
ar
X

iv
:m

at
h/

04
03

50
8v

1
 [

m
at

h.
C

O
]

 3
0

M
ar

 2
00

4

Distorted metrics on trees and phylogenetic forests

Elchanan Mossel
∗

Abstract

We study distorted metrics on binary trees in the context of phylogenetic reconstruction.
Given a binary tree T on n leaves with a path metric d, consider the pairwise distances {d(u, v)}
between leaves. It is well known that these determine the tree and the d length of all edges. Here
we consider distortions d̂ of d such that for all leaves u and v it holds that |d(u, v)− d̂(u, v)| < f/2

if either d(u, v) < M or d̂(u, v) < M , where d satisfies f ≤ d(e) ≤ g for all edges e. Given such
distortions we show how to reconstruct in polynomial time a forest T1, . . . , Tα such that the true
tree T may be obtained from that forest by adding α− 1 edges and α− 1 ≤ 2−Ω(M/g)n.

Metric distortions arise naturally in phylogeny, where d(u, v) is defined by the log-det of a
covariance matrix associated with u and v. When u and v are “far”, the entries of the covariance
matrix are small and therefore d̂(u, v), which is defined by log-det of an associated empirical-
correlation matrix may be a bad estimate of d(u, v) even if the correlation matrix is “close” to
the covariance matrix.

Our metric results are used in order to show how to reconstruct phylogenetic forests with small
number of trees from sequences of length logarithmic in the size of the tree. Our method also
yields an independent proof that phylogenetic trees can be reconstructed in polynomial time from
sequences of polynomial length under the standard assumptions in phylogeny. Both the metric
result and its applications to phylogeny are almost tight.

1 Introduction

Reconstructing phylogenies have been a scientific challenge for the last 50 years. We refer the reader
to [9] or [16] for general and mathematical background. The standard setting in phylogeny is of trees
where the leaves are labeled by taxa or species. Given aligned sequences at the leaves, we define
character i to be the collection of letters at position i for all the species. Under the i.i.d. assumption,
the characters are independent samples from the evolutionary process on the tree.

The theoretical foundations of most methods used in phylogeny are unsatisfactory. Under the
standard i.i.d. model, Parsimony is not consistent [2, 8] and is NP hard to compute [4, 10, 11]. The
computational complexity of finding the Maximum likelihood tree is not known and the best bounds
on the the amount of data needed are exponential in the number of taxa [19].

Computational complexity and information theory considerations have not played an important
role in phylogeny in the past as biologists were mostly interested in reconstructing trees on a small
number (typically at most a few hundred) species. However, one of the major goals of systematic
biology in the coming decade is to reconstruct phylogenies on millions of species. It is clear that

∗
mossel@stat.berkeley.edu Miller fellow, CS and Statistics, U.C. Berkeley

1

http://arxiv.org/abs/math/0403508v1

for such numbers, it is crucial to apply algorithms with low computational complexity. Similarly,
algorithms should use information efficiently.

In [5] the authors developed the first reconstruction algorithm satisfying two important properties:

• Given number of characters that is polynomial in the number of taxa, the algorithm finds the
true tree with high probability.

• The running time of the algorithm is polynomial in the number of taxa.

Variants of these method and generalizations from two states models to general models appeared
in [6]. In [3] the authors discuss a closely related problem of learning a phylogenetic tree (in the
PAC setting). They developed a PAC learning algorithm for the two state model. The problem of
PAC-learning general-state model in polynomial time is still open. See also [7] for an earlier result
on learning phylogenies.

The method developed in [5] is a distance method. Such methods were commonly used in phy-
logeny before, but [5] is the result where a distance method yields a provably good performance.
Distance methods are based on defining a path metric on the tree based on the evolution model.
Then the distance between leaves of the tree is approximated by some distance between the corre-
sponding sequences at the leaves. In this sense all distance methods in phylogeny may be view as
reconstruction methods from distorted metrics.

Given the existence of a polynomial time reconstruction algorithms, the next problem is opti-
mizing the sampling complexity. The number of characters needed (= the length of sequences) is
of great practical importance, as this number is bounded by the underlying biology. It is therefore
desirable to minimize this number.

Since there are 2Θ(n logn) binary trees on n leaves, an easy counting argument yields that the
number of characters needed is at least logarithmic in the number of taxa. Thus we are led to
the following natural problem: is the length of the sequences needed logarithmic in n as or is it
polynomial?

In [14] we showed that for a restricted family of models, it is possible to reconstruct phylogenies
from a logarithmic number of characters, if the mutation rates are low (bounded above by some
constant). We also showed that a polynomial number of characters is needed if the mutation rates
are high (bounded below by some constant).

We later [13] (see also [17]) generalized the polynomial lower bound for high mutation rates to
a large family of models. In [15] we analyze another model where logarithmic reconstruction is
achievable for low mutation rates.

The phase transition discussed above is of crucial interest if we wish to reconstruct all the tree.
However, in some cases, a more modest objective is posed: reconstruct a “large portion” of the tree.
Practitioners (this was kindly noted to me by J. Felsenstein (2001, private communication) and J.
Kim (2003, private communication)) have noticed that this problem seems to be much easier than
the problem of reconstructing the complete tree.

In this paper we prove that this is indeed the case.
Definition 1.1. We define the operation of edge adding to a forest as one of the following

• Add an edge (u, v) connecting two isolated leaves u and v.

2

• Given an edge (u, v) of the forest and an isolated leaf w, replace the edge (u, v) by the edges
(u,w′), (w′, v) and (w′, w) where w′ is a new vertex.

• Replace the two edges (u1, v1) and (u2, v2) of the forest by (u1, w1), (w1, v1), (u2, w2), (w2, v2)
and (w1, w2) where w1, w2 are new vertices.

See figure 1.

u v u v

w

w’

v

u v
w

wu

1 1

1

2 22

Figure 1: The “edge-adding” operation

We show that under the standard assumptions in phylogeny, for a tree T on n leaves and for
all δ > 0 and γ > 0 we can reconstruct from γ−Oδ(1) log n characters a forest T1, . . . , Tα such that
α ≤ 1 + γn and that T may be obtained from the forest T1, . . . , Tα by adding at most α − 1 edges.
The reconstruction is performed in a polynomial time and with error bounded by δ.

Note that taking γ to be a small constant we obtain that “most” edges of the tree can be
reconstructed from O(log n) characters. Taking γ = 1/n, we obtain that the full tree may be
reconstructed from a polynomial number of characters. Thus obtaining an independent proof of the
results of [5, 6, 3].

Our results indicate what level of refinement is achievable in reconstructing a phylogenetic tree
given a certain amount of data. We believe that our techniques may also play an important role
in reconstructing the complete phylogenetic tree in low mutation rates from logarithmic number of
characters as it allows a very clean divide and conquer approach (see [14]).

The main ingredient of the proof is a metric theorem that can be stated roughly as follows. Let
T be a binary tree and d a path metric on T such that f ≤ d(e) ≤ g for all edges e. Let L(T) be the
set of leaves of T and d̂ : L(T)×L(T)→ IR a distortion of d that satisfies |d(u, v)− d̂(u, v)| < f/2 if
d̂(u, v) < M or d(u, v) < M (d̂ typically does not correspond to a path metric on T). We show that
we can partition L(T) into α sets L1, . . . , Lα, where α = n2−Ω(M/g). For 1 ≤ β ≤ α we reconstruct
a tree such that the leaves of Tβ are Lβ and the tree T may be obtained from the forest (Tβ)β≤α by
adding at most α− 1 edges.

It is easy to see that the metric theorem is tight up to the constant in the Ω by considering an r-
level 3-regular tree, where the length of all edges is exactly g and d̂(u, v) =∞ if d(u, v) > M . Similar
tightness results hold for the number of trees in the forest in the phylogenetic reconstruction. The
proof is more complicated and follows ideas from [13] on lower bounds on the sampling complexity of
phylogenies. The proof is omitted in this extended abstract. Our metric result may be of independent
interest to other problems where path metrics on trees are considered.

We now give a high level sketch of the different sections of the paper.

• The formal definition of the model and the statement of the main results are given in Section
2, where we also discuss how the metric result implies the result in phylogeny.

3

The reduction from the phylogenetic model to distorted metrics is given in Proposition 2.2
which is an easy reformulation of a large deviation result from [6]. This proposition gives M
as a function of the number of samples. The distortion error is assumed to be at most ǫ = f/2.
It is known that Proposition 2.2 is essentially tight. In other words, distances larger than M
are likely to be computed with error larger than f/2.

• Given the distortion, it is easy to construct for each leaf v, a tree Tv on the set of leaves in the
(M − 7f)/6 (metric)-neighborhood of v. This is done using standard techniques in Phylogeny.

• The collection of trees {Tv} is not the forest we are looking for. First, the trees in this forest are
not disjoint. Second, there may be many trees in this collection (in fact as many as n different
trees). The main task of the paper is to “glue” these trees to form edge-disjoint forest. Then
we can bound the number of trees in the forest.

• The notion of edge-disjoint trees is studied in Section 3. The results of this section imply that
if a forest of edge-disjoint trees is a refinement of the collection {Tv} above then the size of the
forest is 1 + n2−Ω(M/g).

• The “glueing” algorithm is given in Section 4.

• The final metric result is stated in Section 5.

Acknowledgments: The idea that reconstructing a forest should be “easy” was conceived
during a talk by Junhyong Kim at the kickoff meeting of the Cipres project. J. Kim said that it
seems like most edges of phylogenies are easy to reconstruct. I thank him and Tandy Warnow for
encouragement to work on this problem.

2 Definitions and main results

Let T be a tree. Write V(T) for the nodes of T , E(T) for the edges of T and L(T) for the leaves of
T . If the tree is rooted, then we denote by ρ(T) the root of T . Unless stated otherwise, all trees are
assumed to be binary (all internal degrees are 3) and it is further assumed that L(T) is labeled.

Let T be a tree equipped with a path metric d : E(T) → IR+. d will also denote the induced
metric on V(T):

d(v,w) =
∑

{d(e) : e ∈ path(v,w)}, (1)

for all v,w ∈ V(T).
We will further assume below that the length of all edges is bounded between f and g for all

e ∈ E. In other words, for all e ∈ E(T),

f ≤ d(e) ≤ g. (2)

In applications to phylogeny we are typically given a distortion d̂ : L(T)×L(T)→ IR+ of d. We
define an (ǫ,M) distortion as follows.
Definition 2.1. Given a tree T equipped with a metric d, and two positive numbers 0 < ǫ < M , we
say that d̂ : L(T)× L(T)→ IR+ ∪ {∞} is an (ǫ,M) distortion of d if

4

• d̂(u, v) = d̂(v, u) for all u and v in L(T); i.e., d̂ is symmetric.

• If d̂(u, v) =∞, then d(u, v) > M .

• If d̂(u, v) <∞, then |d̂(u, v)− d(u, v)| < ǫ.

It is well known that d : L(T) × L(T) → IR+ determines the underlying tree T and the metric
on the edges d : E(T)→ IR+. Moreover, there exists a polynomial time algorithm to reconstruct T .
Similarly, we may recover T from any (ǫ,∞) distortion of d if ǫ < f/2. Moreover, in this case, we
may also recover a function d̂ : E(T)→ IR satisfying |d̂(e)− d(e)| < 2ǫ ([1, 12], see e.g. [16, Chapter
7]).

In our main result we show that given an (ǫ,M) distortion of d, we may recover many of the
edges of T and a good approximation of the d length of those edges.
Theorem 2.1. Let T = (V,E) be a binary tree equipped with a metric d satisfying (2). Let n =
|L(T)|, so that |V(T)| = 2n − 2. Let d̂ be an (ǫ,M) distortion of d and suppose that ǫ < f/2 and
that M > 7ǫ. Then d̂ determines a partition P of L(T) into sets L1, . . . , Lα and a forest T1, . . . , Tα

such that Lβ = V(Tβ) ∩ L(T) for all β and

• The tree T may be obtained from the forest T1, . . . , Tα by adding at most α− 1 edges.

• The number of trees α in the forest is at most ⌊1 + 60n√
2
2−

M−ǫ
2g ⌋.

Moreover,

• the partition (Lβ)β≤α,

• the trees (Tβ)β≤α and

• a function d̂ : ∪β≤αE(Tβ) :→ IR+ satisfying |d̂(e)− d(e)| < 2ǫ,

can be all computed from d̂ in time polynomial on n.

Mutation models and distances. When reconstructing phylogenies, the data is given as
sequences at the labeled leaves L(T) and the tree T is unknown. Usually the mutation model is
defined on a rooted tree while the goal is to reconstruct un-rooted trees (in many models there is no
way to distinguish a root).

We let A denote the alphabet in which information is encoded. For example, A = {A,C,G, T} for
DNA sequences, A = {20 amino acides} for proteins and A = {0, 1} for purine-pyrmidine sequences.
To define the mutation model we assume that all the edges are directed away from the root and
for each edge e ∈ E(T) let M(e) be the mutation matrix corresponding to the edge e. M(e) is an
|A| × |A| stochastic matrix. The (i, j)’th entry of M(e) is the probability that state i will mutate to
state j along edge e. It is assumed that each character evolves down the tree as a Markov-chain on
the tree, where M(e) is the transition matrix for edge e. The root letter is chosen from some fixed
distribution π. It is assumed that the characters evolve in an i.i.d. manner - they all come from the
same distribution and each one is independent from all the others.

5

Two popular examples are the CFN model where M(e) =

(

1− θ(e) θ(e)
θ(e) 1− θ(e)

)

and the Jukes-

Cantor models where

M(e) =

1− 3θ(e) θ(e) θ(e) θ(e)
θ(e) 1− 3θ(e) θ(e) θ(e)
θ(e) θ(e) 1− 3θ(e) θ(e)
θ(e) θ(e) θ(e) 1− 3θ(e)

.

It turns out that under mild assumptions on the matrices M(e) and the evolution model - the
log-det distance defines a path metric on the tree [18]. We summarize the basic properties of this
distance if the following proposition. The proof for the CFN and the Jukes-Cantor model have
appeared independently several times. The general case follows from a large deviation estimate in
[6] and is proven in the appendix.
Proposition 2.2. Assume that the matrices M(e) satisfy that e−2g′ < det(M(e)) < e−2f for all
e ∈ E(T) and that for all nodes v ∈ V(T) and all letters a ∈ A, the probability that the letter at v is
a is at least πmin > 0. Let ǫ > 0.

For every two vertices u, v ∈ L(T) and a, b ∈ A, let Fa,b be the probability that node u has letter

a and node v has letter b. Let F̂a,b be the empirical distribution that node u has letter a and node v

has letter b. Let d(u, v) = − log det(Fi,j) and d̂(u, v) = − log det(F̂i,j) if − log det(F̂i,j) ≤M + ǫ, and

d̂(u, v) =∞ if − log det(F̂i,j) > M + ǫ or det(F̂i,j) ≤ 0. Then

• d(u, v) is a path metric on the tree satisfying g ≥ d(e) ≥ f for all edges e of the tree (where g
depends on g′ and πmin).

• There exists a constant c such that for all r > 2 if the number of sample satisfies

k ≥ cr

(1− e−2ǫ)2
e2M+2ǫ log n, (3)

then with probability at least 1− n2−r it holds that d̂ is an (ǫ,M) distortion of d.

The proposition may be used with different values of the parameters k and M . Fix ǫ < f/2.
Taking M to be the diameter of the tree, it gives that all empirical distances are within ǫ of the
true distances once k is exponential in M . Since M may be as large as Ω(gn), this gives sampling
complexity k which is exponential in n. Taking M = 100g, say, would give an (ǫ, 100g) distortion
from k = O(e100g log n) = O(log n) samples. In sequel we will use M ranging between M = O(g) for
a constant c to k = O(g log n) (in particular, typically we will only have a fraction of the distances
within ǫ of their true value).

Combining Proposition 2.2 and Theorem 2.1 we obtain
Theorem 2.3. Consider a binary phylogenetic tree T , where the log-det distance associated with the
mutation matrices M(e) satisfy the conditions of Proposition 2.2. Then given k satisfying (3), with
M > 7ǫ, and ǫ < f/2 we can with probability at least 1 − n2−r recover a partition P of L(T) into
sets L1, . . . , Lα and a forest T1, . . . , Tα such that Lβ = V(Tβ) ∩ L(T) for all β and

• T1, . . . , Tα is a forest that may be obtained from T by removing α− 1 edges.

• The number of trees α in the forest is at most ⌊1 + 60n√
2
2
−M−ǫ

2g ⌋.

6

Moreover, we can recover a function d̂ : ∪β≤αE(Tβ) :→ IR+ satisfying |d̂(e) − d(e)| < 2ǫ for all e.

Note that taking M = O(g) to be a large constant and ǫ = f/2 proves that most edges of the tree
can be recovered from O(log n) characters. Similarly, taking M = O(g log n) and ǫ = f/2, we see
that we can recover the underlying tree from k = nO(g) characters, thus obtaining an independent
proof of the results of [5, 6, 3].

3 Edge disjoint trees

Edge disjoint trees and edge sharing trees will play a crucial role below. In this section we define
these notions and discuss some of their basic properties.

We let T be a binary tree with vertices V(T) and edges E(T). We let L(T) ⊂ V(T) be the set of
leaves of T and n = |L(T)| the size of this set. We write pathT (x, y) for the path (sequence of edges)
connecting x to y in T . We will sometime omit the subscript T and write path(x, y). We write
ℓ(x, y) or ℓT (x, y) for the number of edges in the path connecting x and y. For two sets A,B ⊂ V(T)
we write ℓT (A,B) = min{ℓ(x, y) : x ∈ A, y ∈ B}.

Removing an edge e from a tree T results in obtaining two trees T1 and T2. The split defined by
e is the partition {L(T) ∩ V(T1),L(T) ∩ V(T2)} of L(T). We denote by Σ(T) the collection of L(T)
splits defined by all edges of T . It is well know that Σ(T) determines T (see e.g. [16, Chapter 3]).
We denote the split {A,B} by A|B.
Definition 3.1. Let T be a binary tree and L ⊂ L(T) a set of leaves. The restriction of T to L is
defined as follows. This is the tree whose leave set is L and whose splits are defined by

Σ(T |L) := {A|A′ : A = B ∩ L,A′ = B′ ∩ L and B|B′ ∈ Σ(T)}.

The restriction of T to L is denoted by T |L.
Given two sets L1, L2 ⊂ L(T), we say that the trees T |L1, T |L2 are edge disjoint if

pathT (u1, v1) ∩ pathT (u2, v2) = ∅,

for all u1, v1 ∈ L1 and u2, v2 ∈ L2. We say that T |L1, T |L2 are edge-sharing if they are not edge
disjoint.

The following easy lemma is useful as it shows that edge disjointness does not depend on the
ambient tree.
Lemma 3.1. Let L1 ∪ L2 ⊂ L′ ⊂ L(T). Then T |L1 and T |L2 are edge disjoint if and only if
pathT |L′(u1, v1) ∩ pathT |L′(u2, v2) = ∅, for all u1, v1 ∈ L1 and u2, v2 ∈ L2.

In particular, L1 and L2 are edge disjoint if and only if pathT |L1∪L2
(u1, v1)∩pathT |L1∪L2

(u2, v2) =
∅, for all u1, v1 ∈ L1 and u2, v2 ∈ L2.

Proof. The second statement follows immediately from the first one by letting L′ = L1 ∪ L2.

For the first statement, note that pathT (u1, v1) is obtained from pathT |L′(u1, v1) by replacing
each edge (x, y) ∈ pathT |L′(u1, v1) by a sequence of edges (x = x1, x2), . . . , (xj , xj+1 = y). Moreover,
the sequence (x = x1, x2), . . . , (xj , xj+1 = y) depends on the edge (x, y) only and each edge (xi, xi+1)
of T appears in the sequence of at most one edge (x, y) of T |L′.

7

It now follows that pathT |L′(u1, v1) ∩ pathT |L′(u2, v2) = ∅, for all u1, v1 ∈ L1 and u2, v2 ∈ L2 if
and only if pathT (u1, v1) ∩ pathT (u2, v2) = ∅ for all u1, v1 ∈ L1 and u2, v2 ∈ L2, as needed. �

Next we sate a useful closure property.

Lemma 3.2. If T |L1 and T |L2 are edge sharing and L1 ∪ L2 ⊂ L(T), then every edge of e of
T |L1 ∪ L2 belongs to a path pathT |L1∪L2

(u, v) where u, v ∈ L1 or u, v ∈ L2.

Proof. Suppose otherwise and let e = (w,w′) be an edge of T |L1 ∪ L2 that does not belong to any
such path. It follows that all the vertices of L1 are on one side of that edge and all the vertices of
L2 on the other side.

Thus pathT |L1∪L2
(u1, v1) ∩ pathT |L1∪L2

(u2, v2) = ∅ for all u1, v1 ∈ L1 and u2, v2 ∈ L2. This in
turn implies by Lemma 3.1 that L1 and L2 are edge disjoint in contradiction to our assumption. �

Lemma 3.3. Suppose that (T |L1, T |L2) are edge sharing while (T |L1, T |L3) and (T |L2, T |L3) are
edge disjoint, and let L = L1 ∪ L2. Then (T |L, T |L3) are edge disjoint.

Proof. Suppose otherwise. Let u, u′ ∈ L and v, v′ ∈ L3 such that pathT |L(u, u
′)∩ pathT |L(v, v

′) 6= ∅.
Let e be an edge that belongs to their intersection. By the previous lemma, it follows that there
exists w,w′ ∈ L1 or w,w′ ∈ L2 such that e ∈ pathT |L(w,w

′). Now pathT |L(w,w
′)∩ pathT |L(v, v

′) is
not empty - in contradiction to the fact that (T |L1, T |L3) and (T |L2, T |L3) are edge disjoint. �

We note that for binary trees, the notions of edge disjointness and vertex disjointness coincide.
Let T be a tree and L1, L2 ⊂ L(T). We say that T |L1 and T |L2 are vertex-disjoint if pathT (u1, v1)
and pathT (u2, v2) have no vertices in common for all u1, v1 ∈ L1 and u2, v2 ∈ L2.

Proposition 3.4. Let T be a tree and let L1, L2 ⊂ L(T). Then if T |L1 and T |L2 are vertex-disjoint,
they are also edge-disjoint

Let T be a tree where all the internal nodes are of degree 2 or 3 and let L1, L2 ⊂ L(T). Suppose
furthermore that T |L1 and T |L2 do not consist of a single vertex. Then if T |L1 and T |L2 are
edge-disjoint, they are also vertex-disjoint

Proof. If two paths share an edge they also share the two end points of that edge, so the first claim
follows.

For the second claim, suppose that T |L1 and T |L2 are edge disjoint but have the vertex v in
common. If v is a leaf, then both T |L1 and T |L2 share the edge adjacent to that leaf - a contradiction.

If v is not a leaf, then there are u1, v1 ∈ L1 and u2, v2 ∈ L2 such that v ∈ pathT (u1, v1) ∩
pathT (u2, v2). But the degree of v is at most 3, therefore the two paths pathT (u1, v1) and
pathT (u2, v2) have non-empty edge intersection - a contradiction. The proof follows. �

Edge disjoint trees naturally define a forest.

Lemma 3.5. Let T be a binary tree. Let L1, . . . , Lα be a partition of L(T) and let (Tγ = T |Lγ)
α
γ=1

be a collection of (pairwise) edge disjoint trees. Then the tree T may be obtained from T1, . . . , Tα by
adding α− 1 edges.

Proof. Note first that if L = L1∪L2 and T |L1, T |L2 are edge disjoint then L1|L2 ∈ Σ(T). Therefore,
in this case, T may be obtained from T |L1 and T |L2 by adding a single edge.

8

In the general case, define ℓT (T |Lβ, T |Lγ) by

min{ℓT (u, v) : u ∈ pathT (u
′, u′′), v ∈ pathT (v

′, v′′), u′, u′′ ∈ Lβ, v′, v′′ ∈ Lγ}.

Take β 6= γ that minimize the distance ℓ(T |Lβ, T |Lγ) among all pairs (β, γ).

It is easy to see that T |Lβ ∪Lγ is edge disjoint from Tβ′ for β′ /∈ {β, γ}. The general case follows
by induction.

�

We say that an edge e ∈ E(T) belongs to T |L, if there exist u, v ∈ L such that e ∈ pathT (u, v).
We say that the directed edge −→e belongs to T |L if the edge e belongs to T |L. The distance of

directed edge −→e =
−−−−−→
(u1, u2) to a set of vertices V ′ ⊂ V(T) is the minimal length m − 1 of a simple

path (u1, u2), . . . , (um−1, um) such that um ∈ V ′. We denote this distance by ℓT (
−→e , V ′). Finally, let

ℓ∗T (e, V
′) = max

(

ℓT (
−→e , V ′), ℓT (

←−e , V ′)
)

(the max is over the two orientations of e).

Lemma 3.6. Let T be a binary tree and L1, . . . , Lα be a partition of L(T). Suppose that (T |Lβ)
α
β=1

is a collection of edge disjoint trees and that for all edges e ∈ E(T) with ℓ∗T (e,L(T)) ≤ r the edge e
belongs to one of the trees T |Lβ. Then α ≤ 1 + 30× 2−rn.

Note that ℓ∗T (e = (u, v), V ′) ≥ min{ℓ(u, V ′), ℓ(v, V ′)} and strict inequality may hold (see Figure
3). Thus the lemma does not follow from the fact that fractions of vertices at distance r from the
set of leaves is at most 2−r.

e

Figure 2: Note that ℓ∗T (e = (u, v),L(T)) = 3 while min{ℓ(u,L(T)), ℓ(v,L(T))} = 0
.

Proof. Following the argument of the previous lemma, it is easy to see that each edge we add must
satisfy ℓ∗T (e,L(T)) > r. Let Am be the set of all edges whose ℓ distance to L(T) is at least r. Then
α− 1 ≤ |Ar|. It remains to bound the size of Ar.

Let b(n,m) be the maximal possible size of Am among all binary trees on n leaves. Note that
b(n,m) = 0 if n ≤ 2m−1. Let T be a tree on n leaves and e an edge of T . Let T1 and T2 be the
two trees obtained from T by removing the edge e. Note that the number of directed edges in T of
ℓ distance at least m from L(T) is at most five more than the sum of the number of such edges in
T1 and T2 (we may add at most the new edge and the four new edges adjacent to it).

9

For every binary tree on n leaves there exists an edge e such that removing the edge e results in
two tree T1, T2 such that |L(T1)| ≥ |L(T)|/3 and |L(T2)| ≥ |L(T)|/3. We therefore conclude that

b(n,m) ≤ max{b(n1,m) + b(n2,m) + 5 : n1 + n2 = n and n1 ≥ n/3 and n2 ≥ n/3}.

It now follows by easy induction that

b(n,m) ≤ max{30 × 2−mn− 5, 0}

for all n. In particular,

α ≤ 1 + |Ar| ≤ 1 + max{30× 2−rn− 5, 0} ≤ 1 + 30× 2−rn.

as needed. �

4 Super-trees for edge sharing trees

In this section we show how to build the super-tree of a collection of edge-sharing trees.

Definition 4.1. Let T be a binary tree and L1, L2, . . . , Lα ⊂ L(T). We say that T |L1, . . . , T |Lα are
edge sharing if there is no partition S1 ∪ S2 of {1, . . . , α} such that T |Lβ and T |Lγ are edge disjoint
for all β ∈ S1 and γ ∈ S2.

From Lemma 3.3 it follows that

Proposition 4.1. Let T be a binary tree and L1, L2, . . . , Lα ⊂ L(T). Then T |L1, . . . , T |Lα are edge
sharing if and only if there is no partition S1∪S2 of {1, . . . , α} for which T |∪β∈S1

Lβ and T |∪β∈S2
Lβ

are edge disjoint.

In the main result of this section we prove the following

Theorem 4.2. Let T be a binary tree and L1, L2, . . . , Lα ⊂ L(T) such that T |L1, . . . , T |Ls are edge
sharing. Let L′ = ∪αβ=1Li and T ′ = T |L′. For 1 ≤ β ≤ α, let

S(β) = {γ : T |Lβ and T |Lγ are edge sharing },

and let SLβ = ∪γ∈S(β)Lγ. Then

• The tree T ′ is determined by the trees (T |SLβ)
α
β=1.

• Moreover, given the trees (T |SLβ)
α
β=1, there is a polynomial time algorithm that computes T ′.

Theorem 4.2 states that it is possible to glue together a collection of edge-sharing trees, given
some “local” tree structures.

Lemma 4.3. Assume the setting of Theorem 4.2. Let e ∈ E(T |SLβ) satisfy that there exist u, v ∈ Lβ

with e ∈ pathT |SLβ
(u, v). Let A0|B0 be the partition defined by e on SLβ . Then there exists a unique

partition A|B ∈ Σ(T ′) such that A0 = A ∩ SLβ and B0 = B ∩ SLβ.

Moreover, for every edge ẽ ∈ E(T ′), there exists 1 ≤ β ≤ α, leaves u, v ∈ Lβ and e ∈
pathT |SLβ

(u, v) such that the partition of T |SLβ defined by e is given by A ∩ SLβ|B ∩ SLβ, where

A|B is the partition defined by ẽ.

10

Proof. Since T ′|SLβ = T |SLβ, there exists a partition A|B of L′ corresponding to an edge of T ′

which satisfies A ∩ SLβ = A0 and B ∩ SLβ = B0. Thus, in order to prove the first claim, it remains
to show that A|B is unique.

Write e = (x1, xk+1) and let (x1, x2), . . . , (xk, xk+1) be the path corresponding to e in T ′. Note
that A|B defines a partition satisfying A0 = A∩SLβ and B0 = B∩SLβ if and only if A|B corresponds
to one of the edges (xm, xm+1). The last claim follows from the fact that removing an edge of T ′

that doesn’t correspond to any edge in T |SLβ induces the trivial partition on SLβ and removing an
edge ẽ that correspond to the edge e of T |SLβ corresponds to the partition defined by e.

Therefore, it suffices to show that k = 1.

Suppose that k > 1. Since the edge (x1, x2) is not defined in T ′|SLβ, and the collection (T |Sβ)
α
β=1

is edge-sharing, it follows that there exists (u, v) ∈ Lγ such that such that (x1, x2) ∈ path(u, v) and
γ /∈ S(β). But the fact that (x1, x2) ∈ path(u, v) implies that T |Lβ and T |Lγ are edge sharing - a
contradiction. Therefore k = 1 and the first claim follows.

For the second claim, note that Lemma 3.2 and Proposition 4.1 imply that for all ẽ ∈ E(T ′),
there exists 1 ≤ β ≤ α and u, v ∈ Lβ such that ẽ ∈ pathT ′(u, v). By the previous argument, the
edge ẽ corresponds to a unique edge e ∈ E(T |SLβ), as needed. �

Proof Of Theorem 4.2: We will show how to reconstruct T ′ in time polynomial in n. Clearly,
it suffices to show how to reconstruct Σ(T ′) in polynomial time. From Lemma 4.3 it follows that in
order to find Σ(T ′) it suffices to find for all 1 ≤ β ≤ α and all edges e ∈ E(T |SLβ) which satisfy
e ∈ pathSLβ

(u, v) for u, v ∈ Lβ:

• The partition A0|B0 of SLβ corresponding to the edge e.

• The unique partition A|B of L′ satisfying A0 = A ∩ SLβ and B0 = B ∩ SLβ.

Given T |SLβ it is trivial to find the partition A0|B0 of SLβ corresponding to e. All that remains to
show is how to find the partition A|B corresponding to the edge e in T ′. This is the unique partition
satisfying A0 = A ∩ L′ and B0 = B ∩ L′.

For S′ ⊃ S(β) let L̃ = ∪γ∈S′Lγ . Lemma 4.3 allows to identify the edge e in T |SLβ with the
unique edge corresponding to e in T |L̃. We will use this identification below.

We now give an inductive construction of A and B. Let S0(β) = S(β) and continue inductively
by letting for d ≥ 1

• Sd(β) = {γ : ∃δ ∈ Sd−1(β) s.t. (Lδ, Lγ) are edge sharing } \ (∪c<dSc(β)) .

• Let Ad = Ad−1∪γ∈SA
d
(β)Lγ , where γ ∈ Sd(β) belongs to SA

d (β) if the following condition holds:

There exists leaves u′, v′ ∈ Ad−1 and leaves u, v ∈ Lγ such that path(u′, v′) ∩ path(u, v) 6= ∅.

• Similarly, let Bd = Bd−1 ∪γ∈SB
d
(β) Lγ , where γ ∈ Sd(β) belongs to SB

d (β) if the following

condition holds: There exists leaves u′, v′ ∈ Bd−1, leaves u, v ∈ Lγ such that path(u′, v′) ∩
path(u, v) 6= ∅.

The above construction is repeated until Sd(β) = ∅.
We now prove the validity of the construction. First, from the fact that T |L1, . . . , T |Lα are edge

sharing, it follows that {1, 2, . . . , α} = ∪d≥0Sd(β). We write S̄d(β) for ∪c≤dSd(β).

11

Claim 4.4. For all d ≥ 0 it holds that Sd(β) = SA
d (β) ∪ SB

d (β). For all d ≥ 0, the partition Ad|Bd

is the partition of the tree T | ∪γ∈S̄d(β)
Lγ defined by the edge e.

Proof. The proof is by induction on d. The base case d = 0 is immediate. For the inductive step
note that under the induction hypothesis for d− 1, the partition Ad−1|Bd−1 is the partition induced
by e on the tree T | ∪γ∈S̄d−1(β)

Lγ .

Let γ ∈ Sd(β). Clearly T |Lγ and T |Ad−1 ∪ Bd−1 share edges. On the other hand since e is not
an edge of T |Lγ it follows that either T |Lγ and T |Ad−1 share edges or T |Lγ and T |Bd−1 share edges.
In the first case Lγ ⊂ Ad, while in the second case Lγ ⊂ Bd.

The claim follows. �

The proof of the theorem follows as when the algorithm terminates, the sets Ad|Bd define the
desired partition. It is clear that the algorithm described above runs in polynomial time. �

5 Distorted metrics on trees

In this section we will prove Theorem 2.1. We will assume (2) below (i.e. f ≤ d(e) ≤ g for all e ∈ E).

It is helpful to define “balls” with respect to d and d̂ as follows.

BL(v, r) = {w ∈ L(T) : d(v,w) ≤ r}, BV (v, r) = {w ∈ V(T) : d(v,w) ≤ r}. (4)

We similarly define B̂L(v, r) and B̂V (v, r) with d̂ instead of d.

We omit the proof of the following easy Lemma.

Lemma 5.1. Let d̂ be an (ǫ,M) distortion of d and let r < M . Consider the sets Lβ = B̂L(vβ , r)
for β = 0, . . . , α. Suppose that T |L0 and T |Lβ are edge sharing for β = 1, . . . , α. Then for all
u, u′ ∈ V(T | ∪αβ=0 Lα) it holds that

d(u, v) < 6r + 6ǫ. (5)

Similarly, for all u, u′ ∈ ∪αβ=0Lα it holds that

d̂(u, v) < 6r + 7ǫ, (6)

if d̂(u, v) <∞.

Proof. Equation (6) follows immediately from (5). Let T ′ = T | ∪αβ=0 Lβ. Note that if β ≤ α, the
leaves u1, u2 belong to Lβ and u is a vertex on the path connecting u1 and u2, then

d(u, vβ) ≤ sup
w∈Lβ

d(w, vβ) < sup
w∈Lβ

d̂(w, vβ) + ǫ ≤ r + ǫ. (7)

(the first inequality follows from the fact that if v is a vertex in a tree with a path metric, then the
vertex furthest away from v is a leaf).

Now let u, u′ ∈ V(T ′). Since the trees (T |Lβ)β≤α are edge sharing, it follows u belongs to a path
connecting two points in Lγ and u′ belongs to a path connecting two point in Lγ′ , where 0 ≤ γ, γ′ ≤ β.

12

Let w be a vertex that belongs to an edge e such that e ∈ path(wγ,1, wγ,2) ∩ path(w0,1, w0,2)
where wγ,1, wγ,2 ∈ Lγ and w0,1, w0,2 ∈ L0. Define w′ similarly. Then by (7)

d(u, u′) ≤ d(u, vγ) + d(vγ , w) + d(w, v0) + d(v0, w
′) + d(w′, vγ′) + d(vγ′ , u′)

≤ 6(r + ǫ),

as needed. �

Proof of Theorem 2.1: Let

r = M−7ǫ
6 , L = (vβ)

n
β=1, Lβ = B̂(vβ, r).

Define a graph G on the set of vertices {1, . . . , n} where the edge (β, γ) is present if and only if Lβ

and Lγ are edge-sharing. Let C1, . . . , Cα be the partition of {1, . . . , n} to connected components in
G. It is easy to see that the graph G can be computed in polynomial time. Indeed by Lemma 5.1 it
follows that if Lβ and Lγ share edges then for all u ∈ Lβ and v ∈ Lγ it holds that d̂(u, v) ≤M . For
sets Lβ, Lγ for which this condition holds, we may easily reconstruct the tree T |Lβ ∪ Lγ using the
4-point method. We can then check if T |Lβ and T |Lγ are edge sharing in T |Lβ ∪ Lγ .

By proposition (4.1) it follows that if σ 6= τ then the trees T | ∪β∈Cσ Lβ and T | ∪β∈Cτ Lβ are edge
disjoint. Moreover, if 1 ≤ η ≤ α, then the collection of trees (T |Lβ)β∈Cη are edge sharing.

Note that in the notation of Theorem 4.2 for all β and all u, v ∈ SLβ it holds that d̂(u, v) ≤M -
by Lemma 5.1.

It follows that the trees T |SLβ may be easily recovered by the 4-point method. Moreover, for

every edge e ∈ E(T |SLβ) we may recover d̂(e) satisfying |d(e) − d̂(e)| < 2ǫ.

We now use Theorem 4.2 in order to recover the trees T | ∪β∈Cσ Lβ for all σ. Moreover, we may

recover d̂(e) satisfying |d(e) − d̂(e)| < 2ǫ.

It remains to bound the number of trees α using Lemma 3.6. Note that if l∗T ((u, v),L(T)) ≤ p,
then there is a path of p−1 edges starting at u, avoiding v and ending at L(T) at a node denoted u′.
Similarly, there is a path of p−1 edges starting at v avoiding u and ending at L(T) at a node denoted
v′. Note that d(u′, v′) ≤ (2p − 1)g and therefore d̂(u′, v′) ≤ (2p − 1)g + ǫ. Thus if p ≤ 1

2 + M−ǫ
2g ,

then d̂(u′, v′) ≤M and therefore the edge e belongs to one of the trees T | ∪β∈Cσ Lβ. It follows from
Lemma 3.6 that

α ≤ 1 + 30n × 2−⌊ 1

2
+M−ǫ

2g
⌋ ≤ 1 +

60n√
2
× 2−

M−ǫ
2g .

The theorem follows. �

References

[1] P. Buneman. The recovery of trees from measures of dissimilarity. In Mathematics in the
Archaelogical and Historical Sciences, pages 187–395. Edinburgh University Press,Edinburgh,
1971.

[2] J. A. Cavender. Taxonomy with confidence. Math. Biosci., 40(3-4), 1978.

13

[3] M. Cryan, L. A. Goldverg, and P. W. Goldberg. Evolutionary trees can be learned in polynomial
time in the two-state general markov mode. SIAM Journal on Computing, 31(2):375–397, 2003.
The short version appeared in Proceedings of the 39th Annual Symposium on Foundations of
Computer Science, 1998.

[4] W. Day, D. Johnson, and D. Sankoff. The computational complexity of inferring rooted phylo-
genies by parsimony. Mathematical biosciences, 86:33–42, 1986.

[5] P. L. Erdös, M. A. Steel;, L. A. Székely, and T. A. Warnow. A few logs suffice to build (almost)
all trees (part 1). Random Structures Algorithms, 14(2):153–184, 1999.

[6] P. L. Erdös, M. A. Steel;, L. A. Székely, and T. A. Warnow. A few logs suffice to build (almost)
all trees (part 2). Theoretical Computer Science, 221:77–118, 1999.

[7] M. Farach and S. Kannan. Efficient algorithms for inverting evolution. J. ACM., 46(4):437–449,
1999.

[8] J. Felsenstein. Cases in which parsimony or compatibility methods will be positively misleading.
Syst. Biol., pages 401–410, 1978.

[9] J. Felsenstein. Inferring Phylogenies. Sinauer, New York, New York, 2004.

[10] L. .R. Foulds and R. L. Graham. The steiner problem in phylogeny is npcomplete. Adv. Appl.
Math, 3:43–49, 1982.

[11] R. L. Graham. and L. .R. Foulds. Unlikelihood that minimal phylogenies for a realistic biological
study can be constructed in reasonable computational time. Math. Biosci., 60:133–142, 1982.

[12] D. Gusfield. Efficient algorithms for inferring evoluntionary trees. Networks, 21, 1991.

[13] E. Mossel. On the impossibility of reconstructing ancestral data and phylogenies. Jour. Comput.
Bio., 10(5):669–678, 2003.

[14] E. Mossel. Phase transitions in phylogeny. To appear in Trans. of AMS., 2003.

[15] E. Mossel and M. Steel. A phase transition for a random cluster model on phylogenetic trees.
Submitted to Mathematical Biosciences, 2003.

[16] C. Semple and M. Steel. Phylogenetics, volume 22 of Mathematics and its Applications series.
Oxford University Press, 2003.

[17] E. Sober and M. A. Steel. Testing the hypothesis of common ancestry. Jour. Theor. Bio.,
218:395–408, 2002.

[18] M. Steel. Recovering a tree from the leaf colourations it generates under a Markov model. Appl.
Math. Lett., 7(2):19–23, 1994.

[19] M. A. Steel and L. A. Székely. Inverting random functions. II. Explicit bounds for discrete
maximum likelihood estimation, with applications. SIAM J. Discrete Math., 15(4):562–575
(electronic), 2002.

14

A Large deviations for the log-det distance

In this section, we prove Proposition 2.2. We will use the following large deviation result from [6].

Lemma A.1 ([6]). For every two vertices u, v ∈ L(T) and a, b ∈ A, let Fa,b be the probability that
node u has letter a and node w has letter b. Let −d(u, v) = log det(Fi,j). Then d(u, v) is a path
metric on the tree satisfying

• d(e) ≥ f for all edges e of the tree.

• For all u, v ∈ L(T):

d(u, v) ≤ −|A| log πmin −
∑

e∈path(u,v)
log det(M(e))

≤ − |A| log πmin + 2g|path(u, v)|.

Moreover for u, v ∈ L(T) let F̂a,b be the empirical distribution of having a at u and v in b in a

collection of k samples. Let d̂(u, v) = − log det(F̂a,b) if det(F̂a,b) > 0 and d̂(u, v) = ∞ otherwise.
Then there exists positive constants c1 and c2 such that

P[|e−d(u,v) − e−d̂(u,v)| ≥ t] ≤ 2 exp

(

−c1k
(

t− c2
k

)2

+

)

, (8)

where (a)+ = max{0, a}.

For the proof see [6, Section 7]. Equation (8) here is equation (49) in [6] up to change of notation.

Taking t = e−M−ǫ(1 − e−2ǫ) in (8) we see that if |e−d(u,v) − e−d̂(u,v)| ≤ t and either d(u, v) ≤ M + ǫ

or d̂(u, v) ≤ M + ǫ, then |d(u, v) − d̂(u, v)| < ǫ. So if |e−d(u,v) − e−d̂(u,v)| ≤ t for all u and v, then d̂
is an (ǫ,M) distortion of d.

Taking k that satisfies (3) we obtain that the error is at most

n2 exp

(

−c1k
(

t− c2
k

)2

+

)

≤ n2−r,

if c (in (3)) is sufficiently large. The proof of Proposition 2.2 follows.

B Lower bounds

In this section we prove tightness of both the distorted metric result and the phylogenetic recon-
struction result.

The tightness of the metric result follow easily by considering the r-level 3-regular tree with the
metric d that assigns length d to all edges of the tree. We let d̂(u, v) = d(u, v) if d(u, v) ≤ M and
d̂(u, v) =∞ otherwise. Then d̂ is a (0,∞) distortion of d.

Define the relation u ∼ v if d(u, v) ≤ M . It is easy to see that ∼ is an equivalence relation.
There are n2−⌊M/2g⌋ equivalence classes for this relation. It is easy to reconstruct the tree on each
class, but since for u, v which belong to different classes, d̂(u, v) =∞, it is impossible to reconstruct

15

any more. This prove the tightness of the number of trees in Theorem 2.1 up to a multiplicative
constant.

A similar construction yields the analogous sampling complexity lower bound for phylogenetic
trees. We fix the model to be the CFN model where the length of each edge is g. Thus the mutation

matrices are given by M(e) =

(

e−g + (1− e−g)/2 (1− e−g)/2
(1− e−g)/2 e−g + (1 − e−g)/2

)

.

Thus for each edge (u, v), the state of u is copied to v with probability e−g. Otherwise, an
independent uniform state is chosen.

Following the arguments of [13] implies that if v is a vertex at ℓ-distance s from the set of leaves,
then the character value at the leaves below v is independent of the character at v with probability
at least 1 − 2se−gs. Thus the character at the leaves is independent from all nodes at level s with
probability at least 1 − 3 ∗ 2r−s−122e−gs = 1 − ne−gs. The probability that the former event will
occur for k characters is at least pk = 1− kne−gs.

Let assume further that the phylogenetic tree on each of the equivalence classes of the relation
∼ defined by u ∼ v if d(u, v) ≤ 2gs is given. Then with probability pk, there is no non-trivial
information about the ancestral relationship except that given by the given n ∗ 2−s trees.

Note furthermore that pk ≥ 1− δ if k ≤ δegs/n = δeM/n. This proves the tightness of condition
(3) in Theorem 2.3 up to a factor 2 in the exponent and a multiplicative O(n) factor.

C Variants of the method

We briefly sketch a few variants of the method which may be practical advantages over the method
analyzed here.

C.1 Checking if two balls define tree disjoint trees

The first stage of the algorithm consists of checking if two balls B̂L(v, r) and B̂L(u, r) define two
edge-sharing trees or two edge-disjoint trees. Most of the work at this stage is devoted to couples
of trees that are edge-disjoint. In fact for most such pairs it would hold that d̂(u, v) > M which
implies automatically edge-disjointness without additional computation. Thus the efficient way of
computing the graph G is by first checking for each u and v if d̂(u, v) > M . Otherwise, we perform
the test described in the proof of Theorem 2.1.

C.2 Building supertrees for edge disjoint trees

A lot of computational effort is devoted to building super-trees from collection of edge-sharing trees.
There are many variants that work here. Instead of the method described in the paper, we can use
quartets method as in [5]. Similarly to [5] one can prove that given a collection of edge sharing
trees T1, . . . , Tα, their super-tree is in fact defined by all quartets belonging to the trees T |SLβ for
1 ≤ β ≤ α via the dyadic closure operator. This may lead to a computationally more efficient
algorithm than ours.

16

	Introduction
	Definitions and main results
	Edge disjoint trees
	Super-trees for edge sharing trees
	Distorted metrics on trees
	Large deviations for the log-det distance
	Lower bounds
	Variants of the method
	Checking if two balls define tree disjoint trees
	Building supertrees for edge disjoint trees

