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Counting All Possible Ancestral Configurations of
Sample Sequences in Population Genetics

Yun S. Song, Rune Lyngsø, and Jotun Hein

Abstract— Given a setD of input sequences, a genealogy forD can be constructed backwards in time, using such evolutionary events
as mutation, coalescent and recombination. An ancestral configuration (AC) can be regarded as the multiset of all sequences present at a
particular point in time in a possible genealogy forD. The complexity of computing the likelihood of observingD depends heavily on the
total number of distinct ACs ofD, and therefore it is of interest to estimate that number. ForD consisting of binary sequences of finite
length, we consider the problem of enumerating exactly all distinct ACs. We assume that the root sequence type is known and that mutation
process is governed by the infinite-sites model. When there is no recombination, we construct a general method of obtaining closed-form
formulas for the total number of ACs. The enumeration problem becomes much more complicated when recombination is involved. In
that case, we devise a method of enumeration based on counting contingency tables and construct a dynamic programming algorithm
for the approach. Lastly, we describe a method of counting the number of ACs that can appear in genealogies with less than or equal
to a given numberR of recombinations. Of particular interest is the case in whichR is close to the minimum number of recombinations forD.

Index Terms—Ancestral configurations, coalescent, recombination, contingency table, enumeration

1 INTRODUCTION

ONE of the standard problems in mathematical population
genetics is to compute the likelihoodP (D) of observing

a given data setD under the assumed model of evolution.
The likelihoodP (D) can be defined as a formal sum over
all possible genealogies consistent withD. A genealogy, in
turn, can be viewed as a sequence of Markov states, and the
likelihoodP (D) can be determined, in principle, by summing
products of transition probabilities over all possible sequences
of states in a Markov chain with given initial and final states.
There are recursion relations for computingP (D) exactly[1],
[2], [15], but that approach quickly becomes infeasible as
data size grows, and one must then resort to Monte Carlo
methods [3], [5], [6], [7], [11], [12], [16]. Given a setD
of input sequences, a genealogy forD can be constructed
backwards in time, using such evolutionary events as mutation,
coalescent and recombination. An ancestral configuration (AC)
can be regarded as the multiset of all sequences present at a
particular point in time in a possible genealogy forD. For
both deterministic and stochastic approaches, the efficiency of
a method of computingP (D) depends heavily on the total
number of distinct ACs ofD.

In this paper, we address the problem of enumerating all
distinct ACs for a given data setD, consisting of binary
sequences of finite length. That is, we are interested in comput-
ing the total number of distinct ACs in all possible genealogies
that could have generatedD. If an AC appears in two or more
different genealogies, it is counted only once. We consider
both the classic coalescent [9], [10], in which recombination
is absent, and its extension where recombination is allowed.
When a mutation event occurs in a genealogy, then it always
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leads to a new AC in the genealogy, but a coalescent or a
recombination event may lead to an AC that has already been
encountered in the genealogy.

In the absence of recombination, genealogies can be rep-
resented by time-ordered binary trees, whereas a case with
recombination requires a more complicated graphical repre-
sentation called the ancestral recombination graph (ARG) [5].
It is well known that the coalescent with recombination is
considerably more difficult to study than the classic coalescent.
One obvious reason for that contrast is that there are many
more inequivalent ARGs than trees. As many computations of
interest—computingP (D), for example—involve studying a
set of genealogies consistent with the observed data, perhaps it
is not so surprising that including recombination in the model
of evolution poses many challenges. One of our goals here is
to illustrate more precisely why recombination is difficult to
study, by comparing the total number of ACs when there is
recombination with that when it is absent. It has been known to
many, if not most people in population genetics that there can
be many more ACs when there is recombination than when
it is absent, but we are not aware of any work that tried to
examine exactly by how much.

As mentioned above, when there are many ACs, solving re-
cursion relations to computeP (D) exactly is often infeasible.
In such a case, we are interested in asking whether it would
be possible to approximate the true recursion by a “collapsed”
recursion, in which ACs are lumped together, such that we
just need to consider transitions, with appropriately defined
probability, between lumped ACs to estimateP (D). We show
in this paper that this idea of lumping ACs works at least
in the context of our enumeration problem. What we achieve
here can be viewed as a small step towards meeting our desired
goal.

In our work, we assume the infinite sites model of mutation,
which means that there can be at most one mutation per
site. Hence, the input data can be regarded as defining a
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set of binary sequences. For ease of discussion, we assume
that the root sequence is known, and use0 to denote the
ancestral type at the root and1 to denote a mutant type.
We remark that the techniques described in this paper can
be generalized to the root-unknown case. When there is no
recombination, we construct a general method of obtaining
closed-form formulas for the total number of ACs; these for-
mulas are polynomials in the multiplicity of distinct sequences
in D. We have implemented this method inMathematica
and the program is calledaceTrees (short for “ancestral
configuration enumeration for trees”). As expected, the enu-
meration problem becomes much more complicated when
recombination is involved. In that case, we discuss a method
based on counting non-negative integer valued tables with
fixed row and column sums, commonly known as contingency
tables. For two sites, we show how a closed-form formula can
be obtained. For an arbitrary number of sites, we construct a
dynamic programming algorithm for counting ACs. We have
implemented this algorithm inC++ ; the software is called
aceARGs (short for “ancestral configuration enumeration for
ARGs”). Lastly, we discuss a method of counting the number
of ACs that can appear in ARGs with less than or equal to
a given numberR of recombinations. Of particular interest
is the case in whichR is (or is close to) the minimum
number of recombinations forD. We have implemented this
algorithm inC; the software is calledgreven . This method
interpolates between the case where there is no recombination
and the case where an arbitrary number of recombinations are
allowed. As it should,greven agrees withaceTrees and
aceARGs in those two respective limits. As a further check,
we have made alternative, independent implementations of all
three programs inPython. All our programs implementing the
methods discussed in this paper are available upon request.

The organization of this paper is as follows. In Section 2, we
consider the problem of enumerating ACs when there is no re-
combination, in which case genealogies can be represented by
coalescent trees. Mitochondria data from [17] are considered
there as an example. By counting the total number of ACs,
we illustrate why an exact computation of the likelihood is
difficult for that data. The aforementioned method of counting
ACs in unconstrained recombination graphs is discussed in
Section 3. We compare the number of ACs in coalescent trees
with that in ARGs and highlight their differences. In Section 4,
we consider enumerating ACs that can appear in ARGs with at
mostR recombinations. We conclude in Section 5 with some
general remarks on our work.

2 ANCESTRAL CONFIGURATIONS IN COALES-
CENT TREES

In this section, we focus on the case in which the evolution
under the infinite-sites model can be represented by a tree.
A given data setD is compatible with a tree if it passes the
three gamete test: for every pair of sites, not all of the allele
types01, 10 and 11 appear in the data. If the three gamete
test is passed, then there exists a unique perfect phylogenyτ
for D [4], [8], with at most one mutation per site, but it is
important to note that in general there are many coalescent

trees consistent withτ . (Recall that, unlike coalescent trees,
a perfect phylogeny may be non-binary and that relative time
ordering of two of its interior vertices is not defined if one
vertex is not a descendant of the other.)

2.1 Definition of an ancestral configuration

In our algorithm for counting ACs, we partition the in-
formation contained in a configuration into two parts, one
encoding sequence types and the other their multiplicity. We
use x1, . . . ,xd to denoted distinct finite binary sequences
(allele types)xi of some fixed length—for example,x1 =
0100,x2 = 0010, andx3 = 1100, with d being3. We define
T = (x1, . . . ,xd) and n = (n1, . . . nd), where ni > 0,
for all i ∈ {1, . . . , d}, denote their multiplicity. We say
that (T,n) and (T ′,n′) are equivalent, denoted(T,n) ∼
(T ′,n′), if there exists a permutationσ ∈ Sd such that
(Tσ,nσ) = (T ′,n′), where Tσ = (xσ(1), . . . ,xσ(d)) and
nσ = (nσ(1), . . . , nσ(d)). By a configuration, we mean an
equivalence class[T,n] ∈ {(T,n)}/∼.

As we describe presently, every coalescent tree defines a
sequence of configurations. Consider a data setD = [T,n],
where T = (x1, . . . ,xd) and n = (n1, . . . , nd). A con-
figuration is said to beancestral to D if it “appears” in
at least one possible coalescent tree that derivesD. (Note
that D is ancestral to itself according to this definition.)
Let us illustrate this definition through a specific example.
Consider the simple exampleD = [(1, 0), (2, 2)], consisting
of four binary sequences of length one. There are several
coalescent trees that can give rise toD under the infinite-sites
model of mutation. Three of them are shown in Figure 1. A
cross-section, corresponding to a particular time slice, of a
coalescent tree defines an AC. Going backwards in time, con-
figuration changes whenever either a mutation or a coalescent
event occurs.

For D = [(1, 0), (2, 2)], the seven configurations shown in
Figure 1 form a complete set of configurations ancestral to
D; i.e. any configuration appearing in a coalescent tree forD
must be one of the seven configurations. The corresponding
Markov chain transition graphCD, where vertices correspond
to the ACs forD and edges correspond to allowed transitions,
is as shown in Figure 2. This graph shows that the sequence
of ACs arising in any coalescent tree forD must be one of
the following:

ψ1 → ψ2 → ψ4 → ψ6 → ψ7,
ψ1 → ψ2 → ψ5 → ψ6 → ψ7,
ψ1 → ψ3 → ψ5 → ψ6 → ψ7.

In general, every coalescent tree compatible with any given
data setD starts in the configuration corresponding toD
and ends in the configuration consisting of a single all-zero
sequence (corresponding to the most recent common ancestor).

Let Pi,j denote some appropriately-defined transition prob-
ability corresponding to the transitionψi → ψj . Then the
probability of the sequenceψi1 → ψi2 → . . . → ψik

can be
defined asPi1,i2Pi2,i3 · · ·Pik−1,ik

. In [1], Ethier and Griffiths
showed that the probability of observingD can be obtained
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ψ2 = [(1, 0), (1, 2)]

ψ1 = D = [(1, 0), (2, 2)]

ψ3 = [(1, 0), (2, 1)]

ψ4 = [(0), (3)]

ψ5 = [(1, 0), (1, 1)]

ψ6 = [(0), (2)]

ψ7 = [(0), (1)]

ψ4

Fig. 1. Coalescent trees and ancestral configurationsψ1, . . . , ψ7. A cross-section, corresponding to a particular time slice, of a tree defines an AC.

ψ6 ψ7

ψ2 ψ4

ψ3 ψ5

ψ1

Fig. 2. Markov chain transition graphCD for D = [(1, 0), (2, 2)]. Dashed
lines denote mutation events, while solid lines denote coalescent events.
This directed graph is acyclic and contains 3 distinct paths from the initial
configurationψ1 = D to the absorbing configurationψ7.

by summing such probabilities over all possible sequences of
ACs. In the exampleD = [(1, 0), (2, 2)] considered above,

P (D) = P1,2 P2,4 P4,6 P6,7 + P1,2 P2,5 P5,6 P6,7

+P1,3 P3,5 P5,6 P6,7.

Ethier and Griffiths[1] formulated a recursion for evaluating
P (D). In general, computingP (D) exactlyusing the recursion
becomes infeasible when sample size is large, and one must
then resort to Monte Carlo methods (see [6], [7]). In what
follows, we develop a method of counting exactly the total
number of inequivalent ACs of an arbitrary data setD. This
kind of enumeration should prove useful for studying when
exact computation ofP (D) becomes infeasible.

2.2 Enumeration of ACs: A general solution

We now describe a general, efficient method of obtaining
closed-form formulas for the total number of inequivalent ACs.
The actual ACs themselves can easily be extracted from our
method.

2.2.1. Notation

For ease of discussion, we first introduce some useful
notation. We use1k to denote ak-tuple of 1s, andei to
denote a vector with a1 at theith entry and0s elsewhere; the
length of ei will be clear from the context of its usage. For
n = (n1, . . . , nk), defineπ(n) :=

∏k
i=1 ni. Let Di denote

a deletion operator which, when acting on a vector of length
k ≥ i, deletes theith entry of the vector, thus changing its
length tok−1. Let Ri;z denote a replacement operator which
replaces theith entry of a vector withz.

Let T = (y1, . . . ,yk) and µ = (µ1, . . . , µk). As usual,
y1, . . . ,yk are k distinct binary sequences. InT , a site is
called a singlet if there is exactly one allele typeyi ∈
{y1, . . . ,yk} with value1 at that site. Here, note thatµi need
not be1. In T = (100, 101, 010), for example, sites two and
three are singlets. Leta be a singlet site andyi the unique
allele type with a1 at that site. Withya

i denoting the allele

type obtained fromyi after the1 at site a mutates to a0,
defineMa(T ,µ) as{

(Ri;ya
i
(T ),Ri;1(µ)), if ya

i /∈ {y1, . . . ,yk},
(Di(T ),Di(µ + ej)), if ya

i = yj ∈ {y1, . . . ,yk}.

Since a singlet sitea uniquely determinesi, we omit i in
writing Ma(T ,µ). In the exampleT = (100, 101, 010) con-
sidered above, the unique allele type associated witha = 2 is
y3, andy2

3 = (000) is not in{y1,y2,y3}. Fora = 3, the asso-
ciated unique allele type isy2, andy3

2 = (100), which is equal
to y1. Hence,M2(T ,µ) = ((100, 101, 000), (µ1, µ2, 1)) and
M3(T ,µ) = ((100, 010), (µ1 + 1, µ3)).

2.2.2. Coalescent and mutation events

Consider a data setD = [T,n]. The multiplicity ni of an
allele typexi decreases by exactly one when two sequences of
that allele type coalesce. The number of ACs with allele types
T is therefore equal toπ(n), which is equal to 1 (for[T,n]
itself) plus the number of configurations that can be reached
from [T,n] via coalescent events only. When every allele type
has coalesced completely, we end up with the configuration
[T,1d].

In T = (x1, . . . ,xd), suppose thatxi is the only allele
type with a 1 at site a. Consider a configuration[T,m]
with mi = 1, reached by some coalescent events starting
from [T,n]. Now, a mutation event can occur to change the
character ofxi at sitea from 1 to 0, making[T,m] jump to a
different configuration[T ′,m′], whereT ′ 6= T . Let xa

i denote
the allele type obtained after such a mutation event. There are
two possible cases. First, ifxa

i is equal to one of the alleles
in T , sayxj , then the configuration after the mutation event
is [Di(T ),Di(m + ej)]. Note that the multiplicity ofxj has
increased by one. How many configurations are there with
allele typesDi(T )? For k 6= i and k 6= j, the multiplicity
of xk can be any integer betweennk and 1; independently
of the mutation event, coalescent events within allele typexk

can reduce the multiplicity fromnk to 1. Further, since the
multiplicity of xj increases by1 after the mutation event, it
can range fromnj+1 to 1. Hence, the total number of possible
ACs with allele typesDi(T ) is π(Di(n+ej)). Second, ifxa

i

is not equal to any allele inT , then the configuration after
the mutation event is[Ri;xa

i
(T ),m]. Note that we still have

mi = 1. How many configurations are there with allele types
Ri;xa

i
(T )? Similar to the first case, sincem is bounded by

Ri;1(n) and1d, the number of configurations with allele types
Ri;xa

i
(T ) is π(Ri;1(n)).
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2.2.3. A graph construction algorithm

Our method of counting ACs is to deal with coalescent
events for each allele type configurationT combinatorially and
find all possible allele type configurations using a simple graph
construction algorithm. More precisely, the general idea goes
as follows. For a given input data setD, suppose that there
are ACs withT as allele type configuration. If the maximum
multiplicity of T over all such ACs isµ, then, as discussed
above, a simple coalescent argument shows that the total num-
ber of ACs with allele type configurationT is π(µ). Hence, if
we know all possible allele type configurationsT1, T2, . . . , Tp

and their maximum multiplicityµ1,µ2, . . . ,µp, respectively,
then we can easily determine the total number of ACs ofD by
summing overπ(µj). Our graph construction algorithm below
finds suchT1, T2, . . . , Tp andµ1,µ2, . . . ,µp.

We wish to construct a directed graphGD where a vertex
vj is labeled by(Tj ,nj), to be determined by the following
iterative procedure:

1. Given a data setD = [T,n], let GD initially be a
graph with no edges and withv1 = (T,n) as its only
vertex. Here,(T,n) is an arbitrary representative of the
equivalence class[T,n].

2. Let V0 denote the set of all vertices inGD with out-
degree zero. For allvj = (Tj ,nj) ∈ V0, determine the
setSvj of singlet sites (defined above) inTj .

3. If Svj
= ∅ for all vj = (Tj ,nj) ∈ V0, terminate

the procedure. Otherwise, arbitrarily orderV0 and se-
quentially carry out the following steps forvj satisfying
Svj

6= ∅: DetermineMa(Tj ,nj) for all a ∈ Svj
. If

Ma(Tj ,nj) = vk ∈ GD, draw a directed edge fromvj

to vk. If not, then addvk = Ma(Tj ,nj) to GD and
draw a directed edge fromvj to vk.

4. Go back to step 2.

The graphGD compactly encodes all possible ACs. In a
vertex vj = (Tj ,nj) ∈ GD, Tj captures the set of distinct
binary strings, whereasnj determines the range of possible
multiplicity of the strings; i.e. if there arer distinct binary
sequences inTj , then the multiplicity can be anything between
nj and1r. Further, it is straightforward to show that ifvj and
vk are two distinct vertices inGD, thenTj 6= Tk. The total
numberα(D) of configurations ancestral toD is therefore
given by

α(D) =
∑

i∈V (GD)

π(ni), (2.1)

whereV (GD) is the index set of the vertices inGD. We have
implemented the above algorithm inMathematica. For a given
data setD = [(x1, . . . ,xd), (n1, . . . , nd)], our program gen-
erates closed-form formulas forα(D) in terms ofn1, . . . , nd.

(REMARK : We have an independent program, to be discussed
later, that can exhaustively search through evolutionary histo-
ries to compute the number of ACs. That program can be used
to analyze small sample sizes (usually less than 30 sequences).
We have checked that it produces the same answers as does
our combinatorial method described above.)

v1 = ((100, 110, 001), (n1, n2, n3))
v2 = ((100, 001), (n1 + 1, n3))
v3 = ((100, 110, 000), (n1, n2, 1))
v4 = ((100, 000), (n1 + 1, 1))
v5 = ((000, 001), (1, n3))
v6 = ((000), (2))

v4

v1 v6

v3 v5

v2

Fig. 3. Application of our enumeration algorithm toD =
[(100, 110, 001), (n1, n2, n3)]. Shown on the right hand side is the final
graphGD constructed by our algorithm.

TABLE 1

Mitochondria data from [17], consisting of 63 sequences and 18 segregating

sites. There are413, 243, 616 ACs for this data set.

Haplotype Multiplicity
1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 2
1 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 2
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 3
0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 19
0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1

2.3 A toy example

Consider the data setD = [(100, 110, 001), (n1, n2, n3)],
where n1, n2, and n3 are some arbitrary positive integers.
Applying the algorithm from Section 2.2 leads to the graph
GD illustrated in Figure 3. From (2.1), the total number of
configurations ancestral toD is thus given by

α(D) =
6∑

i=1

π(ni)

= n1n2n3 + n3(n1 + 1) + n1n2 + (n1 + 1) + n3 + 2
= n1(n2 + 1)(n3 + 1) + 2n3 + 3.

2.4 Mitochondria DNA data

We now consider the data set from Wardet al.[17], which
consists of sequences from the control region of mitochondria
DNA (mtDNA), sampled from 63 individuals in a single
Amerindian tribe. There are 18 segregating sites in the data,
shown in Table 1.

Computing the likelihood of observing a given data set
is important—for example, for parameter estimation—but, as
mentioned in Section 2.1, doing it exactly is infeasible when
sample size is large. The same mtDNA data set was considered
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0∗10∗∗∗ ∗∗∗∗∗∗1

0∗10∗∗1

(b)

∗∗∗1011001∗∗∗∗

0011011

(a)

(c)

0111011

0111011

∗∗∗1011 ∗1100∗0

01100∗0

0∗10∗∗∗
(d)

Fig. 4. Illustration of possible events. Time flows from top to bottom. (a) and
(b) are examples of recombination events. Lets[i : j] denote the substring ofs
in-betweeni andj, inclusive. Going backwards in time, when a recombination
event is encountered, the lineage of a sequences[1 : L] breaks up into two
parts, one corresponding to the lineage of a sequences1 whose prefixs1[1 : k]
is identical tos[1 : k] and the other corresponding to the lineage of a second
sequences2 whose suffixs2[k+1 : L] is identical tos[k+1 : L]. The suffix
s1[k+1 : L] and the prefixs2[1 : k] carry non-ancestral material, denoted by
“∗”s. (c) and (d) are examples of coalescent events. Two sequencess1 ands2
can coalesce if their characters are identical at common ancestral positions.
The final sequence contains the union of the ancestral material ins1 ands2.

by Griffiths and Tavaŕe [6], who developed a Markov chain
Monte Carlo method to analyze the data. Our goal here is
to compute the total number of inequivalent ACs of the data,
thus illustrating why computing the likelihood exactly using
recursions is difficult.

Let T = (x1, . . . ,x14) denote the14 distinct haplotypes
shown in Table 1, withxi being the ith row. Applying
our algorithm from Section 2.2 toD = [T, (n1, . . . , n14)]
generates a directed graphGD with 12, 896 vertices, and
one can easily obtain a closed-form formula, which is too
long to write down here, for the total numberα(D) of
ACs. For n = (1, 1, . . . , 1), α(D) = 128, 640. For n =
(2, 2, 1, 3, 19, 1, 1, 1, 4, 8, 5, 4, 3, 1), which being the multiplic-
ity of the actual data,α(D) = 413, 243, 616.

3 ANCESTRAL CONFIGURATIONS IN UNCON-
STRAINED ARGS

In this section, we turn to enumerating ancestral con-
figurations in unconstrained ancestral recombination graphs
(ARGs)[5]. This case is much more complicated than the
classic coalescent case, and, in general, it is difficult to obtain
closed-form formulas for the number of ACs. Below we trans-
late the problem of counting ACs into counting contingency
tables and provide a dynamic programming algorithm.

3.1 Definition of an AC in ARGs

In the absence of recombination, if the input dataD contains
n sequences, then any configuration ancestral toD contains at
mostn sequences. This is no longer true when recombinations
are allowed. Going backwards in time, when a recombination
event is encountered, the lineage of a sequence breaks up into
two parts, distributing its ancestral material to two different

sequences which carry additional non-ancestral material (de-
noted by “∗”s). This concept is illustrated in Figure 4, where
possible coalescent events are also described. To simplify
things, we assume that recombination breakpoints occur at
the midpoints of consecutive sites inD. Hence, ifD consists
of some segregating sites in a regionX, the distribution of
ancestral material between two consecutive segregating sitesi
andi+ 1 in X is completely determined by the configuration
at sitesi and i+ 1.

Of particular interest is a class of ARGs in which, for any
recombination event, both the prefix and the suffix involved in
a recombination event contain some ancestral material. Such
a class of ARGs was the main focus of [5], and we also
limit our attention to such ARGs in this paper. Hence, for
our purpose, a sequence appearing in an ARG is generally a
string over{0, 1, ∗}, but the all-∗ string is not allowed. As
before,0 denotes the ancestral type at the root and1 denotes
a mutant type. A configuration is defined as in Section 2.1,
except that now strings are defined over{0, 1, ∗}. To every
ARG, there corresponds a sequence of configurations, which
can be viewed as generating the ARG backwards in time.
Given a data setD, a configuration is said to beancestraltoD
if it appears in at least one possible sequence of configurations
that corresponds to some ARG consistent withD. Shown in
Figure 5 is a sequence of ACs and its corresponding ARG.
It is important to note that there are many—in fact, infinitely
many—distinct ARGs that can derive the same initial data,
and that the total number of ACs can be immensely large.
This is the main point that we wish to illustrate in this paper.
For the simple exampleD = [(10, 11, 01), (1, 1, 2)] considered
in Figure 5, there are only 220 ACs in total. We shall soon
see that, as the number of sites and the number of sequences
increase, the total number of ACs grows extremely fast.

3.2 A warm-up example

Before we plunge into the core of our enumeration
work, let us consider a simple example for which it
is not too difficult to obtain a complete set of ACs
by hand. The reader not too familiar with the ARG is
recommended to go through this example. Consider the
initial dataD = [(00, 11), (1, 1)]. If recombinations are not
allowed, then it is clear that there are only5 ACs, namely
[(00, 11), (1, 1)], [(00, 01), (1, 1)], [(00, 10), (1, 1)], [(00), (2)],
and [(00), (1)]. In the presence of recombination, there are
30 ACs, shown in Figure 6. These ACs can be generated
iteratively by asking what happens to a given AC under a
mutation, a coalescent or a recombination event; note that
some of these events may not be possible, depending on
the AC. On the right hand side of Figure 6 is a Markov
chain transition graphCD, depicting the possible transitions
between ACs. Note that the graphCD contains directed
cycles. AC 1 is the initial configuration, and AC 21 is called
the grand common ancestor. To any ARG with the grand
common ancestor as the root, there corresponds a unique path
from AC 1 to AC 21.
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Ancestral Configurations

1 : [(10, 11, 01), (1, 1, 2)] 4 : [(10, 01), (1, 2)] 7 : [(00), (2)]

2 : [(10, 1∗, ∗1, 01), (1, 1, 1, 2)] 5 : [(00, 01), (1, 2)] 8 : [(00), (1)]

3 : [(10, 1∗, 01), (1, 1, 2)] 6 : [(00, 01), (1, 1)]

m2

11 01 0110

1
2
3

00

5
6
7
8

4 Time
m1

Fig. 5. A sequence of ACs forD = [(10, 11, 01), (1, 1, 2)] and its corresponding ARG. Filled circles denote mutation events. Open circle denotes a
recombination event with breakpoint between the first and the second sites. Mutation events at the first and the second sites are denoted bym1 andm2,
respectively. Note that there are other ARGs that could have generatedD. In total, there are 220 ACs ofD.

Ancestral Configurations

1 : [(00, 11), (1, 1)] 11 : [(00), (2)] 21 : [(00), (1)]
2 : [(0∗, ∗0, 11), (1, 1, 1)] 12 : [(0∗, 10, ∗1), (1, 1, 1)] 22 : [(01, 10), (1, 1)]
3 : [(00, 1∗, ∗1), (1, 1, 1)] 13 : [(∗0, 01, 1∗), (1, 1, 1)] 23 : [(0∗, ∗0), (2, 2)]
4 : [(00, 10), (1, 1)] 14 : [(0∗, ∗0, ∗1), (2, 1, 1)] 24 : [(0∗, ∗0, ∗1), (1, 1, 1)]
5 : [(00, 01), (1, 1)] 15 : [(0∗, ∗0, 1∗), (1, 2, 1)] 25 : [(0∗, ∗0, 1∗), (1, 1, 1)]
6 : [(0∗, ∗0, 1∗, ∗1), (1, 1, 1, 1)] 16 : [(01, ∗0), (1, 1)] 26 : [(00, ∗0), (1, 1)]
7 : [(0∗, ∗0, 01), (1, 1, 1)] 17 : [(0∗, ∗0, 00), (1, 1, 1)] 27 : [(00, 0∗), (1, 1)]
8 : [(0∗, ∗0, 10), (1, 1, 1)] 18 : [(0∗, 10), (1, 1)] 28 : [(0∗, ∗0), (1, 1)]
9 : [(00, 0∗, ∗1), (1, 1, 1)] 19 : [(00, ∗1), (1, 1)] 29 : [(0∗, ∗0), (2, 1)]
10 : [(00, 1∗, ∗0), (1, 1, 1)] 20 : [(00, 1∗), (1, 1)] 30 : [(0∗, ∗0), (1, 2)] 28

27

26

25

22

24

23

30

29

11

10

9

6

8

7

4

3

2

1

5

12

13

21

20

19

18

14

15

17

16

Fig. 6. Configurations ancestral toD = [(00, 11), (1, 1)] and the Markov chain transition graphCD . Mutation events are denoted by dashed arrows.
Coalescent and recombination events are denoted by solid arrows. Note that some solid arrows are bidirectional, one direction for recombination and the other
for coalescent. Unidirectional arrows denote coalescent events.

3.3 Possible number of1s and 0s in an AC

Let n denote the total number of binary sequences inD,
with each sequence being of lengthL. Letni

0 (resp.ni
1) denote

the total number of 0s (resp. 1s) at sitei. Note thatni
0+n

i
1 = n

for all i ∈ {1, . . . , L}. (ForD = [(10, 01, 11), (2, 3, 1)], n1
0 =

3, n1
1 = 3 for the first site andn2

0 = 2, n2
1 = 4 for the second

site.) Letri
0 and ri

1 denote the total number of0s and of1s,
respectively, at sitei in an arbitrary ACψ. The infinite-sites
model of mutation imposes constraints on possible values of
(ri

0, r
i
1). For ni

1 6= 0, a mutation event at sitei can occur in
AC ψ only if ri

1 = 1. If ri
1 = 1 and the mutation event occurs,

then ACψ jumps to a new ACψ′ with (ri
0 +1) 0s and no1s.

To determine the possible range ofri
0 and ri

1, let us first
consider theL = 1 case. Since every sequence is of length one,
it follows from the above discussion that there existsexactly
one AC for any pair(r10, r

1
1) ∈ I(n1

0, n
1
1), whereI(n0, n1) is

defined as the set of all non-negative integer pairs(p, q) such
that if n0 6= 0 andn1 6= 0, then

either (i) 1 ≤ p ≤ n0 and1 ≤ q ≤ n1,
or (ii) 1 ≤ p ≤ n0 + 1 andq = 0; (3.2)

if n0 = 0 andn1 = n, then

either (i) p = 0 and1 ≤ q ≤ n,
or (ii) p = 1 andq = 0; (3.3)

and, if n0 = n andn1 = 0, then

1 ≤ p ≤ n andq = 0. (3.4)

There aren0(n1 + 1) + 1 possible values of(p, q) in the first
case,n + 1 in the second, andn in the last. There exists no
AC with r10 0s andr11 1s if (r10, r

1
1) /∈ I(n1

0, n
1
1). Now comes

a crucial point. Even forL > 1, if an arbitrary number of
recombination events are allowed, there existsat least one
AC for any combination of(r10, r

1
1), . . . , (r

L
0 , r

L
1 ) satisfying

(ri
0, r

i
1) ∈ I(ni

0, n
i
1), for all i ∈ {1, . . . , L}. There exists no

AC with ri
0 0s and ri

1 1s at sitei if (ri
0, r

i
1) /∈ I(ni

0, n
i
1).

One way to see these points is as follows. Starting from
the input dataD, use recombination events to distribute the
ancestral material of the first sequence toL new sequences,
each carrying exactly one ancestral site. Do the same for all
other sequences inD, so that we end up withn ·L sequences,
each carrying exactly one ancestral site. Then, determining the
range ofri

0 andri
1 for each sitei reduces to theL = 1 case.

We stress that the above statement would not hold forL > 1
in the absence of recombination (or if too few recombination
events are allowed). For example, considerD = [(01), (2)].
In the absence of recombination, there is no AC withr10 = 1
andr21 = 2.

3.4 Important observations

We now highlight a couple of important facts. First, the set
of ACs does not depend on the order of0s and1s within
a site when arbitrary number of recombinations are allowed.
For instance,[(01, 10), (1, 1)] has the same set of ACs as
the example[(00, 11), (1, 1)] considered in Section 3.2 (see
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Figure 6). This fact can easily be explained as follows. LetD
andD′ be two data sets of the same size, such that theith site
of D is equal to theith site ofD′ up to some rearrangement
of elements within the site. Then,D can be transformed into
D′, or vice versa, using a series of appropriate recombination
and coalescent events. It therefore follows thatD andD′ have
the same set of ACs.

Second, if two input data setsD andD′ differ by some
permutationσ of their sites, then they have the samenumber
of ACs. Any AC ofD can be transformed into an AC ofD′

via σ, and vice versa.
For D a data set containingn sequences of lengthL,

let X(D) = {(n1
0, n

1
1), . . . , (n

L
0 , n

L
1 )} denote the multiset of

ordered pairs(ni
0, n

i
1), whereni

0 andni
1 are the total number

of 0s and1s, respectively, at sitei of D. Then, the above two
facts together imply that two data setsD and D′ have the
same number of ACs ifX(D) = X(D′) as multisets.

3.5 Main idea: Counting restricted contingency tables

We here describe our method of counting ACs. Intuitively,
our approach is to construct ACs moving along the sites, say
from left to right. Given that we have constructed ACs for
the first k − 1 sites, we construct ACs for the firstk sites
by appending additional material (i.e.,0, 1 or ∗) to the right.
We iterate this procedure until the last site is processed. As
we describe below, this procedure of extending ACs can be
translated into constructing contingency tables, where column
sums are partially determined by the multiplicity of the strings
in the AC that is being extended (i.e., an AC for the firstk−1
sites) and row sums are partially determined by the allowed
numbers of0s and1s at sitek (c.f., Section 3.3).

3.5.1. Extending an AC

Suppose thatψ is an AC for the firstk − 1 sites. Further
suppose thatψ containsd distinct strings, with multiplicity
c1, c2, . . . , cd satisfying c1 + c2 + · · · + cd = c. Since ψ
is an AC for the firstk − 1 sites, it does not contain any
all-∗ string of lengthk − 1. However, a strings in an AC
for the first k sites may contain the all-∗ string of length
k − 1 as its prefix, if the character at thekth site of s
is either 0 or 1, but not ∗. For illustration, considerD =
[(0001, 0000, 1101, 1110), (1, 1, 1, 1)]. An AC for the first two
sites is shown in Figure 7a, where we simply list strings to
represent the AC. It hasc = 4 and the multiplicity of “00” is
2, while every other sequence type has multiplicity1. In any
AC for the first two sites, the string “∗ ∗” is not allowed, but
“∗∗0” or “ ∗∗1” may appear in an AC for the first three sites.
Shown in Figures 7b-d are three examples of ACs for the first
three sites; they each contain “∗ ∗ 0”. The all-∗ string “∗ ∗ ∗”
is not allowed in any AC for the first three sites.

In an AC for the firstk sites, how many0s and1s can be
present at sitek? We have already answered that question in
Section 3.3; i.e. the numberr0 of 0s and the numberr1 of
1s satisfy(r0, r1) ∈ I(nk

0 , n
k
1), wherenk

0 andnk
1 respectively

denote the number of0s and1s at sitek in the input data
D. How about the numberr∗ of ∗s at sitek? Since an all-∗
string of length-k is not allowed,r∗ is bounded from above,
while the minimum value ofr∗ is determined by the total

number of strings inψ and the number of non-∗ characters
at site k. A moment’s thought leads to the conclusion that
max(c − r0 − r1, 0) ≤ r∗ ≤ c. Similarly, the numberc∗ of
all-∗ prefixes of lengthk − 1 satisfiesmax(r0 + r1 − c, 0) ≤
c∗ ≤ r0 + r1. Note thatc∗ and r∗ must satisfyc + c∗ =
r0 + r1 + r∗ for consistency. In Figures 7b-d, the ACs shown
have(r0, r1) = (4, 0) ∈ I(3, 1) and r∗ = 1 at site three, and
each AC has exactly one sequence containing “∗ ∗” as a prefix
of length 2 (i.e.,c∗ = 1). As required,c+ c∗ = r0 + r1 + r∗.

3.5.2. Restricted contingency tables

As above, letψ be an AC for the firstk−1 sites containing
d distinct strings. The pairing of a length-(k − 1) string inψ
or a length-(k − 1) all-∗ string with a character at sitek can
be concisely summarized by a table of the following form:

row sums
A0,1 · · · A0,d A0,∗ r0
A1,1 · · · A1,d A1,∗ r1
A∗,1 · · · A∗,d 0 r∗

column sums: c1 · · · cd c∗

For j = 1, . . . , d, a particular entryAi,j corresponds to the
multiplicity of a length-k string obtained from appending
characteri to the right of a length-(k − 1) string of typej in
ψ, whereasAi,∗ corresponds to the multiplicity of a length-k
string obtained from appending characteri to the right of an
all-∗ string of lengthk−1. To avoid generating an all-∗ string
of length-k, we impose the conditionA∗,∗ = 0. A column
sumcj , for j = 1, . . . , d, is given by the multiplicity of string
type j in ψ, and row sumsr0 and r1, respectively denoting
the number of0s and1s at sitek in the corresponding new
AC, satisfy (r0, r1) ∈ I(nk

0 , n
k
1) (see Section 3.3). Further,

as described above, the numberc∗ of all-∗ prefixes of length
k− 1 and the numberr∗ of ∗s at sitek satisfymax(c− r0 −
r1, 0) ≤ r∗ ≤ c, max(r0 + r1 − c, 0) ≤ c∗ ≤ r0 + r1, and
c1+· · ·+cd+c∗ = r0+r1+r∗. The number of non-zero entries
in the above contingency table gives the number ofdistinct
length-k strings in the corresponding new AC. In the next
iteration, non-zeroAi,j will appear as possible column sums
when constructing contingency tables for sitek+1. Returning
to our example, contingency tables corresponding to the ACs
discussed before are shown in Figures 7b-d. In Figure 7b,
all strings in the AC are distinct, and the corresponding
contingency table contains only1s as non-zero entries. In
Figures 7c and 7d, the string000 has multiplicity 2, and the
entryA0,1, which corresponds to the multiplicity of the length-
3 string obtained from appending0 to the right of00, is 2.

In summary, there is a one-to-one correspondence be-
tween non-negative integer valued contingency tables de-
scribed above and ACs for the firstk sites that can be created
by appending0s, 1s and∗s to the right of the strings in an
AC for the firstk− 1 sites. Hence, we can enumerate ACs by
counting contingency tables.

Since the table described above hasA∗,∗ = 0, we call it a
restricted contingency table with row sumsr = (r0, r1, r∗)
and column sumsc = (c1, . . . , cd, c∗). If the entry A∗,∗
were not restricted to be zero, we would have a standard
(or an unrestricted) contingency table with row sumsr and
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(a) 0 0
0 0
1 ∗
∗ 1

 c1 = 2
c2 = 1
c3 = 1

(b)


0 0 ∗
0 0 0
1 ∗ 0
∗ 1 0
∗ ∗ 0


1 1 1 1 4
0 0 0 0 0
1 0 0 0 1
2 1 1 1

(c)


0 0 0
0 0 0
1 ∗ ∗
∗ 1 0
∗ ∗ 0


2 0 1 1 4
0 0 0 0 0
0 1 0 0 1
2 1 1 1

(d)


0 0 0
0 0 0
1 ∗ 0
∗ 1 ∗
∗ ∗ 0


2 1 0 1 4
0 0 0 0 0
0 0 1 0 1
2 1 1 1

Fig. 7. Constructing ACs forD = [(0001, 0000, 1101, 1110), (1, 1, 1, 1)] by extending strings. For clarity of illustration, ACs are represented as lists of
strings inside[ ]; a string is read horizontally. (a) An AC for the first two sites. (b)-(d) ACs and their corresponding restricted contingency tables obtained
from extending the AC in (a) by an additional column withr0 = 4, r1 = 0, r∗ = 1. Note thatc∗ = 1 in (b)-(d), thus satisfyingc+ c∗ = r0 + r1 + r∗.

column sumsc. Restricted and unrestricted contingency tables
are related as follows. LetNu(r, c) denote the number of
unrestrictedcontingency tables with column sumsc and row
sumsr. Similarly, letNr(r, c) denote the number ofrestricted
contingency tables with row sumsr and column sumsc.
For r = (r0, r1, r∗) and c = (c1, . . . , cd, c∗), define r′ =
(r0, r1, r∗ − 1) and c′ = (c1, . . . , cd, c∗ − 1). Then, it is
straightforward to show that

Nr(r, c) =
{
Nu(r, c)−Nu(r′, c′) if r∗ ≥ 1 andc∗ ≥ 1,
Nu(r, c) otherwise.

(3.5)
We have not yet discussed how to obtain the total number

of ACs. The case with two sites is amenable to analytic
techniques. For more than two sites, we propose a solution
via dynamic programming. These topics are subsequently
discussed in the next two subsections.

3.6 Counting ACs for two sites

If there are only two sites inD, we only need to consider
contingency tables of size3× 3. This simplifies the problem
considerably, and it is possible to sum over all necessary3×3
contingency tables explicitly to obtain closed-form formulas.
We describe this analytical result below.

It follows from the discussion in the previous section that
the number of ACs withc0 0s andc1 1s at the first site and
r0 0s andr1 1s at the second site is given by the following
sum of restricted contingency table numbers:

r0+r1+c0+c1∑
j=max(r0+r1,c0+c1)

Nr

(
(r0, r1, j − r0 − r1), (c0, c1, j − c0 − c1)

)
,

where the sum overj accounts for the allowed values ofc∗
andr∗. By using (3.5), this sum can be shown to be equal to
Nu((r0, r1, c0+c1), (c0, c1, r0+r1)). Hence, the total number
β(D) of ACs for the case with two sites is∑

(c0, c1) ∈ I(n1
0, n1

1),

(r0, r1) ∈ I(n2
0, n2

1)

Nu((r0, r1, c0 + c1), (c0, c1, r0 + r1)),

(3.6)
where, as before,I(ni

0, n
i
1) determines the allowed number of

0s and1s at sitei.
The key observation is that the expression shown in (3.6)

can be summed explicitly. A3 × 3 unrestrictedcontingency
table of the form

row sums
a b v r0
c d w r1
x y z c0 + c1

column sums: c0 c1 r0 + r1

has only 4 degrees of freedom; once the entriesa, b, c, d
are chosen, the other entries get fixed by given row and
column sums. Moreover,a, b, c, d satisfy the following set of
constraints:

0 ≤ a+ b ≤ r0,
0 ≤ c+ d ≤ r1,
0 ≤ a+ c ≤ c0,
0 ≤ b+ d ≤ c1.

These constraints imply

a ∈ A = {0, . . . ,max(c0, r0)},
b ∈ B = {0, . . . ,min(c1, r0 − a)},
c ∈ C = {0, . . . ,min(r1, c0 − a)},
d ∈ D = {0, . . . ,min(r1 − c, c1 − b)},

and therefore (3.6) can be written as

β(D) =
∑

(c0, c1) ∈ I(n1
0, n1

1),

(r0, r1) ∈ I(n2
0, n2

1)

∑
a∈A

∑
b∈B

∑
c∈C

∑
d∈D

1.

This sum can be performed explicitly. For example, forn1
0 =

n1
1 = n2

0 = n2
1 = n/2, for n even, the total numberβ(D) of

ACs is given by the following degree-8 polynomial:

β(D) = 2 +
179
84

n+
2339
1260

n2 +
151
160

n3 +
3851
11520

n4

+
31
384

n5 +
259

23040
n6 +

11
13440

n7 +
11

430080
n8.

(3.7)

Note that the degree8 is equal to the number3L−1 of distinct
strings over{0, 1, ∗}, except for the all-∗ string, of length
L = 2

3.7 Counting ACs for arbitrary number of sites

For more than two sites, we adopt a dynamic programming
approach for countingrestrictedcontingency tables. As men-
tioned in Section 3.5, our algorithm progresses sequentially
along the sites, from left to right. There also exists a more
efficient, albeit somewhat more complicated, dynamic pro-
gramming formulation in terms of countingunrestrictedcon-
tingency tables, but we will not discuss that here. Further, we
remark that we considered an alternative approach to counting
ACs that is based on counting lattice points bounded by poly-
topes. Computing the number of such lattice points is a widely-
studied problem in mathematics (for example, see [13] and
references therein). Moreover, there is a public software called
LattE (available at http://www.math.ucdavis.edu/∼latte/) that
enumerates lattice points, but we found that it is significantly
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slower than our own program for enumerating ACs via count-
ing restricted contingency tables; it seems thatL = 2 is the
only case thatLattE can handle.

Recall that both contingency tables shown in Figures 7c
and 7d have2, 1, 1, 1 as non-zero entries, although the two
tables have different corresponding ACs. In each AC, as the
corresponding contingency table captures, there are4 distinct
types of length-3 strings, with exactly one type being of
multiplicity 2, while every other type is of multiplicity1. Now,
consider extending the ACs in Figures 7c and 7d to create
ACs for the first four sites. For both cases, we need to find
contingency tables of the following form:

row sums
A0,1 A0,2 A0,3 A0,4 A0,∗ r0
A1,1 A1,2 A1,3 A1,4 A1,∗ r1
A∗,1 A∗,2 A∗,3 A∗,4 0 r∗

column sums: 2 1 1 1 c∗

where(r0, r1) ∈ I(n4
0, n

4
1). As a consequence, the same set of

contingency tables will be generated, although the correspond-
ing set of ACs will be different for the two cases. (In the ACs
obtained from extending the AC in Figure 7c, possible prefixes
of length-3 are “000”, “ 1∗∗”, “ ∗10”, “ ∗∗0” and “∗∗∗”, whereas
in the ACs obtained from extending the AC in Figure 7d,
possible prefixes of length-3 are “000”, “ 1∗0”, “ ∗1∗”, “ ∗∗0”
and “∗ ∗ ∗”.) Hence, since we are only interested incounting
ACs, and not in constructing the actual ACs themselves, we
do not need to consider extensions of the ACs in Figures 7c
and 7d separately. At each iteration of our algorithm, we only
keep track of distinct multiplicity configurations and how often
each configuration appears. Then, we construct contingency
tables for each distinct multiplicity configuration. This method
considerably reduces the number of contingency tables to
construct.

We now describe our enumeration algorithm. Given a matrix
M , let Λ(M) denote the descending array of positive integers
in M . For example, if

M =

 3 2 0 4
1 0 2 0
0 0 1 0

 ,

then Λ(M) = (4, 3, 2, 2, 1, 1). Suppose thatM andM ′ are
contingency tables that arise while considering sitek. When
constructing contingency tables for sitek+1, we do not need
to distinguishM from M ′ if Λ(M) = Λ(M ′); we just need
to keep track of how many tables for sitek haveΛ(M) as
descending array of positive integers. (Note thatΛ(M) are
used as column sums when constructing contingency tables
for site k + 1.)

Given a k-tuple v = (v1, v2, . . . , vk) of non-negative
integers, we define|v| =

∑k
i=1 vi. Let R(c, r) be the set

of all restricted contingency tables with column sums(c, c∗)
and row sums(r, r∗), wheremax(|r| − |c|, 0) ≤ c∗ ≤ |r|
and max(|c| − |r|, 0) ≤ r∗ ≤ |c|. As usual,(ni

0, n
i
1) denote

the number of0s and1s at sitei in the input dataD.
For each sitei, we associate a setCi of column sums. To

initialize the algorithm, we define

C1 :=
{
Λ(r0, r1) (r0, r1) ∈ I(n1

0, n
1
1)

}
.

For eachc1 ∈ C1, the multiplicity of c1 is defined as

µ(c1) :=
∣∣∣ {

(r0, r1) ∈ I(n1
0, n

1
1) Λ(r0, r1) = c1

}∣∣∣ .
For thekth site, wherek > 1, Ck is recursively defined as

Ck :=
{

Λ(M)
M ∈ R(ck−1, rk), where
ck−1 ∈ Ck−1 andrk ∈ I(nk

0 , n
k
1)

}
.

Note that only distinctΛ(rk) need to be considered when
constructingCk. For everyck−1 ∈ Ck−1 and everyck ∈ Ck,
we count the following number of restricted contingency tables
M with Λ(M) = ck:

w(ck−1, ck) :=
∑

rk∈I(nk
0 ,nk

1 )

∣∣{M ∈ R(ck−1, rk) Λ(M) = ck
}∣∣ .

This can then be used to define the multiplicity ofck ∈ Ck as

µk(ck) =
∑

ck−1∈Ck−1

µk−1(ck−1)w(ck−1, ck).

In practice,Ck andµk(·) can be determined concurrently.
The total numberβ(D) of ACs for D is obtained by

summing the multiplicity of column sums for the last site:

β(D) =
∑

cL∈CL

µL(cL). (3.8)

More generally, the total number of ACs forD[1 : k], restric-
tion of D to the firstk sites, is

β(D[1 : k]) =
∑

ck∈Ck

µk(ck).

We have written a C++ program that implements the dynamic
programming algorithm described above. For two sites, we
have checked numerically that (3.8) gives the same answers
as does (3.6).

3.8 Some explicit enumeration of ACs

For n even,ni
0 = ni

1 = n/2 for every sitei leads to the
largest number of ACs. Forn odd, the largest number of ACs
is achieved ifni

0 = bn/2c + 1 and ni
1 = bn/2c for every

site i, whereb·c denotes the floor function. The left hand side
of Table 2 shows such largest possible number of ACs for
small numbern of sequences and small numberL of sites. It
is quite striking that the number of ACs grows so fast as the
data size increases. These numbers were obtained using our
software that implements the dynamic programming algorithm
described in Section 3.7. ForL = 2 andn even, our closed-
form formula (3.7) agrees with the numerical values shown in
Table 2.

For fixedL, the total number of ACs is bounded from above
by a polynomial inn of degree3L − 1. There are3L − 1
non-negative integer valued variablesm1, . . . ,m3L−1, and the
maximum value that any variable can take isn. Hence, the
total number of ACs isO(n3L−1). As this simple analysis
shows, the total number of ACs depends more crucially on
the number of sites than on the number of sequences. This
qualitative behavior of growth is also apparent in Table 2.

In the absence of recombination, there are2L distinct binary
sequences of lengthL, but that the genealogy is given by
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TABLE 2

Total number of ACs for dataD with, for every sitei, ni
0 = a0 andni

1 = a1, wherea0 = a1 = bn/2c for n even, anda0 = bn/2c+ 1, a1 = bn/2c for

n odd. Under these conditions, the maximum value ofα(D) is 1 + a0(a1 + 2L − 1). These values are shown on the right hand side. Shown on the left

hand side is the total number of ACs when an arbitrary number of recombinations are allowed.

β(D) (With Recombination)
L

n 2 3 4 5
2 30 573 16 875 689 175
3 108 6 286 743 387 149 861 079
4 330 62 589 32 482 009 35 523 729 489
5 866 445 137 893 479 326 4 938 627 635 669
6 2 143 3 302 506 29 521 615 942 962 962 451 049 968
7 4 611 17 409 443 568 860 072 916 91 812 561 254 804 105

max(α(D)) (Without Recombination)
L

n 2 3 4 5
2 5 9 17 33
3 9 17 33 65
4 11 19 35 67
5 16 28 52 100
6 19 31 55 103
7 25 41 73 137

a tree puts tight restriction on which sequences can appear
together in an AC. As in the above case, for every sitei,
let ni

0 = a0 and ni
1 = a1, wherea0 = a1 = n/2 if n is

even, anda0 = bn/2c + 1, a1 = bn/2c if n is odd. Under
these conditions, the numberα(D) of ACs is maximum if the
input data containsa0 all-0 sequences anda1 all-1 sequences.
One can use the method described in Section 2.2 to show that
max(α(D)) = 1 + a0(a1 + 2L − 1), whereL is the number
of sites. Some numerical values of this function are shown on
the right hand side of Table 2. These numbers are negligibly
small, compared to the value ofβ(D) shown on the left hand
side of Table 2.

For L sites, letBL(k) denote the number of ACs with
exactlyk strings, and letSL(k) denote the cumulative count∑k

i=1BL(i), which gives the number of ACs with at mostk
strings. Table 3 showsBL(k) and SL(k) for data sets with
n = 5 and(ni

0, n
i
1) = (3, 2) for every sitei. The largest value

of SL(k) corresponds toβ(D) for n = 5 in Table 2.

4 ANCESTRAL CONFIGURATIONS IN

CONSTRAINED ARGS

In this section, we enumerate ACs in ARGs with at most
R recombinations. This study is motivated by the problem
of approximating the likelihoodP (D) of the input dataD
when the recombination rate is low, by summing over the
probability of ARGs with small number of recombinations.
Further, the work described here can be used to enumerate all
ARGs that can generateD using at mostR recombinations,
under the infinite-sites model of mutation. The constraint on
the number of recombinations further complicates the problem
of enumerating ACs, and combinatorial analysis is more
difficult to carry out. We provide a dynamic programming
algorithm that enumerates ACs by explicitly tracking all
possible evolutionary histories backwards in time.

(CAUTIONARY REMARK : Given a data setD, an ACψ that is
R recombinations away fromD may not appear in any ARG
for D with at mostR recombinations; further recombinations
may be required forψ to reach the grand common ancestor.
Hence, the number of ACs in ARGs forD with at mostR
recombinations is in general smaller than the number of ACs
that can be reached fromD using at mostR recombinations.
In what follows, we are interested in counting the former.)

4.1 Examples revisited

As mentioned in Section 3.4, when arbitrary number of
recombinations are allowed, the set of ACs does not depend
on the order of0s and1s within a column. For example,D =
[(00, 11), (1, 1)] andD′ = [(01, 10), (1, 1)] have the same set
of ACs, shown in Figure 6, when arbitrary number of recom-
binations are allowed. That no longer holds true if there is a
restriction on the number of allowed recombinations. This fact
is easiest to see in the absence of recombination, in which case
the set of ACs forD is {[(00, 11), (1, 1)], [(00, 01), (1, 1)],
[(00, 10), (1, 1)], [(00), (2)], [(00), (1)]}, whereas that for
D′ is {[(01, 10), (1, 1)], [(01, 00), (1, 1)], [(00, 10), (1, 1)],
[(00), (2)], [(00), (1)]}. Similarly, when only a single recom-
bination is allowed, it is straightforward to show thatD and
D′ have different sets of ACs, although the two sets are both
of size 19.

When there is a restriction on the number of recombina-
tions, even the number of ACs may depend on the order
of 0s and 1s within a column. Consider the two data sets
D = [(00, 11), (1, 2)] andD′ = [(01, 10, 11), (1, 1, 1)]. In the
absence of recombination,D has6 ACs, while there exists no
coalescent tree forD′ (c.f. the three gamete test mentioned in
Section 2). The minimum number of recombinations forD′

is one, and there are21 inequivalent ACs in the set of ARGs
for D′ with exactly one recombination. In contrast, there are
26 ACs for D when one recombination is allowed.

In Section 3.4, we observed that, when arbitrary number
of recombinations are allowed, two data sets differing by
some permutation of their columns have the same number of
ACs. This also is no longer true, in general, if the number
of recombinations is constrained. For example, consider the
two data setsD = [(001, 110, 111), (1, 1, 1)] and D′ =
[(010, 101, 111), (1, 1, 1)]. While D has an ARG with only
one recombination, no valid ARG with less than two recom-
binations exists forD′.

4.2 The search algorithm

For the case with restricted numberR of recombinations, the
approach we take is to trace explicitly all possible evolutionary
histories backwards in time. For any particular AC, we try all
possible events—that is, recombination, coalescent or mutation
events—that can happen to that AC. Possible recombination
and coalescent events are as illustrated in Figure 4. We do not
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TABLE 3

Counting of ACs with a restricted number of strings. ForL sites,BL(k) denotes the number of ACs with exactlyk strings, whileSL(k) denotes the

number of ACs with at mostk strings. This table is for data withn = 5 and (ni
0, n

i
1) = (3, 2) for every sitei.

k B2(k) S2(k) B3(k) S3(k) B4(k) S4(k) B5(k) S5(k)
1 1 1 1 1 1 1 1 1
2 12 13 62 63 312 313 1562 1563
3 60 73 1143 1206 21720 22033 412683 414246
4 163 236 9517 10723 575921 597954 35132963 35547209
5 244 480 40006 50729 6811757 7409711 1168994740 1204541949
6 210 690 89716 140445 38651220 46060931 16622300644 17826842593
7 120 810 118047 258492 115829376 161890307 112796639915 130623482508
8 45 855 99013 357505 201958486 363848793 408212643773 538836126281
9 10 865 56395 413900 222978515 586827308 868467110362 1407303236643

10 1 866 22818 436718 167052986 753880294 1177704929588 2585008166231
11 6732 443450 89613906 843494200 1087103087864 3672111254095
12 1447 444897 35821104 879315304 719916684420 4392027938515
13 218 445115 10971625 890286929 356517388653 4748545327168
14 21 445136 2620233 892907162 136353481775 4884898808943
15 1 445137 491380 893398542 41276692230 4926175501173
16 72009 893470551 10070266029 4936245767202
17 8076 893478627 2004602973 4938250370175
18 662 893479289 327842330 4938578212505
19 36 893479325 44105460 4938622317965
20 1 893479326 4854891 4938627172856
21 431132 4938627603988
22 30060 4938627634048
23 1565 4938627635613
24 55 4938627635668
25 1 4938627635669

consider recombination events that produce an all-∗ sequence.
Recall that, because we assume the infinite-sites model, a
mutation of1 to 0 at a site is possible if and only if exactly
one sequence carries a1 at that site. Going backwards in time
in this manner, event by event, we can exhaustively find all
sequences of events with less than or equal to the allowed
number of recombinations, while keeping track of all distinct
ACs encountered. To accelerate the search, we propose two
ideas, one based on branch and bound, and the other on
dynamic programming.

We maintain a hash tableH that stores ACs already en-
countered, together with the number of recombinations further
allowed for each AC. Initially,H contains the pair(D,R),
whereD is the given data set andR is the maximum number
of allowed recombinations. Given an ACψ and its associated
limit c on the number of recombinations, we first compute the
minimum numberk of recombinations needed in the evolution
of ψ; our method of computingk is described in [14]. Ifk > c,
we backtrack the search. Otherwise, we check whetherψ is
present inH. Suppose that(ψ, c′) with c′ ≥ c is present inH.
Then, continuing along the current search path will not lead
to any AC that has not been encountered previously, so again
it is safe to backtrack. Ifc′ < c or if ψ is not present inH,
then we need to add the entry(ψ, c) to H and iteratively try
all possible events backwards in time starting fromψ. When
either a mutation or a coalescent event is tried, the number
of allowed recombinations remainsc; when a recombination
event is tried, the number of allowed recombinations decreases
to c − 1. The hash table serves a dual purpose. First, as just

described, it allows us to avoid repeating a search already
carried out. Second, when all branches have been explored, the
number of entries in the hash table equalsγR(D), the number
of ACs that can be encountered in ARGs derivingD with at
mostR recombinations. It is straightforward to produce a list
of all γR(D) inequivalent ACs encountered during the search.

We have written a C program, calledgreven , that imple-
ments the method described above. For small data sets, we
have checked that this program agrees withaceTrees when
no recombination is allowed, and withaceARGs when an
arbitrary number of recombinations are allowed.

4.3 Further explicit enumeration of ACs

For small values ofn, we applied our program to all
data sets with the same values ofni

0 and ni
1 as in Table 2.

Let Rmin(D) denote the minimum number of recombinations
needed in the evolution of a given setD of sequences. Shown
in Table 4 ismaxD[γRmin(D)(D)], i.e. the maximum number,
over allD, of ACs that can be encountered in ARGs forD
with Rmin(D) recombinations. The numbers in parentheses
denote the minimum numberRmin(D) of recombinations for
D with the maximum value ofγRmin(D)(D). Table 4 should be
compared with Table 2. As this enumeration shows, although
the number of ACs encountered in minimal ARGs is noticeable
larger than the number of ACs possible in the absence of
recombination, it is still negligibly small compared to the total
number of ACs when an arbitrary number of recombinations
are allowed.
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TABLE 4

The maximum number, over all data setsD satisfyingni
0 = dn/2e and

ni
1 = bn/2c for every sitei, of ACs that can be encountered in ARGs for

D with the minimum numberRmin(D) of recombinations. The numbers in

parentheses indicate the minimum numberRmin(D) of recombinations for

D with the maximum value ofγRmin(D)(D).

maxD

[
γRmin(D)(D)

]
L

n 2 3 4 5
2 5(0) 9(0) 17(0) 33(0)
3 9(0) 17(0) 33(0) 65(0)
4 34(1) 216(2) 1 524(3) 12 085(4)
5 60(1) 408(2) 2 986(3) 23 958(4)
6 78(1) 2 709(3) 17 053(4) 1 210 197(6)

5 DISCUSSION

In this paper, we addressed the problem of enumerating all
configurations (or Markov states) ancestral to a given data set
D, consisting of binary sequences of finite length. Our main
motivation was to understand in detail the difficulties involved
in computing the likelihoodP (D) of observingD. We con-
structed a general method of obtaining closed-form formulas
(as functions of the multiplicity of distinct sequences inD)
for the total number of ACs when recombination is absent.
For the case in which recombination is allowed, we devised a
method of enumeration based on counting contingency tables
and constructed a dynamic programming algorithm. In terms
of the number of ACs, one can use our methods to study
rigorously how the case with recombination compares with
the case without recombination. In our work, we assumed
that recombination breakpoints occur at the midpoints of
consecutive sites inD. If this assumption is relaxed, then the
number of ACs will increase.

We also discussed a method of counting the number of
ACs that can appear in ARGs with less than or equal to a
given numberR of recombinations. Of particular interest is
the case in whichR is (or is close to) the minimum number
recombinations forD. When recombination rate is low, it
is widely believed that ARGs with the minimum or “near
minimum” number of recombinations should make dominant
contribution to the likelihoodP (D). However, we are not
aware of any work that actually tried to sum the probability
over all minimal or near minimal ARGs. That problem is the
main motivation for our present work. Ultimately, we would
like to see how the total probability carried by ARGs with
at mostR recombinations changes asR increases. The goal
of this paper was to understand some basic properties of the
Markov state space itself and to gauge the size of data that
we may be able to handle.

As discussed in Section 3.8, the total number of ACs can be
inordinately large when an arbitrary number of recombinations
are allowed. Not all ACs play an equally important role in
computing the likelihood, however. We mentioned in Sec-
tion 3.4 that ifD andD′ are related by a series of operations
involving permutations of characters within a column and/or
permutations of entire columns, then they have the same total
number of ACs. But,D andD′ may look radically different

to anybody’s eye and carry quite different information. For
example, consider the following two contrived data sets:

D =


1010101
1111111
0101010
0000000

 andD′ =


1111111
1111111
0000000
0000000

 .

When an arbitrary number of recombinations are allowed,D
and D′ have the same number of ACs, but they are qual-
itatively very different; clear signals of past recombinations
are present inD, while D′ is compatible with a tree. The
configuration space is very large, containing about2.26×1017

ACs, but, for low recombination rates, a large portion of
those ACs should be insignificant for computing the likelihood
P (D′). In general, if we are to devise a deterministic method
for estimating the likelihood of observing a given data set,
we would need to investigate how we can systematically take
advantage of our understanding of the configuration space and
of the structure of Markov chain transition graph.
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APPENDIX

Counting lattice points bounded by polytopes

For fixedL, let {h1, . . . , h3L−1} be the set of all distinct
length-L strings over{0, 1, ∗} except for the all-∗ string, and
define

Hi
0 := {j |hj has 0 at sitei},

Hi
1 := {j |hj has 1 at sitei}.

Recall that the setI(ni
0, n

i
1), defined in (3.2)–(3.4), gives the

possible range of0s and1s at sitei that can appear in an
ancestral configuration. Letmj ≥ 0 denote the number of
hj in an AC. Then, the discussion in Section 3.3 implies the
following condition: The sumpi =

∑
j∈Hi

0
mj of the number

of strings with 0s at site i and the sumqi =
∑

j∈Hi
1
mj

of the number of strings with1s at sitei satisfy (pi, qi) ∈
I(ni

0, n
i
1). The total number of ACs can be obtained by

counting the number of non-negative integer valued solutions
m1, . . . ,m3L−1 to the followingL simultaneous constraints:

(pi, qi) ∈ I(ni
0, n

i
1), i = 1, . . . , L.

A similar approach was taken in [15] for studying the special
case where(ni

0, n
i
1) = (n, 0) for all i.

Let us demonstrate how this method works through a con-
crete example. Consider a data setD containingn sequences,
in which caseni

0 + ni
1 = n for all i. Assume thatL = 2 for

simplicity, and suppose thatn1
0 6= 0, n1

1 6= 0 for site 1 and
thatn2

0 = 0, n2
1 = n for site 2. ForL = 2, the3L − 1 distinct

strings we need to consider are as follows:

h1 = 00, h5 = 1∗,
h2 = 01, h6 = ∗1,
h3 = 10, h7 = 0∗,
h4 = 11, h8 = ∗0.

Using (3.2), the site-1 constraint(p1, q1) ∈ I(n1
0, n

1
1) can

be translated to

either (1i) 1 ≤ m1 +m2 +m7 ≤ n1
0 and

1 ≤ m3 +m4 +m5 ≤ n1
1,

or (1ii) 1 ≤ m1 +m2 +m7 ≤ n1
0 + 1 and

m3 = m4 = m5 = 0.

Similarly, using (3.3), the site-2 constraint(p2, q2) ∈ I(n2
0, n

2
1)

can be translated to

either (2i) m1 = m3 = m8 = 0 and
1 ≤ m2 +m4 +m6 ≤ n,

or (2ii) m1 +m3 +m8 = 1 and
m2 = m4 = m6 = 0.

The total number of ACs forD is given by the sum of the
number of non-negative integer valued solutionsm1, . . . ,m8

to each of the following simultaneous constraints:(1i) and
(2i); (1i) and (2ii); (1ii) and (2i); (1ii) and (2ii). Note
that one way to solve such a problem is via integer linear
programming.

Together with the constraint thatmj need be non-negative
integer valued, any pair of simultaneous constraints discussed
above defines a polytope in8-dimensional Euclidean lattice,
and the corresponding number of ACs can be computed by

counting the number of lattice points bounded by the polytope;
i.e. by enumerating the number of lattice points inside or on
the boundary of the polytope. More generally, forL > 2,
the total number of ACs can be determined by summing the
number of lattice points bounded by the polytopes in(3L −
1)-dimensional Euclidean lattice defined by the simultaneous
constraints(p1, q1) ∈ I(n1

0, n
1
1), . . . , (pL, qL) ∈ I(nL

0 , n
L
1 ).


