
Faster Algorithms for Optimal Multiple
Sequence Alignment Based on

Pairwise Comparisons
Yonatan Bilu, Pankaj K. Agarwal, and Rachel Kolodny

Abstract—Multiple Sequence Alignment (MSA) is one of the most fundamental problems in computational molecular biology. The

running time of the best known scheme for finding an optimal alignment, based on dynamic programming, increases exponentially with

the number of input sequences. Hence, many heuristics were suggested for the problem. We consider a version of the MSA problem

where the goal is to find an optimal alignment in which matches are restricted to positions in predefined matching segments. We

present several techniques for making the dynamic programming algorithm more efficient, while still finding an optimal solution under

these restrictions. We prove that it suffices to find an optimal alignment of the predefined sequence segments, rather than single

letters, thereby reducing the input size and thus improving the running time. We also identify “shortcuts” that expedite the dynamic

programming scheme. Empirical study shows that, taken together, these observations lead to an improved running time over the basic

dynamic programming algorithm by 4 to 12 orders of magnitude, while still obtaining an optimal solution. Under the additional

assumption that matches between segments are transitive, we further improve the running time for finding the optimal solution by

restricting the search space of the dynamic programming algorithm.

Index Terms—Multiple Sequence Alignment, algorithms, dynamic programming, shortest path.

Ç

1 INTRODUCTION

MULTIPLE Sequence Alignment (MSA) is one of the
central problems in computational molecular biology

—it identifies and quantifies similarities among several
protein or DNA sequences. Typically, MSA helps in
detecting highly conserved motifs and remote homologues.
Among its many uses, MSA offers evolutionary insight,
allows transfer of annotations, and assists in representing
protein families [15], [21], [33].

By extending the dynamic programming algorithm by

Needleman and Wunsch [32] for pairwise sequence align-

ment (see also [26]), a dynamic programming (DP) algo-

rithm can compute in OðnkÞ time an optimal alignment of

k sequences for a wide range of scoring functions [30].

However, this is not plausible when k is large and, indeed,

the MSA problem is known to be NP-hard for many natural

scoring functions [3], [10], [18], [19], [25].
The intractability results shifted the focus on developing

heuristics, including MACAW [35], DIALIGN [27], ClustalW

[39], T-Coffee [34], MUSCLE [8], [9], ProbCons [6], SPEM [43],

and POA [22]. Many of these methods share the observation

that aligned segments of the pairwise alignments are the

basis for the multiple alignment process. Lee et al. [22]
argued that the only information in MSA is the aligned
segments and their relative positions. Indeed, many
methods (e.g., [27], [35], [34], [8]) align all pairs of sequences
as a preprocessing step and reason about the similar parts;
the additional computational cost of Oðn2k2Þ is small in
comparison with the potential �ðnkÞ running time of the
basic DP algorithm and can even be reduced if good
suboptimal alignments are used ([8], [9]). In progressive
methods, this observation percolates to the order of adding
the sequences to the alignment [13], [34], [17], [39], [5], [8].
Other methods assemble an alignment by combining
segments in an order dictated by their similarity [35], [27].
The Carrillo-Lipman method restricts the full DP according
to the pairwise similarities [4]. Lermen and Reinert [23] use
the so-called A� algorithm to restrict the full DP search by
precomputing heuristic bounds on the score of the optimal
alignment. Another expression of this observation is
scoring, and then matching, of full segments rather than
single residues [29], [27], [24], [34], [42]. Unfortunately, none
of these methods guarantees finding an optimal alignment.
See [21], [33] for recent results on MSA.

Researchers have also studied how to expedite the
optimal (mostly pairwise) sequence-alignment algorithms
by constructing only a part of the full DP table. Eppstein
et al. [11], [12] modify the objective function for speedup.
Landau et al. [20] devised an alignment algorithm that runs
in subquadratic time by exploiting the compressibility of
typical input sequences. Wilbur and Lipman [41], [42]
designed a pairwise alignment algorithm that offers a trade-
off between accuracy and running time by considering only
matches between identical “fragments.” Myers and Miller
[31] and Morgenstern [28] designed efficient solutions for

408 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 3, NO. 4, OCTOBER-DECEMBER 2006

. Y. Bilu is with the Department of Molecular Genetics, Weizmann Institute
of Science, 76100 Rehovot, Israel. E-mail: yonatan.bilu@weizmann.ac.il.

. P.K. Agarwal is with the Department of Computer Science, Levine Science
Research Center D315, Box 90129, Duke University, Durham, NC 27708-
0129. E-mail: pankaj@cs.duke.edu.

. R. Kolodny is with the Department of Biochemistry and Molecular
Biophysics, Columbia University, 1130 St. Nicholas Ave., ICRB, Mail Box
200, New York, NY 10032. E-mail: rachel.kolodny@columbia.edu.

Manuscript received 15 Feb. 2006; revised 19 June 2006; accepted 1 Aug.
2006; published online 31 Oct. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tcbb@computer.org, and reference IEEECS Log Number TCBBSI-0016-0206.

1545-5963/06/$20.00 � 2006 IEEE Published by the IEEE CS, CI, and EMB Societies & the ACM

special cases of the segment matching problem. In
particular, the case considered by Myers and Miller can
be solved in polynomial time [31], while the general
problem is NP-hard. Recently, Sze et al. [38] considered
the problem of an MSA that preserves k� 1 of the pairwise
alignments among k sequences and showed an efficient
solution to this variation.

Our work is motivated by the observation that the
encoding sequences used in the NP-hardness proof are not
representative of protein and DNA sequences abundant in
nature and the alignments in these proofs are not
reminiscent of ones studied in practice. For example, the
fact that MSA is NP-hard is shown by reduction from the
max-cut problem [14]—any graph can be encoded as a set of
sequences such that computing an optimal alignment of
these sequences reveals the maximal cut in the graph.
However, such encoding sequences are rarely biologically
relevant and, hence, the fact that the problem is hard on
these sequences may have limited bearing on its tractability
for biological sequences.

We propose algorithms that find an optimal alignment
but take advantage of the biological nature of the input
sequences to expedite the running time. This is in contrast
to most heuristics, which offer an efficient computation that
hopefully leads to a good alignment, but (unlike our
approach) cannot guarantee the optimality.

We define and study the multiple sequence alignment from
segments (MSAS) problem, a generalization of MSA that
accounts for assumptions regarding the pairwise character-
istics of the optimal MSA. In MSAS, the input also includes
a segmentation of the input sequences and a set of matching
segment pairs. As in the original problem, we seek an MSA
that optimizes the objective score. However, only corre-
sponding positions in matching segments may be aligned.
Trivially, one can segment the sequences into individual
letters and specify all possible segment (letter) pairs, each
with their substitution matrix score, getting back the
original MSA problem. However, for biological sequences,
we can often postulate that only solutions that conform to
some pairwise alignments are valid, e.g., when segments of
different sequences clearly do not match or clearly match.
Utilizing these assumptions, we develop a more efficient
DP algorithm.

We prove that, under some reasonable assumptions on
the scoring function, segments match in their entirety in an
optimal alignment and, hence, it suffices to match segments,
rather than individual positions. In particular, the complex-
ity of the DP algorithm for MSAS and, indeed, any
algorithm for MSAS, depends on the number of segments
in each sequence rather than the number of letters. We
show that, in practice, this reduces the number of table
updates by several orders of magnitude. For example,
aligning the five human proteins GBAS, GBI1, GBT1, GB11,
and GB12 requires 4:3� 108 rather than 6:6� 1012 table
updates. We can make the algorithm even faster, while still
guaranteeing the optimal solution, by further decoupling
the subproblems computation. Essentially, this improved
DP algorithm avoids some of the nodes in the k-dimensional
grid when calculating the optimal path. Indeed, in practice,
it outperforms naive DP and the MSA of the example

mentioned above requires only 1:5� 105 table updates.
Nonetheless, we prove that, in general, the segment
matching problem is NP-hard.

Next, we further study the combinatorial structure of the
problem by considering two additional assumptions and
the performance improvement they imply. The following
assumptions may hold in some cases of aligning DNA
sequences, where a match indicates a (near) identity:
1) Segment matches have a transitive structure, i.e., if
segment A matches segment B and B matches C, then A
necessarily matches C. 2) The objective function is an
alignment of minimal width, rather than optimal under an
arbitrary scoring function. We prove that, under these
assumptions, an optimal alignment has a specific structure,
which leads to a faster algorithm. Namely, only alignments
that utilize the so-called “special vertices” in the DP graph
need to be considered.

The contributions of this paper are, to a large extent,
theoretical: We identify assumptions on the structure of the
input sequences that make the problem of computing an
optimal alignment tractable. Nonetheless, as noted above, the
algorithm can be also of practical use when these assumptions
plausibly hold, namely, when the sequences can be reliably
partitioned into matching segments and the objective is to
find how the segments align within the data set.

The paper is organized as follows: In Section 2, we define
the MSA problem, cast it into a graph-theoretic framework,
and describe the straightforward DP solution. In Section 3,
we present the MSAS problem and prove its equivalence to
the segment matching problem, leading to a faster algo-
rithm. We improve the running time even more by
considering only “relevant directions” in Section 3.4. We
describe our implementation in Section 4, including the
conversion of pairwise alignments to the input format of
MSAS and give several examples of the performance when
aligning human proteins. Last, in Section 5, we show that a
transitivity assumption on the matches leads to further
improved efficiency.

2 MULTIPLE SEQUENCE ALIGNMENT

The input of a multiple sequence alignment (MSA) problem is
a set S ¼ f�1; . . . ; �kg of k sequences of lengths n1; . . . ; nk
over an alphabet � and a scoring function f : ð� [f�gÞ� !
IR (where the gap sign, “�,” is not in �). A multiple
alignment of the sequences is a k� n matrix with entries
from � [f�g. In the ith row, the letters of the ith sequence
appear in order, possibly with gap signs between them. The
score of a column of the matrix is the value of f on the
k-tuple that appears in that column. The score of a multiple
alignment of S is the sum of scores over all columns. The
objective in the MSA problem is to find an alignment of S of
optimal score. Without loss of generality, we assume the
objective is maximizing the scoring function, but, impor-
tantly, f can be any scoring function over ð� [f�gÞk (e.g.,
the commonly used sum-of-pairs, but also scores that are
based on the whole sequence set, such as that in [6]). Other
formulations of MSA which have been suggested (e.g., [22],
[29]) are beyond the scope of this work.

We first define our notation: Let I � ½k�, where ½k�
denotes the set f1; . . . ; kg. We denote by ei 2 f0; 1gk the

BILU ET AL.: FASTER ALGORITHMS FOR OPTIMAL MULTIPLE SEQUENCE ALIGNMENT BASED ON PAIRWISE COMPARISONS 409

vector that is zero in all coordinates except the ith, where it
is 1, and eI ¼

P
i2I ei.

1 For a vector x ¼ ðx1; . . . ; xkÞ 2 INk, let
xjI be the projection of x onto the subspace spanned by
feigi2I , i.e., the ith coordinate of xjI is xi if i 2 I and 0
otherwise. For two vectors, x; y 2 INk, we say that x

dominates y and write x > y if xi � yi for i ¼ 1; . . . ; k. We
define the directed graph GG0—its vertex set is ½n1� [f0g �
½n2� [f0g � . . .� ½nk� [f0g and there is an edge ðx; yÞ in GG0

if and only if x > y and x� y ¼ eI for some ; 6¼ I � ½k�; in
this case, we call I the direction that leads from x to y.

The paths from the vertex ðn1; . . . ; nkÞ to ð0; . . . ; 0Þ in GG0

correspond to alignments (from right to left) of the input
sequences. Let p be such a path. Consider ðx; x� eIÞ, the
jth edge that the path transverses: In the corresponding
sequence alignment, the jth column is a k-tuple that aligns
positionsxi of sequences i 2 I and has a gap for sequences not
in I (in this case, we say that the path matches position xi of
sequence i and position xi0 of sequence i0, for all i; i0 2 I).
We define � : EðGG0Þ ! IR to be a score function over the
edges of GG0, based on the score function f over the columns
of the alignment: � assigns to an edge the value which f

assigns to the corresponding column. We also extend � to
paths or sets of edges E0 � EðGG0Þ: �ðE0Þ ¼

P
e2E0 �ðeÞ. It is

not hard to see that every such path defines a multiple
alignment and that every multiple alignment can be
described by such a path (with the same score).

In MSA, we seek a maximal (scoring) path from

ðn1; . . . ; nkÞ to ð0; . . . ; 0Þ in GG0. The well-known DP

solution to this problem is straightforward and serves as

a stepping stone for the new algorithms we develop here.

In Fig. 1, we sketch the routine FindOptimalPathðxÞ, which

computes the optimal path from vertex x to the origin,

denoted px, by considering the optimal paths from all its

neighbors that are closer to the origin (as in Dijkstra’s

algorithm). The optimal MSA is calculated by calling

FindOptimalPathððn1; . . . ; nkÞÞ. The optimal scores of sub-

problems that have been solved recursively are stored to

avoid recomputing them later. The algorithm returns the

score of the optimal path and a sequence of vertices

realizing it. In practical implementations, it is enough to

store, at each node, the edge leading to it in an optimal path,

rather than the entire path. The time complexity of the

algorithm is the number of edges in GG0, i.e., �ð2k
Qk

j¼1 njÞ.

3 MSA FROM SEGMENTS

In this section, we formulate the Multiple Sequence
Alignment from Segments (MSAS) problem—a general-
ization of MSA that is more suitable for biologically
meaningful alignments. We assume a preprocessing step,
which partitions the sequences into segments, matches pairs
of these segments, and assigns a score to each match. This
information is represented by the so-called segment match-
ing graph. We use the segment matching graph to construct
a graph GG1, a subgraph of GG0, which includes only those
edges that correspond to the letters in the matched pairs of
the segment matching graph. The MSAS problem asks for
computing an optimal path from ðn1; . . . ; nkÞ to ð0; . . . ; 0Þ in
GG1. Clearly, MSAS is a generalization of the MSA problem:
Keeping in the preprocessing step all the edges of GG0 (by
segmenting the sequences into letters) gives GG1 ¼ GG0 and
we get the original MSA problem. We make this formula-
tion precise in Section 3.1. The main property of GG1 is that
there exists an optimal path from ðn1; . . . ; nkÞ to ð0; . . . ; 0Þ in
GG1 in which segments are matched in their entirety. Using
this observation, we describe an algorithm in Section 3.2
that compresses GG1 into a smaller graph GG2 whose vertices
correspond to the segments of the input sequences
computed in the preprocessing step so that an optimal
path in GG2 corresponds to an optimal path in GG1. We prove
the above property of GG1 in Section 3.3. Next, we show that,
for computing the optimal path at a vertex in GG2, it suffices
to consider a subset of directions—the so-called relevant
directions (Section 3.4). Since the number of edges in the
graph governs the running time of the dynamic program-
ming algorithm, considering fewer edges improves the
running time.

3.1 Preliminaries

Definition 1. For a sequence � of length n, a segmentation of �
is a sequence of breakpoints 0 ¼ b0 < b1 < . . . < bl ¼ n. The
interval ½bi�1 þ 1; bi� is called the ith segment or segment i of
�. The breakpoint bi is called the entry point into segment i
(for i ¼ 1; . . . ; l) and the exit point from segment iþ 1 (for
i ¼ 0; . . . ; l� 1).

Suppose we have a segmentation of the sequences in S.
Let lj denote the number of segments in sequence �j.

Definition 2. A segment matching graph (SMG), IM, over the
given segmentation of S is an undirected weighted graph over
vertex set fðj; iÞ : j 2 ½k�; i 2 ½lj�g. Every vertex represents a
segment of an input sequence. Its edges are of two forms: 1) For
every vertex ðj; iÞ, there is an edge ððj; iÞ; ðj; iÞÞ, i.e., a self-loop,
and 2) edges of the form ððj1; i1Þ; ðj2; i2ÞÞ, where j1 6¼ j2 and the
segment i1 of sequence �j1 has the same length as the segment i2
of �j2 ; the edges of the type 2 form a k-partite graph. The edges of
IM have a scoring function f : EðIMÞ ! IR.

An edge e ¼ ððj1; i1Þ; ðj2; i2ÞÞ in the SMG signifies a
match between segment i1 in sequence �j1 and segment i2 in
sequence �j2 . Let l be the (same) length of these segments,

410 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 3, NO. 4, OCTOBER-DECEMBER 2006

1. This is a sum of vectors, i.e., the sum is component-wise.

Fig. 1. Basic DP MSA algorithm. �x denotes the score of the path px.

and x1 and x2 their exit points on sequences �j1
and �j2

,
respectively; then, for t ¼ 1; . . . ; l, the edge e implies that we
allow a match between position x1 þ t of sequence �j1 and
position x2 þ t of sequence �j2 .

The input to the MSAS problem is a set of segmented
sequences, and a list of pairs of matching segments along
with their scores, described by an SMG IM. The objective is
still finding the highest scoring sequence alignment, but
with the following two constraints:

C1. Two sequence positions may be aligned together
only if they appear in matching segments and in the
same relative position therein.

C2. The score of a multiple match depends only on the
scores of the corresponding edges in the SMG (and
not on the letters themselves). In other words, we
can think of the domain of the score function as
being k-tuples of segments, rather than positions.

The intuition behind these restrictions is that the
preprocessing stage identifies matching segments and
restricts the algorithm to them. Equivalently, letters inside
segments that cannot possibly match are not specified in the
SMG and are thus disallowed. Furthermore, the algorithm
assigns a “confidence level” (or weight) to each match and
the objective is to find a highest-scoring alignment with
respect to these values. Here, the segments of each sequence
are nonoverlapping. In practice, we derive the segments
from aligned portions of two sequences, which may
overlap. This is resolved by splitting the overlapping
segments to smaller nonoverlapping ones, as we discuss
in Section 4.

Formally, given a set of segmented sequences and an
SMG IM over these segmented sequences, we define a graph
GG1ðIMÞ, a subgraph of GG0ðIMÞ, as follows: The vertices of
GG1ðIMÞ are the same as those of GG0; an edge ðx; x� eIÞ is in
GG1ðIMÞ if and only if, for all i; j 2 I, there is an edge �ij 2
EðIMÞ such that position xi on �i is matched to position xj
on �j in IM. In this case, we say that I is an allowed direction
at x and that �ij is a match defining the edge ðx; x� eIÞ. The
score of such an edge is a function of the corresponding
edges in IM (e.g., the sum-of-pairs scoring function,
�ðx; x� eIÞ ¼

P
i;j2I;i<j fð�ijÞ). It is not hard to see that if x

and y are vertices such that xI ¼ yI and I is allowed at x,
then I is also allowed at y. Note also that, because all
vertices in IM have self-loops for all directions i 2 ½k�, fig is
an allowed direction at all vertices x such that xi > 0; this
means that, as long as the beginning of the sequence has not
been reached, we can always “align” a segment of one
sequence against gaps in all the others.

The goal of the MSAS problem is to find a highest
scoring path from ðn1; . . . ; nkÞ to ð0; . . . ; 0Þ in GG1. Clearly,
the algorithm depicted in Fig. 1 can be trivially modified to
compute such a path. However, we improve the running
using the following theorem, which is the main result of this
section.

Theorem 1 (Segment Matching Theorem). There is an
optimal path from ðn1; . . . ; nkÞ to ð0; . . . ; 0Þ in GG1 in which
segments are either matched in their entirety or not matched
at all.

While the theorem is intuitively clear, the proof is
deferred to Section 3.3 since it is somewhat technical and
involved.

Definition 3. A vertex x ¼ ðx1; . . . ; xkÞ in GG1 is called a
breakpoint if xi is a breakpoint of sequence �i for all i 2 ½k�.
We call a vertex y of GG1 a breakpoint with respect to x if
there exists an allowed direction I so that y is the first
breakpoint reached when starting at x and repeatedly going in
direction I. Let

XðxÞ ¼ fy 2 V ðGG1ðIMÞÞ : y is a breakpoint w:r:t: xg:

Theorem 1 suggests that an optimal path from
ðn1; . . . ; nkÞ to ð0; . . . ; 0Þ in GG1 passes through a sequence
of vertices x1; x2; . . . ; xu, where each xi is a breakpoint and
xiþ1 2 XðxiÞ. Using this observation, we next show how we
can solve the MSAS problem faster by compressing the
graph GG1 to a smaller graph and computing an optimal
path on this smaller graph.

3.2 Compressing GG1 and Segment Matching

We define a graph GG2, a “compressed” version of GG1,
whose vertices correspond to k-tuples of segments in the
given segmentation of S. That is, its vertex set is
½l1� [f0g � ½l2� [f0g � . . .� ½lk� [f0g, where li is the num-
ber of segments in sequence �i. There is a directed edge
from z ¼ ðz1; . . . ; zkÞ to z� eI in GG2 if, for all i; j 2 I, the
zith segment of �i matches the zjth segment of �j. Define
x ¼ ðx1; . . . ; xkÞ 2 V ðGG1Þ so that xi is the entry point into the
zith segment of �i. Let x ¼ ðx1; . . . ; xkÞ be the vertex in G1

and let l be the length of the segments defining the edge
ðz; z� eIÞ (recall that two segments match only if they are of
the same length). Then, ðz; z� eIÞ 2 EðGG2Þ implies that
ðx; x� eIÞ; ðx� eI; x� 2eIÞ; . . . ; ðx� ðl� 1ÞeI; x� l 	 eIÞ are
all edges in GG1. In this sense, ðz; z� eIÞ is a “compression”
of the edges

fðx; x� eIÞ; ðx� eI; x� 2eIÞ; . . . ; ðx� ðl� 1ÞeI; x� l 	 eIÞg:

For example, in Fig. 2, the matching of the first segment of the
upper sequence with the third segment of the lower sequence
represents the fact that the six letters in these segments
(NERMAL) match each other in order. The score of the edge
ðz; z� eIÞ, denoted by �ðz; z� eIÞ, is the sum of the scores of
all the edges in GG1 that it represents. Since the score of these
edges in GG1 depends only on the matched segments,
�ðz; z� eIÞ ¼ l 	 �ðx; x� eIÞ. Fig. 2 shows an example of two
sequences, their SMG, and the graphs GG1;GG2.

The segment matching problem is to find a highest-scoring
path from ðl1; . . . ; lkÞ to ð0; . . . ; 0Þ in GG2. The segment
matching theorem implies that such a path gives a highest-
scoring path from ðn1; . . . ; nkÞ to ð0; . . . ; 0Þ in GG1.

Fig. 3 sketches the revision of the basic DP algorithm to
compute an optimal path in GG2. The running time of the
algorithm is �ð2k

Qk
j¼1 ljÞ. Hence, if the sequences in S are

long but consist of a small number of segments, DP may be
appropriate for solving the segment matching problem but
not for solving the MSA problem.

3.3 Proof of the Segment Matching Theorem

We prove the segment matching theorem by showing that,
if the positions in a segment s in a given alignment are

BILU ET AL.: FASTER ALGORITHMS FOR OPTIMAL MULTIPLE SEQUENCE ALIGNMENT BASED ON PAIRWISE COMPARISONS 411

matched to positions in several other segments, s1; . . . ; st (in

other sequences), we can replace this alignment by another

without decreasing its score, where, in the new alignment,

all positions in s are either matched to the same segment

(from among s1; . . . ; st) or are not matched at all. For

example, for the alignment shown in Fig. 4b, we show that

one of the options in Fig. 4c does not reduce the score.

Intuitively, we would like s to match in its entirety to one of

the segments from s1; . . . ; st with the highest score.

However, there is a caveat here: Suppose the best match

of s is to si. Matching s to si might prevent matching si to

some other segment, which, in total, improves the overall

score of the alignment. Thus, we have to use a global

argument to prove the theorem (see Fig. 4d), which makes

the proof involved.
We define the clique hypergraph of the SMG IM, denoted

by IHðIMÞ: The vertex set of IHðIMÞ is V ðIMÞ. The

hyperedges are defined by the cliques in IM. That is,

fði; ziÞgi2I is a hyperedge if, for all i; j 2 I, there is an

edge ðði; ziÞ; ðj; zjÞÞ 2 EðIMÞ. If ðx; x� eIÞ is an edge in GG1,

then, by construction, there is a unique hyperedge in IHðIMÞ
corresponding to this edge; many edges of GG1 might map to

the same hyperedge of IHðIMÞ.
The score of a hyperedge is the same as that of the

corresponding edge in GG1ðIMÞ. Observe that this is well

defined because, by C2, the score of an edge in GG1 depends

only on the match and not on the specific position therein.

We associate with each hyperedge fði; ziÞgi2I in IHðIMÞ a

vector v 2 ð½l1� [f�gÞ � . . .� ð½lk� [f�gÞ by taking vi ¼ zi
for i 2 I and vi ¼ “�” otherwise.

Definition 4. A sequence of vectors v1; . . . ; vr 2 ð½l1� [f�gÞ �
. . .� ð½lk� [f�gÞ is monotone if, for each i 2 ½k�, the

sequence of entries v1
i ; . . . ; vri is monotonically nonincreasing

(excluding those entries which are “�”). A sequence of

hyperedges is monotone if the sequence of associated vectors is

monotone.

For example, the sequence of vectors v1 ¼ ð3;�;�Þ; v2 ¼
ð2; 2;�Þ; v3 ¼ ð�;�; 2Þ; v4 ¼ ð1; 1; 1Þ is monotone. They can

be thought of as describing a multiple alignment of three

412 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 3, NO. 4, OCTOBER-DECEMBER 2006

Fig. 2. Example of an SMG for two sequences: (a) shows the sequences, their partitioning, and the SMG where each segment corresponds to a

(gray) node. (b) shows GG1. Unlike GG0, which has all diagonals, the diagonals in GG1 are defined by the SMG. An allowed path in GG1 is also shown.

(c) shows GG2 and an allowed path in it. The directions of the edges are omitted in the illustration for clarity, but are toward the origin.

Fig. 3. Segment-based DP MSA algorithm.

Fig. 4. Depiction of concepts used in the proof of Theorem 1. (a) The
SMG of two sequences. (b) An optimal path for aligning these two
sequences which does not match entire segments. (c) The hypergraph
restricted to the path in (b) (right) and the two possible alignments which
match whole segments (left). The choice between them depends on
whether the score of the blue hyperedge is greater than that of the red
hyperedge or not. Note that the parts in the alignment that are not in this
connected component are unaffected. (d) Local considerations are not
enough in modifying the path to match whole segments since, within a
connected component, each change may effect other matches—choos-
ing the blue edges implies losing the green edges.

sequences. The first sequence has three segments and the
other two have two. The second segments of the first and
second sequences are aligned together and the first
segments of all three sequences are aligned together.

Let p be a path from ðn1; . . . ; nkÞ to ð0; . . . ; 0Þ in GG1ðIMÞ. It
is not hard to verify that the sequence of hyperedges
associated with the edges of p (in order) is monotone. We
denote by IHjp the hypergraph with vertex set of IHðIMÞ and
hyperedges corresponding to the edges of p. We show in the
next lemma that IHjp has a certain “cycle-structure,”
depicted in Fig. 5.

Lemma 1 (Cycle Structure Lemma). Let p be a path from
ðn1; . . . ; nkÞ to ð0; . . . ; 0Þ in GG1ðIMÞ, and let f0; . . . ; ft�1 be a
set of hyperedges in EðIHjpÞ with jfij > 1 for all i
 t. Let
s0; s1; . . . ; s2t; s2t�1 be a sequence of segments, where si is a
segment of sequence �ji , that form a cycle in the following
sense:

1. For all 1
 i < t, j2i�1 ¼ j2i and s2i�1 < s2i, i.e., the
segments s2i�1 and s2i lie in the same sequence and the
segment s2i�1 appears before s2i.

2. s2t�1 and s0 lie in the same sequence.
3. For all 0
 i < t, ðj2i; s2iÞ; ðj2iþ1; s2iþ1Þ 2 fi, i.e., p

matches segment s2i with segment s2iþ1.

Then, it must be the case that s0 < s2t�1.

Proof. For 0
 i < t, let vi 2 ð½l1� [f�gÞ � . . .� ð½lk� [f�gÞ
be the vector associated with fi, as above. Since there
is a monotone ordering of the edges of IHjp, there is
also one of f1; . . . ; ft. Since vi�1

j2i�1
¼ s2i�1 < s2i ¼ vij2i�1

for all 1
 i < t, the monotone ordering of the fis
must be precisely ft�1; ft�2; . . . ; f0. In particular, the
numbers in coordinate j0 must also be monotone.
Hence, s0 ¼ v0

j0
< vt�1

j0
¼ s2t�1. tu

We are now ready to prove the theorem. Let p be an
optimal path in GG1 and let C denote the set of connected
components of IHjp. Observe that all segments in the same
connected component of IHjp have the same length.

Consider a component H 2 C and let l ¼ lðHÞ be the length
of the segments in H. Let 1 < i
 l be an integer and ðj1; sj1Þ
a vertex in H. Suppose the ith position of segment sj1 on
sequence �j1

is matched by p to the ith position of segments
sj2
; . . . ; sjr on sequences �j2

; . . . ; �jr (respectively). So,
fðj1; sj1Þ; . . . ; ðjr; sjrÞg is a hyperedge of H. Define EiðHÞ to
be the set of all such hyperedges, which correspond to the
matches of position i among the segments of H. Let
�ðEiðHÞÞ ¼

P
�2EiðHÞ �ð�Þ. Note that each hyperedge of

EiðHÞ corresponds to a unique edge in p and vice versa.
Therefore,

�ðpÞ ¼
X

H2C

XlðHÞ

i¼1

�ðEiðHÞÞ: ð1Þ

For each connected component H, let

EðHÞ ¼ arg max
1
i
lðHÞ

�ðEiðHÞÞ: ð2Þ

Set E ¼
S
H2C EðHÞ. It can be checked that each segment of

an input sequence appears in exactly one hyperedge of E.
We claim that there is a path p0 from ðn1; . . . ; nkÞ

to ð0; . . . ; 0Þ in GG1 such that, for each hyperedge
fðj1; sj1Þ; . . . ; ðj1; sjrÞg 2 E, the path p0 matches segments
sj1
; . . . ; sjr to each other completely. In other words, p0 uses

only edges corresponding to those in E. This will prove the
theorem since

�ðp0Þ ¼
X

H2C
lðHÞ 	 �ðEðHÞÞ �

X

H2C

XlðHÞ

i¼1

�ðEiðHÞÞ ¼ �ðpÞ:

It remains to show that such a path p0 exists. Suppose we
have constructed p0 up to a vertex x ¼ ðx1; . . . ; xkÞ and have
chosen a subset E0 � E of hyperedges (corresponding to the
edges of the path up to x). Without loss of generality
assume that xi � 1 for all i
 k. Denote by si the segment in
sequence �i that contains position xi � 1. Let F ¼
ff1; . . . ; frg be the subset of hyperedges in EnE0 in which
the segments s1; . . . ; sk appear. Recall that there is a unique
hyperedge of E in which each si appears.

Lemma 2. There is a hyperedge f 2 F so that
f � fð1; s1Þ; . . . ; ðk; skÞg.

Proof. If there exists a hyperedge f 2 F of size 1, i.e., of the
form fði; siÞg, then the lemma is obviously true. So,
assume that jf j > 1 for all f 2 F . For the sake of
contradiction, suppose that each ft 2 F contains a pair
ðqt; sðftÞÞ so that sðftÞ 6¼ sqt , i.e., the position xqt � 1 does
not lie in sðftÞ. Since all positions of �qt up to xqt have
already been matched using the hyperedges of E (by the
choice of x) and the hyperedge ft 62 E0 has not been
chosen so far, it follows that

sðftÞ < sqt : ð3Þ

We construct an ordered subsequence fi0 ; fi1 ; . . . of F
as follows: Start with fi0 ¼ f1. Suppose we have

constructed fi0 ; . . . ; fij . We then set fijþ1
to be the

hyperedge of F that contains the pair ðqij ; sqij Þ. We stop

the process when we reach a sequence that we have

already chosen, say, fi0 . Suppose we construct the

BILU ET AL.: FASTER ALGORITHMS FOR OPTIMAL MULTIPLE SEQUENCE ALIGNMENT BASED ON PAIRWISE COMPARISONS 413

Fig. 5. The “cycle-structure” of the hypergraph induced by a path. A set
of segments which constitute a cycle in the sense of (a), where the
dashed edges are known to connect to segments on the same
sequence, can only be of the structure (b). The match depicted in (c)
is illegal since it violates the monotone property of the edges, i.e., the
edges cross each other.

subsequence fi0 ; . . . ; fim�1
. We then set ~s0 ¼ sqim�1

,

~s2j�1 ¼ sðfij�1
Þ, and ~s2j ¼ sqij�1

for 1
 j < m, and

~s2m�1 ¼ sðfim�1
Þ. The hyperedges fi0 ; . . . ; fim�1

and the

segments ~s0; . . . ; ~s2m�1 satisfy conditions 1-3 of Lemma 1,

but ~s0 > ~s2m�1 (by (3)), which contradicts the Cycle

Structure Lemma (Lemma 1). Hence, there exists a

hyperedge f 2 F that is a subset of fð1; s1Þ; . . . ðk; skÞg.tu
By the above lemma, let f ¼ fði1; si1Þ; . . . ; ðir; sirÞg �

fð1; s1Þ; . . . ; ðk; skÞg be a hyperedge of EnE0 and let l be the
length of any segment in f . We choose f and we set I ¼
fi1; . . . ; irg and x ¼ x� l 	 eI . By repeating this step until we
reach ð0; . . . ; 0Þ, we have a path p0 that matches segments in
their entirety, as desired. This completes the proof of the
theorem. It is easy to see that these matches can be
reordered so that p0 proceeds from each breakpoint vertex
x to a breakpoint vertex y such that y 2 XðxÞ.

3.4 Narrowing the Search Space: Relevant
Directions

Consider an input to the MSAS problem that consists of two
subsets of k sequences each and suppose that none of the
segments in the first subset match any of those in the second
subset. Naively applying the DP algorithm requires build-
ing the entire table and a running time exponential in 2k.
Yet, clearly, the problem can be solved on each subset
independently, in time exponential in k rather than 2k.
Intuitively, this is also roughly the case when the sequences
can be partitioned into loosely connected subsets. We make
this notion explicit in this section. Again, we start with some
definitions:

Definition 5. Let x be a vertex in GG2ðIMÞ. An edge
ðði; yiÞ; ðj; yjÞÞ in the SMG is relevant for x at coordinate i
if xi ¼ yi and xj > yj. A subset of indices S � ½k� is relevant
at x if, for all i 2 S, the edge ðði; yiÞ; ðj; yjÞÞ being relevant for
x at coordinate i implies j 2 S.

Theorem 2. Let p be an optimal path in GG2 and x be a vertex on
it. Let S be a subset of indices that is relevant at x. Then, there
is an optimal path p0 that is identical to p up to x and from x
goes to x� eI for some I � ½k� such that I \ S 6¼ ;.

Proof. Let y be the first vertex on p after x such that yi ¼
xi � 1 for some i 2 S. Define p0 to be the same as p up to x
and from y onward. We will define a different set of
allowed directions that lead from x to y. Let I1; . . . ; It be
the directions followed from x to y. Let i 2 It \ S. For all

i 6¼ j 2 It, there is a match between ði; xiÞ and
ðj; yj þ 1Þ. Hence, either j 2 S or yj þ 1 ¼ xj. Since y

is the first vertex in p that differs from x on a
coordinate in S, if j 2 S, then j 62 I1; . . . It�1. Clearly, if
yj þ 1 ¼ xj, then, again, j 62 I1; . . . It�1. In other words,
for all h < t, we have Ih \ It ¼ ;. Define p0 to follow
directions It; I1; . . . ; It�1 from x. As It is disjoint from the
other directions, this indeed defines an allowed path
from x to y and i 2 It \ S. tu

The theorem implies that there is no need to look in all

directions in the DP algorithm. Let S be a subset that is
relevant at a point x, then, to compute the optimal path
from x to the origin, it is enough to consider paths from
x� eI to the origin for I � ½k� such that I \ S 6¼ ;. See Fig. 6
for an example of relevant matches and directions. This
suggests the DP algorithm sketched in Fig. 7 (this time think
of z as a vertex in GG2). Note that there is no need to keep a
table of size jV ðGG2Þj to implement this algorithm—the
vertices that are actually visited by the algorithm can be
kept in a hash table.

3.5 Segment Matching Is NP-Complete

The NP-completeness of the segment-matching problem
does not immediately follow from the known results on the
complexity of multiple sequence alignment. First, MSA is
known to be NP-complete only for certain types of scoring
functions, while the scoring function can be arbitrary in the
segment matching problem. Second, the input to the
problem is different—in the segment matching problem,
the scoring function is part of the input and may be stated
explicitly for each match. Hence, the question of whether
there is an algorithm that solves the problem in time
polynomial in the input size is different.

Nonetheless, we show that segment matching is
NP-complete. We do so by a reduction from the minimal

feedback vertex set problem, which is known to be
NP-complete [14]. The input to the minimal feedback vertex
set problem is a weighted, directed graph and the objective
is to find a set of vertices of maximal total weight that span
an acyclic subgraph.

It will be convenient to think of the segment matching
problem in the terminology of Definition 4. That is, the
input is a set of weighted vectors in ðf1; . . . ; lg [f�gÞk
(representing the matches between k sequences, each with

414 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 3, NO. 4, OCTOBER-DECEMBER 2006

Fig. 6. An example SMG on three sequences, demonstrating relevant directions. We consider the vertex x which is the end of the three sequences:

These positions are marked by * in the figure. The relevant matches for x in coordinates [1], [2], [3] are shown in bold and the other matches in this

SMG are in dashed lines. The allowed directions for x are f½1�; ½2�; ½3�; ½1; 3�g. The subset S ¼ ½3; 2� is relevant at x. By Theorem 2, it suffices to

consider only allowed directions that intersect S or, equivalently, there is no need to consider direction ½1�.

l segments) and the goal is to find a monotone nonincreas-
ing sequence of maximal weight.

Theorem 3. The segment matching problem is NP-complete.

Proof. The fact that segment matching is in NP is trivial:
Given a multiple alignment, we can compute its score in
polynomial time and decide whether it is bigger than
some value. So, it remains to prove that the problem is
NP-hard.

Let G be a weighted directed graph on n vertices.
Define n integer vectors of length jEðGÞj, that is, the
vectors are associated with the vertices of G and are
indexed by the directed edges. With a slight abuse of
notation, we shall denote a vertex and the vector
associated with it by the same letter. Define the
eth coordinate of the vector v as 1 if e is an edge going
into v, 0 if e is an edge going out of v, and “-” otherwise.
Define the weight of a vector as that of the vertex in G to
which it is associated.

The construction of these vectors can clearly be done in
polynomial time, so the reduction from the minimal
feedback vertex set is polynomial. To show that segment
matching is NP-hard, we need to prove that a set of
monotone vectors of maximal weight defines an acyclic
subgraph ofG of maximal weight. Thus, it suffices to show
a bijection between monotone vector sequences and
acyclic spanned subgraphs (while keeping the score).

Letting U ¼ fu1; . . . ; utg be a sequence of vertices
spanning an acyclic subgraph, we show that the
associated vectors can be ordered as a monotone
sequence. Assume U is enumerated in topological order,
that is, there may be an edge from ui to uj only if i < j
(this can be so since the spanned graph is acyclic).
Assume, for contradiction, that the sequence of vectors
associated with U is not monotone. Then, there are two
vectors, ui and uj, with i < j, such that uj > ui does not
hold. That is, there is some coordinate e such that
uie � uje. Clearly, uie 6¼ uje since there is only one vector v
for which ve ¼ 0 (corresponding to the vertex from which
e originates) and only one vector v0 such that v0e ¼ 1.
Hence, since all vectors are in f0; 1;�g, it must be that

uie ¼ 1 and uje ¼ 0. But, this implies that e is an edge from
uj to ui, in contradiction of the assumption that U is
enumerated in topological order.

Now, let U ¼ fu1; . . . ; utg be a monotone sequence of
vectors. We show that the subgraph spanned by the
associated vertices is acyclic. It will suffice to show that
the associated vertices are enumerated in topological
order. Indeed, assume this is not the case, that is, that, for
some i < j, there is an edge e from uj to ui. Then, the
eth coordinate of the associated vectors is defined as
uie ¼ 1, uje ¼ 0. This is a contradiction of the assumption
that the U is a monotone sequence of vectors. tu

4 IMPLEMENTING THE ALGORITHM

We have implemented Version 2 of the algorithm, described
in Fig. 7. Using the implementation of the algorithm, we
investigate its efficiency (measured in the number of
vertices it visits, or table updates) on real biological
sequences. We first describe in Section 4.1 the preprocessing
step that constructs the SMG and then discuss in Section 4.2
the performance of the algorithm on a few examples. We
stress that efficiency is indeed the property of interest here as
the multiple alignment found is an optimal solution for the
MSAS problem.

Our implementation differs from the described algorithm
in one point—in Fig. 7, for the sake of a simpler presentation,
the entire optimal path is stored in each node. In practice, we
only store the optimal edge leading to each node.

4.1 Generating a Segment Matching Graph (SMG)

Existing tools, such as BLAST [1] or DIALIGN [29], provide
local alignments rather than the input format which we
assumed previously. In order to restrict the problem to only
MSAs which conform to these local pairwise alignments,
we must convert them to an SMG. In particular, we need to
segment the sequences and allow matches only between
equal-length segments.

Starting with the set of sequences, we add breakpoints
onto them based on the local alignments. This way, we
progressively build the SMG, stopping when all local

BILU ET AL.: FASTER ALGORITHMS FOR OPTIMAL MULTIPLE SEQUENCE ALIGNMENT BASED ON PAIRWISE COMPARISONS 415

Fig. 7. Version 2 of the MSA algorithm.

alignments are properly described. The ends of an align-
ment define breakpoints in the two aligned sequences. If the
segments between those breakpoints have the same length,
we simply add a connecting edge (or edges) to the SMG.
The segment lengths may differ due to two reasons: First,
gapped alignments match segments of unequal length; we
solve this by adding breakpoints at the gap ends. Second,
regions of the sequences corresponding to different align-
ments may overlap; we solve this by adding breakpoints at
the ends of the overlapping region (or regions). Notice that
if we add a breakpoint inside a segment that already has an
edge associated with it, we must split the edge (and a
corresponding breakpoint must be added to the connected
segment).

4.2 Example MSAs

We demonstrate the effectiveness of our algorithm by
several examples of aligning human protein sequences. We
align two sets of proteins from kinase cascades: 1) MATK,
SRC, ABL1, and GRB2 of lengths 507, 535, 1,130, and 217,
respectively. 2) PTK6, PTK7, RET, SRMS, DDR1 of lengths
451, 1,070, 1,114, 488, and 913, respectively. We also align
five heterotrimeric G-protein (subunits alpha) GBAS, GBI1,
GBT1, GB11, GB12 of lengths 394, 353, 349, 359, and 380,
respectively. We chose these (relatively long) proteins
because their “mix-and-match” modular components char-
acteristic highlights the strengths of our method.

We use gapped and ungapped BLAST with an E-value
threshold of 10�2 to find local alignments. Namely, in the
optimal MSA, two letters can be matched only if they are in
a local BLAST alignment with an E-value of at most 10�2.
Importantly, this BLAST threshold is a parameter in
practical uses of the algorithm, allowing a trade-off between

sensitivity and running time. The lower the value, the
greater the sensitivity of the algorithm as more potential
matches are identified. However, numerous matches lead to
an increased number of segments and, as a result, a longer
running time.

Table 1 lists the number of table updates needed to find
the optimal MSA for these alignments. The first column has
the size of the full DP matrix or the product of the
sequences lengths (the same for gapped and ungapped).
The second column lists the number of segments in each
sequence in the SMG, which was calculated from the
BLAST un/gapped alignments and the size of their DP
matrix. The last column has the actual number of vertices
visited or, equivalently, the number of table updates. The
number of updates drops dramatically in the extreme case
from 1014 to less than 3,000. In all cases, our algorithm finds
an optimal MSAS solution in a reasonable number of steps.

We note that memory complexity is the appropriate
measure in practice. When running the algorithm on a
desktop computer with CPU speed of 3 GHz and 2 GB
memory, it either terminated in less than 30 minutes or ran
out of memory. The time complexity per table entry of our
algorithm is roughly the same as that of the straightforward
DP algorithm—the additional work of computing D (in
Fig. 7, Oðk2Þ) is small in comparison with that required for
going over all neighbors (Oð2kÞ), when k > 4.

Fig. 8 shows an excerpt from the SMG generated based
on the local pairwise alignments of three proteins: MATK,
SRC, ABL1, and the subset of edges that are in the optimal
alignment. We show only three proteins to allow a clear
picture in the limited space available in a printed format.
The width of the nodes in the graph is proportional to the
length of their corresponding segments. Complete figures of

416 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 3, NO. 4, OCTOBER-DECEMBER 2006

TABLE 1
Number of Table Updates for Three Sets of Human Proteins

We compare full DP (Version 0), full DP on the Segment Matching Graph (Version 1), and the actual number of table updates when considering only
relevant directions (Version 2); the SMG is generated using all significant gapped/ungapped BLAST alignments. We see that, in all cases, the actual
work is several orders of magnitude faster than the DP calculation.

Fig. 8. An excerpt from the SMG and the alignment edges of three human proteins, MATK_HUMAN, SRC_HUMAN, and ABL1_HUMAN, starting

from residues 121, 121, and 108, respectively. The edges of the SMG are shown in red and the subset chosen in the alignment in black (overlaying

the red). The width of each node is proportional to the number of residues in the segment; the most thin nodes correspond to segments of one

residue.

the cases listed in Table 1 are available on our Web site
(http://trantor.bioc.columbia.edu/~kolodny/MSA) in a
format which allows zooming for exploring the details.

We see that there are many instances in which the
relevant directions strategy is beneficial (e.g., segments with
only self-edges). We also observed that there is a high
occurrence of singletons in all of the examples we tried,
which account for a large fraction of the work but are not
necessarily as influential on the score. It might be possible
to exploit this property in the following way: First, ignore
singletons and match only longer segments with the MSAS
algorithm. Then, once this “skeleton” of the alignment is
established, run the algorithm independently for each
region to match the singletons. This will improve the
running time dramatically, but is not guaranteed to find an
optimal solution. Hence, we leave this for future work.

For many practical applications of this algorithm,
optimizing the preprocessing stage in which segments are
identified is still required and lies beyond the scope of this
work. Nonetheless, we also applied the algorithm (in the
setting described above, but with a lax E-score cutoff of 100)
to several test cases of the BaliBase benchmark [40].

Of the 19 sequences in reference 1 of medium length and at
least 20 percent similarity, our algorithm was able to find an
optimal solution based on the BLAST segmentation for
13 sequences in under 30 minutes. The BLAST segmentation,
however, results in numerous short, unmatchable segments,
which leads to a relatively low sum-of-pairs score for the
alignment under common scoring schemes (see the support-
ing material on our Web site, http://trantor.bioc.columbia.
edu/~kolodny/MSA/balibase/). If, however, gaps are not
penalized—but given a score of 1 (which might be appro-
priate when only a small fraction of the sequences is expected
to match many of the others, as in the examples discussed
above)—then even this simplistic setting scores higher than
CLUSTALW on 9 of these 13 test cases.

5 THE TRANSITIVE MSAS

In the previous section, we have seen how assumptions on
the structure of the sought multiple alignment can be
exploited to restrict the search space and improve running
time. Namely, the assumption that the sequences are
partitioned into segments and that only segments of equal
length match reduces the problem to segment matching and
allows consideration of only relevant directions.

In this section, we add two assumptions on the sought
alignment, thus further restricting the structure of the
optimal alignment, which, in turn, can be exploited to
further speed the DP. Here, the relevant directions can be
restricted to what we call “obvious directions,” and only a
subset of the vertices in GG2, the so-called “special vertices,”
needs to be considered for an optimal path.

Assumption 1. The matches are transitive in the sense that, if
fi; jg is an allowed direction at x and fi; kg is an allowed
direction at x, then fj; kg is also allowed at x (and, hence,
fi; j; kg as well).

Assumption 2. The score function is such that we seek an
alignment of minimal width or, equivalently, the shortest path
from ðn1; . . . ; nkÞ to ð0; . . . ; 0Þ in GG0.

The assumption of transitivity may be too restrictive in
many cases of aligning biological sequences. We study it
here for two main reasons: 1) The assumption holds in
special cases of aligning nucleotide sequences, where a
match indicates (near) identity and 2) analyzing this limited
search space illuminates properties of the combinatorial
structure of the problem.

Assumption 2 is achieved by setting the score function
(over the edges of GG1) to be sðx; x� eIÞ ¼ jIj � 1: The
longest possible path from ðn1; . . . ; nkÞ to ð0; . . . ; 0Þ is of
length

Pk
i¼1 ni. Each edge ðx; x� eIÞ saves jIj � 1 steps in

the path, exactly its score. Hence, a shortest path, or the one
that saves the most steps, is the highest scoring one. Since
this scoring function is so simple, it is convenient to return
the discussion from GG2 to GG1. At the end of this section, we
prove that the techniques developed apply to GG2 as well.

We call the problem of finding the highest scoring path
from ðn1; . . . ; nkÞ to ð0; . . . ; 0Þ in GG1ðIMÞ, under these two
assumptions, the transitive MSAS problem.

5.1 Maximal Directions

The first observation is that an optimal solution to the
transitive MSAS proceeds in “maximal” steps.

Definition 6. An edge ðx; x� eIÞ 2 EðGG1ðIMÞÞ is called
maximal and the subset I a maximal direction (at x) if,
for all J �6¼ I, the pair ðx; x� eJÞ is not an edge. We denote by
DðxÞ the collection of maximal directions at vertex x (note
that, by transitivity, this is a partition of ½k�). A path in
GG1ðIMÞ is called a maximal path if it consists solely of
maximal edges.

Lemma 3. There is an optimal path in GG1ðIMÞ that is also
maximal.

Proof. Let p be an optimal path. Let ðx; x� eIÞ be the first
edge in the path that is not maximal. We construct a
path p0 that is identical to p up to x; from x it proceeds in
direction J such that I �6¼ J and its length will be at most
that of p. This suffices to prove the lemma because
repeating this argument presents a path which is at least
as good as p and consists only of maximal edges (at each
iteration, a nonmaximal direction is replaced by one with
strictly more elements).

Suppose that J 0 �6¼ I is an allowed direction at x. Denote
L0 ¼ J 0nI. Let y be the first point in p such that yjL0 6¼ xjL0 .
Let L � L0 be the subset of coordinates in L by which xjL0
and yjL0 differ. Let J ¼ I [L. We now describe p0. It is
identical to p up to vertex x and from vertex y onward.
Let x ¼ p1; . . . ; pr ¼ y be the vertices p visits (in order)
when going from x to y. Replace them in p0 by
p0t ¼ pt � eL, for t ¼ 2; . . . ; r. We need to show that the
direction taken at x indeed strictly contains I and that
this path is indeed a legal path in GG1.

Observe that p02 ¼ p2 � eL ¼ x� eI � eL ¼ x� eJ .

Hence, the direction taken at x is J . Indeed, J � J 0 is

allowed at x, and I �6¼ J . It remains to show that if K is an

allowed direction chosen at pt, then it is also allowed at

p0t. By the choice of y, for t < r� 1, K \ L ¼ ;. By

induction, pt and p0t are identical on coordinates outside

of L, so, for t < r� 1, the direction K is allowed at p0t. For

t ¼ r� 1, the same argument shows that KnL is an

BILU ET AL.: FASTER ALGORITHMS FOR OPTIMAL MULTIPLE SEQUENCE ALIGNMENT BASED ON PAIRWISE COMPARISONS 417

allowed direction at p0r�1, which leads to the desired

destination y. tu
Henceforth, by optimal path we refer to a maximal

optimal path as it is enough to consider only these when
searching for an optimal alignment. That is, as a corollary of
Lemma 3, the DP algorithm for the transitive MSA problem
need not check all directions (or all of those that intersect a
subset that is relevant), only maximal ones. This reduces the
time complexity of the algorithm to Oð

Q
liÞ times the time

complexity of finding all maximal directions. Pseudocode
for the latter is detailed in Fig. 9.

Step 2a can be realized in time linear in the number of
retrieved coordinates by keeping a list of edges for each
vertex in the SMG. The time complexity of this function is
thus OðkÞ and that of FINDOPTIMALPATH is Oðk 	

Q
liÞ.

Recall that the bound for the general MSAS problem is
Oð2k 	

Q
liÞ.

5.2 Obvious Directions

The notion of “relevant directions” discussed in Section 3.4
can be strengthened in the transitive setting. Indeed, there is
a simple characterization of vertices in GG1 for which the
first step in an optimal path is obvious and there is no need
for recursion.

Definition 7. Let x be a vertex in GG1ðIMÞ and I a maximal
direction at x. I is called an obvious direction (at x) if, for all
y 2 GG1ðIMÞ such that y < x and xjI ¼ yjI , I is a maximal
direction at y. If y ¼ x� c 	 eI is a breakpoint with respect to x
and I is an obvious direction at x, we say that y is an obvious
vertex with respect to x.

Lemma 4. Let p be an optimal path, x a vertex in p, and I an
obvious direction at x. Then, there is an optimal path p0 that is
identical to p up to x and that proceeds from x to x� eI .

Proof. Since I is allowed at x, we have xi > 0 for i 2 I and,
thus, at some point, p moves in a direction that includes i
for some i 2 I. Let x0 be the first point when this occurs.
Let I 0 be the direction in which p proceeds from x0.
Clearly, x0jI ¼ xjI , thus, as I is obvious at x and x0 < x, I
is maximal at x0 and, therefore, I ¼ I 0.

Now, denote by I1; . . . ; Ir the sequence of directions p
moves along from x to x0. Define p0 as identical to p up to
x. From x, it continues to x� eI . It then proceeds in order
along directions I1; . . . ; Ir (these directions are allowed

since, being maximal, they do not intersect I). This leads
to x0 � eI and, from this vertex, p0 proceeds as p does.
Since p and p0 have the same length and the same score,
p0 is optimal too. tu

Corollary 1. There is an optimal path p such that, if x is a

breakpoint vertex in p and y is obvious with respect to x, then

p proceeds from x to y.

Intuitively, obvious directions are cases where all
benefits to the scoring function can be gained in the first
step or, equivalently, there are no trade-offs to consider.
Hence, as for relevant directions, the DP algorithm can be
revised to immediately move to an obvious vertex, avoiding
the recursion over all breakpoint vertices (see Fig. 10).

5.3 Special Vertices

In this section, we extend the “leaps” that the DP algorithm

performs. Once more, we start with a few definitions.

Definition 8. We say that a vertex y is special with respect to a

vertex x if the following four conditions hold:

1. x dominates y,
2. DðxÞ 6¼ DðyÞ,
3. there is a path from x to y consisting solely of maximal

edges, and
4. no vertex y0 satisfies all the above and dominates y.

Denote by SðxÞ the set of vertices that are special with respect

to x.

We define the set of special vertices S � GG1ðIMÞ as the

smallest one such that ðn1; . . . ; nkÞ 2 S and, for every x 2 S,

SðxÞ � S. We first show that, instead of “leaping” from one

breakpoint vertex to another, we can “leap” from one

special vertex to another.

Definition 9. Let p ¼ ðp0; . . . ; prÞ and p0 ¼ ðp00; . . . ; p0rÞ be two

paths. Let I1; . . . ; Ir be the sequence of directions that p moves

in and I 01; . . . ; I 0r be the sequence of directions that p0 moves in.

We say that p and p0 are equivalent if p0 ¼ p00, pr ¼ p0r, and

there is some permutation � 2 Sr such that Ii ¼ I 0�ðiÞ for

i ¼ 1; . . . ; r.

Note that equivalent paths have the same length and,

hence, the same score. We also observe:

418 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 3, NO. 4, OCTOBER-DECEMBER 2006

Fig. 9. Identifying maximal directions.

Lemma 5. Let p be an optimal path. Let x be a vertex in p and let

y be the first vertex in p that is in SðxÞ. Then, all maximal

paths from x to y are equivalent.

Proof. Let p0 be a maximal path from x to y. We need to

show that the length of this maximal path is the same as

that of p between x and y. Let y0 6¼ y; y0 6¼ x be any vertex

in p0. Since y0 lies on a path from x to y, we have that

x > y0 > y. In other words, y0 dominates y. Since

y 2 SðXÞ, by requirement 4 of Definition 8, we get

y0 62 SðxÞ. However, x dominates y0 and there is a

maximal path (p0) from x to y0. Since y0 62 SðxÞ, it must

be the case that it does not fulfill requirement 2 of

Definition 8, i.e., Dðy0Þ ¼ DðxÞ. The same argument

implies that any vertex y00 that p visits between x and y

satisfies Dðy00Þ ¼ DðxÞ. Recall that DðxÞ is a partition of

½k� and both p and p0 follow only maximal directions from

DðxÞ when moving from x to y. In particular, each

direction in DðxÞ is followed the same number of times

in both these paths. This implies that the two paths are

equivalent. tu
Let p ¼ ðp1; . . . ; ptÞ be an optimal path. Define x1 ¼ p1

and xiþ1 to be the first vertex in p that is also in SðxiÞ.
Lemma 5 says that we only need to specify the vertices fxig
to describe an optimal path—all maximal paths connecting

these vertices in order are equivalent.

As a corollary, we can further restrict the search space of

the DP algorithm. When computing the shortest path from a

vertex x, rather than considering the relevant breakpoint

vertices, it is enough to consider those which are also

special. As we shall show soon, this is indeed a subset of the

breakpoint vertices.

Before describing the modified algorithm in detail, let us

observe that special vertices have a very specific structure.

Definition 10. Let x; y 2 GG1ðIMÞ be such that y is special with

respect to x, i.e., y 2 SðxÞ. Let I and I 0 be maximal directions

at x. We say that y is a: 1) changepoint of direction I if

y ¼ x� c 	 eI for some natural c and I is not allowed at y;

2) straight junction of direction I if y ¼ x� c 	 eI for some

c � 0 and I is allowed, but not maximal, at y. Finally, 3) y is a

corner junction of directions I and I 0 if y ¼ x� c 	 eI �
c0 	 eI 0 for some c; c0 � 0 and I; I 0 are allowed, but not

maximal, at y.

Fig. 10 depicts a changepoint and a straight junction.

Theorem 4. Let y be a special vertex with respect to x, i.e.,

y 2 SðxÞ. Then, y is one of the types in Definition 10.

Furthermore, if x is a breakpoint vertex, then so is y.

Proof. Suppose that y is special with respect to x. Let p ¼
ðx ¼ p1; . . . ; pt ¼ yÞ be a maximal path from x to y. Each

I 2 DðxÞnDðyÞ is either not allowed at y or is not

maximal at y.
Case 1: Changepoint. Assume that I is not allowed at

y (in particular, jIj > 1). Suppose that, from x, the path p
proceeds in direction I to a point y0 such that y0jI ¼ yjI
(by Lemma 5, we may assume that it is so). Since I is also
not allowed at y0 and y0 dominates y, we conclude that
y0 ¼ y. Furthermore, there are i; j 2 I such that fi; jg is an
allowed direction at every vertex in p except y. This
means that there is a match m ¼ ði; j; yi; yjÞ and, hence, yi
and yj are exit points. We conclude that, if x was an
breakpoint vertex, then so is y: For i 2 I, yi is an exit
point, for i 62 I, yi ¼ xi.

Case 2: Junctions. Assume I is not maximal at y. Let
i0 62 I be such that I [fi0g is an allowed direction at y but
not at x. In particular, xjI[fi0g 6¼ yjI[fi0g. Let I 0 be such that
i0 2 I 0 2 DðxÞ. Consider a maximal path that proceeds
from x in direction I up to a point x0 such that x0jI ¼ yjI
and then in direction I 0 to a point y0 such that y0jI 0 ¼ yjI 0 .
As y0jI ¼ x0jI , we have y0jI[I 0 ¼ yjI[I 0 . Thus, I [fi0g is an
allowed direction at y0. But, y0 dominates y, so, since y is
special with respect to x, we get y0 ¼ y.

Let J 2 DðyÞ be such that I [fi0g � J . For the second
part of the lemma, we again consider two cases.

Case 2.1: Corner junction. Assume that a positive
number of steps was taken in both directions, I and I 0.
It follows that all vertices passed from x to x0, including
x0, are not in SðxÞ. Thus, DðxÞ ¼ Dðx0Þ. Since yI ¼ x0I , I is
allowed at y. Let x00 be such that x00jI 0 ¼ y and x00j½k�nI 0 ¼ x.
The same argument shows that I 0 is allowed at y and,
hence, I [I 0 � J . Now, consider the point yþ eI[I 0 . It
dominates y and can be reached from x by taking one
step less in both directions. Thus, it must be that J is not

BILU ET AL.: FASTER ALGORITHMS FOR OPTIMAL MULTIPLE SEQUENCE ALIGNMENT BASED ON PAIRWISE COMPARISONS 419

Fig. 10. (a) demonstrates the advantage of considering obvious and special vertices: Entries in the DP table corresponding to the lightly shaded

vertices do not need to be updated by the algorithm since it moves in obvious directions (marked by red leaps). By considering only special vertices,

there is no need to update entries corresponding to the darker-shaded vertices. (b) shows examples of a changepoint and straight junction from

Definition 10.

allowed there. Hence, for all i 2 I and all j 2 JnI, there is
a match of sequences j and i whose entry point on
sequence i is yi and on sequence j is yj and similarly for
I 0. Since xj½k�nðI[I 0Þ ¼ yj½k�nðI[I 0Þ, we conclude that, if x is a
breakpoint vertex, so is y.

Case 2.2: Straight junction. Assume that y can be
reached from x by following only one direction, say I.
Consider an i 2 I. Since I [fi0g is allowed at y, there
exists m 2 EðIMÞ matching yi with yi0 . However, yi0 ¼ xi0 .
Assuming that x is a breakpoint vertex, yi0 is too. This
holds for all i 2 I and, since other coordinates are the
same as in x, we have that y is also a breakpoint vertex.tu

Corollary 2. All special vertices are breakpoint vertices.

This leads to the version of the DP algorithm given in
Fig. 11. By Corollary 2, it can run on GG2 rather than GG1 (see
Fig. 10 for an illustration of how considering only special
vertices saves table updates.)

As we describe below, the running time can be bounded
by OðjSj 	 k2 	 lÞ table updates, where k is the number of
sequences and l is the maximal number of segments per
sequence. Hence, it is fixed-parameter tractable (cf. [7]) in
many of the parameters: It is linear in the number of
segments and in the number of special vertices and squared
in the number of sequences.

To see that the bound indeed holds, we need to describe
how to find special vertices. Fig. 12 lists pseudocode for
finding a vertex that is obvious with regard to an input

vertex, Fig. 13 lists pseudocode for finding a changepoint or

a straight junctions at a given direction, and Fig. 14 lists

pseudocode for finding all corner junctions with regard to a

pair of given directions.
To analyze the running time of the algorithm, observe

that a recursive call to FindOptimalPath is only made for

special vertices, so it suffices to bound the time complexity

for finding all vertices which are special with regard to a

given vertex. The analysis of the running time of these

algorithms is straightforward:

1. In FindObviousVertex, going over all maximal
directions at x requires jDðxÞj iterations and, at each
one, at most k comparisons are made—of the least
match in each sequence not in I. The total time
complexity for this step is jDðxÞj 	 k ¼ Oðk2Þ.

2. The loop in FindStraightVertex iterates at most
l times. If breakpoints are stored in a linked list,
each iteration, or finding the next breakpoint, takes
constant time, a total of OðlÞ for the execution of the
loop. The function is called once for every maximal
direction, for an overall contribution of Oðk 	 lÞ. Note
that, in the first step of the algorithm, defining i as
the first coordinate in I is arbitrary—by transitivity,
choosing any element in I is equivalent.

3. In FindCornerVertex, computing z takes OðlÞ time.
To establish the number of iterations of the loop,
observe that y is updated at most l times. Computing

420 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 3, NO. 4, OCTOBER-DECEMBER 2006

Fig. 11. A DP algorithm for the transitive case. In Step 2, if possible, we choose a vertex y for which py was already computed.

Fig. 12. Finding obvious neighbors.

b can done in constant time if breakpoints are kept
in a linked list, for a total time complexity of OðlÞ.
The function is called once for every pair of maximal
directions, for an overall contribution of Oðk2 	 lÞ.

The time complexity of resolving each special vertex is

therefore Oðk2 	 lÞ and the time complexity of the entire

algorithm is OðjSj 	 k2 	 lÞ, as claimed.

ACKNOWLEDGMENTS

The authors would like to thank Chris Lee and Nati Linial

for enlightening discussions, Eylon Portugaly for his help in

implementing the algorithm, and the referees for many

helpful comments. Y. Bilu is supported by the Dewey David

Stone Postdoctoral Fellowship and UniNet EC NEST

consortium contract number 12990. P.K. Agarwal is

supported by US National Science Foundation (NSF) grants

CCR-00-86013, EIA-98-70724, EIA-01-31905, and CCR-02-

04118, and by a grant from the US-Israel Binational Science

Foundation. R. Kolodny is supported by NSF grant CCR-00-

86013. Part of this work was done while Y. Bilu was at the

School of Engineering and Computer Science, The Hebrew

University of Jerusalem, and R. Kolodny was at the

Department of Computer Science, Stanford University and

visiting Duke University.

REFERENCES

[1] S. Altschul, F. Stephen, L.M. Thomas, A.A. Schaffer, J. Zhang, Z.
Zhang, W. Miller, and D.J. Lipman, “Gapped BLAST and PSI-
BLAST: A New Generation of Protein Database Search Programs,”
Nucleic Acids Research, vol. 25, pp. 3389-3402, 1997.

[2] A. Bairoch and R. Apweiler, “The SWISS-PROT Protein Sequence
Data Bank and Its Supplement TrEMBL,” Nucleic Acids Research,
vol. 25, no. 1, pp. 31-36, 1997.

[3] P. Bonizzoni and G. Della Vedova, “The Complexity of Multiple
Sequence Alignment with Sp-Score that Is a Metric,” Theoretical
Computer Science, vol. 259, nos. 1-2, pp. 63-79, 2001.

[4] H. Carrillo and D. Lipman, “The Multiple Sequence Alignment
Problem in Biology,” SIAM J. Applied Math., vol. 48, no. 5,
pp. 1073-1082, 1988.

[5] F. Corpet, “Multiple Sequence Alignment with Hierarchical-
Clustering,” Nucleic Acids Research, vol. 16, no. 22, pp. 10881-
10890, 1988.

[6] C.B. Do, M.A. Mahabhashyam, M. Brudno, and S. Batzoglou,
“ProbCons: Probabilistic Consistency-Based Multiple Sequence
Alignment,” Genome Research, vol. 15, no. 2, pp. 330-340, 2005.

[7] R.G. Downey and M. Fellows, Parameterized Complexity. Springer-
Verlag, 1999.

[8] R.C. Edgar, “MUSCLE: Multiple Sequence Alignment with High
Accuracy and High Throughput,” Nucleic Acids Research, vol. 32,
no. 5, pp. 1792-1797, 2004.

[9] R.C. Edgar, “MUSCLE: A Multiple Sequence Alignment Method
with Reduced Time and Space Complexity,” BMC Bioinformatics,
vol. 5, p. 113, 2004.

[10] I. Elias, “Settling the Intractability of Multiple Alignment,” Proc.
Ann. Int’l Symp. Algorithms and Computation (ISAAC), pp. 352-363,
2003.

BILU ET AL.: FASTER ALGORITHMS FOR OPTIMAL MULTIPLE SEQUENCE ALIGNMENT BASED ON PAIRWISE COMPARISONS 421

Fig. 13. Finding changepoints and straight junctions (the same algorithm applies in both cases).

Fig. 14. Finding corner junctions.

[11] D. Eppstein, Z. Galil, R. Giancarlo, and G.F. Italiano, “Sparse
Dynamic-Programming: I. Linear Cost-Functions,” J. ACM,
vol. 39, no. 3, pp. 519-545, 1992.

[12] D. Eppstein, Z. Galil, R. Giancarlo, and G.F. Italiano, “Sparse
Dynamic-Programming: II. Convex and Concave Cost-Functions,”
J. ACM, vol. 39, no. 3, pp. 546-567, 1992.

[13] D.F. Feng and R.F. Doolittle, “Progressive Sequence Alignment as
a Prerequisite to Correct Phylogenetic Trees,” J. Molecular
Evolution, vol. 25, pp. 351-360, 1987.

[14] M.R. Garey and D.S. Johnson, Computers and Intractability—A
Guide to the Theory of NP-Completeness. Freeman, 1979.

[15] D. Gusfield, Algorithms on Strings, Trees and Sequences: Computer
Science and Computational Biology. Cambridge Univ. Press, 1997.

[16] S. Henikoff and J.G. Henikoff, “Amino Acid Substitution Matrices
from Protein Blocks,” Proc. Nat’l Academy of Sciences, vol. 89,
pp. 10915-10919, 1992.

[17] D.G. Higgins and P.M. Sharp, “Clustal—A Package for Perform-
ing Multiple Sequence Alignment on a Microcomputer,” Gene,
vol. 73, no. 1, pp. 237-244, 1988.

[18] T. Jiang and L. Wang, “On the Complexity of Multiple Sequence
Alignment,” J. Computer Biology, vol. 1, no. 4, pp. 337-348, 1994.

[19] W. Just, “Computational Complexity of Multiple Sequence
Alignment with Sp-Score,” J. Computer Biology, vol. 8, no. 6,
pp. 615-623, 2001.

[20] G.M. Landau, M. Crochemore, and M. Ziv-Ukelson, “A Subqua-
dratic Sequence Alignment Algorithm for Unrestricted Cost
Matrices,” Proc. 13th Ann. ACM-SIAM Symp. Discrete Algorithms,
pp. 679-688, 2002.

[21] T. Lassmann and E.L.L. Sonnhammer, “Quality Assessment of
Multiple Alignment Programs,” Febs Letters, vol. 529, no. 1,
pp. 126-130, 2002.

[22] C. Lee, C. Grasso, and M.F. Sharlow, “Multiple Sequence
Alignment Using Partial Order Graphs,” Bioinformatics, vol. 18,
no. 3, pp. 452-464, 2002.

[23] M. Lermen and K. Reinert, “The Practical Use of the A� Algorithm
for Exact Multiple Sequence Alignment,” J. Computer Biology,
vol. 7, no. 5, pp. 655-672, 2000.

[24] H.P. Lenhof, B. Morgenstern, and K. Reinert, “An Exact Solution
for the Segment-to-Segment Multiple Sequence Alignment Pro-
blem,” Bioinformatics, vol. 15, no. 3, pp. 203-210, 1999.

[25] B. Manthey, “Non-Approximability of Weighted Multiple Se-
quence Alignment,” Theoretical Computer Science, vol. 296, no. 1,
pp. 179-192, 2003.

[26] W.J. Masek and M.S. Paterson, “A Faster Algorithm Computing
String Edit Distances,” J. Computer Systems Science, vol. 20, no. 1,
pp. 18-31, 1980.

[27] B. Morgenstern, “Dialign 2: Improvement of the Segment-to-
Segment Approach to Multiple Sequence Alignment,” Bioinfor-
matics, vol. 15, no. 3, pp. 211-218, 1999.

[28] B. Morgenstern, “A Simple and Space-Efficient Fragment-Chain-
ing Algorithm for Alignment of DNA and Protein Sequences,”
Applied Math. Letters, vol. 15, no. 1, pp. 11-16, 2002.

[29] B. Morgenstern, A. Dress, and T. Werner, “Multiple DNA and
Protein Sequence Alignment Based on Segment-to-Segment
Comparison,” Proc. Nat’l Academy of Sciences, vol. 93, no. 22,
pp. 12098-12103, 1996.

[30] M. Murata, J.S. Richardson, and J.L. Sussman, “Simultaneous
Comparison of 3 Protein Sequences,” Proc. Nat’l Academy of
Science, vol. 82, no. 10, pp. 3073-3077, 1985.

[31] G. Myers and W. Miller, “Chaining Multiple-Alignment Frag-
ments in Subquadratic Time,” Proc. Sixth Ann. ACM-SIAM Symp.
Discrete Algorithms, pp. 38-47, 1995.

[32] S.B. Needleman and C.D. Wunsch, “A General Method Applicable
to the Search for Similarities in the Amino Acid Sequences of Two
Proteins,” J. Molecular Biology, vol. 48, pp. 443-453, 1970.

[33] C. Notredame, “Recent Progress in Multiple Sequence Alignment:
A Survey,” Pharmacogenomics, vol. 3, no. 1, pp. 131-144, 2002.

[34] C. Notredame, D.G. Higgins, and J. Heringa, “T-Coffee: A Novel
Method for Fast and Accurate Multiple Sequence Alignment,”
J. Molecular Biology, vol. 302, no. 1, pp. 205-217, 2000.

[35] G.D. Schuler, S.F.F. Altschul, and D.J. Lipman, “A Workbench for
Multiple Alignment Construction and Analysis,” Proteins-Struc-
ture Function and Genetics, vol. 9, no. 3, pp. 180-190, 1991.

[36] R.M. Schwartz and M.O. Dayhoff, “Matrices for Detecting Distant
Relationships,” Atlas of Protein Sequences and Structure, pp. 353-358,
1979.

[37] T.F. Smith and M.S. Waterman, “Comparison of Biosequences,”
Advanced Applied Math., vol. 2, no. 4, pp. 482-489, 1981.

[38] S.-H. Sze, Y. Lu, and Q. Yang, “A Polynomial Time Solvable
Formulation of Multiple Sequence Alignment,” J. Computational
Biology, to appear.

[39] J.D. Thompson, D.G. Higgins, and T.J. Gibson, “Clustal-W—
Improving the Sensitivity of Progressive Multiple Sequence
Alignment through Sequence Weighting, Position-Specific Gap
Penalties and Weight Matrix Choice,” Nucleic Acids Research,
vol. 22, no. 22, pp. 4673-4680, 1994.

[40] J.D. Thompson, F. Plewniak, and O. Poch, “BAliBASE: A Bench-
mark Alignment Database for the Evaluation of Multiple Align-
ment Programs,” Bioinformatics, vol. 15, pp. 87-88, 1999.

[41] W.J. Wilbur and D.J. Lipman, “Rapid Similarity Searches of
Nucleic-Acid and Protein Data Banks,” Proc. Nat’l Academy of
Sciences, vol. 80, no. 3, pp. 726-730, 1983.

[42] W.J. Wilbur and D.J. Lipman, “The Context Dependent Compar-
ison of Biological Sequences,” SIAM J. Applied Math., vol. 44, no. 3,
pp. 557-567, 1984.

[43] H. Zhou and Y. Zhou, “SPEM: Improving Multiple Sequence
Alignment with Sequence Profiles and Predicted Secondary
Structures,” Bioinformatics, vol. 21, no. 18, pp. 3615-3621, 2005.

Yonatan Bilu received the PhD degree in
computer science in 2004 from the Hebrew
University in Jerusalem. He is currently a
postdoctoral fellow in the Depatment of Mole-
cular Genetics at the Weizmann Institute of
Science. His research interests include compu-
tational biology and systems biology.

Pankaj K. Agarwal received the PhD degree in
computer science from the Courant Institute of
Mathematical Sciences at New York University.
He joined the Department of Computer Science
of Duke University in 1989, where he is now the
chair and a professor of computer science and
mathematics. His research interests include
geometric algorithms and data structures, com-
putational molecular biology, spatial databases,
global change, geographic information systems,

sensor networks, and robotics. He has authored four books and more
than 250 scholarly articles in various journals, edited volumes, and
international conferences. He has received many awards, including
National Young Investigator, Sloan Fellow, and ACM Fellow, and he
serves on the editorial boards of a number of journals.

Rachel Kolodny received the PhD degree in
computer science in 2004 from Stanford Uni-
versity. She is currently a computational as-
sociate in the HHMI (Howard Hughes Medical
Institute) at the Department of Biochemistry
and Molecular Biophysics at Columbia Univer-
sity. Her research interests are computational
biology, focusing on the study of protein
structure.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

422 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 3, NO. 4, OCTOBER-DECEMBER 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

