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Abstract—Phylogenies—the evolutionary histories of groups of organisms—play a major role in representing the interrelationships

among biological entities. Many methods for reconstructing and studying such phylogenies have been proposed, almost all of which

assume that the underlying history of a given set of species can be represented by a binary tree. Although many biological processes

can be effectively modeled and summarized in this fashion, others cannot: recombination, hybrid speciation, and horizontal gene

transfer result in networks of relationships rather than trees of relationships. In previous works, we formulated a maximum parsimony

(MP) criterion for reconstructing and evaluating phylogenetic networks, and demonstrated its quality on biological as well as synthetic

data sets. In this paper, we provide further theoretical results as well as a very fast heuristic algorithm for the MP criterion of

phylogenetic networks. In particular, we provide a novel combinatorial definition of phylogenetic networks in terms of “forbidden

cycles,” and provide detailed hardness and hardness of approximation proofs for the “small” MP problem. We demonstrate the

performance of our heuristic in terms of time and accuracy on both biological and synthetic data sets. Finally, we explain the difference

between our model and a similar one formulated by Nguyen et al., and describe the implications of this difference on the hardness and

approximation results.

Index Terms—Maximum parsimony, phylogenetic networks, horizontal gene transfer, hardness and approximation.
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1 INTRODUCTION

PHYLOGENETIC networks are a special class of directed
acyclic graphs (DAGs) that model evolutionary histories

when trees are inadequate, such as in the cases of horizontal
gene transfer (HGT) and hybrid speciation [24], [29], [26].
Fig. 1a illustrates a phylogenetic network on four species
with a single HGT event. In an evolutionary scenario
involving horizontal transfer, an organism transfers genetic
material to another organism that is not its offspring (i.e.,
genetic material is transferred from one lineage to another),
as in Fig. 1a. In such a case, the origin of certain sites in a
DNA sequence may be nonparental (as in Fig. 1c), while all
others are inherited from the parent (as in Fig. 1b). Thus,
each site evolves down one of the trees induced by (or contained
in) the network. Similar scenarios arise in the cases of other
reticulate evolution events (such as hybrid speciation and
interspecific recombination).

Hybrid speciation is a significant evolutionary mechan-
ism in plants, fish, and other groups of species [25], and
HGT is believed to be ubiquitous among prokaryotic
organisms [6], [7], [23], [22], [4], [17]. Therefore, in order
to reconstruct and analyze evolutionary histories of these
groups of species, as well as to reconstruct the prokar-
yotic branch of the Tree of Life, developing accurate
criteria for reconstructing and evaluating phylogenetic

networks and efficient algorithms for inference based on
these criteria is imperative. A large number of publica-
tions have been introduced in recent years about various
aspects of phylogenetic networks; see [10], [12], [29], [32],
[11], [15], [16], [1], [31] for some of the papers introduced
in the last three years, and [24], [26] for detailed surveys.

In this work, we address the maximum parsimony (MP) of
phylogenetic networks. Maximum parsimony is one of the
most commonly used and extensively studied criteria for
phylogenetic tree inference. Roughly speaking, inference
based on this criterion seeks the tree that explains the
evolution of a set of sequences with the minimum number
of mutations.

In 1990, Jotun Hein proposed using this criterion for
inferring the evolution of sequences subject to recombina-
tion. Recently, Nakhleh et al. formulated the parsimony
criterion for evaluating and inferring general phylogenetic
networks [31]. In particular, they formulated two problems
based on the MP criterion: the “small” parsimony problem,
PSPN, which seeks the parsimony score of a fixed
phylogenetic network leaf labeled by a set of sequences,
and the “big” parsimony problem, FTMPPN, which seeks
an augmentation of a fixed tree into a network so as to
optimize the parsimony score up to a certain threshold.1 In
two recent articles, we demonstrated the quality of the
criterion for evaluating phylogenetic networks as well as
the appropriateness of the solutions to these two problems
for reconstructing phylogenetic networks [18], [20].

In [18], we conjectured the PSPN problem to be NP-hard.
Recently, Nguyen et al. [33] provided a hardness result for a
closely related version of the PSPN problem and claimed
that the problem cannot be approximated within a factor of

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 6, NO. X, XXXXXXX 2009 1

. G. Jin and L. Nakhleh are with the Department of Computer Science, Rice
University, Houston, TX 77005. E-mail: {jin, nakhleh}@cs.rice.edu.

. S. Snir is with the Institute of Evolution, University of Haifa, Haifa 31905,
Israel. E-mail: ssagi@research.haifa.ac.il.

. T. Tuller is with the School of Computer Science, Tel Aviv University, Tel
Aviv 69978, Israel. E-mail: tamirtul@post.tau.ac.il.

Manuscript received 8 Sept. 2008; accepted 12 Oct. 2008; published online 20
Oct. 2008.
For information on obtaining reprints of this article, please send e-mail to:
tcbb@computer.org, and reference IEEECS Log Number
TCBB-2008-09-0162.
Digital Object Identifier no. 10.1109/TCBB.2008.119.

1. PSPN stands for Parsimony Score of Phylogenetic Networks and
FTMPPN stands for Fixed Tree Maximum Parsimony of Phylogenetic
Networks.

1545-5963/09/$25.00 � 2009 IEEE Published by the IEEE CS, CI, and EMB Societies & the ACM



logn, where n is the number of taxa (leaves) in the network.
This means that there does not exist a constant c for which a
polynomial algorithm can give a c-approximation. More-
over, they claimed that the problem was NP-hard even for
galled networks, which are a special class of phylogenetic
networks in which cycles in the underlying undirected
graph of the network are node disjoint [38].

In this paper, we first provide a formal definition of a
phylogenetic network that was previously formulated in
[29]. We present complete hardness proofs that we had
sketched in [18], and extend it to networks of bounded
degree. This is essential for establishing the hardness of
approximation of the PSPN problem. We explain the
differences between our results and recent results of Nguyen
et al. [33]. We show that while Nguyen et al. did address the
small parsimony problem, the phylogenetic networks that
their reduction produces do not satisfy the required
temporal constraints. On the other hand, our reduction does
satisfy these constraints and thus gives different hardness of
approximation results. Our reduction implies that the
problem is not approximable within any constant. In the
conference version of this paper, we presented a 3-approx-
imation algorithm. Unfortunately, the algorithm is erro-
neous and its 3-approximation is not guaranteed.

As almost every computational task in biology turns to
be NP-hard, heuristics play a central role in computational
biology. Devising fast and accurate heuristics requires deep
insight into the problem under investigation. The central
part of this work is a heuristic algorithm for the PSPN
problem. In Section 4, we devise a very fast heuristic
algorithm for the problem and demonstrate its strength on
synthetic as well as real biological data. Its high speed and
very high accuracy with respect to the exact exhaustive
algorithm of [31] make it more practical for analyzing large
microbial data sets where HGT is very common.

Finally, we show that the reduction of [33] in the case of
galled networks is for a different version of the PSPN

problem, hence clarifying the seemingly contradictory result
to an algorithm that was sketched in [30] for the problem.

2 PARSIMONY OF PHYLOGENETIC NETWORKS

2.1 Preliminaries and Definitions

Let T ¼ ðV ;EÞ be a tree, where V andE are the tree nodes and
tree edges, respectively, and let LðT Þ denote its leaf set.
Further, let X be a set of taxa (species). Then, T is a
phylogenetic tree over X if there is a bijection between X
and LðT Þ. Henceforth, we will identify the taxon set with the
leaves they are mapped to, and let ½n� ¼ f1; : : ; ng denote the
set of leaf labels. A tree T is said to be rooted if there is a

single distinguished internal vertex r with in-degree 0 and
all the edges are directed away from it. In this work, we
deal with rooted trees.

We denote by Tv the subtree rooted at v. A function � :
½n� ! f0; 1; : : ; j�j � 1g is called a state assignment function
over the alphabet � for T . We say that function �̂ : V ðT Þ !
f0; 1; : : ; j�j � 1g is an extension of�onT if it agrees with�on
the leaves ofT . Let kdenote the sequences’ length. In a similar
way, we define a function �k : ½n� 7�! f0; 1; : : ; j�j � 1gk and
an extension �̂k : V ðT Þ 7�! f0; 1; : : ; j�j � 1gk. The latter
function is called a labeling of T . We write �̂kðvÞ ¼ s to denote
that sequence s is the label of the vertex v. The ith site is an
n-tuple where the jth coordinate is the ith state of species
(leaf) j.

A fully labeled tree is a tree in which all its nodes have
labels from f0; 1; : : ; j�j � 1g . Given a labeling �̂k, let deð �̂kÞ
denote the Hamming distance between the two sequences
labeling the two endpoints of the edge e 2 EðT Þ. A
phylogenetic network N ¼ NðT Þ ¼ ðV ;E [HÞ over the
taxon set X is derived from T ¼ ðV ;EÞ by adding a set H
of directed edges to T , such that each edge h 2 H connects
two existing nodes in T . Therefore, the set of nodes in N is
same as in T and the edge setE is augmented with the setH.
ForH ¼ ;,N is a tree; otherwise (i.e.,H 6¼ ;) we say thatN is
proper. From now on, we will refer to proper networks solely.

In the reverse direction, a network gives rise to a set of
trees. Each such tree is obtained by the following two steps:
1) for each node of in-degree greater than one, remove all
but one of the incoming edges and then 2) suppress all
nodes with out-degree one. We denote by T ðNÞ the set of all
trees contained inside network N . For a network N and a
node v 2 V ðNÞ, Nv denotes the graph induced by the nodes
reachable from v.

Finally, phylogenetic networks must satisfy additional
temporal constraints, as described in [29]. First, N must be
acyclic. Second, N should respect the time flow property,
which we now elaborate on. Since at the scale of evolution,
HGT events are instantaneous in time, a reticulation edge
between two nodes x and y dictates that the organisms
represented by x and y must have coexisted in time.
Therefore, having a reticulation edge between x and y
serves as a “synchronization point”: no pair of nodes u and
v, where one precedes x and y and the other succeeds them,
can be the endpoints of a reticulation edge.

Fig. 2 illustrates a directed acyclic graph: lines corre-
spond to tree edges, which are directed away from the root,
whereas arrows correspond to reticulation edges. While
acyclic, this graph does not satisfy the time flow property as
it implies that y precedes x, and at the same time that x
precedes y—an impossible scenario.

We now give a simpler formal definition of the time flow
property given in [29, Definition 3]: Let A be the ancestry
relation in a tree T . This is the ordered pair hu; vi 2 A if there
is a (directed) path in T . It is easy to see that A is an
asymmetric and transitive relation.2 A network NðT Þ
extends A as follows: Let e ¼ ðx! yÞ 2 H be a reticulation
edge from x to y. Then for every w, hw; yi 2 A , hw; xi 2 A.
Note that the direction of e is irrelevant in this context (the
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2. It is common to treat this relation as partial order; however, in our
case, reflexivity is unnecessary.

Fig. 1. (a) A phylogenetic network with a single HGT event from X to Y .

(b) The underlying organismal (species) tree. (c) The tree of a

horizontally transferred gene.



extension of A). Finally, we augment A with the transitive

closure induced by the newly added elements (i.e.,

hu; yi 2 A ^ hx; vi 2 A ^ e ¼ ðx! yÞ ) hu; vi 2 A).

Definition 1. A network NðT Þ is valid (or satisfies the time flow

property) if A is asymmetric.

In particular, there is no HGT edge between a node and

its descendant. We need two more definitions to show some

combinatorial properties of phylogenetic networks that will

be required later.

Definition 2. An undirected path P in NðT Þ is HGT-neutral if

tree edges in P are traversed according to their direction and

HGT edges arbitrarily.

As a special case, an HGT-neutral path is an HGT-neutral

cycle if the first node in the path is identical to the last node.

Definition 3. An HGT-neutral cycle C in NðT Þ is forbidden if it

contains at least one tree edge.

For example, the cycle x; y0; y; x0 in Fig. 2 is forbidden

since tree edges in the paths and are

traversed while considering their direction and reticulation

edges ðx! x0Þ and ðy! y0Þ—arbitrarily.

Observation 1. A network is valid iff it contains no

forbidden cycles.

Proof. ) We need to show that a network is valid if it

contains no forbidden cycles. Assume that the network is

not valid, that is, A is not asymmetric. This implies that

there are x; y 2 V s.t. hx; yi 2 A and hy; xi 2 A. By the

construction, there are HGT-neutral paths from x to y and

from y to x. We are left to show that the cycle contains at

least one tree edge. Note from the construction that nodes

across an HGT edge are unrelated, that is, they are not

added to A as a result of the HGT edge. Therefore,

hx; yi 2 A implies that there is a path between x and y

with at least one tree edge between them. This implies

that there must be at least one tree edge in the cycle.
( We need to show that if a network is valid, it

contains no forbidden cycles. Assume that there is a
forbidden cycle C in NðT Þ. Let ðu! vÞ be a tree edge in
C. Then hu; vi 2 A, and since the transitive closure
extends the relation to all nodes along an HGT-neutral
path, we obtain that hv; ui 2 A. tu

2.2 Maximum Parsimony of Phylogenetic Networks

We begin by reviewing the maximum parsimony criterion

for phylogenetic trees.

Problem 1. Parsimony Score of Phylogenetic Trees (PSPT)

Input. A 3-tuple ðS; T ; �kÞ, where T is a phylogenetic tree and �k

is the labeling of LðT Þ by the sequences in S.

Output. The extension �̂k that minimizes the expressionP
e2EðT Þ deð �̂kÞ.

We define the parsimony score for ðS; T ; �kÞ, parsðS; T ;
�kÞ, as the value of this sum, and parsðS; T ; �k; iÞ as the value

of this sum for site i. So, parsðS; T ; �kÞ ¼
P

1�i�k pars

ðS; T ; �k; iÞ. It is easy to see that optimal value is obtained

by optimal solutions for every site 1 � i � k. Polynomial

time algorithms, due to Fitch and Sankoff, solve PSPT, as

well as its weighted version (sites and substitutions have

weights), in polynomial time [8], [37].
Since Fitch’s algorithm is a basic building block in this

paper, we hereby describe it. As mentioned above, the input

to the problem is a tree T , a single site C, and its state

assignment �1. The algorithm returns the tree T with its

optimal extension �̂1 in two phases:

1. Bottom-up phase. For every node v in the tree, the
algorithm computes AðvÞ, the set of states from
which the optimal assignment of states to site C at
node v is obtained. For a leaf node v, AðvÞ ¼ f�g,
where � ¼ �1ðvÞ. For a node v whose children are v1

and v2, AðvÞ is computed as

AðvÞ ¼ Aðv1Þ \Aðv2Þ; if Aðv1Þ \Aðv2Þ 6¼ ;;
Aðv1Þ [Aðv2Þ; otherwise.

�

2. Top-down phase. For every node v in the tree, the
algorithm computes �̂1ðvÞ, which is the optimal
assignment of states to site C of all nodes in T . For
the root r, �̂1ðrÞ ¼ �, where � is an arbitrary element
of AðrÞ. For a node v whose parent is u, �̂1ðvÞ is
computed as

�̂1ðvÞ ¼ � 2 AðvÞ \ �̂1ðuÞ; if AðvÞ \ �̂1ðuÞ 6¼ ;;
� 2 AðvÞ; otherwise.

�

As described here, the algorithm applies only to binary

trees. Nonetheless, a straightforward extension to arbitrary

k-degree trees can be easily achieved.
The extension of Problem 1 (PSPT) to phylogenetic

networks is as follows:

Definition 4. Parsimony Score of Phylogenetic Networks

(PSPN).

Input. A 3-tuple ðS;N; �kÞ, where N is a phylogenetic network

and �k is the labeling of LðNÞ by the sequences in S.

Output. parsðS;N; �kÞ ¼
P

1�i�k minT2T ðNÞparsðS; T ; �k; iÞ
� �

.

AðuÞ for a node u in the network N is a collection of states

(i.e., values from f0; 1; . . . ; j�j � 1g), with the construction so

that AðuÞ is the set of optimal states for Nu if N is a tree.
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Fig. 2. An example of a phylogenetic network that is a DAG, yet does not

satisfy the time flow property. Since reticulation is instantaneous at the

scale of evolution, the network implies that x occurs before y and y

before x—an impossible scenario.



3 HARDNESS RESULTS FOR PSPN

3.1 Hardness of PSPN

In this section, we give a detailed proof of the hardness of
PSPN, which we had sketched in [19]. Since solving the
problem for a given set of sequences entails solving it for
every site separately, we formalize the single-site decision
version of the problem as follows.

Problem 2. (PSPN1)

Input. A 3-tuple ðS;N; �1Þ, where N is a phylogenetic network
and �1 is the labeling of LðNÞ by the sequences (each
consisting of a single site) in S, and an integer P .

Question. Is parsðS;N; �1Þ � P?

We prove the hardness of the PSPN1 problem by a
reduction from the Maximum 2-Satisfiability (max-2-sat)
problem [9], which is formally defined as follows.

Problem 3. Maximum 2-Satisfiability (max-2-sat)

Input. Set U of variables, collection C of clauses over U such that
each clause c 2 C has jcj ¼ 2, and a positive integer K � jCj.

Question. Is there a truth assignment for U that simultaneously
satisfies at least K of the clauses in C?

We start with a lemma which will be used in our main
proof. Let a “True-True” denote a clause that has no
negated literals, “True-False” denote a clause that has
exactly one negated literal, and “False-False” denote a
clause in which both literals are negated. For each of these
three types of clauses, we generate subnetworks as shown
in Figs. 3a, 3b, and 3c.3

Lemma 1. 1) An optimal parsimony score of 3 for a “True-True”
network is obtained by labeling x ¼ 1 or y ¼ 1. Otherwise
(i.e., x ¼ 0 ^ y ¼ 0) , the best parsimony score is 4. 2) An
optimal parsimony score of 3 for a “True-False” network is
obtained by labeling x ¼ 0 or y ¼ 1. Otherwise, the best
parsimony score is 4. 3) An optimal parsimony score of 3 for a
“False-False” network is obtained by labeling x ¼ 0 or y ¼ 0.
Otherwise, the best parsimony score is 4.

Proof. We provide the full details for case (2) which is the
most involved. The proofs for the other cases are similar
and hence omitted. Let T1, T2, T3, and T4 in Fig. 4 be the
four subforests of the “True-False” network in Fig. 3b. Let
a; b; . . . ; g denote the names of the internal nodes in these
trees, as illustrated in the figure. Given the leaf labeling of
the four trees, a lower bound on the MP score of each of
the trees is 3. Therefore, to establish that the network has
an optimal MP score of 3 for a certain labeling, we show
that at least one of the four trees attains that score. On the
other hand, to establish that the network has an optimal
MP score of 4 for a certain labeling, we show that all trees
have MP scores higher than 3.

Case 1: x ¼ 1 and y ¼ 1. If we set a ¼ b ¼ c ¼ d ¼ g ¼ 1
and e ¼ f ¼ 0, then T2 has exactly three mutations, and
hence, the MP score of the network in this case is 3.

Case 2: x ¼ 0 and y ¼ 1. If we set a ¼ b ¼ c ¼ d ¼ 1 and
e ¼ f ¼ g ¼ 0, then T2 has exactly three mutations, and
hence, the MP score of the network in this case is 3.

Case 3: x ¼ 0 and y ¼ 0. If we set a ¼ b ¼ c ¼ e ¼ f ¼
g ¼ 0 and d ¼ 1, then T4 has exactly three mutations, and
hence, the MP score of the network in this case is 3.

Case 4: x ¼ 1 and y ¼ 0. A case analysis shows that any
labeling to the internal nodes of the four trees results in
at least four mutations in each one of them. Hence, the
MP score of the network in this case is at least 4. tu

We are now in position to prove the main theorem.

Theorem 1. PSPN1 is NP-hard.

Proof. Given an input hU;C;Ki to the max-2-sat problem,
we generate the instance to PSPN1 as follows. We
generate a vertex for each variable in U . For each clause
in C, we generate a subnetwork and connect it to the
variables of the clause (as described in Fig. 3).

A cap (see Fig. 5a) is a subtree that includes three
leaves (labeled with 0, 0, and 1) and three internal nodes.
One of the internal nodes connects to a variable node, the
other two are named q node and j node.

We connect all the variable nodes as follows. We first
connect each variable node to a cap (different cap for
each variable node). Then, we connect all the q nodes of
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3. Note that the subnetwork for the “False-False” case is identical to the
“True-True” case but with complementary labeling.

Fig. 3. Part of the reduction from max-2-sat to PSPN1. (a) x _ y. (b) x0 _ y. (c) x0 _ y0.

Fig. 4. (Lemma 1) The four possible subforests of the “True-False” network in Fig. 3b.



these caps and form an arbitrary binary tree where the q
nodes are its leaves (see Fig. 5a and an example in Fig. 5b);
we call this last subtree “caps’ subtree.” We choose
P ¼ 4 � ðjCj �KÞ þ 3 � ðKÞ þ jUj ¼ 4 � jCj �K þ jU j.

The resulting network satisfies the time flow con-
straint since: 1) each clause subnetwork satisfies the time
flow constraint and 2) each reticulation edge involves
two vertices from the same clause subnetwork (i.e., there
are no reticulation edges between two different clause
subnetworks).

) Suppose there is a truth assignment for U that
simultaneously satisfies at least K of the clauses in C. We
choose the labeling of the variable nodes to be their
assignment. By Lemma 1, the parsimony score for each
of these K clauses’ subnetworks (below its variables’
nodes) is 3, and the parsimony of the other clauses is at
most 4. There must be exactly one mutation between
each of the variable nodes and its neighbors which are
part of the cap; this increases the parsimony score by jU j.
By choosing the labeling “0” for each of the nodes in the
caps’ subtree, we do not increase the parsimony score of
the tree. Thus, the total parsimony score will be less than
or equal to 4 � jCj �K þ jUj.
( Suppose the parsimony score of the network is less

than or equal to 4 � jCj �K þ jUj. By Fitch’s algorithm
(phase 1), AðjÞ ¼ “0” or “f0; 1g”; thus, always AðqÞ ¼
“0.” By Fitch’s algorithm, the best assignment to the
internal nodes of the caps’ subtree assigns zero to all
these nodes. Thus, the total number of mutations in caps’
subtree is zero.

In any case, there are exactly jU j mutations between
the variable nodes and their two neighbor leaves which
are part of the cap (the label of one is “0,” while the label
of the other is “1”), and the contribution to the
parsimony score from the clauses’ subnetworks is at
most 4 � jCj �K.

By the definition of these subnetworks and by
Lemma 1, the labeling of the variables’ nodes totally
determines the parsimony cost of these subnetworks. By
Lemma 1, a clause’s subnetwork has parsimony score 3 if
and only if the assignment (labeling) to the clause’s
nodes satisfies the clause, otherwise it has parsimony
score 4.

Thus, by choosing the assignment to U being equal to
the labeling of these nodes in the network, we will satisfy
at least K clauses. tu

Lemma 2. Max-2-sat is NP-hard even for inputs where each
variable is restricted to appear at most 12 times.

Proof. From [34], 3-sat is NP-hard even for a restricted
version in which each variable is restricted to appear at
most three times. Applying the same reductions from
3-sat to max-2-sat as in [34], with the initial instance to
the 3-sat problem being the restricted version, will
generate a max-2-sat instance where each variable
appears at most 12 times. tu

Corollary 1. PSPN1 is NP-hard even for networks of bounded
degrees, where each node has at most 12 children.

3.2 Hardness of Approximation of PSPN

Using the results of the above reduction, we can now
provide a hardness of approximation result for PSPN. The
gap version (see [14] for the definition of gap problems) of
PSPN1, gap� PSPN1½Q1; Q2� is defined as follows:

Problem 4. gap� PSPN1½Q1; Q2�
Input. A 3-tuple ðS;N; �1Þ, where N is a phylogenetic network

and �1 is the labeling of LðNÞ by the sequences (each
consisting of a single site) in S, and two integers Q1 and Q2.

Output. If parsðS;N; �1Þ � Q1, answer “Yes”; if parsðS;
N; �1Þ > Q2, answer “No”; otherwise, answer either “Yes”
or “No.”

Our reduction is from gap�max� 2sat½P1; P2� which is
defined as follows:

Problem 5. gap�max� 2sat½P1; P2�
Input. Set U of variables, collection C of clauses over U such that

each clause c 2 C has jcj ¼ 2, and two positive integers P1
and P2.

Output. If there is a truth assignment for U that simultaneously
satisfies at least P2 of the clauses in C, then answer “Yes”; if
no truth assignment for U simultaneously satisfies more than
P1 of the clauses in C, then answer “No”; otherwise answer
either “Yes” or “No.”

We show that if gap�max� 2sat½P1; P2� is NP-hard,
then by our reduction, gap� PSPN1½4 � jCj � P2þ jU j; 4 �
jCj � P1þ jUj� is NP-hard.

By [13], there is a constant � such that there is no
polynomial time algorithm for max-2-sat with performance
ratio better than �. Thus, there is such a constant also
for PSPN1 also.
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Fig. 5. (a) Part of reduction from max-2-sat to PSPN1: the cap of each variable node. (b) Example of a reduction from max-2-sat to PSPN1. The input

to the max-2-sat problem contains three clauses y _ x0, x _ z, and z0 _ w0 on four variables.



Corollary 2. There is a constant �0 such that there is no

polynomial time algorithm for PSPN1 with performance ratio

better than �0.

Corollary 3. PSPN1 is NP-hard to approximate even for networks

of bounded degrees, where each node has at most 20 children.

This result follows from the fact that gap�max� 3sat,

where every variable appears five times, is NP-hard.
We end this section with a note on the reduction to

PSPN1 that Nguyen et al. devised [33]. Nguyen et al.

devised a reduction from Set Cover to a problem similar to

PSPN, and showed that it cannot be approximated with

ratio c logn. However, their model does not require the time

flow property, and hence, their reduction generates

phylogenetic networks that do not satisfy the time flow

property (see Fig. 6), while our reduction from max� 2sat

does satisfy these constraints (as described above).

4 THE LINEAR TIME HEURISTIC ALGORITHM

In this section, we describe our heuristic algorithm for the

PSPN1 problem. The general structure of the heuristic is

based on the following lemma.

Definition 5. A reticulation edge ðu! vÞ is called a lowest
reticulation edge (or, lowest edge) if there is no reticulation
edge that is incident with a node in either Tu n fug or Tv n fvg
(see Fig. 7a).

We comment that edges comprising a cycle of solely
HGT edges (necessarily, since otherwise it is a forbidden
cycle by Definition 3) is possible and each such edge can be
a lowest edge. In particular, in the case of two reticulation
edges ðu! vÞ and ðv! uÞ, if ðu! vÞ is a lowest edge, then
also ðv! uÞ (see Fig. 7b).

Lemma 3. For every (proper) phylogenetic network, there exists a
lowest edge.

Proof. By Definition 5, it can be seen that a network without
a lowest edge contains either a forbidden cycle or an
infinite HGT neutral path. tu

Observation 2. Let ðu! vÞ be a lowest edge. Then both Nu

and Nv are trees, and there is no reticulation edge
entering both Nu or Nv.

Proof. The observation follows directly from Definition 5 of
lowest edges. tu

By Lemma 3, there exists a lowest edge e ¼ ðu! vÞ in N ,
and by Observation 2, the in-degree of each node in the
subnetworks reachable from both endpoints u and v is one.
Therefore, we can compute AðuÞ and AðvÞ by Fitch’s
algorithm.

We denote by a conflict a node with in-degree bigger than
one. Obviously these conflicts are caused only by reticula-
tion edges. In this section, we describe an algorithm that
when given a network as an input, proceeds recursively,
aiming at removing conflicts while computing assignments
to all the network nodes. Finally, when there are no
conflicts, the network is a tree and the parsimony score
can be computed easily. Note that removing a single
reticulation edge does not necessarily remove a conflict as
there can be multiple edges entering the same node. Also
note that removing a conflict can be achieved either by
removing a reticulation edge or by removing a tree edge.
The intuition behind the algorithm is that reticulation edges
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Fig. 6. A reduction from Set Cover to PSPN, from the work of Nguyen

et al. [33]. Directed edges represent recombination edges. Nodes r1, r2,

r3, r4, and r5 are recombination nodes. Clearly, the network does not

satisfy the time flow property.

Fig. 7. (a) A lowest edge (the lower left). (b) A set of three lowest edges.



are assumed to be sparse, compared to the tree edges. This

implies that values computed along the tree branches are

usually correct. We formulate the following observation.

Observation 3. Let e ¼ ðu! vÞ be a lowest edge in a

network N , and let AðuÞ and AðvÞ be the optimal values

for the parsimony problem at trees Nu and Nv,

respectively. Consider any tree T 2 T ðNÞ in which edge

e is retained and the tree edge incident into v is deleted.

Then if the values at u and v are taken from AðuÞ and

AðvÞ, respectively, we obtain

1. If AðuÞ \AðvÞ ¼ ;, there will be a mutation on e.
2. If AðuÞ � AðvÞ, for any x 2 AðuÞ \AðvÞ, setting

the value at each endpoint u and v to x results in
no change on edge e.

Note that Observation 3 is not a proof for the optimality

of the heuristic. However, Observation 3 provides the

intuition for the good performances of the heuristic

algorithm in practice (empirically). If case 1 holds, the

reticulation edge e is removed. In all other cases, e is

selected and all other edges entering v are removed. The

algorithm proceeds recursively until there are no conflicts

in the graph. A formal description of the algorithm is given

in Fig. 8.

Claim 1. Let EðNÞ be the set of edges in N . Then the algorithm

Linear-PSPN terminates and runs in time OðjEðNÞjÞ.
Proof. Fitch’s algorithm runs in linear time on disjoint

subtrees. Additionally, every reticulation edge is con-

sidered at most once in the algorithm. tu

5 EXPERIMENTAL RESULTS

We have implemented our heuristic algorithm with the

following change: We include an additional final step where

we modify the internal labeling on the tree topology found by

Linear� PSPN . This is simply done by running Fitch’s

algorithm on the resultant tree returned by Linear� PSPN ,

and it can improve the final MP score. As demonstrated in this

section, in practice, this usually gives trees with parsimony

scores that are very close to the optimal ones (i.e., the ones
found by the exact algorithm in [31]).

We evaluated the algorithm on biological as well as
synthetic data sets. The experiments were performed on a
2.4 GHz Intel Pentium 4 PC. Accuracy of the heuristic
algorithm was measured as the difference of the parsimony
scores computed by the heuristic algorithm and the exact
algorithm normalized by the parsimony score computed by
the exact algorithm, presented as percentage. Execution
times of both the heuristic algorithm and the exact
algorithm were measured and speedups of the heuristic
algorithm over the exact algorithm were reported.

5.1 Synthetic Data Sets

For the simulated data sets, we first used the r8s tool [36]
to generate a random birth-death phylogenetic tree on
20 taxa. The r8s tool generates molecular clock trees; since
we wanted to simulate general trees, we multiplied each
branch length by a number randomly drawn from an
exponential distribution with a rate of 1. The resulting tree
was taken as the species tree. The expected evolutionary
diameter (longest path between any two leaves in the tree)
was 0.2. A model phylogenetic network was generated by
adding five HGT edges to the model tree.

Based on the model network, we used the Seq-gen tool
[35] to evolve 26 data sets of DNA sequences of length
1,500 down the “species” tree and DNA sequences of
length 500 down the tree, contained inside the network,
which exhibits all HGT events. Both sequence data sets
were evolved under the GTR+�+I model of evolution,
using the parameter settings of [39]. Finally, we concate-
nated the two data sets.

5.2 Biological Data Sets

We have included experimental results on four biological
data sets, of which three were previously studied [20]. The
first data set is the rubisco gene rbcL of a group of 46 plastids,
cyanobacteria, and proteobacteria, which was analyzed by
Delwiche and Palmer [5]. This data set consists of 46 aligned
amino acid sequences (each of length 532), 40 of which are
from Form I of rubisco and the other 6 are from Form II of
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rubisco. The first 21 and the last 14 sites of the aligned
sequences were excluded from the analysis, as recommended
by the authors. The species tree for the data set was created
based on information from the ribosomal database project
(http://rdp.life.uiuc.edu) and the work of [5].

The second data set consists of the ribosomal protein
rpl12e of a group of 14 Archaeal organisms, which was
analyzed by Matte-Tailliez et al. [27]. This data set consists
of 14 aligned amino acid sequences, each having 89 sites.
The authors constructed the species tree using Maximum
Likelihood, once on the concatenation of 57 ribosomal
proteins (7,175 sites) and another on the concatenation of
SSU and LSU rRNA (3,933 sites). The two trees are identical,
except for the resolution of the Pyrococcus three-species
group; we used the tree based on the ribosomal proteins.

The third data set consists of the ribosomal protein gene
rps11 of a group of 47 flowering plants, which was analyzed
by Bergthorsson et al. [2]. This data set consists of 47 aligned
DNA sequences, each with 456 sites. The authors analyzed
the 3’ end of the sequences separately; this part of the
sequences contains 237 sites. The species tree was recon-
structed based on various sources, including the work of
[28] and [21].

The fourth data set consists of the mitochondrial gene
cox2 of a group of 25 seed and nonseed plants, which was
analyzed by Bergthorsson et al. [3]. This data set consists of
28 aligned DNA sequences, including four copies of the
Amborella gene. Each aligned sequence is 311 bases long.
Ten regions including primer sites and editing sites were
excluded from the analysis, as suggested by the authors.
The authors generated a maximum parsimony tree from
which a maximum likelihood tree was built based on
estimated parameters. The maximum likelihood tree was
further refined until a stable topology was obtained. Seed
and nonseed plants were analyzed separately. We used a
species tree for the data set based on information at NCBI
(http://www.ncbi.nih.gov) and analyzed the entire data set
with both seed and nonseed plants together.

5.3 Results and Analysis

We evaluated the performance of the algorithm in terms of
accuracy and speedup. Fig. 9 shows the results of the
26 simulated data sets for candidate networks with up to six
HGT edges. We added the sixth HGT edge in each of the
candidate networks to see the impact of the extra HGT edge

on parsimony scores (the decrease in parsimony scores
should become much slower after all five HGT edges in the
model networks are identified and added). We made sure
that the HGT edges do not violate the time constraints. The
results were collected from 1,000 sampled valid networks for
each case of the multiple gene transfers. HGTs in each
network are distributed differently. Fig. 9a shows the
accuracy of the heuristic algorithm. Overall, the heuristic
algorithm is very accurate with the statistical mean being up
to 3 percent difference in the parsimony scores computed,
compared with the exact algorithm. All parsimony scores
computed by the heuristic algorithm were within 8 percent
of the optimal scores. For the networks with less than five
HGTs, the heuristic algorithm achieves about the same
accuracy of the exact algorithm in most of the networks.
Fig. 9b shows averaged execution time in seconds for
computing parsimony score of a network using the exact
and heuristic algorithms. Speedups of the heuristic algo-
rithm over the exact algorithm are shown in Fig. 9c. The
heuristic algorithm is up to 40 times faster than the exact
algorithm, with statistical mean of speedups being over 25.
The improved execution time of the heuristic algorithm
came from the fewer number of trees or subtrees for which
parsimony scores are computed. The number of trees or
subtrees processed increases as the number of HGTs
increases. For each network with six HGTs, the exact
algorithm computes parsimony scores of up to 26 trees
contained in the network.

For the rubisco gene rbcL data set, we tested networks
with up to eight HGTs. In each case of the multiple gene
transfers, we selected 500 valid networks with HGTs being
placed differently. Fig. 10a shows the accuracy of parsi-
mony scores computed with the heuristic algorithm. As the
results show, the heuristic algorithm is almost as accurate as
the exact algorithm with statistical mean of the difference in
accuracy being almost 0. Very few outliers exist across
different numbers of HGTs. On the other hand, the heuristic
algorithm performs very efficiently. It performs up to a
factor of 35 faster than the exact algorithm, as shown in
Figs. 10b, 10c. The statistical mean of the improvement
increases as the number of HGTs increases.

Similar trends are observed with the other three biological
data sets, as shown in Figs. 11, 12, 13. Fig. 11a shows that the
parsimony scores computed by the heuristic algorithm are
less than 4 percent different in statistical mean from the exact
algorithm for the rpl12e gene data set. Fig. 12a shows that the
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Fig. 9. Results for the simulated data sets. (a) Accuracy computed by ððMPlinear �MPexactÞ=MPexactÞ shown as percentage. (b) Running times of the

exact and heuristic algorithms. (c) Speedup computed as the result of the execution time of the exact algorithm divided by the execution time of the

heuristic algorithm.



statistical mean of the difference in accuracy is almost 0 for
the rps11 gene data set, which indicates that the heuristic
algorithm computes almost identical scores as the exact
algorithm, in most cases. The heuristic algorithm also
performs accurately on the cox2 gene data set with the
statistical mean of the difference in accuracy being 0 or
0.5 percent. In all cases except the cox2 gene, the heuristic
algorithm performs significantly faster than the exact
algorithm with speedups being up to 30 for the rpl12e gene
data set and up to 22 for the rps11 gene data set. The heuristic
algorithm performs slower than the exact algorithm in the
cox2 gene case due to the relatively high cost of tree
operations performed for each site and the short time of
computing the parsimony score of a single tree for short
DNA sequences. However, the difference of the execution

time decreases as the number of HGTs increases as shown in
Figs. 13b, 13c.

We expect that for larger data sets the gains in
performance (speedup) will be even more pronounced. If
one hopes to detect HGT events in large prokaryotic
groups, for example, such a speedup is essential.

5.4 Differences from Recombination Networks

Galled networks are discussed by Nguyen et al. [33], where

they show that a version of PSPN is NP-hard for galled

network. However, their model, recombination networks, is

different from ours as they enforce the following constraint

on the required solution. Let v denote a node where the two

edges that are directed into it are from the nodes w and u
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Fig. 10. Results for the rbcL gene data set. (a) Accuracy computed by ððMPlinear �MPexactÞ=MPexactÞ shown as percentage. (b) Running times of the

exact and heuristic algorithms. (c) Speedup computed as the result of the execution time of the exact algorithm divided by the execution time of the

heuristic algorithm.

Fig. 11. Results for the rpl12e gene data set. (a) Accuracy computed by ððMPlinear �MPexactÞ=MPexactÞ shown as percentage. (b) Running times of

the exact and heuristic algorithms. (c) Speedup computed as the result of the execution time of the exact algorithm divided by the execution time of

the heuristic algorithm.

Fig. 12. Results for the rps11 gene data set. (a) Accuracy computed by ððMPlinear �MPexactÞ=MPexactÞ shown as percentage. (b) Running times of

the exact and heuristic algorithms. (c) Speedup computed as the result of the execution time of the exact algorithm divided by the execution time of

the heuristic algorithm.



(the parents of v). Let sv ¼ �kðvÞ, sw ¼ �kðwÞ, and su ¼ �kðuÞ
denote the labeling of these three nodes. Let sji denote the

subsequence of the sequence s that includes positions i . . . j.

In the model of Nguyen et al. (a recombination network),

the internal labeling of each node, v, must be divided into

two continuous nonoverlapping substrings, ðsvÞm1 and

ðsvÞkmþ1, where 1 � m � k and either ððsvÞm1 ¼ ðsuÞ
m
1 Þ ^

ððsvÞkm ¼ ðswÞ
k
mÞ or ððsvÞm1 ¼ ðswÞ

m
1 Þ ^ ððsvÞ

k
m ¼ ðsuÞ

k
mÞ (i.e.,

one of the subsequences sm1 and skmþ1 is “inherited” from

one of its parents and the second subsequence is inherited

from the second parent). On the other hand, in our model,

each position is independent (as was defined above).

Indeed, a simple polynomial algorithm for galled networks

under our model was described in [30].

6 CONCLUSIONS

In this work, we analyzed the complexity of PSPN. We

showed that the problem is NP-hard and also hard to

approximate within any constant. Next, we developed a

very efficient linear-time heuristic for PSPN. This algo-

rithm, apart from being very efficient, appears to provide

very good results on synthetic as well as real biological data.
There still remain many theoretical problems open. In

particular, the “big” parsimony problem, the FTMPPN,

where the input is a tree and the task is to find the optimal

set of HGT edges. We intend to tackle this problem in

the future.
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