IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL.6, NO. 3, JULY-SEPTEMBER 2009 427

Evolutionary Optimization of Kernel
Weights Improves Protein Complex
Comembership Prediction

Marc Hulsman, Marcel J.T. Reinders, and Dick de Ridder

Abstract—In recent years, more and more high-throughput data sources useful for protein complex prediction have become available
(e.g., gene sequence, mRNA expression, and interactions). The integration of these different data sources can be challenging.
Recently, it has been recognized that kernel-based classifiers are well suited for this task. However, the different kernels (data
sources) are often combined using equal weights. Although several methods have been developed to optimize kernel weights, no
large-scale example of an improvement in classifier performance has been shown yet. In this work, we employ an evolutionary
algorithm to determine weights for a larger set of kernels by optimizing a criterion based on the area under the ROC curve. We show
that setting the right kernel weights can indeed improve performance. We compare this to the existing kernel weight optimization
methods (i.e., (regularized) optimization of the SVM criterion or aligning the kernel with an ideal kernel) and find that these do not result
in a significant performance improvement and can even cause a decrease in performance. Results also show that an expert approach
of assigning high weights to features with high individual performance is not necessarily the best strategy.

Index Terms—Classifier design and evaluation, biology and genetics, evolutionary computing and genetic algorithms.

1 INTRODUCTION

COMBINING features for classification is often a recurring
problem in bioinformatics. One of the problems is that a
common representation is required. Although a vector
representation is often used, some features are hard to
represent as vectors, such as DNA sequences (which have
variable length), textual annotations, or graphs (e.g., mole-
cular structures). A solution is offered by kernel methods [1],
[2], [3]. Rather than representing each individual example by
a feature vector, it can also be represented by its similarities
to all other examples. It is possible to define such similarity
measures for a large number of feature types. If the function
used to calculate these similarities fulfills a number of
mathematical conditions, it is called a kernel function.
Different kernel functions, representing different views,
can be combined into a single kernel function by simple
summation. Several classifier algorithms can be used with
kernel functions of which the Support Vector Machine (SVM
[4]) is most popular.

Although simple summation of kernel functions already
allows us to combine features in one common representa-
tion, it may be advantageous to be able to modify the
influence of each feature, as features differ in terms of
accuracy, noise level, coverage of the data set, scaling, etc. In
this work, we discuss how to weight combinations of kernel
functions. Determining these weights is not trivial. The

o The authors are with the Information and Communication Theory Group,
Faculty of Electrical Engineering, Mathematics and Computer Science,
Delft University of Technology, Mekelweg 4, 2628 CD Delft, The
Netherlands. E-mail: {m.hulsman, m.j.t.reinders, d.deridder)@tudelft.nl.

Manuscript received 4 Apr. 2008; revised 2 Sept. 2008; accepted 11 Dec. 2008;
published online 19 Dec. 2008.

For information on obtaining reprints of this article, please send e-mail to:
tcbb@computer.org, and reference IEEECS Log Number TCBB-2008-04-0063.
Digital Object Identifier no. 10.1109/TCBB.2008.137.

1545-5963/09/$25.00 © 2009 IEEE

standard approach used to determine classifier hyperpara-
meters (i.e., a grid search in combination with cross-
validation) does not work for determining kernel weights
if the number of kernels to combine becomes large (e.g., >3),
yet often there are many more. This has led researchers to
develop several alternative methods to determine these
weights, based on individual kernel performance, alignment
of the kernel with the labels, or optimization of the SVM
margin (see Section 1.1 on earlier work). In this paper, we
propose to use an evolutionary algorithm (EA) in combina-
tion with cross-validation to determine the kernel weights,
by optimizing a criterion such as the partial area under the
receiver-operator characteristic (ROC) curve (PAUC). We do
this both for the standard linear kernel combination (LKC)
and a newly proposed nonlinear kernel combination (NKC).

We compare this new method with the previously
developed methods by applying them to a large-scale
integrative bioinformatics problem, namely, predicting
whether two proteins are part of the same protein complex
(protein complex comembership). The identification of the
components of a complex can give important insights into
its function. This identification problem is related to the
discovery of normal protein interactions, although for
protein complexes, we are only interested in stable
interactions (on the other hand, we do include indirect
interactions, i.e., using an intermediate protein). Two of the
most direct high-throughput measurement methods to
discover such interactions are high-throughput mass
spectrometric protein complex identification (HMS-PCI)
[5] and Tandem-Affinity Purification (TAP) [6]. However,
the data obtained by these methods do not completely
cover all possible interactions. That is, there are biases
toward certain protein types due to the method used, and
there is relatively low overlap of discovered interactions

Published by the IEEE CS, Cl, and EMB Societies & the ACM

428

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL.6, NO. 3, JULY-SEPTEMBER 2009

Optimization iteration (kernel weights / hyperparameters)

Known complexes

I-

features
distance

- Pairwise kernel
- RBF kernel
- Linear kernel

(@)

- Linear (LKC)
- Nonlinear (NKC)

1 -
Kernel :,- (erlbEoh Classifier

results

1
: OptimizatiOE
]
1

- CMA-ES
- Shogun toolbox

- max. SVM-margin
- Kernel alignment
- SVM-PAUC

(b)

- kernel weights
- hyperparameters

Fig. 1. (a) A classifier integrates features of a protein pair into a posterior probability, i.e., an estimate of the probability that the input protein pair
forms part of a complex. This probability can be transformed in a distance measure. (b) A representation of the proposed kernel combination
approach. The optimization algorithm can optimize the kernels (kernel hyperparameters), the combination method (kernel weights), and even the
scoring method (classifier hyperparameters). The different methods which have been used in this paper are indicated under their corresponding

category.

between both methods (about 20-30 percent) [7], [8]. In [8],
it has been estimated that about half of the interactions
found using high-throughput methods could be false
positives. An important reason for this low accuracy is
that the number of noninteractions is several orders of
magnitude higher than the number of interactions [9].
Since experiments to validate these interactions are ex-
pensive and cumbersome, there is a need for a reliable
automatic prediction of protein complexes.

The prediction of protein complexes can be viewed as a
clustering problem in which proteins are to be clustered into
complexes [10]. To make this possible, a distance measure
between the proteins is required such that two proteins in
the same complex will be assigned a smaller distance than
two proteins not in the same complex. In this paper, we
create a classifier to integrate protein and protein pair
features into such a common distance measure (Fig. 1a). This
classifier is trained to predict, for each pair of proteins,
whether they are members of the same complex. The
classifier’s posterior probability can then be transformed
into a distance measure.

1.1 Earlier Work

A number of computational methods have been developed,
which integrate several different high-throughput data
sources (features) in order to improve the quality of the
protein complex comembership predictions in terms of
accuracy and coverage [8], [11], [12], [13], [14]. Features
used are, for example, mRNA expression correlation,
interaction measurements, and gene sequences. In this
study, we use a comprehensive list of features brought
together in [13] (for a complete list of features used in our
method, see Tables 2 and 3).

Previously proposed kernel combination algorithms
include the Support Kernel Machine (SKM) [15], which
incorporates training of the kernel weights in the SVM
training process. It was applied in a study on protein
function prediction [16], combining six different kernel
functions. No significant performance improvement over
equally weighted kernel combinations was found, although
the SKM was more resistant to the addition of noisy
kernels. Expanding on this method, Sonnenburg et al. [17]
reformulated the problem as a semi-infinite optimization,
which can be solved more efficiently. In another study [18],
a gradient-based approach was employed to optimize the
kernel and SVM hyperparameters using either the cross-
validation error or estimates of the leave-one-out error.
Because these measures are nonsmooth, they applied a

smoothing technique to accurately find the minimum. A
performance improvement for several (small-scale) experi-
ments was reported. A similar gradient approach has been
used in [19] to optimize the SVM margin criterion (used in
the SKM) and an alternative called the kernel alignment
criterion [20]. SVM margin optimization was found to
outperform kernel alignment for setting the kernel weights,
but performance was not compared to kernels combined
with equal weight.

Combining kernels, as in these studies, is called inter-
mediate integration [21]. In many other studies, in which no
special kernels are used, early integration is used instead, i.e.,
concatenating feature vectors and applying a vector kernel
to the concatenated vector. As our study involves the use of
features that cannot easily be represented by vectors (the
pairwise kernel [22], [23]), we will use intermediate
integration as well. To our knowledge, there has been no
study in which a large set of biologically relevant features
has been represented as kernels and combined using
optimized kernel weights and hyperparameters.

To optimize the combination of kernels, we employ an
EA. A major benefit of the use of an EA is that it allows us to
optimize kernel weights and kernel/classifier hyperpara-
meters with respect to a single criterion. EAs have been used
before in the context of hyperparameter optimization, i.e., to
create a mixture-of-Gaussians kernel consisting of up to five
radial basis function (RBF) kernels [24], or to optimize the
SVM hyperparameters as well as to scale and rotate an RBF
kernel [25]. Both, however, are not in the context of kernel
combination and involve the early integration of features,
where we use intermediate integration.

1.2 Overview

In the remainder of this paper, we discuss our method of
setting kernel weights and hyperparameters by evolution-
ary optimization of the partial area under the ROC curve
(PAUC), and compare it with the existing methods, which
set kernel weights by optimizing the SVM margin or by
aligning the combined kernel with the labels. Furthermore,
we discuss the traditional linear combination of kernels and
introduce a novel, nonlinear combination method. In
experiments, we find that our method performs signifi-
cantly better. Investigation of the kernel weights assigned
by the different methods shows that optimized kernel
weights do not directly correspond to individual feature
performance. We investigate computational issues and find
that while the nonlinear combination method does not
outperform the linear one, it is computationally much

HULSMAN ET AL.: EVOLUTIONARY OPTIMIZATION OF KERNEL WEIGHTS IMPROVES PROTEIN COMPLEX COMEMBERSHIP PREDICTION 429

lighter. Finally, we show how the combination methods are
robust to the presence of noisy features.

2 MEeTHODS

The used pipeline consists of the steps represented in
Fig. 1b:

1. a set of kernels which are combined (see Section 3),
a method to combine the kernels,

3. an optimization criterion to evaluate the perfor-
mance of this (weighted) combination, and

4. anoptimization algorithm to find the kernel weights/
hyperparameters maximizing this performance.

This procedure results after a number of iterations in

5. a final set of optimized kernel weights and hyper-
parameters, which will be used to build a well-
performing classifier.

2.1 Kernel Combination Methods

To enable kernel combination, all nonkernel features are
represented by vector kernels (either linear or RBF kernels,
depending on the combination method). We tested both
linear and nonlinear combination of kernels. LKC, as used
by the SKM [15], is given by

p
krie(i,x)) =Y wyky (@i,), (1)
p=1

where P is the number of kernels that are combined. As
adding kernel functions k, creates a kernel whose feature
space is the product of the feature spaces of the individual
kernels, the influence of each individual kernel space can be
changed (scaled) by its corresponding kernel weight w,. For
this combination method, we use the RBF kernel to
represent the feature vectors as well as the pairwise kernels.
We also propose to optimize an NKC, an RBF kernel
function on the kernel space of a linear combination of

kernel functions k,:

kngc(zi, x;) =

P
exp (—)\ Z wy (ky (2, ;) + kp (2, ;) — 2k, (24, x]))> . @
p=1
Here, feature vectors are represented by linear kernel
functions. Note that by not bounding the sum of the
weights w,, it is not necessary to optimize A, so it can be
removed.

We do not perform explicit normalization of kernels. For
the LKC method, the individual RBF kernel functions
already map the samples to the unit hypersphere. The
combined output of the NKC is normalized similarly by the
combining RBF kernel function.

2.2 Criteria

To judge how well a combined kernel classifier using a
certain set of kernel weights will perform on a test set, a
criterion function is required. Several such functions have
been proposed (e.g., [18]). In this work, we compare our
proposed method, maximizing the partial area under the

PAUC criterion example (on Sc X)

|S.|=100

1]

< — ROC curve

i I PAUC area

Y 50 [I8, /fPqx NOrmalized to 1 (includes dark gray area) | |
E]

= S_

FPmaz = 3=HIX4 |
%o 500 1S [=1000
max -
False positives

Fig. 2. lllustration of the calculation of the partial area under the ROC
curve (PAUC) criterion, for a subset S of data set X. The PAUC criterion
is indicated by the dark area; the cutoff fp,,.x is based on the number of
true positives in X, adjusted for the size of S and the possibly different
class balance between S and X. The criterion is normalized such that
the light gray area + dark area is equal to 1. As in our data set, in this
example, there are many more false positives than true positives.

ROC curve (1), to maximizing alignment with the optimal
kernel (2), and to maximizing the SVM-margin criterion (3).

2.2.1 SVM-PAUC Criterion
We propose to evaluate an application-specific criterion.
For protein complex comembership prediction, this can be
done by calculating the area under the (first part of the)
Receiver-Operator Characteristic (ROC) curve (Fig. 2). This
curve represents the number of true positives (correctly
classified positive examples) and false positives (incorrectly
classified negative examples) at different operating points
of the classifier. The motivation for using only the first part
of the curve is that, due to the imbalance between negative
and positive examples, a large part of the curve describes
situations in which the number of false positives (|FP|) is
much larger than the number of positives (|X(|). As a
typical application of our prediction algorithm is to guide
decisions on what protein pairs to test in a wet-lab setting,
we prefer to give predictions for which the probability of a
false positive is still reasonably small. Therefore, we focus
on the part of the curve for which the number of false
positives is smaller than the number of positives: |FP| <
| X | (Partial Area Under Curve, PAUC). In many studies
on protein complex prediction, similar criteria (e.g., ROC50)
have been used to represent performance (e.g., [13], [22]).

When using a subset S of the data set X with a different
balance between positive and negative samples, we focused
on the following part of the curve:

PP < = [, 3)
[X-|

where S_ C S contains the negative examples in S. The
cutoff fpuax is based on the number of true positives in X,
adjusted for the size of S and the different class balance
between S and X. As a final step, the area of the part of the
graph selected by the previous constraint was normalized
to one:

PAUC
‘S+ ‘fpmax ’

where S, C S contains the positive examples in S.

PA Ucn,nrmalized = (4)

430 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL.6, NO. 3, JULY-SEPTEMBER 2009

TABLE 1
An Overview of the Methods Tested in the Experiments

H Method name Combination Kernel weight optimization method Parameter optimization method (C, C_, \) H
method

Individual features - PAUC criterion optimization using CMA-ES

Equal weight/LKC LKC PAUC criterion optimization using CMA-ES

Equal weight/NKC NKC - PAUC criterion optimization using CMA-ES

Kernel alignment/NKC NKC Kernel alignment criterion optimization using CMA-ES PAUC criterion optimization using CMA-ES
SVM-margin/LKC LKC SVM-margin criterion optimization using Shogun toolbox | PAUC criterion optimization using CMA-ES (outer loop)
Reg. SVM-margin (> 0.5) | LKC SVM-margin criterion optimization using Shogun toolbox | PAUC criterion optimization using CMA-ES (outer loop)

(weight constrained to be > 0.5/ P)
SVM-PAUC/LKC LKC PAUC criterion optimization using CMA-ES
SVM-PAUC/NKC NKC PAUC criterion optimization using CMA-ES

2.2.2 Kernel Alignment

The kernel alignment criterion [20] is based on an ideal kernel
function, constructed using the labels y;, i.e., kigear (i, ;) =
(yi,y;) (with y; € {—1,1}). This kernel function can be used
to construct an ideal kernel matrix, which includes all pairs of
available examples: Kjjcq = yyT, where y is the label vector
for all examples. To score a combined kernel matrix K., we
can align it with K4, by employing

A(K() _ <KcaKideal>F , (5)
\/<Kca KR>F<Kideala Kideal)F

where (.,.) is the Frobenius inner product. The alignment
is maximized by changing the kernel weights w, used to
construct K. Since inner products can be interpreted as
similarities, this can be understood as maximizing the
average similarity between protein pairs within the same
class, while minimizing the average similarity between
protein pairs in different classes.

2.2.3 SVM Margin

The SVM classifier is based on maximization of the margin
around the decision boundary. In the case of overlapping
classes, a regularization term is added, resulting in the soft-
margin SVM criterion:

%vTv+C+Z§7Z+C— Z & (6)

yi=1 yi=—1

where C, and C_ are the penalty terms for margin
violations in the two different classes." This criterion is
optimized w.r.t. weights v; and bias b under the constraints
y(vix+b)>1-¢& and & >0, Vi. In [15], the authors
propose to use this criterion to optimize the kernel weights
w as well, resulting in the SKM.

An SVM is normally optimized using its dual formula-
tion, which is stated in terms of a kernel function k, sample
weights «;, and sample labels y; = {—1,1}:

max 2 Z @i Z i oyyik(zi,). (7)
) 1,]

The weights a are optimized during SVM training. As this
is the dual, we have to minimize it to find the optimal
kernel weights w), for kernels £,:

1. Normally, a single penalty constant C' is used, but due to the large
imbalance between the classes, we chose to use class-specific penalty terms
C. and C_, and optimize each individually.

P
m“i/n max 2 Z a; — Z 005 Y Z wpky(zi, z;). (8)
5 i p=1

When minimizing this function, it is necessary to add a
constraint on w, as otherwise, the margin width can simply
be increased by using higher weights w,. In [15], the
following constraint was used: trace(25:1 wpky(zi, zj)) = ¢,
where c is a constant value. However, as the trace of all our
kernel matrices K, is equal (the used RBF kernel functions
give only 1s on the diagonal), we can simplify this to
25:1 wy = 1.

The SVM margin criterion cannot be used to optimize
other parameters, such as the RBF kernel hyperparameter A
in the NKC. Increasing A leads to larger distances between
examples, and thereby, increased margin width. However, it
also increases the nonlinearity of the resulting classifier,
which can lead to a reduced generalization performance due
to overfitting. Therefore, maximizing the margin w.r.t. A will
not maximize performance of the classifier. For this reason,
we employ SVM margin maximization only with LKC
kernel combination.

We noticed that the solutions using the SVM margin
criterion were often relatively sparse. In [26], a regularized
version of this method is proposed. It constrains the
minimum value of the kernel weights and gives better
results. We tested this regularized SVM margin method as
well, using 0.5/P as minimum kernel weight.

2.3 Optimization Algorithm
We need to optimize both kernel weights and hyperpara-
meters (i.e., RBF kernel width)\, SVM regularization
parameters C.,C_) (see Table 1). The optimization of
hyperparameters is necessary to be able to do a fair
comparison between methods, as the optimal values of
the hyperparameters change with the kernel weights used.
In our proposed method, based on the SVM-PAUC
criterion, we employ an EA. We use the Covariance
Matrix Adaptation Evolutionary Strategy (CMA-ES) [27]
since it performs well and a Matlab implementation is
readily available. Many EAs use the concept of mutation
adaptation, where not only the solution variables are
mutated but also the variables governing the mutation
process. CMA-ES is a variation on this concept in which
adaptation of the mutation variables is derandomized. In
each generation, the best solutions are used to update a
covariance matrix and a mutation scale parameter. These
parameters are subsequently used to generate mutations

HULSMAN ET AL.: EVOLUTIONARY OPTIMIZATION OF KERNEL WEIGHTS IMPROVES PROTEIN COMPLEX COMEMBERSHIP PREDICTION 431

TABLE 2
Features on Proteins
[[Feature [Source] Values [Description I

mRNA expression [33]-[35] v; € RT Expression correlation can be an indicator of common function and possible interaction. We used the 11
microarray data sets which were also used in [13]. Each of these datasets consists of at least 40 microarrays.
Of these datasets, 9 were extracted from the Stanford Microarray Database [33], while the other two were
obtained from [34], [35].

mRNA copy number [36] v; € RT This feature should not contain information useful for protein complex prediction. It was used to determine
the handling of random features by our method.

RAP1 binding sites [37] v; € RT Binding sites of protein RAP1 on promoters of certain genes. This feature was used to determine the handling
of almost random features by our method.

Motifs [38] v; € {0,1} Common regulation mechanisms can be an indication of a common complex-membership.

Protein sequence (PFAM) v; € {0,1} | Protein sequence determines protein structure, which determines if proteins bind. These (normalized) linear

Protein sequence (eMotif) [32] kernels use every sequence domain occuring in PFAM, eMotif or the complete list of 3-mers. These

Protein sequence (spectrum, sequence domains are seen as binary features, indicating if the sequence domains occurs in a particular

k=3) protein.

biased to occur in the directions and range that gave the
best improvements in previous generations. The algorithm
has proven to have a very competitive local and global
optimization performance [28]. We use this algorithm to
optimize both the kernel weights and the hyperpara-
meters. The advantage of the PAUC-based criterion is that
we can optimize these simultaneously.

To optimize the kernel alignment criterion w.r.t. the
kernel weights, we also use the CMA-ES approach. The
kernel alignment is influenced by the used RBF kernel
width. We found that an approach of setting the RBF kernel
width to a value optimized for the equal weight method did
not perform well, as it resulted in a very sparse assignment
of the kernel weights. A better performance was obtained
by optimizing the RBF kernel width simultaneously with
the kernel weights. The kernel alignment score cannot be
used to optimize the classifier hyperparameters (i.e., C'y and
C_). For this reason, we optimize these parameters after-
ward by optimizing the PAUC score using CMA-ES. We
also simultaneously optimize the RBF kernel width again,
as we found that this improves performance. Such an
independent SVM-PAUC-based optimization of hyperpara-
meters is also used for the methods using equal weights and
only individual features.

Although we could, in principle, also use CMA-ES to
optimize the SVM margin criterion, a number of specia-
lized algorithms are available, incorporating the training
of the kernel weights in the SVM training [15], [29], [30]. A
relatively fast algorithm was developed in [17] in which
the authors reformulated the optimization problem as a
semi-infinite linear program, reusing efficient implementa-
tions already available for the standard SVM. We use this
algorithm to determine the kernel weights. A complicating
factor here is that we cannot optimize the hyperpara-
meters using this criterion, as they are not independent
(i.e., they influence the obtained set of optimal kernel
weights). To make the comparison as fair as possible, we
use the computationally very costly approach of setting
the hyperparameters in an outer loop (by optimizing the
PAUC criterion using CMA-ES) around the kernel weight
determination (by optimizing the SVM margin using [17]).
In each iteration of CMA-ES, we set a certain set of
hyperparameters, find the kernel weights using the SVM
margin criterion, and determine the SVM-PAUC criterion.

3 EXPERIMENTS
3.1 Data

For predicting protein complex comembership, we use
features on proteins (genes) as well as features on protein
pairs (gene pairs). The first group (Table 2) consists of
features such as the protein sequence, the presence of
motifs, and mRNA expression, while the second group
(Table 3) consists of features such as experimentally derived
interactions, gene cooccurrence, and gene coessentiality.
These features were brought together in [13], based on
previous studies. We normalize these features by dividing
them by their maximum value, as dividing them by
standard deviation would lead to some very high values
for the sparse features. Furthermore, we did not perform
normalization of the feature mean because this would
remove the sparsity of some features (i.e., all zeros would
become nonzeros). This sparsity is used to improve the
speed of kernel calculation, as only nonzero values are used
during calculation.

As the objects classified are protein pairs, we need to
convert features on individual proteins into features on pairs
of proteins. We use Pearson correlation for the mRNA
expression vectors. Protein sequence kernels are converted in
two different ways: using a protein similarity kernel (a linear
kernel on sequence kernels) and using a pairwise kernel on
sequence kernels [22] (for more detailed description of these
kernels, see Fig. 3). In total, we have P = 49 kernels.

The class labels needed to create a train- and test set
were extracted from the MIPS yeast complex database
[31]. Category 550, which covers complexes determined by
high-throughput experiments, was excluded because these
high-throughput experiments are used as features. For
each known MIPS complex, we use all protein pairs
within the complex as positive examples. This results in
10,480 positive examples of protein complex comember-
ships, derived from 216 complexes covering 1,168 genes. It
is not that obvious which examples should be used as
negative examples [32]. Following [13], we decided to pair
proteins that take part in different complexes and use
these as negative examples, which results in a total of
722,175 negative examples. These negative examples are
relatively trustworthy since they contain well-studied
proteins. In our experiments, we use a more equally
balanced subset rather than the whole data set (with a
positive:negative ratio of 1:4, see Sup. Fig. 6, which can be

432 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL.6, NO. 3, JULY-SEPTEMBER 2009
TABLE 3
Features on Protein Pairs
[[Feature [Source [Values [Description I
MIPS (category 550) [51, [6], {0,1} The MIPS complex database has a special category (550) for complexes derived using high-throughput
[31], [39] experiments. Each pair of proteins within these experimentally derived complexes are given value 1, while all other
protein pairs are given value 0 (matrix model).

Conserved gene neighborhood NT It has been noted that genes that are located near each other on the genome are more likely to interact. This is

especially the case in prokaryotic operons. In [8] it was determined if orthologs of genes occur near each other on
[8] at least 2 of 42 sequenced genomes.

Gene fusion NT Some interacting proteins in one organism are fused together in another organism. By searching whether a certain
pair of proteins is fused together in other organisms an indication is obtained of possible interactions. Gene fusions
were detected by searching for genes which are present in more than one Cluster of Orthologous Genes (COG)
[8].

Gene coocurrence {0,1} It is expected that the genes for proteins that are part of a complex occur together in genomes. Using a mutual
information measure and an ortholog database it was determined which genes have a tendency to occur together
in 42 sequenced genomes, as collected by [8].

Synexpression {0,1} Expression correlation can be an indication of interaction. In [8] the expression correlation was calculated, and a
cut-off parameter was chosen to convert this correlation value to a binary feature.

Gene co-essentiality {0,1} Sometimes knocking out two genes at the same time causes lethality, while knocking out the individual genes does
not. This indicates a relation between the two genes, for example being part of different pathways with the same
functionality.

Disruption [31] {0,1,2} If a protein complex contains an essential protein (removal is lethal), then the other parts of the complex are
probably also essential. The feature value indicates how many proteins of a pair are essential.

: o) =5
E;Z(li)im affinity - purification 8], [40] N These experimentally derived interactions were obtained from the DIP database as well as from [8]. The features
T ’ + were handled separately. The feature value indicates how many times an interaction was found in the dataset.
igh throughput ~ mass- N

spectometric protein complex

identification (HMS-PCI)

Two-hybrid test Nt

Affinity chromatography NT

Sp ht} Ublq}mf" system N j: These experimentally derived interactions were obtained from the DIP database. The small scale feature "DIP

In vitro binding [40] N various’ contains all experimental methods with less than 100 interactions [13] (see Table S1 for details). The

Immunopreciptation Nt feature value indicates how many times an interaction was found in the dataset.

In vivo Kinase activity assay Nt

DIP various Nt

Interolog [41], [42] RT Using sequence similarity between genes, interactions can be mapped from one organism to another. The feature
value is based on the joint sequence similarity.

found on the Computer Society Digital Library at http://
doi.ieeecomputersociety. org/10.1109/TCBB.2008.137).

To prevent any biases during validation and testing, the
data set was split into seven parts in such a way that no
single protein is used in multiple parts. Of these seven
parts, four parts were used for training and validation,
while the remaining three parts were used for testing. When
cross-validation was needed for optimizing the PAUC
score, we used a fourfold cross-validation scheme in which
we use only one part for training and the other three parts
for validation. The training parts consist of 656 positive
pairs and 2,624 negative pairs each. The final test is done on
the test subset, which consists of 2,021 positive pairs and
39,759 negative pairs.

3.2 Implementation

The tested methods are described in Table 1. To optimize the
SVM, we used a modified version of LibSVM [43] as well as
PRTools [44]. For the SVM margin method, we used the

Shogun toolbox [17]. Kernel weights and hyperparameters
as well as the kernel alignment criterion were optimized
using the CMA-ES software [27]. We stop each kernel
weight optimization using CMA-ES after 2,500 function
evaluations (i.e., cross-validations). Optimizations of hyper-
parameters are stopped after 250 function evaluations. Since
both subselecting a data set and evolutionary optimization
are random, we repeat each experiment five times and
report the average test score and its standard deviation.

As suggested in [18] and [45], we formulate the kernel
weights as w, = 2» and optimize w,. The advantage is that
the parameters that define the weights (w,) no longer have
to be restricted to be positive, while optimization perfor-
mance is also reported to improve. The same thing is also
done for the hyperparameters. Furthermore, we put a
bound on C; and C_ of 2!, as too high values cause
numerical instabilities and slow convergence.

Protein similarity kernel (similarity within pairs): ~ €—»
kps((Pi> P j)s (P> Pm)) = kseq (Pi> P j Ykseq (Pics Pm)
Pairwise kernel (similarity between pairs): <----p

kpw((piﬂpj)r (pkapm)) = kseq(pi’pk)kseq(pjapm) +kseq(pi’pm)kseq(pjﬁpk)

Fig. 3. Kernels for protein pairs, based on protein sequence kernels (PFAM, eMotif, and spectrum). The protein sequence kernels are linear kernels,
comparing sequence similarity within pairs. The pairwise kernels [22] compare the (crosswise) similarity of the sequences of two protein pairs.

HULSMAN ET AL.: EVOLUTIONARY OPTIMIZATION OF KERNEL WEIGHTS IMPROVES PROTEIN COMPLEX COMEMBERSHIP PREDICTION 433

Comparison kernel weight optimization methods
T T T

Average PAUC score
o
a
a
i

W «© «© © o8

. R & N N
o o « & o
& 23 RN o e
Qe

9 «©
W oo
N "
oV

o o = o

Fig. 4 Performances of the different methods for kernel combination.
The average score and standard deviations are shown, based on five
repetitions of each experiment (three for the SVM margin methods).
Regularized margin maximization is indicated by (> 0.5), indicating that
the weight for each individual kernel is larger than 0.5/ P.

4 RESULTS
41 Weighted Kernels

We first compared the different kernel weighting methods
to determine whether they increase performance over the
equal weighted kernel method (Fig. 4). That optimizing
kernel weights can be advantageous is shown by the SVM-
PAUC optimization, which performs better than the equal
weighted methods for both NKC (+0.05 PAUC or predict-
ing 76 percent instead of 70 percent of the positive pairs at
less than fpp.x errors) and LKC. As the equal weighted
combination already uses a state-of-the-art classifier with
optimized hyperparameters, this can be considered a
significant improvement.

The score for kernel alignment is surprisingly low. We
attribute this low score to its focus on a too ideal kernel,
optimizing all kernel values with equal weight, while for
classification performance, we are mainly interested in the
kernel values between objects around the classification
border. For SVM margin maximization, we also see a
relatively low performance. Inspection of the weights shows
that this is probably due to the relatively high weight
assigned to nonsparse features, specifically the pairwise
kernels (Sup. Fig. SF3, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TCBB.2008.137). We hypothesize that the latter
is due to the higher dimensionality of the input feature
space of these kernels, making it easier to find a well-
separating classifier. For this reason, we repeated the
experiment without including the pairwise kernels. Results
(Sup. Fig. SF5, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TCBB.2008.137) indeed improve: performance is
closer to that of the equal weight method, although still not
close to the SVM-PAUC methods. This is in line with results
from earlier studies [16], [26], [46], which also reported no
significant increase or a decrease in performance.

Also, in line with results in [26], we found that the
regularized SVM margin maximization method leads to an
improvement in performance over the original version.
However, it still suffers from the relatively high weights
assigned to the pairwise kernels, and we find again that
better results are found when we leave these kernels out

(Sup. Fig. SF5, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TCBB.2008.137).

4.2 Individual Kernels

To determine whether combining kernels is worthwhile, we
then tested performance using each kernel individually and
compared it to the performance obtained using the best-
performing combination method (SVM-PAUC/NKC, NKC
with the partial area under ROC-curve evaluation function
(PAUC)). This also enables us to see if there is any
connection between individual kernel performance and
optimized kernel weights for NKC. What stands out is the
large performance gain that we obtain by combining using
SVM-PAUC/NKC, predicting 76 percent of the true
positives with less than fp,.« false positives, instead of
the 42 percent obtained using the best individual kernel.
Individually, the mRNA expression features give the best
performance, while kernels based on features such as TAP,
HMS-PCI, and immunoprecipitation also stand out. How-
ever, these individual scores do not directly correspond to
the optimized kernel weights (Fig. 5c). The highest weights
are instead assigned to two kernels based on very sparse
features (gene cooccurrence and various DIPs) with a low
number of false positives in their nonzero values (high
accuracy). Kernels based on low-accuracy features such as
MIPS (high throughput) get a low weight.

We evaluated the importance of each kernel by removing
it during testing and calculating the performance penalty
incurred (Fig. 5b). The results show that the highest
weighted kernels are not the most important for perfor-
mance of the current classifier, for example, due to their
sparseness or overlap with other features. More important
are, as expected, kernels based on direct evidence such as
MIPS (high throughput), TAP, and immunoprecipitation
features. In general, overlap in information content between
features complicates the interpretation of the kernel weights.
Often, a low weight for a specific kernel is accompanied by a
high weight for a relatively similar kernel (see Sup. Fig.
SF4, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TCBB.2008.137). Another difficulty lies in the relatively
large differences between weights of different runs, indicat-
ing that there are multiple local optima. Due to these local
optima, it is advisable to rerun the optimization procedure
several times to get a good indication of performance and
obtain the best set of kernel weights.

Easier to interpret are consistently low kernel weights as
they signal that the corresponding features do not contribute
to the current classifier at all. We have two features in our
data set for which we do not expect a contribution to
classification performance: DNA copy number [36] and
Rap1-binding sites [37]. The kernels based on these features
indeed always receive a very low kernel weight. More
surprising is that the kernel on the disruption feature, which
has a very low individual score, is not assigned a low weight.
Removing this kernel actually slightly improves the perfor-
mance (p = 0.07, two-tailed paired t-test). This overfitting,
where the kernel seems to be useful on the cross-validation
set, but proves not to be so on the test set, also occurs for the
synthetic lethality feature. A larger cross-validation set

434 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL.6, NO. 3, JULY-SEPTEMBER 2009

Individual features, kernel weights and feature removal comparison

2&30 1 Inéet kb):lfealturé relmm‘lal ‘per#orl%anlce Idifflerellwe‘ ‘

o
e
T
|

512

o

1800 — - 256

o
=
PAUC score difference

|
=4
Q
IS

rrrrrr1rrrrorr T r T T T T T T T T T T T T T T T T
-
1600 I I B | [I I I s [Iy e Iy A e |

I I | I I

-0.03 | 08

Inet (c): kerhellweights sSvmLPAudNKc T T T T T T

1400

1200 |

32

1000 [-

800 —| -

600 — ; : v 4 3 : i 3 1 5 Sz |

x
400 | .I x ! — !

Predicted true positives ("x":number of non-zero values)
Number of false positives (for certain number of predicted positives)

& Q& " 23 Q& © > OO
SR S &&)@@ S S P R & ‘_&\OO&QQ@@_ S @ dze}& & °®Q}°

o © & 5 > &
M & & S8 L& SR N NS A NS S o
F RS T w0 S I S A I S I N R S N O I e e RN
¢S L T & 0L E D e’ VB S CEFTSE R G C TS & TN &
A@ S NN €L N % NS AN S oS YOS O ORI & LDFD
s o8 RGN DF & TS & padagss e
\ SN N S £ & O PO N
< N B SO & RS
@\ p\ ()\® O
Q

Fig. 5. (a) Performance of SVM-PAUC/NKC and individual features. The height of the bars corresponds to the number of predicted true positives for
frmax = 577 false positives, and shading of the bars indicates the number of false positives as a function of the number of predicted true positives.
These experiments have been performed on a test set consisting of 39,759 negative pairs and 2,021 positive pairs. For sparse features, the height of
the bar is limited to the point where the number of true positives (height) + false positives (shading) is equal to the number of nonzero feature values
(indicated with an “x” for these features), as the remainder of the bar would only show random classifier effects. Features belonging to the [8] data set
are indicated with (M), features from the DIP database are indicated with (D), and two-hop features [47], [13] are indicated with (H). Inset (b) PAUC
performance difference when one kernel is left out during testing of an optimized SVM-PAUC/NKC kernel combination. Inset (c) log,, -averaged
kernel weights over five experiments, optimized using SVM-PAUC/NKC. We chose to represent the kernel weights using a log scale, as we found
that even low weights (to 10~%) can still contribute significantly to classification performance. Weights lower than 10~ have been cutoff (before
calculating the average), as kernels with weights lower than that did not affect performance.

could remedy this. We further test the susceptibility of our for our problem. However, the computational cost of
method to noisy features in Section 4.4. LKC is significantly higher than that of NKC. On our

The lack of correlation between individual kernel data set, LKC trained almost 50 times slower than NKC
performance and kernel weight suggests that an expert (266 +133 hours versus 5.4 4+0.3 hours). Although the
approach of setting kernel weights based on individual computational cost of calculating the individual kernels is
kernel performance would not be optimal. We tested this by higher for LKC, this does not fully explain the increased
setting the weights according to the kernel performance, cost. We found that the main problem was the slower
using different lower limits on the kernel weights. The convergence of the SVM classifier for LKC. This was
results indicate that setting the weights in this way does not ~ confirmed by training a linear combination of linear
lead to a significant performance improvement (Fig. 6). kernels, which was also slower than NKC, although the

We conclude that combining features for predicting calculation of the combined kernel itself was less
protein complex comembership is worthwhile, as perfor- computationally costly. In [48], the authors note a similar
mance on the combined kernels is much better than on any effect when comparing the convergence of the SVM
individual kernel. Furthermore, an expert approach of classifier for linear and RBF kernels, finding that for high
setting kernel weights based on individual kernel perfor- values of the regularization parameter C, the linear
mance seems not to be optimal; kernel weights are instead kernel becomes much slower in convergence.

influenced more by accuracy and overlap of features. A possible remedy for the large computational cost is to
. choose a smaller upper bound for the regularization
4.3 Computational Cost hyperparameters C; and C_ of the SVM classifier, as this

NKC performed nearly the same as LKC (Fig. 4), speeds up SVM convergence (for both LKC as well as
indicating that the more linear approach of LKC suffices NKC). Alternatively, we can use less iterations of the

HULSMAN ET AL.: EVOLUTIONARY OPTIMIZATION OF KERNEL WEIGHTS IMPROVES PROTEIN COMPLEX COMEMBERSHIP PREDICTION

Performance setting kernel weights according to individual feature performance
0.65 T T

PAUC score
o
(2]

0.55

0O 01 02 03 04 05 06 07 08 09 1

Regularization minimum weight

Fig. 6. Performance of NKC when kernel weights are set according to
the individual kernel (PAUC) performance. Regularization was per-
formed by setting a minimum weight. Afterward, the weights were
normalized to sum to 1; hence, a minimum weight of 1 corresponds to
using equal weights. Subsequently, the hyperparameters were opti-
mized using CMA-ES. It is apparent that setting weights according to
this method does not significantly increase performance. The lower
performance at a regularization minimum weight of 0.4 is probably due
to a local minimum in the (nonconvex) optimization problem.

evolutionary algorithm. In our experiment, after less than
250 function evaluations, the score is already higher than for
the equal-weighted /NKC method, and after approximately
1,250 function evaluations, the score improvements level off
(Fig. 7). This shows that the largest performance improve-
ments are made in the first iterations, so if computation
time is limited, even running the optimization for a few
hundred iterations can still be advantageous.

Another way to reduce computational cost is to deter-
mine kernel weights on a small data set, before training the
final classifier on a larger data set. We tested this and the
results (see Fig. 8) show that kernel weights determined on a
smaller data set still improve performance when used for a
larger data set. Note that the kernel weights optimized with
and tested on the large data set perform slightly worse than
those found using the default data set and tested on the large
data set. This is caused by the construction of the larger data
set (see Fig. 8), which reduces the amount of data available
for validation and could have caused overfitting. An
important insight is therefore that increasing the validation

SVM-PAUC/KNC test performance during optimization
0.7 T T T T T T T

PAUC score

"] = = = Equal weight score, optimized parameters
= Average score during SVM-PAUC/NKC
Scores of individual runs of SVM-PAUC/NKC optimization

0.55 L I I I I I I I I
500 750 1000 1250 1500 1750 2000 2250 2500

Optimization function evaluations

Fig. 7. PAUC test performance during optimization. The scores of the
individual runs of the SVM-PAUC/NKC optimization are shown in gray,
while the average score is shown in black. Note that after approximately
250 function evaluations, the score is already noteworthy higher than for
the equal weighted scenario. After approximately 1,250 function
evaluations, a plateau is reached, and further score improvements are
marginal.

435

Determining kernel weights on smaller datasets
o7 [Equal weights ' ' '
Kernel weights optimized on:
["]Small dataset (S)
0.65- | [___] Default dataset (D)
[Large dataset (L)

PAUC score
o
[}
N
o

0.6

default

small default large default large large
Final training set size used for determining test score

Fig. 8. Test performance when using kernel weights optimized on
smaller data sets. The size of the test data set is kept constant for all
tests. The data set sizes are varied for: 1) the optimization of kernel
weights and hyperparameters (C_,C;,)\) by iterative cross-validation
and 2) training the final classifiers. These data set sizes are indicated by
the gray-value and the labels on the z-axis, respectively. The small data
set consists of 656 positive and 656 negative examples per part and the
default data set consists of 656 positive and 2,624 negative examples
per part. For both, we use four parts to perform fourfold cross-validation,
using one part for training and three for validation. To create a large data
set, there is not enough data for four large parts; so we use the default
data set and change the cross-validation procedure to use three parts
for training and one part for validation. This makes the graph less
suitable for determining the performance effects of an increased number
of examples. However, it serves to show the effects of using kernel
weights optimized on smaller data sets to train a classifier on a larger
data set.

set size and decreasing the training set size during cross-
validation can both increase the performance (by avoiding
overfitting) and reduce the computational cost. The decrease
in computational cost can be significant, as is shown by the
runtimes of the optimizations: respectively, 1.4, 5.4, and
47.5 hours on the small, default, and large data set.

4.4 Influence of Noise

We checked the influence of noisy kernels on the perfor-
mance by adding 5, 10, 20, or 40 one-dimensional noisy
kernels. The noise features were generated using a uniform
distribution in the range [0, 1], the kernels were constructed
as described in Section 2.1. As the added kernels increase the
number of kernel weights to be estimated, we ran the
optimization for 10,000 iterations instead of 2,500. Results
(Table 4) show that the methods are quite resilient to noise,
especially the equal-weighted classifier. A larger decrease in
performance of the SVM-PAUC/NKC method is to be
expected as optimizing the kernel weight parameters can
increase the overfitting effect. However, we see that only
after adding 40 noisy kernels to the 49 informative ones, a
noteworthy decrease in performance occurs. This shows that
our method is able to handle a large amount of kernels which
do not contain useful information for the current problem
without much overfitting, which makes kernel preselection
an easier task.

TABLE 4
Influence of Noise

PAUC (&£st.dev) SVM-PAUC/NKC

(10,000 iterations)

Equal-weight/NKC

All features

All features + 5 noisy

All features + 10 noisy
All features + 20 noisy
All features + 40 noisy

0.6543 (£0.0083)
0.6424 (£0.0141)
0.6459 (£0.0139)
0.6539 (£0.0080)
0.6296 (£0.0246)

0.6041 (£0.0011)
0.6031 (£0.0012)
0.6018 (£0.0015)
0.5985 (£0.0011)
0.5941 (£0.0026)

436

5 CONCLUSION

The integration of features using weighted kernel repre-
sentations is a powerful method, which, in combination
with the SVM, delivers very good performance on the
problem of protein complex comembership prediction. In
this paper, we proposed and compared a number of
methods to optimize kernel weights and hyperparameters.
The main conclusion of this paper is that kernel weight
optimization can improve performance significantly.

However, not all methods lead to an optimal set of kernel
weights. We found that criteria not involving the classifier
performance to optimize the kernel weights perform poorly,
while also requiring a separate optimization of hyperpara-
meters such as the RBF kernel width. This is in line with
[49], where it was also found that better performance is
reached by directly optimizing the criterion one is inter-
ested in (AUC). Our conclusion is that the wrapper
approach of optimizing classifier performance, although
computationally expensive, is still the method of choice. We
showed that optimization using cross-validation remains
feasible by using the CMA-ES evolutionary algorithm.
Furthermore, the use of CMA-ES allows us to freely choose
the optimization criterion, in order to better match the
practical use of the classifier. It has to be noted that this
leads to nonconvex optimization problems for which no
optimization method (including evolutionary algorithms)
can be guaranteed to find the global optimum. However,
EAs are specifically developed to tackle this kind of
problem and we have no reason to believe that the solutions
found are poor. A further advantage of CMA-ES optimiza-
tion is that it is suitable for parallel execution. With the
advent of multicore systems, this could significantly reduce
optimization times [27].

We tested both an LKC approach and an NKC approach
and found both to improve classifier performance on our
problem, with NKC being far less computationally costly
due to a faster convergence of the classifier. In case
computational cost still is an issue, we showed that high
performance can still be reached by training the kernel
weights on a smaller data set. Decreasing the training set
size and increasing the validation set size during kernel
weight optimization can even have a positive influence on
the achieved test performance.

On inspection of the relation between kernel weights and
performance, we found that an expert approach of setting
the weights of the kernels according to their (expected)
performance is not optimal. Factors such as accuracy,
sparseness, and overlap between features also have to be
taken into account.

In conclusion, weighted kernel combination leads to a
significant gain in performance. This makes the computa-
tional cost worthwhile, especially in cases where quality of
results is very important due to the high cost of checking
results by experimental methods.

REFERENCES

[1] B. Scholkopf, K. Tsuda, and].-P. Vert, Kernel Methods in
Computational Biology. MIT Press, 2004.

[2] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern
Analysis. Cambridge Univ. Press, 2004.

(3]

4
5]

(o]

(7]

8]

&)

[10]

(1]

(12]

[13]

[14]

[15]

[1o]

(171

(18]

[19]

[20]

(21]

(22]

[23]

[24]

(23]

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL.6, NO. 3, JULY-SEPTEMBER 2009

A. Ben-Hur, C.S. Ong, S. Sonnenburg, B. Scholkopf, and G. Rétsch,
“Support Vector Machines and Kernels for Computational
Biology,” PLoS Computational Biology, vol. 4, no. 10, Oct. 2008.

C. Cortes and V. Vapnik, “Support Vector Networks,” Machine
Learning, vol. 20, pp. 273-297, 1995.

Y. Ho et al., “Systematic Identification of Protein Complexes in
Saccharomyces Cerevisiae by Mass Spectrometry,” Nature,
vol. 415, pp. 180-183, Jan. 2002.

A.-C. Gavin et al., “Functional Organization of the Yeast Proteome
by Systematic Analysis of Protein Complexes,” Nature, vol. 415,
pp. 141-147, 2002.

G.D. Bader and C.W.V. Hogue, “Analyzing Yeast Protein-Protein
Interaction Data Obtained from Different Sources,” Nature
Biotechnology, vol. 20, pp. 991-997, 2002.

C. von Mering, R. Krause, B. Snel, M. Cornell, S.G. Oliver, S. Fields,
and P. Bork, “Comparative Assessment of Large-Scale Data Sets of
Protein-Protein Interactions,” Nature, vol. 417, pp. 399-403, 2002.
R. Jansen and M. Gerstein, “Analyzing Protein Function on a
Genomic Scale: The Importance of Gold-Standard Positives and
Negatives for Network Prediction,” Current Opinion in Microbiol-
ogy, vol. 7, pp. 535-545, 2004.

G.D. Bader and C.W.V. Hogue, “An Automated Method for
Finding Molecular Complexes in Large Protein Interaction Net-
works,” BMC Bioinformatics, vol. 4, 2003.

R. Jansen, Y. Haiyuan, D. Greenbaum, Y. Kluger, N.J. Krogan, S.
Chung, A. Emili, M. Snyder, J.F. Greenblatt, and M. Gerstein, “A
Bayesian Networks Approach for Predicting Protein-Protein
Interactions from Genomic Data,” Science, vol. 302, pp. 449-453,
2003.

L.V. Zhang, S.L. Wong, O.D. King, and F.P. Roth, “Predicting Co-
Complexed Protein Pairs Using Genomic and Proteomic Data
Integration,” BMC Bioinformatics, vol. 5, 138-i46, 2004.

RJ.P. van Berlo, L.F.A. Wessels, D. de Ridder, and M.].T.
Reinders, “Protein Complex Prediction Using an Integrative
Bioinformatics Approach,”]. Bioinformatics and Computational
Biology, vol. 4, pp. 839-861, 2007.

Y. Qi, Z. Bar-Joseph, and]. Klein-Seetharaman, “Evaluation of
Different Biological Data and Computational Classification Meth-
ods for Use in Protein Interaction Prediction,” Proteins: Structure,
Function, and Bioinformatics, vol. 63, pp. 490-500, 2006.

G.R.G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M.IL.
Jordan, “Learning the Kernel Matrix with Semidefinite Program-
ming,” Proc. 19th Int’l Conf. Machine Learning (ICML '02), pp. 323-
330, 2002.

G.R.G. Lanckriet, T. de Bie, N. Cristianini, MLI. Jordan, and W.S.
Noble, “A Statistical Framework for Genomic Data Fusion,”
Bioinformatics, vol. 20, pp. 2626-2635, 2004.

S. Sonnenburg, G. Ritsch, C. Schifer, and B. Scholkopf, “Large
Scale Multiple Kernel Learning,”]. Machine Learning Research,
vol. 7, pp. 1531-1565, 2006.

O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee,
“Choosing Multiple Parameters for Support Vector Machines,”
Machine Learning, vol. 46, pp. 131-159, 2002.

O. Bousquet and D. Herrmann, “On the Complexity of Learning
the Kernel Matrix,” Advances in Neural Information Processing
Systems, S. Becker, S. Thrun, and K. Obermayer, eds., vol. 15.
pp- 415-422, MIT Press, 2003.

N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and]. Kandola, “On
Kernel Target Alignment,” Advances in Neural Information Proces-
sing Systems, vol. 14, pp. 367-374, MIT Press, 2002.

P. Pavlidis,]. Weston, C. Jinsong, and W.S. Noble, “Learning Gene
Functional Classifications from Multiple Data Types,” J. Computa-
tional Biology, vol. 9, pp. 401-412, 2002.

A. Ben-Hur and W.S. Noble, “Kernel Methods for Predicting
Protein-Protein Interactions,” Bioinformatics, vol. 21, no. 1, pp. i38-
i46, 2005.

S. Martin, D. Roe, and].-L. Faulon, “Predicting Protein-Protein
Interactions Using Signature Products,” Bioinformatics, vol. 21,
pp. 218-226, 2005.

T. Phienthrakul and B. Kijjsirikul, “Evolutionary Strategies for
Multi-Scale Radial Basis Function Kernels in Support Vector
Machines,” Proc. 2005 Conf. Genetic and Evolutionary Computation,
pp- 905-911, 2005.

F. Friedrichs and C. Igel, “Evolutionary Tuning of Multiple SVM
Parameters,” Proc. European Symp. Artificial Neural Networks
(ESANN), pp. 519-524, 2004.

HULSMAN ET AL.: EVOLUTIONARY OPTIMIZATION OF KERNEL WEIGHTS IMPROVES PROTEIN COMPLEX COMEMBERSHIP PREDICTION 437

[26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(33]

[30]

[37]

(38]

[39]

[40]

[41]

(42]

[43]

(44]

(43]

[40]

[47]

(48]

T. De Bie, C.-L. Tranchevent, L.M.M. van Oeffelen, and Y. Moreau,
“Kernel-Based Data Fusion for Gene Prioritization,” Bioinformatics,
pp- 1125-1132, 2007.

N. Hansen, S.D. Miiller, and P. Koumoutsakos, “Reducing the
Time Complexity of the Derandomized Evolution Strategy with
Covariance Matrix Adaptation (CMA-ES),” Evolutionary Computa-
tion, vol. 11, pp. 1-18, 2003.

A. Auger and N. Hansen, “A Restart CMA Evolution Strategy
with Increasing Population Size,” Proc. IEEE Congress Evolutionary
Computation (CEC '05), vol. 2, pp. 1769-1776, 2005.

F. Bach, G.R.G. Lanckriet, and M.I. Jordan, “Multiple Kernel
Learning, Conic Duality, and the SMO Algorithm,” Proc. 21st Int’l
Conf. Machine Learning, 2004.

F. Bach, R. Thibaux, and M.L. Jordan, “Computing Regularization
Paths for Learning Multiple Kernels,”]. Machine Learning Research,
vol. 5, pp. 1391-1415, 2004.

H.W. Mewes, K. Heumann, A. Kaps, K. Mayer, F. Pfeiffer, S.
Stocker, and D. Frishman, “MIPS: A Database for Genomes and
Protein Sequences,” Nucleic Acids Research, vol. 28, pp. 37-40, 2000.
A. Ben-Hur and W.S. Noble, “Choosing Negative Examples for
the Prediction of Protein-Protein Interactions,” BMC Bioinfor-
matics, vol. 7, no. 1, 2006.

J. Gollub et al., “The Stanford Microarray Database: Data Access
and Quality Assessment Tools,” Nucleic Acids Research, vol. 31,
no. 1, pp. 94-96, 2003.

T.R. Hughes et al., “Functional Discovery via a Compendium of
Expression Profiles,” Cell, vol. 102, pp. 109-126, 2000.

S.L. Tai, V.M. Boer, P. Daran-Lapujade, M.C. Walsh, J.H. de
Winde,]J.-M. Daran, and].T. Pronk, “Two-Dimensional Tran-
scriptome Analysis in Chemostat Cultures: Combinatorial Effects
of Oxygen Availability and Macronutrient Limitation in Sacchar-
omyces Cerevisiae,” . Biological Chemistry, vol. 280, no. 1, pp. 437-
447, 2005.

M.J. Dunham, H. Badrane, T. Ferea, J. Adams, P.O. Brown, F.
Rosenzweig, and D. Botstein, “Characteristic Genome Rearrange-
ments in Experimental Evolution of Saccharomyces Cerevisiae,”
Proc. Nat'l Academy of Sciences USA, vol. 99, pp. 16144-16149, 2002.
J.D. Lieb, L. Xiaole, D. Botstein, and P.O. Brown, “Promoter-
Specific Binding of Rapl Revealed by Genome-Wide Maps of
Protein-DNA Association,” Nature Genetics, vol. 28, pp. 327-334,
2001.

C.T. Harbison et al, “Transcriptional Regulatory Code of a
Eukaryotic Genome,” Nature, vol. 431, pp. 99-104, Sept. 2004.
N.J. Krogan et al., “High-Definition Macromolecular Composition
of Yeast RNA-Processing Complexes,” Molecular Cell, vol. 13,
pp- 225-239, 2004.

I. Xenarios, L. Salwinski, X.J. Duan, P. Higney, S.-M. Kim, and D.
Eisenberg, “DIP, the Database of Interacting Proteins: A Research
Tool for Studying Cellular Networks of Protein Interactions,”
Nucleic Acids Research, vol. 30, no. 1, pp. 303-305, 2002.

LJ. Ly, Y. Xia, A. Paccanaro, H. Yu, and M. Gerstein, “Assessing
the Limits of Genomic Data Integration for Predicting Protein
Networks,” Genome Research, vol. 15, no. 7, pp. 945-953, 2005.

H. Yu, N.M. Luscombe, H.X. Lu, X. Zhu, Y. Xia, J.-D.J]. Han, N.
Bertin, S. Chung, M. Vidal, and M. Gerstein, “Annotation Transfer
between Genomes: Protein-Protein Interologs and Protein-dna
Regulogs,” Genome Research, vol. 14, no. 6, pp. 1107-1118, 2004.
C.-C. Chang and C.-J. Lin, “LIBSVM: A Library for Support Vector
Machine,” http://www.csie.ntu.edu.tw/cjlin/libsvm, 2008.
R.P.W. Duin, P. Juszczak, P. Paclik, E. Pekalska, D. de Ridder, and
D.M.J. Tax, “PRTools, A Matlab Toolbox for Pattern Recognition,”
http:/ /prtools.org, 2009.

C.-W. Hsu, C.-C. Chang, and L. Chih-Jen, “A Practical Guide to
Support Vector Classification,” technical report, Dept. of Compu-
ter Science and Information Eng., Nat'l Taiwan Univ., 2003.

D.P. Lewis, T. Jebara, and W.S. Noble, “Support Vector Machine
Learning from Heterogeneous Data: An Empirical Analysis Using
Protein Sequence and Structure,” Bioinformatics, vol. 22, pp. 2753-
2760, 2006.

S.L. Wong et al,, “Combining Biological Networks to Predict
Genetic Interactions,” Proc. Nat'l Academy of Sciences USA, vol. 101,
pp- 15682-15687, 2004.

W.-C. Kao, K.-M. Chung, C.-L. Sun, and C.-]. Lin, “Decomposition
Methods for Linear Support Vector Machines,” Neural Computa-
tion, vol. 16, no. 8, pp. 1689-1704, 2004.

[49] T. Joachims, “A Support Vector Method for Multivariate
Performance Measures,” Proc. 22nd Int’l Conf. Machine Learning
(ICML "05), pp. 377-384, 2005.

Marc Hulsman received the MSc degree in
bioinformatics in 2007 from Delft University of
Technology, with a thesis on the use of kernel
combination for protein comembership predic-
tion. He is currently pursuing the PhD degree
in the Bioinformatics Group at the Faculty of
Electrical Engineering, Mathematics, and Com-
puter Science of Delft University of Technology,
working for the COBIOS project (a European
project to construct synthetic biological oscilla-
tors). His current research focuses on the normalization and integration of
large-scale biological data sets, in order to construct recommendation
systems supporting the building and analysis of synthetic biological
networks.

Marcel J.T. Reinders received the MSc degree
in applied physics and the PhD degree in
electrical engineering from Delft University of
Technology, The Netherlands, in 1990 and 1995,
respectively. In 2004, he became a professor of
bioinformatics within the Mediamatics Depart-
ment of the Faculty of Electrical Engineering,
Mathematics, and Computer Science at Delft
University of Technology. His background is
within pattern recognition. Besides studying
fundamental issues, he applies pattern recognition techniques to the
areas of bioinformatics, computer vision, and context-aware recommen-
der systems. His special interest goes toward understanding complex
systems (such as biological systems) that are severely undersampled.

Dick de Ridder received the MSc degree in
computer science and the PhD degree in
applied physics from Delft University of Tech-
nology, The Netherlands, in 1996 and 2001,
respectively. In 2005, he became an assistant
professor in bioinformatics at the Faculty of
Electrical Engineering, Mathematics, and Com-
puter Science of Delft University of Technology.
In the past, he has worked on pattern recogni-

! tion, neural networks, and image processing,
specifically on nonlinear feature extraction algorithms. Currently, his
interest is in the development of algorithms to integrate various high-
throughput measurements and prior knowledge to model the living cell.
These algorithms find applications in medical research, biotechnology,
and systems biology.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

