees in P ′, the assumptions of (iii)

in Proposition 2.3 hold. Let T1 and T2 be a pair of trees in P ′. Then,

by Proposition 2.3, there are exactly three unicyclic networks, G1, G2, and

G3 say, on X that display T1 and T2. Now consider {T1, T2, Ti}, where

Ti 6∈ {T1, T2}. By assumption, there is a unicyclic network on X that

displays {T1, T2, Ti}. Moreover, this tree must be one of the three unicyclic

networks that display T1 and T2. For each j ∈ {1, 2, 3}, it follows by
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Theorem 2.1 that, up to degree-two vertices, there is a unique pair of edges

in Gj such that the deletion of one results in T1 and the deletion of the

other results in T2. By considering the remaining edges of the cycles of G1,

G2, and G3, it is straightforward to deduce that the binary phylogenetic

X-trees that result by deleting such an edge are distinct. This implies that

there is exactly one unicyclic network on X that displays {T1, T2, Ti}. If, for

all i, the unicyclic network displaying {T1, T2, Ti} is the same, then P ′ is 1-

cycle compatible and this unicyclic network on X is the only such network.

Therefore assume that for some distinct i and j, the unicyclic network that

displays {T1, T2, Ti} is not isomorphic to the unicyclic network that displays

{T1, T2, Tj}. We may also assume that the former network is G1 and the

latter network is G2. By an argument similar to that used earlier in this

paragraph, there is a unique unicyclic network that displays {T1, Ti, Tj}.

Since G1 displays {T1, Ti}, we deduce that it is G1. But G1 does not display

Tj ; a contradiction. This completes the proof of the theorem. 2

The sufficient part of the hypothesis in Theorem 2.4 is sharp in the sense

that it is not sufficient for P ′ to be 1-cycle compatible if every subset of P ′

of size two is 1-cycle compatible. To see this, take P ′ to be the collection

consisting of all three binary phylogenetic X-trees, where |X| = 4. Then it

is easily checked that each of the three 2-element subsets of P ′ are 1-cycle

compatible. However, the union of the X-splits of the trees in P ′ is not
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circular and so, by the contrapositive of Proposition 2.2, P ′ is not 1-cycle

compatible.

Theorem 2.1, Proposition 2.3, and Theorem 2.4 provide the basis and

validity for the following polynomial-time algorithm for determining the

1-cycle compatibility of a collection of binary phylogenetic X-trees. We

leave the formal details to the reader.

Algorithm: 1-CycleCompatibility(P,G)

Input: A collection P of binary phylogenetic X-trees.

Output: A unicyclic network G on X that displays P or the statement P is

not 1-cycle compatible.

1. Choose any two trees T1 and T2 in P.

2. Decide whether or not dTBR(T1, T2) = 1.

(a) If no, then halt and return P is not 1-cycle compatible.

(b) If yes, then construct a unicyclic network G on X that displays T1 and

T2. In the case dSPR(T1, T2) = 1 and the pruned subtree has at least

two leaves, construct all three unicyclic networks G1, G2, and G3 on X

that display T1 and T2.

3. Select another tree T3 ∈ P.
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(a) If exactly one unicyclic network is constructed in the previous step, then

check to see whether or not G displays T3. If not, then halt and return

P is not 1-cycle compatible.

(b) If three unicyclic networks are constructed in the previous step, then

check to see whether or not G1, G2, or G3 displays T3. (At most one

such tree has this property.) If not, then halt and return P is not

1-cycle compatible.

4. Let G denote the unicyclic network that displays {T1, T2, T3}. For each

Ti ∈ P − {T1, T2, T3}, check to see whether or not G displays Ti. If not,

then halt and return P is not 1-cycle compatible. Otherwise return G.

3. Counting Unicyclic Networks

In this section, we use generating functions to derive the following exact

expressions for the number of distinct unicyclic networks on a fixed set X.

Theorem 3.1. Let X be a finite set of size n ≥ 3.

(i) Let c(n) denote the number of unicyclic networks on X. Then

c(n) = (n− 1)!2n−2 − (2n− 2)!

(n− 1)!2n−1
.
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(ii) For each k ≥ 3, let c(n, k) denote the number of unicyclic networks

on X whose unique cycle is of length k. Then

c(n, k) =
(2n− k − 1)!

(n− k)!2n−k+1
.

In proving Theorem 3.1, we make use of the following notation: for a

power series f(x), we let [xn]f(x) denote the coefficient of xn in f(x).

For |X| ≥ 2, a rooted binary phylogenetic X-tree is a rooted tree whose

root has degree two and every other interior vertex has degree three, and

whose leaf set is X. If |X| = 1, then the tree consisting of a single-root

vertex labelled by the element in X is a rooted binary phylogenetic X-tree.

For all n ≥ 1, let r(n) denote the number of rooted binary phylogenetic

trees on a set X of size n. For each n ≥ 2, the number r(n) is given by

(1) r(n) =
(2n− 2)!

(n− 1)!2n−1
= 1 × 3 × · · · × (2n− 3),

a well-known result that dates back to 1870 [19].

For establishing Theorem 3.1, it will be convenient for us to consider one

particular way in which r(n) can be derived. Let

R(x) =
∑

n≥1

r(n)
xn

n!

be the exponential generating function for r(n). Now notice that if we

delete the root of a binary phylogenetic tree that has n ≥ 2 leaves, along
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with its two incident edges, we obtain an unordered pair of rooted phyloge-

netic binary trees for which the numbers of labelled leaves in the resulting

pair of trees sum to n. Since the labels can be distributed freely between

these two trees, it follows that, for all n ≥ 2,

r(n) =
1

2

n−1
∑

i=1

(

n

i

)

r(i)r(n− i).

This expression for r(n) translates into the more succinct equation

(2) R(x) =
1

2
R(x)2 + x.

The term “+x” in (2) accounts for the case where we have just a single

isolated root vertex. If we regard (2) as a quadratic equation (in R(x)),

and choose the root whose power series has non-negative coefficients, we

get

(3) R(x) = 1 −
√

1 − 2x.

Now, for all n ≥ 1,

[xn](1 −
√

1 − 2x) =
(2n− 2)!

n!(n− 1)!2n−1
.

Therefore, as r(n) = n![xn]R(x), we obtain (1).

We now introduce two further exponential generating functions. Let

C(x) =
∑

n≥3

c(n)
xn

n!
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and, for all k ≥ 3, let

Ck(x) =
∑

n≥3

c(n, k)
xn

n!

denote the exponential generating functions for c(n) and c(n, k), respec-

tively, where n ≥ 3. Both these generating functions are closely related to

R(x). In particular,

(4) c(n, k) =
1

2k

∑

(n1,...,nk):n1+···+nk=n

n!

n1! · · ·nk!

k
∏

i=1

r(ni).

To justify the right-hand side of (4), first note that the term

n!

n1! · · ·nk!

counts the number of k–tuples of sets of sizes n1, . . . , nk that form a par-

tition of the set X (of size n), and the term
∏k

i=1 r(ni) is the number of

choices of rooted binary phylogenetic trees that have specified leaf sets of

sizes n1, . . . , nk where, for each i, ni ≥ 1. However, each unicyclic network

with cycle length k generates exactly 2k such k-tuples of rooted binary

phylogenetic trees, since we have k choices for which tree starts the cycle,

and there are two directions that the cycle can be traversed. Equation 4

means that we may write Ck(x) much more elegantly as

(5) 2Ck(x) =
1

k
R(x)k.
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Since C(x) =
∑

k≥3Ck(x), it follows by (5) that the following relationship

between C(x) and R(x) holds:

(6) 2C(x) =
1

3
R(x)3 +

1

4
R(x)4 + · · ·

Using the identity

− log(1 − t) = t+
1

2
t2 +

1

3
t3 + · · · ,

we can rewrite (6) as

(7) C(x) =
1

2

(

−R(x) − 1

2
R(x)2 − log(1 − R(x))

)

.

Replacing the term log(1−R(x)) in (7) by log(
√

1 − 2x)(= 1
2
log(1−2x)) as

allowed by (3), and then the remaining term in (7), namely −R(x)−1
2
R(x)2,

by x− 2R(x) as allowed by (2), we get

C(x) =
1

2
x− R(x) − 1

4
log(1 − 2x).

The expression for c(n) in the statement of Theorem 3.1 now follows by

routine manipulation. This establishes part (i).

To prove part (ii), we first evaluate [xn]R(x)k. Notice that one can

write R(x) = xφ(R(x)) for the function φ(x) = (1 − 1
2
x)−1. In such a

situation, there is a convenient tool for extracting [xn]R(x)k known as the

Lagrange inversion formula. This formula (see [5] for details) states the

following: Given two (formal) power series ψ(x) =
∑

i≥0 ciλ
i where c0 6= 0
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and f(λ) =
∑

i≥0 diλ
i, there exists a unique power series w(t) such that

w(t) = tψ(w(t)) and, for each n > 0,

[tn]f(w(t)) =
1

n
[λn−1]f ′(λ)ψn(λ),

where f ′(λ) =
∑

i≥1 idiλ
i−1 denotes the formal derivative of f . Applying

this formula here (as was similarly applied in [3]), we obtain

[xn]R(x)k =
1

n
[λn−1]kλk−1φ(λ)n =

k

n
[λn−k](1−1

2
λ)−n =

k

n

(

2n− k − 1

n− k

)

2k−n.

Therefore, by (5),

c(n, k) = n! · 1

2k
[xn]R(x)k =

(2n− k − 1)!

(n− k)!2n−k+1
.

This establishes part (ii).

We end this section with the following consequence of Theorem 3.1 for

which we recall the definition of a circular ordering of a unicyclic network

from the introduction.

Corollary 3.2. Let X be a finite set of size n ≥ 3.

(i) Let G be a unicyclic network on X whose unique cycle has length

k. Then the number of distinct circular orderings for G is 2n−k+1.

(ii) Let π be a cyclic permutation of X. Then the number of unicyclic

networks on X whose cycle has length k and for which π is a circular
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ordering is
(

2n− k − 1

n− 1

)

Proof. To prove (i), we first note that a binary phylogenetic tree with

m leaves, where m ≥ 3, has precisely 2m−2 circular orderings (see, for

example, [20]). Now let m1, m2, . . .mk denote the number of elements of

X that appear (as leaves) on the k subtrees that are incident with the k

vertices of the cycle in the unicyclic network G. Then, as the cycle of G

can be traversed in two directions, it is now straightforward to see that the

number of circular orderings for G is

2

k
∏

i=1

2(mi+1)−2 = 2n−k+1.

Note that replacing mi bymi+1 in the exponent recognizes that the subtree

that has mi leaves from X can be viewed as a binary tree with mi+1 leaves

in total if we include the vertex on the cycle that the subtree attaches to.

This establishes (i).

For the proof of (ii), let c(n, k, π) denote the number of unicyclic networks

on X whose unique cycles each have length k and for which π is a circular

ordering. To evaluate c(n, k, π), we will count the number of ordered pairs

(G, π), where G is unicyclic network on X whose unique cycle has length k

and π is a circular ordering for G. We do this count in two ways. Firstly,
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by Theorem 3.1(ii), there are

(2n− k − 1)!

(n− k)!2n−k+1

unicyclic networks whose unique cycle has length k. Furthermore, for each

such network, there are precisely 2n−k+1 circular orderings, by part (i).

Hence the number of ordered pairs (G, π) is

(2n− k − 1)!

(n− k)!

Alternatively, we can calculate this number by noting that the number of

cyclic permutations on X is (n−1)! and, for every such cyclic permutation

π, the number of unicyclic networks on X whose unique cycle has length

k and for which π is a circular ordering is c(n, k, π). Equating these two

counts, we deduce (ii). 2

4. Counting Galled-Trees

In this section, we extend Theorem 3.1(ii) to networks that contain k ‘in-

dependent’ cycles. The following definition is motivated by the terminology

of [6] and [16] in the rooted digraph setting.

A (unrooted binary) galled-tree (on X) is a graph G that has the following

properties:
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Figure 7. A galled-tree with two cycles.

(i) every vertex is in at most one cycle,

(ii) every non-leaf vertex has degree three, and

(iii) the set of degree-one vertices is X.

For example, Fig. 7 shows a galled-tree with two cycles.

The purpose of this section is to establish Theorem 4.1.

Theorem 4.1. For a fixed finite set X of size n, let g(n, k,m) denote the

number of galled-trees on X containing k cycles and having a total of m

edges across all the cycles. Then, for n,m, k ≥ 0, we have

g(n+ 2, k,m) =
(2n−m+ 3k)!(m− 2k − 1)!2m−n−3k

(n−m+ 2k)!(m− 3k)!(k − 1)!k!

if 3 ≤ 3k ≤ m ≤ n+ 2k or k = m = 0, and g(n+ 2, k,m) = 0 otherwise.

Proof. First note that in order for g(n + 2, k,m) to be non-zero we must

have that if k = 0, then m = 0. Furthermore, if k > 0 then we require
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that m ≥ 3k (since every cycle has at least three edges), and the inequality

m ≤ n+ 2k must also apply (by a simple counting argument).

Let

G = G(x, y, z) =
∑

n,m,k≥0

g(n+ 1, k,m)
xnykzm

n!
.

Thus

G = x+
1

2!
x2 +

1

2!
x2yz3 +

3

3!
x3 +

3

3!
x3yz3 +

3

3!
x3yz4 +

3

3!
x3y2z6 +

15

4!
x4 + · · ·

Notice that

(8) g(n+ 1, k,m) = n![xnykzm]G(x, y, z)

where [xnykzm]G(x, y, z) denotes the coefficient of xnykzm in G.

Given a galled-tree on X, we say that the rooted graph obtained by sub-

dividing any edge of the network, and distinguishing the resulting degree

2 vertex as a root is a rooted galled-tree network on X. In this way, we we

may regard g(n+1, k,m) as counting the number of rooted galled-trees on

X that have k cycle and m edges across all cycles (since there is a bijection

between unrooted binary galled-trees on X ∪{ρ} (where ρ is a label not in

X), and rooted binary galled-trees on X).

This rooting leads to the following fundamental recursion for G:

(9) G = x+
1

2
G2 +

1

2
yz3G2(1 − zG)−1.
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(the term 1
2
G2 counts the cases where the root of the rooted galled-tree

does not lie on a cycle, while the term 1
2
yz3G2(1− zG)−1 counts the other

cases).

From (9) it follows that G = xφ(G, y, z) where

φ(G, y, z) = (1 − 1

2
G(1 +

yz3

(1 − zG)
))−1.

Again applying the Lagrange inversion formula, this time to (9), we have

(10) [xnykzm]G(x, y, z) =
1

n
[λn−1ykzm]φ(λ, y, z)n.

Now, applying the identity:

(11) (1 − θ)−n =
∑

i≥0

(

n + i− 1

i

)

θi

to θ = 1
2
λ(1+ yz3

(1−zλ)
) we obtain φ(λ, y, z)n =

∑

i≥0 2−i
(

n+i−1
i

)

λi(1+ yz3

(1−zλ)
)i.

Thus,

(12)

[λn−1ykzm]φ(λ, y, z)n =
∑

i≥0

2−i

(

n+ i− 1

i

)

[λn−i−1ykzm](1 +
yz3

(1 − zλ)
)i.

Now,

[yk](1 +
yz3

(1 − zλ)
)i =

(

i

k

)

z3k(1 − zλ)−k,

and

[λn−i−1zm]z3k(1 − zλ)−k = [λn−i−1zm−3k](1 − zλ)−k.
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Furthermore, again invoking (11) we have

[λn−i−1zm−3k](1 − zλ)−k =



















(

m−2k−1
m−3k

)

, if n− i− 1 = m− 3k;

0, otherwise.

Thus, the only non-zero term in (12) occurs when i = n−m+ 3k− 1, and

for this value of i we have

[λn−1ykzm]φ(λ, y, z)n = 2−i

(

n+ i− 1

i

)(

i

k

)(

m− 2k − 1

m− 3k

)

.

Substituting this expression into (10) and (8), together with some routine

algebra, we obtain the result described. 2

Note that setting k = 1 gives the expression

g(n+ 2, 1, m) =
(2n−m+ 3)!

(n−m+ 2)!2n−m+3

in Theorem 3.1(ii).
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