Counting All Possible Ancestral Configurations of
Sample Sequences in Population Genetics

Yun S. Song, Rune Lyngsg, and Jotun Hein

Abstract— Given a setD of input sequences, a genealogy forcan be constructed backwards in time, using such evolutionary events

as mutation, coalescent and recombination. An ancestral configuration (AC) can be regarded as the multiset of all sequences present at «
particular point in time in a possible genealogy #or The complexity of computing the likelihood of observihig depends heavily on the

total number of distinct ACs ofD, and therefore it is of interest to estimate that number. Poconsisting of binary sequences of finite

length, we consider the problem of enumerating exactly all distinct ACs. We assume that the root sequence type is known and that mutation
process is governed by the infinite-sites model. When there is no recombination, we construct a general method of obtaining closed-form
formulas for the total number of ACs. The enumeration problem becomes much more complicated when recombination is involved. In
that case, we devise a method of enumeration based on counting contingency tables and construct a dynamic programming algorithm
for the approach. Lastly, we describe a method of counting the number of ACs that can appear in genealogies with less than or equal
to a given numbeR of recombinations. Of particular interest is the case in wiids close to the minimum number of recombinations far

Index Terms—Ancestral configurations, coalescent, recombination, contingency table, enumeration

1 INTRODUCTION leads to a new AC in the genealogy, but a coalescent or a

: . . recombination event may lead to an AC that has already been
NE of the standard problems in mathematical pOpmat'oéhcountered in the genealogy

enetics is to compute the likelihodd D) of observin L .
g P dd D) J In the absence of recombination, genealogies can be rep-

a given data sefD under the assumed model of evolution. . X !
The likelihood P(D) can be defined as a formal sum OVer,esented by time-ordered binary trees, whereas a case with

all possible genealogies consistent with A genealogy, in recombination requires a more complicated graphical repre-

turn, can be viewed as a sequence of Markov states, and ?tﬁgtat'olr: ckalled tr;ﬁ ancr:1estral Tecomblnqtlr(])n grapr:)'(AI?G) [.5]'
likelihood P(D) can be determined, in principle, by summin Is well known that the coalescent with recombination s

products of transition probabilities over all possible sequenc %n5|dsrgbly more d|ff|fcultt;0 tStUdﬁthin_thfhdﬁﬁ'C Coalescent.
of states in a Markov chain with given initial and final states: ne obvious reason for that contrast Is that there areé many

There are recursion relations for computiRgD) exactly[1], more inequivalenF ARGs than trees. As many computgtions of
[2], [15], but that approach quickly becomes infeasible égterest—compytlngP(D), for egample—mvolve studying a .
data size grows, and one must then resort to Monte Caﬁ‘c:')t of genealogies consistent with the observed data, perhaps it
methods [3] [5]’ 6], [7], [11], [12], [16]. Given a seD IS not so surprising that including recombination in the model
of input seq,uen(,:es, ,a g,eneal,ogy fDr can be constructed of evolution poses many challenges. One of our goals here is

backwards in time, using such evolutionary events as mutati(gﬂ,'cljlusgate more _prec;]sely Wlhy recgomb;nzztgn |shd|ff|c;]ult tq
coalescent and recombination. An ancestral configuration (Ag y, by comparnng the tota. NUmber o S when there Is
can be regarded as the multiset of all sequences present Cé)mbmatlon with that when it is absent. It has been known to
particular point in time in a possible genealogy Br For many, if not most people in populgtion gene_tics_that there can
both deterministic and stochastic approaches, the efficiencf)gf many more ACs when there is recombination than_ when
a method of computing?(D) depends heavily on the totalll 1S qbsent, but we are not aware of any work that tried to
number of distinct ACs ofD. examine exactly by how much.

In this paper, we address the problem of enumerating allAS mentioned above, when there are many ACs, solving re-
distinct ACs for a given data seD, consisting of binary CUrsion relations to computB(D) exgctly is often mfeas_lble.
sequences of finite length. That is, we are interested in complt-SUch a case, we are interested in asking Wheth‘er It WOU'?
ing the total number of distinct ACs in all possible genealogid¥® Possible to approximate the true recursion by a “collapsed
that could have generatdd. If an AC appears in two or more "€cursion, in which ACs are lumped together, such that we
different genealogies, it is counted only once. We considifSt need to consider transitions, with appropriately defined
both the classic coalescent [9], [10], in which recombinatigpfoPability, between lumped ACs to estimdt€D). We show
is absent, and its extension where recombination is allowdd. this paper that this idea of lumping ACs works at least
When a mutation event occurs in a genealogy, then it alwagkthe context of our enumeration problem. What we achieve

ere can be viewed as a small step towards meeting our desired

Y.S. _is with‘the Department of CompL_Jter Science, Univergity of Californqpal-
at Davis, Davis, CA 95616, USA. E-mail: yssong@cs.ucdavis.edu In our work, we assume the infinite sites model of mutation,

R.L. and J.H. are with the Department of Statistics, University of . .

Oxford, 1 South Parks Road, Oxford, OX1 3TG, UK. E-mail: Iyngsoéf}{h'Ch means tha_t there can be at most one mutation per
hein@stats.ox.ac.uk site. Hence, the input data can be regarded as defining a

set of binary sequences. For ease of discussion, we asstirees consistent with. (Recall that, unlike coalescent trees,
that the root sequence is known, and uséo denote the a perfect phylogeny may be non-binary and that relative time
ancestral type at the root and to denote a mutant type.ordering of two of its interior vertices is not defined if one
We remark that the techniques described in this paper ocartex is not a descendant of the other.)

be generalized to the root-unknown case. When there is no

recombination, we construct a general method of obtaining

closed-form formulas for the total number of ACs; these foR-1 Definition of an ancestral configuration

mulas are polynomials in the multiplicity of distinct sequences | our algorithm for counting ACs, we partition the in-
in D. We have implemented this method Mathematica formation contained in a configuration into two parts, one
and the program is calledceTrees (short for “ancestral encoding sequence types and the other their multiplicity. We
configuration enumeration for trees”). As expected, the enyge x1,...,x, to denoted distinct finite binary sequences

meration problem becomes much more complicated whefjiele types)z; of some fixed length—for example;; =
recombination is involved. In that case, we discuss a methggho, ., = 0010, andz; = 1100, with d being3. We define
based on counting non-negative integer valued tables with — (5, .. z,) andn = (ny,...nq), wheren; > 0,
fixed row and column sums, commonly known as contingengyy all ; < {1,...,d}, denote their multiplicity. We say
tables. For two sites, we show how a closed-form formula cafat (7, n) and (77,n’) are equivalent, denote¢l’,n) ~
be obtained. For an arbitrary number of sites, we constructa /) if there exists a permutatiom € S, such that
dynamic programming algorithm for counting ACs. We haver, p) — (T",n), where T, = (z,(1),..., %)) and
implemented this algorithm ilC++; the software is called ,, — (No(1), - - -+ To(ay)- By @ configuration we mean an

aceARGs (short for “ancestral configuration enumeration fopquivalence clasil’, n] € {(T,n)}/ ~.
ARGs"). Lastly, we discuss a method of counting the number ag e describe presently, every coalescent tree defines a

of ACs that can appear in ARGs with less than or equal & quence of configurations. Consider a datal¥et [T, 7],
a given numberRz of recombinations. Of particular interestynere 7 — (

_ -) ¢ _ al = (¢1,...,xq) andn = (ny,...,nq). A con-
is the case in whichR is (or is close t0) the miniMum figyration is said to beancestralto D if it “appears” in
number of recombinations fab. We have implemented this 5 |east one possible coalescent tree that derPegNote
algorithm in C; the software is callegreven . This method that D is ancestral to itself according to this definition.)
interpolates between the case where there is no recombinaji@q s jllustrate this definition through a specific example.
and the case where an arbitrary number of recombinations gigsider the simple exampl® = [(1,0), (2,2)], consisting
allowed. As it shouldgreven agrees withaceTrees and of four binary sequences of length one. There are several
aceARGs in those two respective limits. As a further checkggglescent trees that can give riselaunder the infinite-sites
we have made alternative, independent implementations of @l jel of mutation. Three of them are shown in Figure 1. A
three programs iPython All our programs implementing the ¢ross-section, corresponding to a particular time slice, of a
methods discussed in this paper are available upon requesipalescent tree defines an AC. Going backwards in time, con-
The organization of this paper is as follows. In Section 2, Wgyyration changes whenever either a mutation or a coalescent
consider the problem of enumerating ACs when there is nNo t&jent occurs.
combination, in which case genealogies can be represented by, p — [(1,0), (2,2)], the seven configurations shown in

coalescent trees. Mitochondria data from [17] are consider’_a%ure 1 form a complete set of configurations ancestral to

there as an example. By counting the total number of ACB)'; o any configuration appearing in a coalescent treefor
we illustrate why an exact computation of the likelihood i

Pnust be one of the seven configurations. The corresponding

difficult for that data. The aforementioned method of countin|g1arkOV chain transition grapti,, where vertices correspond

ACs in unconstrained recombination graphs is discussed§he ACs forD and edges correspond to allowed transitions,

Section 3. We compare the number of ACs in coalescent r§¢$,s shown in Figure 2. This graph shows that the sequence
with that in ARGs and highlight their differences. In Section 4,; acg arising in any coalescent tree fér must be one of
we consider enumerating ACs that can appear in ARGs withgt, following:

most R recombinations. We conclude in Section 5 with some

general remarks on our work. W1 — Yo — by — bg — r,

Y1 — Yo — Y5 — P — Ur,
2 ANCESTRAL CONFIGURATIONS IN COALES- Y1 — s — Y5 — e — Pr.
CENT TREES

In general, every coalescent tree compatible with any given
In this section, we focus on the case in which the evolutictata setD starts in the configuration corresponding io

under the infinite-sites model can be represented by a traed ends in the configuration consisting of a single all-zero

A given data setD is compatible with a tree if it passes thesequence (corresponding to the most recent common ancestor).

three gamete test: for every pair of sites, not all of the allele Let P, ; denote some appropriately-defined transition prob-

types01, 10 and 11 appear in the data. If the three gametability corresponding to the transitio; — ;. Then the

test is passed, then there exists a unique perfect phylogengrobability of the sequence;, — ;, — ... — 9, can be

for D [4], [8], with at most one mutation per site, but it isdefined asP;, i, Pi, i, - - - Pi,._, i~ In [1], Ethier and Griffiths

important to note that in general there are many coalescshbwed that the probability of observirig can be obtained

Ppr=D= [(170)’ (272)]
o = [(17 0)7 (17 2)}
s = [(170)7(2, 1)} .
¥a = [(0), (3)] Time
U5 = [(17 0)’ (17 1)}
Y = [(0), (2)]
Y7 =1[(0), (1)] 1100 1100
Fig. 1. Coalescent trees and ancestral configurations. . , ¢y. A cross-section, corresponding to a particular time slice, of a tree defines an AC.
¢2_ _ V4 type obtained fromy, after thel at site « mutates to &0,
>\>_“ define.#,(7T,) as
1 -~ e Y7

3 if yg¢{y17“"yk}v

if y! =y, €{yy,...

(f%z,yf (T)7 %i;l (IJ’))’

(T i 1)) s Ik S
Fig. 2. Markov chain transition graphp for D = [(1,0), (2, 2)]. Dashed { (P(T), 7+ e])) yk}

lines denote mutation events, while solid lines denote coalescent events.) o
This directed graph is acyclic and contains 3 distinct paths from the initi¥iNCe a singlet sitex uniquely determines, we omit i in

configurationy; = D to the absorbing configuratiof7. writing .#, (7, 1). In the exampleZ = (100, 101,010) con-
sidered above, the unique allele type associated avith2 is
Y3, andy3 = (000) is notin{y;, y,,y;}. Fora = 3, the asso-

by summing such probabilities over all possible sequences@ited unique allele type ig,, andy3 = (100), which is equal

ACs. In the exampleD = [(1,0), (2,2)] considered above, tq y,. Hence,.#(T,) = ((100,101,000), (11, u2, 1)) and

M (T = ((100,010 1 .
P(D) = PioPrsPygPs7+ PiaPosPsePsr 3(7,) = (100,010, (2 + 1, 1a))
+P13 P35 P56 s 7.

. -) . 2.2.2. Coalescent and mutation events
Ethier and Griffiths[1] formulated a recursion for evaluating

P(D). In general, computing’(D) exactlyusing the recursion Consider a data sdd = [T, n|. The multiplicity n;, of an
becomes infeasible when sample size is large, and one maltgle typex; decreases by exactly one when two sequences of
then resort to Monte Carlo methods (see [6], [7]). In whdhat allele type coalesce. The number of ACs with allele types
follows, we develop a method of counting exactly the totdl' is therefore equal tar(n), which is equal to 1 (foT, n]
number of inequivalent ACs of an arbitrary data getThis itself) plus the number of configurations that can be reached
kind of enumeration should prove useful for studying wheftom [T,] via coalescent events only. When every allele type
exact computation oP(D) becomes infeasible. has coalesced completely, we end up with the configuration
[T> 1d}-

In T = (x1,...,z4), suppose thate; is the only allele
type with a1 at site a. Consider a configuratiodT, m]

We now describe a general, efficient method of obtainingijth 1, = 1, reached by some coalescent events starting
closed-form formulas for the total number of inequivalent AC$F0m [T’7 ’I’L] Now, a mutation event can occur to Change the
The actual ACs themselves can easily be extracted from Qaracter ofe; at sitea from 1 to 0, making[T’,m] jump to a
method. different configuratio7”, m’], whereT” # T'. Letx¢ denote
. the allele type obtained after such a mutation event. There are
2.2.1. Notation two possible cases. First, #¢ is equal to one of the alleles

For ease of discussion, we first introduce some usefnl 7', sayx;, then the configuration after the mutation event
notation. We usel, to denote ak-tuple of 1s, ande; to is [2;(T), Z;(m + e;)]. Note that the multiplicity ofz; has
denote a vector with & at theith entry and)s elsewhere; the increased by one. How many configurations are there with
length of e; will be clear from the context of its usage. Fomllele typesZ;(T)? Fork # i and k # j, the multiplicity
n = (ny,...,ng), definer(n) = Hle n;. Let &; denote of x;, can be any integer betweer, and 1; independently
a deletion operator which, when acting on a vector of lengtf the mutation event, coalescent events within allele type
k > i, deletes theith entry of the vector, thus changing itscan reduce the multiplicity fromm, to 1. Further, since the
length tok — 1. Let %;,. denote a replacement operator whiclmultiplicity of x; increases byl after the mutation event, it

2.2 Enumeration of ACs: A general solution

replaces théth entry of a vector withz.

Let 7 = (yq,-.-,y;) and p = (p1,..., k). As usual,
Yq,...,Y arek distinct binary sequences. Ifi, a site is
called asinglet if there is exactly one allele typg, €
{y1,...,y,} with valuel at that site. Here, note that need

can range fromm;+1 to 1. Hence, the total number of possible
ACs with allele typesz;(T') is n(Z;(n + e;)). Second, ifx{

is not equal to any allele iff", then the configuration after
the mutation event i$%;..« (T'), m]. Note that we still have
m; = 1. How many configurations are there with allele types

not bel. In 7 = (100, 101,010), for example, sites two and %; .« (T')? Similar to the first case, sine& is bounded by
three are singlets. Let be a singlet site ang, the unique %;.;(n)andl1,, the number of configurations with allele types
allele type with al at that site. Withy{ denoting the allele %;.q(T) is 7(Zi;1(n)).

2.2.3. A graph construction algorithm

U1 = ((100,110,001),(nl,ng,ng))
Our method of counting ACs is to deal with coalescent vy = ((100,001), (n1 + 1,n3))
events for each allele type configurati@rcombinatorially and v3 = ((100,110,000), (1, n2,1))
find all possible allele type configurations using a simple graph vy = ((100,000), (ny +1,1))
construction algorithm. More precisely, the general idea goes vs = ((000,001),(1,n3))
as follows. For a given input data sét, suppose that there ve = ((000),(2)
are ACs with7 as allele type configuration. If the maximum " 4
multiplicity of 7 over all such ACs isu, then, as discussed
above, a simple coalescent argument shows that the total num-
ber of ACs with allele type configuratioh is 7(x). Hence, if U1 Y6
we know all possible allele type configuratiofis, 7o, ..., 7,
and their maximum multiplicitywe, e, . . ., i, respectively, vs v
then we can easily determine the total number of AC®dfy 7
Summing OVGI']T([J,]‘). Our graph construction algorithm bE|OWFig, 3. Application of our enumeration algorithm tdD =
finds suchTy, 7z, ..., 7, and py, po, . . ., php. [(100,110,001), (n1,n2,n3)]. Shown on the right hand side is the final
. . hG tructed b Igorithm.
We wish to construct a directed graph, where a vertex graphp construcied by our aigorithm
v; is labeled by(T;,n;), to be determined by the following TABLE 1
iterative procedure: Mitochondria data from [17], consisting of 63 sequences and 18 segregating
1. Given a data selD = [T n] let Gp initially be a sites. There ard13,243,616 ACs for this data set.
graph with no edges and withy = (7, n) as its only
vertex. Here(T,n) is an arbitrary representative of the Haplotype Multiplicity
i 100101000000010000 2
equivalence clasfl’, n].) , , 100101000100010000 2
2. Let V) denote the set of all vertices i p with out- 010000000000000001 1
degree zero. For alh; = (Tj,n;) € Vp, determine the 001000001000000000 3
; ; - _ 000101000000010000 19
setS,, of singlet sites (defined above) ifj. . 000111000000010000 1
3. If Svj = o for all v; = (Tj,n;) € Vp, terminate 000000000011000001 1
the procedure. Otherwise, arbitrarily ordgs and se- 000000000011100001 1
; ; - eatichyi 000000000000000111 4
quentlall)f carry ou"t the following steps fer; satisfying 000000000000000101 S
Sy, # @ Determine #,(T},n;) for all a € S,,. If 000000000000000000 5
Mo(T;,n;) = v, € Gp, draw a directed edge from, 000000000000000001 4
_ . 000000010000000000 3
to vg. If not, then addv, = #,(T},n;) to Gp and 000000100000001000 1

draw a directed edge fromy; to vy.
4. Go back to step 2.

The graphGp compactly encodes all possible ACs. In
vertexv; = (Tj,n;) € Gp, T; captures the set of distinc _
binary strings, whereas; determines the range of possible Consider the data seb = [(100, 110,001), (n1,n2,73)],
multiplicity of the strings; i.e. if there are distinct binary Whereni,ns, and ns are some arbitrary positive integers.
sequences iff};, then the multiplicity can be anything betweerf\PPlying the algorithm from Section 2.2 leads to the graph
n; and1,. Further, it is straightforward to show thatif and G illustrated in Figure 3. From (2.1), the total number of
vy, are two distinct vertices iy, thenT; # Tj.. The total Cconfigurations ancestral t is thus given by

number a(D) of configurations ancestral t® is therefore

taz.s A toy example

M-

given by aD) =) m(n)
=1
Oé(D) = Z ’/T(ni)7 (21) = NniNngonsz + ng(m +].) +ning + (TLl +].) +n3 + 2
i€V (Gp) = ni(na+1)(ng + 1) + 2n3 + 3.

whereV (Gp) is the index set of the vertices . We have

implemented the above algorithm lathematica For a given 2.4 Mitochondria DNA data
data setD = [(z1,...,xq), (n1,...,nq)], our program gen- \We now consider the data set from Waetal[17], which

erates closed-form formulas for(D) in terms ofny, ..., ng. consists of sequences from the control region of mitochondria
DNA (mtDNA), sampled from 63 individuals in a single

(REMARK: We have an independent program, to be discussAdherindian tribe. There are 18 segregating sites in the data,
later, that can exhaustively search through evolutionary hisghown in Table 1.

ries to compute the number of ACs. That program can be usedComputing the likelihood of observing a given data set
to analyze small sample sizes (usually less than 30 sequendssimportant—for example, for parameter estimation—but, as
We have checked that it produces the same answers as duoegtioned in Section 2.1, doing it exactly is infeasible when
our combinatorial method described above.) sample size is large. The same mtDNA data set was considered

O0Lewwr - soexl 011 OxlBox - iopiononnl sequences which carry additional non-ancestral material (de-
noted by %"s). This concept is illustrated in Figure 4, where
possible coalescent events are also described. To simplify

things, we assume that recombination breakpoints occur at

the midpoints of consecutive sites in. Hence, if D consists

(@) (®) of some segregating sites in a regiéh the distribution of

ancestral material between two consecutive segregatingisites

andi+ 1 in X is completely determined by the configuration

at sitesi andi + 1.

Of particular interest is a class of ARGs in which, for any
0111011 #%x1011 +1100:0 0% 10%xx recombination event, both the prefix and the suffix involved in
© @ a recombination event contain some ancestral material. Such
a class of ARGs was the main focus of [5], and we also
Fig. 4. lllustration of possible events. Time flows from top to bottom. (a) andiMit our attention to such ARGS_ in _th's paper._Hence, for
(b) are examples of recombination events. 4lét: j] denote the substring af our purpose, a sequence appearing in an ARG is generally a
in-between andj, inclusive. Going backwards in time, when a recombinatiort ; ;
event is encountered, the lineage of a sequesite L] breaks up into two Iimfng OV(;I‘{O, 1, *}l"l but the al:* string Il’sl not a"c:.\é\;gd' As
parts, one corresponding to the lineage of a sequeneenose prefixs; [1 : k] efore,0 denotes the ancestral type at the root argenotes
is identical tos[1 : k] and the other corresponding to the lineage of a secor@l mutant type. A configuration is defined as in Section 2.1,
sequences whose suffixsa[k+1 : L] is identical tos[k+1 : L]. The suffix ; :
s1[k+1 : L] and the prefixs2[1 : k] carry non-ancestral material, denoted byz)l(__géptt;hat now strlngds are defined 0\'?}’ 1’F}' T(:_ every hich
“x"s. (c) and (d) are examples of coalescent events. Two sequencesi so » INere corresponds a sequence or configurations, whic
can coalesce if their characters are identical at common ancestral positigan be viewed as generating the ARG backwards in time.
The final sequence contains the union of the ancestral material &md s2. Given a data seb. a configuration is said to Encestralto D
if it appears in at least one possible sequence of configurations

b iith q , ho developed K hai that corresponds to some ARG consistent with Shown in
y Griffiths and Taveks [6], who developed a Markov ¢ aNEigure 5 is a sequence of ACs and its corresponding ARG.

Monte Carlo method to analyze the data. Our goal here iSiq i nortant to note that there are many—in fact, infinitely
to compute the total number of inequivalent ACs of the datﬁ1any—distinct ARGs that can derive the same initial data,

thus il!ustrqting yvhy computing the likelihood exactly USinsJand that the total number of ACs can be immensely large.
recursions is difficult. . This is the main point that we wish to illustrate in this paper.
Let T' = (@1,...,®14) denote theld distinct haplotypes pqr e simple exampl® = [(10,11,01), (L, 1, 2)] considered
shown in Table 1, withz; being theith row. Applying i, Figyre 5, there are only 220 ACs in total. We shall soon
our algorithm from Section 2.2 1@ = [T’ (n1,...,m14)] gee that, as the number of sites and the number of sequences

generates a directed grapii, with 12,896 vertices, and i, rease, the total number of ACs grows extremely fast.
one can easily obtain a closed-form formula, which is too

long to write down here, for the total number(D) of

ACs. Forn = (1,1,...,1), a(D) = 128,640. Forn =
(2,2,1,3,19,1,1,1,4,8,5,4,3,1), which being the multiplic- 32 A warm-up example
ity of the actual datag (D) = 413,243, 616.

0011011 0%10%x1

0111011 0110060

Before we plunge into the core of our enumeration
3 ANCESTRAL CONFIGURATIONS IN UNCON- work, let us consider a simple example for which it
ARGS is not too difficult to obtain a complete set of ACs
STRAINED by hand. The reader not too familiar with the ARG is
In this section, we turn to enumerating ancestral conecommended to go through this example. Consider the
figurations in unconstrained ancestral recombination graphgial data D = [(00,11),(1,1)]. If recombinations are not
(ARGS)[5]. This case is much more complicated than thallowed, then it is clear that there are orilyACs, namely
classic coalescent case, and, in general, it is difficult to obtd{i00, 11), (1, 1)], [(00,01), (1, 1)], [(00, 10), (1, 1)], [(00), (2)],
closed-form formulas for the number of ACs. Below we transand [(00), (1)]. In the presence of recombination, there are
late the problem of counting ACs into counting contingenc§0 ACs, shown in Figure 6. These ACs can be generated
tables and provide a dynamic programming algorithm. iteratively by asking what happens to a given AC under a
mutation, a coalescent or a recombination event; note that
L _ some of these events may not be possible, depending on
3.1 Definition of an AC in ARGs the AC. On the right hand side of Figure 6 is a Markov
In the absence of recombination, if the input d&X@ontains chain transition graptCp, depicting the possible transitions
n sequences, then any configuration ancestré) twontains at between ACs. Note that the grapfip contains directed
mostn sequences. This is no longer true when recombinatioagcles. AC 1 is the initial configuration, and AC 21 is called
are allowed. Going backwards in time, when a recombinatidéhe grand common ancestor. To any ARG with the grand
event is encountered, the lineage of a sequence breaks up a@mmon ancestor as the root, there corresponds a unique path
two parts, distributing its ancestral material to two differerftom AC 1 to AC 21.

Ancestral Configurations

1:1(10,11,01),(1,1,2)] 4 :[(10,01),(1,2)] | 7 :[(00),(2)]
2 :[(10,1%,%1,01),(1,1,1,2)] | 5:[(00,01),(1,2)] | 8 :[(00),(1)] Time
3:[(10,1%,01),(1,1,2)] 6 : [(00,01),(1,1)]

10 11 0101 Y

Fig. 5. A sequence of ACs fob = [(10,11,01),(1,1,2)] and its corresponding ARG. Filled circles denote mutation events. Open circle denotes a
recombination event with breakpoint between the first and the second sites. Mutation events at the first and the second sites are rdgnatet by,
respectively. Note that there are other ARGs that could have genetatédtotal, there are 220 ACs db.

Ancestral Configurations

1:[(00,11), (1,1)] 11 : [(00), (2)] 21 :[(00), (1)]

2 :[(0%,%0,11),(1,1,1)] 12 : [(0%,10,*1),(1,1,1)] | 22 : [(01, 10), (1, 1)]

3:[(00, 1*,x1),(1,1,1)] 13 : [(%0, 01, 1x), (1,1,1)] | 23 : [(0%, %0), (2, 2)]

4 :1(00,10), (1,1)] 14 : [(0%, %0, *1), (2,1,1)] | 24 : [(0%, %0, %1), (1,1, 1)]
5:[(00,01),(1,1)] 15 : [(0%, %0, 1%), (1,2,1)] | 25 : [(0%, %0, 1%), (1,1, 1)]
6 : [(0%,*0,1x,%1),(1,1,1,1)] | 16 : [(01, x0), (1, 1)] 26 : [(00, x0), (1,1)]

7 1 [(0%,%0,01),(1,1,1)] 17 : [(0%, %0, 00), (1,1,1)] | 27 : [(00, 0%), (1, 1)]

8 : [(0%,%0,10), (1,1,1)] 18 : [(0%, 10), (1, 1)] 28 : [(0%, x0), (1,1)]

9 : [(00, 0%, *1),(1,1,1)] 19 : [(00, x1), (1,1)] 29 : [(0%, x0), (2,1)]

10 : [(00, 1%, %0), (1,1,1)] 20 : [(00,1x), (1,1)] 30 : [(0%, *0), (1, 2)]

Fig. 6. Configurations ancestral & = [(00,11), (1,1)] and the Markov chain transition grapgfip. Mutation events are denoted by dashed arrows.
Coalescent and recombination events are denoted by solid arrows. Note that some solid arrows are bidirectional, one direction for recombination and the other
for coalescent. Unidirectional arrows denote coalescent events.

3.3 Possible number ofls and 0s in an AC There areng(n; + 1) + 1 possible values ofp, ¢) in the first
Let n denote the total number of binary sequencegin Case€n + 1 in the second, and in the last. There exists no

with each sequence being of lengthLetn}, (resp.ni) denote AC With " Os andry 1s if (7“(1)”“%), ¢ I(ng, n}). Now comes

the total number of Os (resp. 1s) at sitdlote thata! +ni =n & crucial point. Even for. > 1, if an arbitrary number of

foralli € {1,...,L}. (For D = [(10,01,11), (2,3,1)], n} = recombination events are allowed, there exstseast one
3,n! = 3 for the first site anch2 = 2, n2 = 4 for the second AC for any combination of(rg, r1),..., (r§, rf) satisfying
site.) Letri andri denote the total number & and ofts, (70:71) € I(ng,n1), for all i € {1,...,L}. There exists no

respectively, at sité in an arbitrary ACi. The infinite-sites AC With 7§ 0s andr} 1s at sitei if (rj,r}) ¢ I(n,n).

model of mutation imposes constraints on possible values @f€ Way to see these points is as follows. Starting from
(ri,ri). Forni # 0, a mutation event at site can occur in the input dataD, use recombination events to distribute the

AC v only if 7{ = 1. If ri = 1 and the mutation event occurs ancestral material of the first sequenceltmew sequences,

then AC+) jumps to a new AG)’ with (i +1) 0s and nols. each carrying exactly one ancestral site. Do the same for all
To determine the possible range «f and i, let us first Other sequences iP, so that we end up with - L sequences,
consider thel, = 1 case. Since every sequence is of length on%?Ch carrying exactly one ancestral site. Then, determining the

it follows from the above discussion that there exisactly 'ange ofrg andr; for each sitei reduces to the. = 1 case.
one AC for any pair(ri,) e I(n(l) nl), whereI(ng,ny) is We stress that the above statement would not holdZfor 1

defined as the set of all non-negative integer pgitg) such in the absence of recombination (or if too few recombination
that if ng # 0 andn, # 0, then events are allowed). For example, consider= [(01), (2)].
' In the absence of recombination, there is no AC with=1

either ()1 <p<ngandl <q<ny, (3.2) andr? = 2.

or (i) 1<p<mng+1andqg=0;
if no =0 andn, = n, then 3.4 Important observations
either ()p=0andl < g <mn, (3.3) We now highlight a couple of important facts. First, the set

or (i) p=1andq = 0; of ACs does not depend on the order @ and1s within
a site when arbitrary number of recombinations are allowed.
For instance,[(01,10),(1,1)] has the same set of ACs as

1<p<mnandg=0. (3.4) the example[(00,11),(1,1)] considered in Section 3.2 (see

and, ifng = n andn; = 0, then

Figure 6). This fact can easily be explained as follows. Det humber of strings iny and the number of nom-characters
and D’ be two data sets of the same size, such thattthsite at site &. A moment's thought leads to the conclusion that
of D is equal to theth site of D’ up to some rearrangementmax(c — ro — r1,0) < r, < c¢. Similarly, the numbe, of

of elements within the site. Thed) can be transformed into all-« prefixes of lengtht — 1 satisfiesmax(rg +r1 — ¢,0) <

D', or vice versa, using a series of appropriate recombinatien < ry + r;. Note thatc, and r, must satisfyc + c, =
and coalescent events. It therefore follows thaand D’ have ry + r; + 7, for consistency. In Figures 7b-d, the ACs shown
the same set of ACs. have (rq,71) = (4,0) € 1(3,1) andr, = 1 at site three, and

Second, if two input data set® and D’ differ by some each AC has exactly one sequence containing' ‘as a prefix
permutationo of their sites, then they have the sama@nber of length 2 (i.e.,c, = 1). As required,c + ¢, = rg + r1 + 4.
of ACs. Any AC of D can be transformed into an AC &
via o, and vice versa.

For D a data set containing. sequences of lengtii, As above, let) be an AC for the first: — 1 sites containing
let X(D) = {(nd,n}),...,(n,nt)} denote the multiset of d distinct strings. The pairing of a lengtt-— 1) string in v
ordered pairgn,nt), whereni andn} are the total number or a length(k — 1) all-+ string with a character at site can
of 0s andls, respectively, at siteof D. Then, the above two be concisely summarized by a table of the following form:
facts together imply that two data sef$ and D’ have the

3.5.2. Restricted contingency tables

same number of ACs iX (D) = X(D’) as multisets. row sums
Ao1 -+ Aga Ao |To0
.. A1,1 s Al,d Al,* T1
3.5 Main idea: Counting restricted contingency tables A, - A,y 0 |r
*, *, *
We here describe our method of counting ACs. Intuitively, column sums: ¢; - - ¢q4 .y
our approach is to construct ACs moving along the sites, sag) iUl A d h
from left to right. Given that we have constructed ACs foF rj =1,...,d, a particular entry4,; corresponds to the

the first k — 1 sites, we construct ACs for the firdt sites multiplicity of a length# string obtained from appending

by appending additional material (i.€.,1 or *) to the right. character to the right of a length4 — 1) string of type; in

We iterate this procedure until the last site is processed. 'g{s.whereasAi,* corresponds _to the multiplicity Of_ a length-
we describe below, this procedure of extending ACs can ge!Ng o'btamed from appending 'characie;o' the right Of_ an
translated into constructing contingency tables, where colufify* String of Ien_gthk— 1. To av0|d_ _generatlng an aistring
sums are partially determined by the multiplicity of the stringS length#, we |mpose_the_ conditior,. . " O .A CO'U“?”
in the AC that is being extended (i.e., an AC for the fiest 1 SUM¢j» forj =1,....d, is given by the multiplicity of string

sites) and row sums are partially determined by the allowd¥P€J in ¥, and row sums, and;, respectively denoting
numbers ofos and1s at sitek (c.f., Section 3.3). the number ofds and1s at sitek in the corresponding new

AC, satisfy (rg,71) € I(nf,n¥) (see Section 3.3). Further,
3.5.1. Extending an AC as described above, the numhegrof all-+ prefixes of length
Suppose thaty is an AC for the firstk — 1 sites. Further k& — 1 and the number, of xs at sitek satisfymax(c—ry —
suppose that) containsd distinct strings, with multiplicity 71,0) < r. < ¢, max(rg + 71 — ¢,0) < ¢x < 19+ 71, and
c1,C,...,cq Satisfyinge; +cy + -+ +¢cq = c. Sincey c1+---+cqgte. = ro+ri+r.. The number of non-zero entries
is an AC for the firstk — 1 sites, it does not contain anyin the above contingency table gives the numbedistinct
all-x string of lengthk — 1. However, a strings in an AC length% strings in the corresponding new AC. In the next
for the first k sites may contain the all-string of length iteration, non-zera4; ; will appear as possible column sums
k — 1 as its prefix, if the character at theth site of s when constructing contingency tables for gite 1. Returning
is either 0 or 1, but not x. For illustration, considetD = to our example, contingency tables corresponding to the ACs
[(0001,0000,1101,1110), (1,1,1,1)]. An AC for the first two discussed before are shown in Figures 7b-d. In Figure 7b,
sites is shown in Figure 7a, where we simply list strings w@ll strings in the AC are distinct, and the corresponding
represent the AC. It has= 4 and the multiplicity of 00” is contingency table contains onlys as non-zero entries. In
2, while every other sequence type has multiplicityin any Figures 7c and 7d, the strir@®0 has multiplicity 2, and the
AC for the first two sites, the string«%” is not allowed, but entry A, 1, which corresponds to the multiplicity of the length-
“xx0" or “x*1" may appear in an AC for the first three sites3 string obtained from appendir@to the right of00, is 2.
Shown in Figures 7b-d are three examples of ACs for the firstin summary, there is a one-to-one correspondence be-
three sites; they each containr £ 0”. The all-+ string “« x «” tween non-negative integer valued contingency tables de-
is not allowed in any AC for the first three sites. scribed above and ACs for the firktsites that can be created
In an AC for the firstk sites, how manys andls can be by appendings, 1s andxs to the right of the strings in an
present at sit&? We have already answered that question W&C for the firstk — 1 sites. Hence, we can enumerate ACs by
Section 3.3; i.e. the numbey, of 0s and the number; of counting contingency tables.
1s satisfy(ro,71) € I(n§,n¥), wheren§ andn’ respectively Since the table described above hés. = 0, we call it a
denote the number dis andl1s at sitek in the input data restricted contingency table with row sums = (rqg,r1,74)
D. How about the number, of «s at sitek? Since an alk and column sums: = (c1,...,cq,¢c.). If the entry A, ,
string of lengthk is not allowed,r, is bounded from above, were not restricted to be zero, we would have a standard
while the minimum value of, is determined by the total (or an unrestricted contingency table with row sums and

@ oo (b) [00% 000 (d) [000
00l ¢ =2 000 000 000

1% 01: 1%0 1% 1%0

i1 c2 1 x10 x10 * 1%

3 * %0 * %0 * %0

Fig. 7. Constructing ACs folD = [(0001,0000,1101,1110), (1,1,1,1)] by extending strings. For clarity of illustration, ACs are represented as lists of
strings inside] |; a string is read horizontally. (a) An AC for the first two sites. (b)-(d) ACs and their corresponding restricted contingency tables obtained
from extending the AC in (a) by an additional column with = 4,71 = 0,7« = 1. Note thatc, = 1 in (b)-(d), thus satisfying: + c« = rg + r1 + 7.

column sumse. Restricted and unrestricted contingency tabldsas only 4 degrees of freedom; once the enties, c,d
are related as follows. Ledv,(r,c) denote the number of are chosen, the other entries get fixed by given row and
unrestrictedcontingency tables with column sumsand row column sums. Moreoven, b, ¢, d satisfy the following set of
sumsr. Similarly, let N,.(r, ¢) denote the number @éstricted constraints:
contingency tables with row sums and column sums.
For r = (rg,7m1,7«) and e = (c1,...,¢q4,c4), definer’ =
(7“0,7”1,7“* - 1) and ¢’ = (01,...,cd,c* - 1). Then, it is
straightforward to show that
Ni(r,) = { Ny(r,e) — Nu(r',c) if r, >1 ande, > 1, o
A Nyu(r,c) otherwise. These constraints imply
(3.5
We have not yet discussed how to obtain the total number
of ACs. The case with two sites is amenable to analytic _ .
.) : ce C ={0,...,min(r;,co —a)},
techniques. For more than two sites, we propose a solution de D = {0 min(r — ¢ ¢1 — b)}
via dynamic programming. These topics are subsequently B ’ ’
discussed in the next two subsections. and therefore (3.6) can be written as

3.6 Counting ACs for two sites pD) = Z Z Z Z Z L

If there are only two sites iD, we only need to consider (co,e1) € I(ng,ni), @€A DEB cCC deD
contingency tables of siz& x 3. This simplifies the problem
considerably, and it is possible to sum over all neces3ar$ This sum can be performed explicitly. For example, #gr=
contingency tables explicitly to obtain closed-form formulas:} = n2 = n? = n/2, for n even, the total numbes(D) of

0<a+b<ry,
0<c+d<r,
0<a+c<c,
0<b+d<aq.

ae A={0,...,max(co,r0)},
be B ={0,...,min(¢y, 79 —a)},

(ro,m1) € I(ng, n?)

We describe this analytical result below. ACs is given by the following degreg-polynomial:
It follows from the discussion in the i i
the number of ACs withcy 0s andc; 1s at the first site and 5(D) = 2+ ——n+ —n’+ —

n n
ro 0s andr; 1s at the second site is given by the following 84 1260 160 11520

. . 31 259 11 11
sum of restricted contingency table numbers: o pb 6 7 8,
gency 352" T 23020" T 13240™ T 130080"
ro+ritcotci (3 7)
E Ny ((ro,71,5 —ro —r1), (co,c1,j —co — ¢1)) '
j=max(ro+r1,co+c1) Note that the degregis equal to the numbe¥” —1 of distinct

where the sum ovej accounts for the allowed values of strings over{0,1,x}, except for the alk string, of length
andr,. By using (3.5), this sum can be shown to be equal to = 2
Nu((ro,m1,c0+¢1), (co, 1,70 +71)). Hence, the total number

B(D) of ACs for the case with two sites is 3.7 Counting ACs for arbitrary number of sites
Z Ny((ro,r1,c0 + c1), (co, 1,70 +71)), For more than two sites, we adopt a dynamic programming
(cosc1) € I(nd,nb), approach for countingestrictedcontingency tables. As men-
(ro,71) € I(n2,n?) tioned in Section 3.5, our algorithm progresses sequentially

(3.6) along the sites, from left to right. There also exists a more
where, as before](nf, n}) determines the allowed number ofefficient, albeit somewhat more complicated, dynamic pro-
0s and1s at sites. gramming formulation in terms of countingnrestrictedcon-

The key observation is that the expression shown in (3.fi\gency tables, but we will not discuss that here. Further, we
can be summed explicitly. 8 x 3 unrestrictedcontingency remark that we considered an alternative approach to counting

table of the form ACs that is based on counting lattice points bounded by poly-
row sums topes. Computing the number of such lattice points is a widely-
a b v ro studied problem in mathematics (for example, see [13] and
c d w 1 references therein). Moreover, there is a public software called
Ty z co+cy LattE (available at http://www.math.ucdavis.edldtte/) that

column sums: ¢y ¢; 19+ enumerates lattice points, but we found that it is significantly

slower than our own program for enumerating ACs via counfor eache! € C;, the multiplicity of ¢! is defined as

ing restricted contingency tables; it seems that 2 is the L L L

only case thatattE can handle. per) = ‘ {(ro,m1) € I(ng,m) [Alrg,m1) = € }‘ .
Recall that both contingency tables shown in Figures or thekth site, wherek > 1, Cy

and 7d have2,1,1,1 as non-zero entries, although the two

tables have different corresponding ACs. In each AC, as the o, ._ {A(M) J\{f R(ch1,7k), kwhere - }

corresponding contingency table captures, theretatistinct "1 € Cpy andr® € I(ng, nf)

types of lengtlB strings, with exactly one type being Of\gte that only distinct(r*) need to be considered when

multiplicity 2, while every other type is of multiplicity. Now, constructingCy. For everyc*—! € C,_, and everyct € Cy,

consider exte_nding the_ ACs in Figures 7c and 7d to cre_ count the following number of restricted contingency tables
ACs for the first four sites. For both cases, we need to flr},g[with A(M) k

= c":
contingency tables of the following form:

is recursively defined as

k—1 _k\ ._ k—1 k _ k
ow sums (@) = Y {{M e R(FT M) [AM) = ¥}
Ao1r Aoz Aoz Aoa Ao | To rhel(ngny)
Aip A Arg Ay As | This can then be used to define the multiplicitydfe C;, as
A*J A*ﬂ A*ﬁ A*A 0 T« k b1 b—1 &
column sums: 2 1 1 1 Ca pu (") = Z pr—1(c") w(e™ 7,).

ck—1eCy_
where(rg,r1) € I(nd,nt). As a consequence, the same set of o

contingency tables will be generated, although the correspoh@-practice,Cy. and u..(-) can be determined concurrently.
ing set of ACs will be different for the two cases. (In the ACs The total number§(D) of ACs for D is obtained by
obtained from extending the AC in Figure 7c, possible prefix@§mming the multiplicity of column sums for the last site:
of length3 are 0007, “ 1x*", “ x10", “ xx0” and “xxx", whereas L

) ! ! - R D)= . 3.8
in the ACs obtained from extending the AC in Figure 7d, B(D) Z He(e”) (3.8)
possible prefixes of length-are 0007, “ 10", “ 1", “xx 0" _
and “ * +".) Hence, since we are only interesteddaunting More generally, the total number of ACs féX1 : k], restric-
ACs, and not in constructing the actual ACs themselves, Wjen of D to the firstk sites, is

do not need to consider extensions of the ACs in Figures 7¢ B(D[1: k]) = Z 1 ().

and 7d separately. At each iteration of our algorithm, we only

keep track of distinct multiplicity configurations and how often)))
each configuration appears. Then, we construct contingent§ nave written a C++ program that implements the dynamic

tables for each distinct multiplicity configuration. This metho@ogramming algorithm described above. For two sites, we

considerably reduces the number of contingency tables 8V checked numerically that (3.8) gives the same answers
construct. as does (3.6).

We now describe our enumeration algorithm. Given a matrix
M, let A(M) denote the descending array of positive intege8 Some explicit enumeration of ACs

in M. For example, if For n even,n) = n} = n/2 for every sitei leads to the
largest number of ACs. Fot odd, the largest number of ACs
is achieved ifn} = |[n/2] + 1 andn} = |n/2] for every
site 4, where|-| denotes the floor function. The left hand side
of Table 2 shows such largest possible humber of ACs for
small numbem of sequences and small numbkerof sites. It
is quite striking that the number of ACs grows so fast as the
data size increases. These numbers were obtained using our
software that implements the dynamic programming algorithm
described in Section 3.7. Fdr = 2 andn even, our closed-
bilgrm formula (3.7) agrees with the numerical values shown in
able 2.

For fixed L, the total number of ACs is bounded from above
by a polynomial inn of degree3” — 1. There are3” — 1
non-negative integer valued variables, . .., msz_;, and the
maximum value that any variable can takenisHence, the
total number of ACs isO(n® ~1). As this simple analysis
shows, the total number of ACs depends more crucially on
the number of sites than on the number of sequences. This
qualitative behavior of growth is also apparent in Table 2.

In the absence of recombination, there Zkedistinct binary
Cy = {A(ro,m1) | (rg,my) € I(ng,ny)}. sequences of lengtli, but that the genealogy is given by

cleCy

ckeCy,

3 2 0 4
M=|102 0],

0 01 0
then A(M) = (4,3,2,2,1,1). Suppose thail and M’ are
contingency tables that arise while considering &itaVhen
constructing contingency tables for site- 1, we do not need
to distinguishM from M’ if A(M) = A(M’); we just need
to keep track of how many tables for sikehave A(M) as
descending array of positive integers. (Note thdf\/) are
used as column sums when constructing contingency ta
for sitek + 1.)

Given a k-tuple v = (vy,v9,...,vx) Of non-negative
integers, we defingv| = Zle v;. Let R(e,r) be the set
of all restricted contingency tables with column sufasc.,)
and row sumg(r,r,), wheremax(|r| — |c[,0) < ¢, < |7
and max(|c| — |r|,0) < r. <|e|. As usual,(n},ni) denote
the number of0s and1s at sitei in the input dataD.

For each sitel, we associate a s&; of column sums. To
initialize the algorithm, we define

10

TABLE 2
Total number of ACs for datd with, for every sitei, nj = ap andn? = a1, whereag = a1 = [n/2] for n even, anthg = |n/2] +1,a1 = |n/2] for
n odd. Under these conditions, the maximum valuex6D) is 1 + ag (a1 + 2% — 1). These values are shown on the right hand side. Shown on the left
hand side is the total number of ACs when an arbitrary number of recombinations are allowed.

B(D) (With Recombination) max(a(D)) (Without Recombination)
L L

n 2 3 4 5 n 2 3 4 5

2 30 573 16875 689175 2 5 9 17 33
3 108 6286 743387 149861079 3 9 17 33 65
4 330 62589 32482009 35523729489 4 11 19 35 67
5 866 445137 893479326 4938627635669 5 16 28 52 100
6 2143 3302506 29521615942 962962451049968 6 19 31 55 103
7 4611 17409443 568860072916 91812561254804105 7 25 41 73 137

a tree puts tight restriction on which sequences can appdat Examples revisited

together in an AC. As in the above case, for every site As mentioned in Section 3.4, when arbitrary number of
K3 J— 3 N —_ —_ . .
let ny = ap andni = ay, whereaop = a; = n/2 if nis yecombinations are allowed, the set of ACs does not depend

even, andag = [n/2| + 1,a1 = [n/2] if n is odd. Under qn the order ofis andls within a column. For exampld) =
these conditions, the numbef D) of ACs is maximum if the [(00,11), (1,1)] and D’ = [(01, 10), (1, 1)] have the same set

input data containg, all-0 sequences and, all-1 sequences. of ACs, shown in Figure 6, when arbitrary number of recom-
One can use the method described in Section 2.2 to show th@fations are allowed. That no longer holds true if there is a
max(a(D)) = 1+ ag(ay + 2" — 1), where L is the number yegtriction on the number of allowed recombinations. This fact
of sites. Some numerical values of this function are shown @fleasiest to see in the absence of recombination, in which case
the right hand side of Table 2. These numbers are negligiQlye set of ACs forD is {](00,11), (1, 1)], [(00,01), (1,1)],
s_mall, compared to the value 6{ D) shown on the left hand [(00,10), (1,1)], [(00),(2)], [(00),(1)]}, whereas that for
side of Table 2. D' is {[(01,10),(1,1)], [(01,00),(1,1)], [(00,10), (1, 1)],

For L sites, letBy (k) denote the number of ACs with [(00), (2)], [(00), (1)]}. Similarly, when only a single recom-
exactly k strings, and letS, (k) denote the cumulative countpination is allowed, it is straightforward to show that and

2_i—1 Br(i), which gives the number of ACs with at mdst 1 have different sets of ACs, although the two sets are both
strings. Table 3 show®, (k) and Sy (k) for data sets with f sjze 19.

n =5 and(n},n}) = (3,2) for every sitei. The largest value

: When there is a restriction on the number of recombina-
of Sy (k) corresponds t@(D) for n =5 in Table 2.

tions, even the number of ACs may depend on the order
of 0s and1s within a column. Consider the two data sets
4 ANCESTRAL CONFIGURATIONS IN D =[(00,11),(1,2)] and D’ = [(01,10,11), (1,1,1)]. In the
CONSTRAINED ARGS absence of recombination) has6 ACs, while there exists no
coalescent tree fab’ (c.f. the three gamete test mentioned in

o i) . Yection 2). The minimum number of recombinations fot
R recombinations. This study is motivated by the problen)

L . . "Q one, and there ar2l inequivalent ACs in the set of ARGs
of approximating t.he .“ke“hOOd.P(D) of the '”p”.t dataD for D’ with exactly one recombination. In contrast, there are
when the recombination rate is low, by summing over t

- X L ACs for D when one recombination is allowed.
probability of ARGs with small number of recombinations. Section 3.4, we observed that, when arbitrary number
Further, the work described here can be used to enumerate ?‘I:e . '

. S of recombinations are allowed, two data sets differing b
ARGs that can generat® using at mostR recombinations, g by

der the infinite-sit del of mutation. Th raint some permutation of their columns have the same number of
under the infinite-sites modetl of mutation. The constraiit Ofys¢ s 150 is no longer true, in general, if the number

the number of recombinations further complicates the probleép recombinations is constrained. For example, consider the
of enumerating ACs, and combinatorial analysis is MO) data setsD — (001,110, 111), (1,1,1)] ar'1d D =
difficult to carry out. We provide a dynamic programmini(mo’ 101,111). (1,1,1)) V\}hile7D hés ’an7 ARG with only

algorithm that enumerates ACs by explicitly tracking al ne recombination, no valid ARG with less than two recom-
possible evolutionary histories backwards in time. binations exists fod,)’

(CAUTIONARY REMARK: Given a data seb, an ACv that is)

R recombinations away frond may not appear in any ARG 4.2 The search algorithm

for D with at mostR recombinations; further recombinations For the case with restricted numb®iof recombinations, the
may be required for) to reach the grand common ancestoapproach we take is to trace explicitly all possible evolutionary
Hence, the number of ACs in ARGs fdp with at mostR histories backwards in time. For any particular AC, we try all
recombinations is in general smaller than the number of A@essible events—that is, recombination, coalescent or mutation
that can be reached frof using at mostR recombinations. events—that can happen to that AC. Possible recombination
In what follows, we are interested in counting the former.) and coalescent events are as illustrated in Figure 4. We do not

11

TABLE 3
Counting of ACs with a restricted number of strings. Hosites, By, (k) denotes the number of ACs with exactystrings, whileSy, (k) denotes the
number of ACs with at mosk strings. This table is for data with = 5 and (n§, n}) = (3,2) for every sitei.

k Ba(k) Sa(k) Ba(k) Ss(k) Ba(k) Si (k) B (k) S5 (%)
1 1 1 1 1 1 1 1 1

2 12 13 62 63 312 313 1562 1563

3 60 73 1143 1206 21720 22033 412683 414246

4 163 236 9517 10723 575921 597954 35132963 35547209
5 244 480 40006 50729 6811757 7409711 1168994740 1204541949
6 210 690 89716 140445 38651220 46060931 16622300644 17826842593
7 120 810 118047 258492 115829376 161890307 112796639915 130623482508
8 45 855 99013 357505 201958486 363848793 408212643773 538836126281
9 10 865 56395 413900 222978515 586827308 868467110362 1407303236643
10 1 866 22818 436718 167052986 753880294 1177704929588 2585008166231
11 6732 443450 89613906 843494200 1087103087864 3672111254095
12 1447 444897 35821104 879315304 719916684420 4392027938515
13 218 445115 10971625 890286929 356517388653 4748545327168
14 21 445136 2620233 892907162 136353481775 4884898808943
15 1 445137 491380 893398542 41276692230 4926175501173
16 72009 893470551 10070266029 4936245767202
17 8076 893478627 2004602973 4938250370175
18 662 893479289 327842330 4938578212505
19 36 893479325 44105460 4938622317965
20 1 893479326 4854891 4938627172856

21 431132 4938627603988

22 30060 4938627634048

23 1565 4938627635613

24 55 4938627635668

25 1 4938627635669

consider recombination events that produce ar akkquence. described, it allows us to avoid repeating a search already
Recall that, because we assume the infinite-sites modelcaaried out. Second, when all branches have been explored, the
mutation of1 to 0 at a site is possible if and only if exactlynumber of entries in the hash table equalg D), the number

one sequence carrieslat that site. Going backwards in timeof ACs that can be encountered in ARGs derivibgwith at

in this manner, event by event, we can exhaustively find atlost R recombinations. It is straightforward to produce a list
sequences of events with less than or equal to the allowefdall vz (D) inequivalent ACs encountered during the search.
number of recombinations, while keeping track of all distinct We have written a C program, callgsleven , that imple-

ACs encountered. To accelerate the search, we propose twents the method described above. For small data sets, we
ideas, one based on branch and bound, and the otherhaie checked that this program agrees witeTrees when
dynamic programming. no recombination is allowed, and withceARGs when an

o arbitrary number of recombinations are allowed.
We maintain a hash tablé& that stores ACs already en-

countered, together with the number of recombinations further
allowed for each AC. Initially,H contains the paif(D, R),
where D is the given data set anfl is the maximum number
of allowed recombinations. Given an A€ and its associated For small values ofn, we applied our program to all
limit ¢ on the number of recombinations, we first compute thiata sets with the same valuesgf and n} as in Table 2.
minimum numbetk of recombinations needed in the evolutiorLet R,,;, (D) denote the minimum number of recombinations
of 4; our method of computing is described in [14]. Ik > ¢, needed in the evolution of a given sBtof sequences. Shown
we backtrack the search. Otherwise, we check wheth& in Table 4 ismaxp[yg,,..(p)(D)], i.e. the maximum number,
present inf. Suppose thaty, ¢’) with ¢/ > ciis presentind. over all D, of ACs that can be encountered in ARGs fbr
Then, continuing along the current search path will not leadith R,,;,(D) recombinations. The numbers in parentheses
to any AC that has not been encountered previously, so agdanote the minimum numbeR,,,;, (D) of recombinations for

it is safe to backtrack. It’ < c or if ¢ is not present ind, D with the maximum value ofz . (p)(D). Table 4 should be
then we need to add the entfy, c) to H and iteratively try compared with Table 2. As this enumeration shows, although
all possible events backwards in time starting frgmWhen the number of ACs encountered in minimal ARGs is noticeable
either a mutation or a coalescent event is tried, the numbarger than the number of ACs possible in the absence of
of allowed recombinations remains when a recombination recombination, it is still negligibly small compared to the total
event is tried, the number of allowed recombinations decreasesnber of ACs when an arbitrary number of recombinations
to ¢ — 1. The hash table serves a dual purpose. First, as jasé allowed.

4.3 Further explicit enumeration of ACs

12

TABLE 4
The maximum number, over all data sébssatisfyingn{ = [n/2] and
ni = |n/2] for every sitei, of ACs that can be encountered in ARGs for

to anybody’s eye and carry quite different information. For
example, consider the following two contrived data sets:

D with the minimum numbeR,,;, (D) of recombinations. The numbers in 1010101 1111111
parentheses indicate the minimum numgg;,, (D) of recombinations for D= 1111111 and D’ — 1111111
D with the maximum value ofy_. (py (D). 0101010 0000000

0000000 0000000

When an arbitrary number of recombinations are allowed,
and D’ have the same number of ACs, but they are qual-

maxp [(Yry,,, (0)(D)]
T

g 5(5 9(0? 17(0;1 33(055 itatively very.differen.t; clea'r signals Qf pas't recombinations
3 90) 17(0) 33(0) 65(0) are present inD, while D’ is compatible with a tree. The
4 341) 216(2) 15243) 120854) configuration space is very large, containing at@é x 107

2 ?g&; 2‘;82((3; 1%%2?{(2; 12%%2%%; ACs, but, for low recombination rates, a large portion of

those ACs should be insignificant for computing the likelihood
P(D’). In general, if we are to devise a deterministic method
for estimating the likelihood of observing a given data set,
5 DiscussIiON we would need to investigate how we can systematically take

In this paper, we addressed the problem of enumerating @flvantage of our understanding of the configuration space and

configurations (or Markov states) ancestral to a given data §étthe structure of Markov chain transition graph.

D, consisting of binary sequences of finite length. Our main

motivation was to understand in detail the difficulties involvedA\CKNOWLEDGMENTS

in computing the likelihoodP (D) of observingD. We con-

This work is supported by grants EIA-0220154 and IIS-

structed a general method of obtaining closed-form formulggq3910 (Song) from NSF, by grant HAMJW (Hein, Lyngse)

(as functions of the multiplicity of distinct sequences iy

from EPSRC, and by grant HAMKA (Hein, Lyngsg) from

for the total number of ACs when recombination is absenyrc.

For the case in which recombination is allowed, we devised a

method of enumeration based on counting contingency tab‘ﬁ%FERENCES

and constructed a dynamic programming algorithm. In terms
of the number of ACs, one can use our methods to study!
rigorously how the case with recombination compares witlgp)
the case without recombination. In our work, we assumed
that recombination breakpoints occur at the midpoints of!
consecutive sites i. If this assumption is relaxed, then the 4
number of ACs will increase.

We also discussed a method of counting the number &?!
ACs that can appear in ARGs with less than or equal to g;
given numberR of recombinations. Of particular interest is
the case in whichR is (or is close to) the minimum number 7]
recombinations forD. When recombination rate is low, it [g]
is widely believed that ARGs with the minimum or “near
minimum” number of recombinations should make dominant®!
contribution to the likelihoodP (D). However, we are not [1q]
aware of any work that actually tried to sum the probability
over all minimal or near minimal ARGs. That problem is thét]
main motivation for our present work. Ultimately, we would
like to see how the total probability carried by ARGs with12]
at mostR recombinations changes &b increases. The goal
of this paper was to understand some basic properties of fig
Markov state space itself and to gauge the size of data that
we may be able to handle. 14]

As discussed in Section 3.8, the total number of ACs can be
inordinately large when an arbitrary number of recombinations
are allowed. Not all ACs play an equally important role iElS]
computing the likelihood, however. We mentioned in Sec-
tion 3.4 that if D and D’ are related by a series of operation$Lé]
involving permutations of characters within a column and/(H7
permutations of entire columns, then they have the same tota]
number of ACs. But,D and D’ may look radically different

S. N. Ethier and R. C. Griffiths. The infinitely-many-sites model as a
measure valued diffusiorAnn. Probah. 15:515-545, 1987.

S. N. Ethier and R. C. Griffiths. On the two-locus sampling distribution.
J. Math. Biol, 29:131-159, 1990.

P. Fearnhead and P. Donnelly. Estimating recombination rates from
population genetic dateGenetics 159:1299-1318, 2001.

R. C. Griffiths. Genealogical-tree probabilities in the infinitely-many-site
mode. J. Math. Biol, 27:667—680, 1989.

R. C. Griffiths and P. Marjoram. Ancestral inference from samples of
DNA sequences with recombinatio®. Comput. Biol.3:479-502, 1996.

R. C. Griffiths and S. Tavar Ancestral inference in population genetics.
Stat. Sci. 9:307-319, 1994.

R. C. Griffiths and S. Tavér Simulating probability distributions in the
coalescentTheoret. Pop. Bio).46:131-159, 1994.

D. Gusfield. Efficient algorithms for inferring evolutionary trees.
Networks 21:19-28, 1991.

J. F. C. Kingman. The coalescertoch. Process. Appl13:235-248,
1982.

J. F. C. Kingman. On the genealogy of large populatidng\ppl. Prob,
19A:27-43, 1982.

M. K. Kuhner, J. Yamato, and J. Felsenstein. Estimating effective
population size and mutation rate from sequence data using metropolis-
hastings samplingGenetics 140:1421-1430, 1995.

M. K. Kuhner, J. Yamato, and J. Felsenstein. Maximum likelihood
estimation of recombination rates from population dat&enetics
156:1393-1401, 2000.

J. De Loera, R. Hemmecke, J. Tauzer, and R. Yoshida. Effective lattice
point counting in rational convex polytopesof Symbolic Computation
38:1273-1302, 2004.

R. Lyngsg, Y. S. Song, and J. Hein. Minimum recombination histories
by branch and bound. IRroc. of 2005 Workshop on Algorithms in
Bioinformatics pages 239-250, Berlin, Germany, 2005. Springer-Verlag
LNCS.

K. L. Simonsen and G. A. Churchill. A markov chain model of
coalescence with recombinatiomheoret. Pop. Bio).52:43-59, 1997.

M. Stephens and P. Donnelly. Inference in molecular population
genetics.J.R. Stat. Sco. Ser., 62:605-655, 2000.

R. H. Ward, B. L. Frazier, K. Dew, and Sa&bo. Extensive mitochondria
diversity within a single amerindian tribe.Proc. Nat. Acad. Sgi.
88:8720-8724, 1991.

13

APPENDIX counting the number of lattice points bounded by the polytope;
Counting lattice points bounded by polytopes i.e. by enumerating the number of lattice points inside or on
For fixed L, let {hq,...,hsz_;} be the set of all distinct the boundary of the polytope. More generally, for> 2,

. . the total number of ACs can be determined by summing the
f;?;gﬂ strings over{0, 1,+} except for the alk string, and number of lattice points bounded by the polytopes3h —

1)-dimensional Euclidean lattice defined by the simultaneous
Hi := {j|h; has O at site}, constraints(p1, ¢1) € I(ng,ni), ..., (pr,qr) € I(nf,nt).

H; = {j|h; has 1 at site}.

Recall that the sef(n}, n}), defined in (3.2)—(3.4), gives the
possible range ofls and1s at sitei that can appear in an
ancestral configuration. Let,; > 0 denote the number of
hj in an AC. Then, the discussion in Section 3.3 implies the
following condition: The sunp; = 3¢, m; of the number

of strings with Os at sitei and the sumg; = Zjem m;

of the number of strings witls at sitei satisfy (p;,q;) €
I(nf,n}). The total number of ACs can be obtained by
counting the number of non-negative integer valued solutions
my,...,mse_; to the following L simultaneous constraints:

(pi7Qi)€I(n6?ni)a Zzl,,L

A similar approach was taken in [15] for studying the special
case wherdn}, nt) = (n,0) for all i.

Let us demonstrate how this method works through a con-
crete example. Consider a data getontainingn sequences,
in which casen), + n! = n for all i. Assume that = 2 for
simplicity, and suppose that} # 0,n} # 0 for site 1 and
thatn3 = 0,n% = n for site 2. For L = 2, the 3% — 1 distinct
strings we need to consider are as follows:

hl = 00, h5 =].*,
he = 01, he = *1,
h3 = 107 h7 = O>k7
hy = 11, hg = *0.

Using (3.2), the site-1 constraitihy, q1) € I(nd,ni) can
be translated to

either (1i) 1< mq+ma+my; <nd and
1 < mgz+mg+ms < ni,

or (1) 1 <mi+mo+mrs<n}+1and
msg =my = ms = 0.

Similarly, using (3.3), the site-2 constraiipt, ¢2) € I(n2,n?)
can be translated to
either (2i) my =mg=mg =0 and
1 <mo+my+me <,
or (2i4) mi+ms+mg=1and
Mo = My = Mg = 0.

The total number of ACs foD is given by the sum of the
number of non-negative integer valued solutions, . .., ms

to each of the following simultaneous constraintsi) and
(24); (1¢) and (2d¢); (1éi) and (2¢); (1) and (2¢i). Note
that one way to solve such a problem is via integer linear
programming.

Together with the constraint that; need be non-negative
integer valued, any pair of simultaneous constraints discussed
above defines a polytope #rdimensional Euclidean lattice,
and the corresponding number of ACs can be computed by

