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Abstract
The correct interpretation of many molecular biology experiments depends in an essential way on
the accuracy and consistency of the existing annotation databases. Such databases are meant to act
as repositories for our biological knowledge as we acquire and refine it. Hence, by definition, they
are incomplete at any given time. In this paper, we describe a technique that improves our
previous method for predicting novel GO annotations by extracting implicit semantic relationships
between genes and functions. In this work, we use a vector space model and a number of
weighting schemes in addition to our previous latent semantic indexing approach. The technique
described here is able to take into consideration the hierarchical structure of the Gene Ontology
(GO) and can weight differently GO terms situated at different depths. The prediction abilities of
15 different weighting schemes are compared and evaluated. Nine such schemes were previously
used in other problem domains, while six of them are introduced in this paper. The best weighting
scheme was a novel scheme, n2tn. Out of the top 50 functional annotations predicted using this
weighting scheme, we found support in the literature for 84 percent of them, while 6 percent of the
predictions were contradicted by the existing literature. For the remaining 10 percent, we did not
find any relevant publications to confirm or contradict the predictions. The n2tn weighting scheme
also outperformed the simple binary scheme used in our previous approach.

Index Terms
Gene function prediction; gene annotation; Gene Ontology; vector space model; latent semantic
indexing; weighting schemes

1 Introduction
1.1 Background

Gene annotation databases capture the current biological knowledge allowing researchers to
interpret the results of life science experiments. In spite of their unquestionable importance,
significant problems concerning the annotation databases still exist. One problem is that the
annotation databases are currently incomplete. For virtually all sequenced organisms, only a
subset of genes is known, and an even smaller subset of genes is functionally annotated [28].
As more knowledge is accumulated, genes and annotations are gradually added to such
databases. This means that at any moment in time, it is likely that an annotation database
will contain only a subset of all genes of the given organism, and even for those genes that
are included, possibly only a subset of their functions is present in the database. In addition
to this, most of the annotations are introduced by curators who manually examine the
literature. In this process, it is possible that certain confirmed facts reported in existing
publications might get overlooked [25]. Another problem is caused by the way these
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annotations are stored in the structure of the Gene Ontology (GO). There are, for instance,
genes that are annotated for a particular molecular function but are not annotated for the
corresponding biological process. This is not a problem for a database curator or a life
scientist looking for the annotations of a specific gene, since a human can easily make
obvious extrapolations. However, this is not how such databases are used most of the time.
In a more typical scenario, the researcher will try to interpret the results of a high-throughput
experiment using a software that performs an ontological analysis [11], [12], [24], [27], [26],
[2], [4], [21], [35], [42], [43]. Such software will query an annotation database in each of the
three main branches of the GO graph and calculate a statistical significance based strictly on
the data retrieved, making no extrapolations. This type of analysis fails to correctly compute
the statistical significance of the genes involved if they are not correctly annotated for each
of the three GO categories. We should note here that no matter how thorough the annotators
are, as our knowledge improves, new functions will continue to be added, and some of the
older ones will be changed or revoked. Thus, due to the intrinsic evolution of scientific
knowledge, gene annotations are likely to maintain a dynamic character and hence are
unlikely to be considered complete anytime in the near future.

To overcome some of these problems, we previously proposed a method capable of finding
gene-function associations that are not explicitly represented in the annotation databases
[25]. This technique employs a latent semantic indexing (LSI) approach and was
demonstrated using the human genome annotations. This first attempt used a binary
representation of the relationships between genes and their functional annotations. However,
the binary representation fails to properly capture the hierarchical relationships between
various terms. Previous research in information retrieval (IR) has shown that the use of a
weighted representation, rather than a binary one, can improve the quality of retrieval
operations. Intuitively, IR term weighting attempts to exploit two simple observations: 1)
terms that appear repeatedly in a document are better suited to describe the topic of the
document than terms that are rarely used, and 2) infrequent terms across the document
collection are better differentiators between documents than terms that appear in most or in
all documents. Similar relationships might exist between genes and their annotations.
Functions that are only associated with few genes carry more information about the genes
and can better differentiate between them. Conversely, several closely related functions
associated with a given gene will better describe what the gene actually does.

This paper explores the use of vector space model (VSM) weighting schemes in the context
of a semantic analysis of biological annotations. The technique described here is able to
discover implicit gene-function relationships and propose them to researchers and database
curators as novel annotations. We present the results obtained with several weighting
schemes on the annotations of the human genome stored in the Onto-Tools database [11],
[24], which includes all known annotations from the GO Consortium.

1.2 Related Work
A VSM [5], [6], [16] has been used previously to cluster genes by creating a vector space of
genes and MEDLINE abstracts of papers discussing those particular genes [17]. The
similarity between genes was assessed by computing a distance between the vectors that
were representing them. It was found that weighted vectors improved the results
significantly over Boolean vectors [17]. VSM was also used to compute the similarity
between GO terms, and the results were compared with two other nonlexical methods for
analyzing the GO graph [7]. LSI [5], [6], [9] has recently been utilized for genome-wide
expression data analysis [3]. LSI was also employed to identify relations between genes by
creating a vector space of genes and MEDLINE abstracts [20]. Earlier IR research has
shown that LSI is 30 percent more effective than word matching methods [9]. Ontologies
were used in the recent past to overcome the limitations of keyword-based search, especially
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after the emergence of the Semantic Web [32], [39]. In [39], the authors describe an IR
method that combines document annotation and query expansion using ontology terms and
results ranking using VSM. Similar techniques are employed by MELISA [1] and
Textpresso [30], two medical literature search tools. MELISA uses MEDLINE’s own
ontology, MeSH, to semantically enrich the user queries. Textpresso builds an ontology, 80
percent of which is based on GO terms, and uses it for document annotation and query
expansion.

Other approaches for predicting functional annotations for a given gene also exist. The most
commonly used approach for function prediction uses sequence similarity. This approach is
based on the hypothesis that a function can be transferred between similar sequences in
different organisms since such similarity has been conserved over long periods of evolution
[10]. This method of annotation transfer can result in incorrect function predictions due to
reasons such as divergence of function within homologous proteins. Furthermore, this type
of inference can also be incorrect because the annotations are only transferred from the
closest homolog [23]. In order to overcome these problems, approaches combining sequence
similarity data with structural information have been proposed [14], [38]. The guilt by
association (GBA) approach [33], [40], [44], based on the observation that functionally
related genes tend to share similar mRNA expression profiles, has also been widely applied
to predict gene functions [8], [13], [22], [36], [41]. This approach clusters the genes based
on their expression profiles in order to predict the gene functions. The GBA approaches are
affected by issues such as data transformation [15], [31] and filtering intended to boost the
signal-to-noise ratio [19]. An alternative approach uses sequence similarity and protein
domain data in order to predict functional annotations [37]. Raychaudhuri et al. [34]
proposed a natural language processing approach for automatically extracting gene-function
associations from the literature abstracts.

2 Methods
GO maintains an organism-independent ontology of functional annotations that has a
directed acyclic graph (DAG) structure. Each node in this graph represents a functional
category and groups a number of genes annotated with that category. Researchers and
curators endeavor to annotate the genes with the most specific functional category available
in each case. For instance, if a gene is known to regulate the cell growth by extracellular
stimulus, it is annotated with the specific category “regulation of cell growth by extracellular
stimulus (GO:0001560),” instead of a higher level more general category such as “regulation
of cell growth (GO:0001558)” or “cell growth (GO:0016049).” However, a gene involved in
regulation of cell growth by extracellular stimulus is actually involved in regulation of cell
growth, which is indeed part of the cell growth phenomenon. Because of this, we consider
that a gene annotated with a specific function f is also associated with the more general
functional categories represented by the ancestors of f. In order to represent this in our data,
we create a gene-function matrix GF as follows:

(1)

The ith row of the matrix GF represents all functions known to be associated with gene gi
either directly, as found in the literature, or through its descendants. Similarly, the jth
column of the matrix GF represents all genes known to be associated with the function fj or
any of its descendants.
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Functional categories such as “unknown biological process” are used in GO in order to
ensure a consistency of annotations. However, these terms lack any semantic content since
they can be used to group completely unrelated genes. Since our goal is to construct a model
of the semantic relationships between genes and functions, such terms lacking semantic
content are removed from the analysis. Similarly, the top-level nodes, “gene ontology (GO:
0003673),” “biological process (GO:0008150),” “molecular function (GO:0003674),” and
“cellular component (GO:0005575)” also lack a specific semantic content since all genes
will appear related to each of these terms. Therefore, we also remove these GO terms from
the GF matrix.

The matrix described by (1) uses a simple binary weighting scheme for the gene-function
associations. However, previous work in IR has shown that the performance of a system can
be improved in terms of both precision and recall by using more sophisticated weighting
schemes instead of a binary scheme [16]. In this paper, we propose a VSM model using
different weights for the gene-function associations.

The weighting schemes used in this paper are denoted by three-letter codes, where the first
letter refers to the local weight, the second to the global weight, and the third to the
normalization method used for the annotation vector. The annotation vectors are the
columns in the GF matrix. Each column in the GF matrix contains the weights of the
relationships a particular GO term has with each human gene in the GO database.

The local weight is proportional to the number of direct or indirect relationships that exist
between a given gene and a given GO term. It is computed using gene frequency gf, which
is defined as the number of times a gene is directly or indirectly associated with a function in
the GO graph. We use inverse annotation frequency iaf as the global weight, where inverse
annotation frequency is defined as the natural log ratio of the total number of GO terms in
the GF matrix to the total number of annotations specific to the given gene.

The overall weight for each annotation is computed as a product of the local and the global
weights divided by the normalization factor. Because each annotation in the original
database is propagated to the higher levels of the GO DAG (1), the GO terms toward the
root of the DAG will invariably have higher weights and could bias the semantic contents of
the GF matrix. Therefore, the final weights should be normalized so that the terms at higher
levels will not dominate the specific terms found close to the leaves of the GO DAG. The
local and global weights and the normalization factors used in this paper are presented in
Table 2. Maximum and augmented local weights are employed to compensate for high gene
frequencies; cosine normalization can be used to compensate for annotations common to a
large number of genes.

The hierarchical structure of the GO DAG poses another two problems. The indirect
annotations introduced in the GF matrix due to the propagation of the annotations toward the
root of the GO DAG are less specific and should be assigned less weight than the
annotations that were present in the original database. Also, the annotations near the root of
the GO tree are less specific than those close to the leaves and should receive smaller
weights. In order to address these problems, depth corrections need to be applied to both
local and global weights.

Given a GO term ti and a gene gj directly annotated with a different GO term tj, which is a
(possibly distant) descendant of ti, the local weight of the relationship between ti and gj was
multiplied with
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(2)

where d(tj) and d(tj) are the depths of ti and tj, respectively, and α is a factor that indicates
how much the weight diminishes between successive levels of the GO tree. For instance, in
Fig. 1, the relationship between the gene CASP3 and one of its direct annotations, induction
of apoptosis by intracellular signals (GO:0008629), is highly meaningful. However, while
CASP3’s relationship with programmed cell death (GO:0012501)—three levels up—is still
meaningful even though less informative, its relationship with biological process (GO:
0008150)—six levels up—is hardly informative at all. Hence, we would like to gradually
diminish the importance of the association between a gene gj and the function ti by the
shortest distance in the GO tree between ti and tj. We consider that the association between a
given gene and the ancestors of any of its annotation terms exponentially decreases in
strength. In most cases, the relationships between genes and GO terms that propagate up
more than half of the GO tree’s height are not particularly meaningful anymore. In order to
reflect this, α was chosen so that the local weight of an indirect relationship over eight depth
levels (half-depth of the GO tree as of May 2003) is approximately 1 percent of the weight
of a direct relationship. Hence, α can be calculated from the equation α−8 = 0.01 as
approximately 1.7.

Fig. 1 describes the usage of the depth in calculating the local and global weighting. Gene
CASP3 is annotated with the GO term GO:0008629 (induction of apoptosis by intracellular
signals), and therefore, it is in an indirect relationship with GO:0012501 (programmed cell
death), one of the ancestors for GO:0008629 (shaded in green in Fig. 1). In this figure,
d(GO :0008629) = 7, d(GO :0012501) = 4, and the global weight of ti will be

(3)

This captures the fact that the association between CASP3 and “programmed cell death” is
weaker than the association between the same gene and its direct annotation, “induction of
apoptosis by intracellular signals.”

We will illustrate the weighting process by describing the steps required to compute the
weight of the relationship between the gene CASP3 and the GO term GO:0012501
(programmed cell death), using the ntn weighting scheme. GO:0012501 has four
descendants that have a direct relationship with CASP3: GO:0006915, GO:0006917, GO:
0008624, and GO:0008629. These GO terms are located at the following depths from GO:
0012501: GO:0006915 at depth 1, GO:0006917 at depth 2, and GO:0008624 and GO:
0008629 at depth 3. The ntn scheme uses gene frequency for the local weight; therefore, in
order to compute the local weight of the relationship between CASP3 and GO:0012501, we
have to sum all depth-penalized weights for each GO:0012501 descendant that has a direct
relationship with CASP3. For GO:0006915 at depth 1, we have the weight 1.7−1 = 0.588, for
GO:0006917 at depth 2, we have the weight 1.7−2 = 0.346, and for GO:0008624 and GO:
0008629 at depth 3, we have the weight 1.7−3 = 0.203. These values sum up to the local
weight of 1.341 for this particular relationship. For the global weight, the ntn scheme uses
inverse annotation frequency. In May 2003, CASP3 had 25 direct or indirect relationships
with GO terms, from a total of 4,683 GO terms that were in the direct or indirect
relationships with genes at that date. This allows us to calculate the inverse annotation
frequency as ln(4,683/25) = 5.233. We have to penalize this figure for depth. In the same
GO release, GO:0012501 was at depth 5 from the root; therefore, the global weight is equal
to (1 − (1.7−5) * 5.233 = 4.864. Because no other normalization type is used, in the ntn
scheme, the normalization factor is one. This gives us the final ntn weight for the
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relationship between the gene CASP3 and the GO term GO:0012501: 1.341 * 4.864 = 6.523.
The relationships discussed in this paragraph are marked with bold lines in Fig. 1. In-depth
descriptions of the classical VSM weighting schemes and the various motivations that
inspired them are available in the literature [16].

Eight different weighting schemes, described below, were tested in a first stage: ntn, ntm,
ntc, mtn, atn, atm, atc, and lts (note that ntm and ntc are identical with mtm and mtc,
respectively). The last scheme, lts, was not described in Table 1. Although lts is a frequently
used weighting scheme in IR, in our context, it was outperformed by all the other weighting
schemes that we tested. We kept lts in the results section for comparison purposes. The local
weight l (logarithmic) used by lts is equal to 1 + ln(gf); its global weight is inverse
annotation frequency and the normalization factor used is s (sum), which is equal to sum of
weights in the annotation vector.

After applying each of the weighting schemes above to the GF matrix, the matrix is
decomposed using singular value decomposition (SVD) as (Fig. 2):

(4)

where Sm is an m × m diagonal matrix, and m is the rank of GF, i.e., the number of linearly
independent rows or columns. The elements of Sm are the singular values of GF. The

matrices Gm and  are the basis sets of size g × m and m × f, respectively, and are

orthogonal, i.e.,  [18], [25].

SVD rotates the m-dimensional vector space and projects the data into a new vector space,
where the highest variation of the data is found along the first dimension, the second highest
variation is found along the second dimension, and so on. Reducing the dimensionality of
the vector space removes much of the noise from the original data. This is done by selecting
only the k largest singular values of Sm and the corresponding vectors in Gm and Fm
matrices, creating the matrices Sk, Gk, and Fk (Fig. 3). The product of these matrices, , is
the closest rank k approximation of GF in the least squares sense:

(5)

The matrix  is now expected to contain explicitly all associations that are strongly
represented in the data, whether or not such associations were present in the original matrix.
Thus, the goal of this process is to reveal those gene-function associations that were not
previously known but which are implicitly contained in the data.

After reducing the dimensionality of the system, we then analyze the  matrix by

comparing its elements with a given threshold T. A value of  greater than the threshold T
might indicate that gene i has function j. Gene-function relationships with gfij = 0 (i.e., no

previously known association between gene g and function f) and  correspond to
newly discovered associations between genes and functions. Gene-function relationships

with gfij ≠ 0 and  correspond to known functional annotations that have weak
semantic support in the data. Weak semantic support for an annotation does not necessarily
mean that the given annotation is incorrect. Such annotation may simply be a novel
phenomenon for which not enough information is available and therefore appears
inconsistent with the rest of the annotations at the time of the analysis.

Done et al. Page 6

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2013 July 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3 Results and Discussion
The approach described above was used to examine the entire existing set of GO annotations
for the human genome. We were interested in analyzing the GO annotation graph in order to
find relationships between genes and functions that are captured in the semantic layer of the
graph but are missing from the annotation database itself. In the first step, the performance
of eight weighting schemes was investigated on this human annotation data set: ntn, ntm,
ntc, mtn, atn, atm, atc, and lts. For each of the eight weighting schemes, the first 50 best
scoring relationships were assessed by a human expert. In a second step, the scheme that
performed the best, ntn, was altered in another six different weighting schemes, in order to
understand what were the terms in the weighting formula that helped it achieve the best
performance. We defined one new local weight and two new global weights. The local
weight, called n2, had the same local depth factor, but the gene frequency was not used (i.e.,
it has value 1 for all genes). The global weight nt had the same global depth factor, but the
inverse annotation frequency was not used. For the global weight nt2, both the global depth
factor and the inverse annotation frequency were not used. The six new weighting schemes
derived from ntn were n-nt-n, n2-t-n, n2-t-m, n2-nt-n, n2-nt-m, and n2-nt2-n. The weighting
terms, other than the three new terms defined here, have the same meaning as before. For the
sake of a simpler notation consistent with the conventions used in IR, the dashes will be
omitted henceforth.

The gene-function matrix GF was built using the human annotations contained in the GO
database, released in May 2003. The initial GF matrix contained 10,078 genes and 4,693
functional annotations, for a total of 300,204 relations between genes and functions. As
discussed, relations that involved the annotations at the root of the GO graph were not
included in the GF matrix to prevent these annotations from overwhelming the others. Also,
the genes and GO terms that had no associations were not included in the GF matrix,
because they do not add semantic information.

We decomposed the matrix GF as in (4) and reduced its dimensionality to the largest 500
eigenvalues. The  matrix is constructed as in Fig. 3, by multiplying the reduced matrices
that resulted after SVD. The value for the threshold T was calculated as previously described
[25]. In essence, the range of values in the initial GF matrix is divided into 100 equal bins.
The upper limit of each bin is then used as a threshold (T) to evaluate the number of false
positives and false negatives in the data. Gene-function relationships with gfij = 0 (i.e., no

previously known association between gene g and function f) and  are the false
negatives (but also the predictions of our method). Gene-function relationships with gfij ≠ 0

and  are the false positives. Assuming that the initial relationships taken from the
GO database have the minimum amount of errors, we are selecting as the threshold the value
T that minimizes the number of presumed errors (FP + FN).

Initially, we tried to evaluate the accuracy of the weighting schemes by counting the number
of confirmed relationships in the annotation database released three years after the data used
for input. More specifically, the new associations predicted from the analysis of the
annotations from May 2003 were compared with the annotations from May 2006. The
thresholds, the number of gene-function relationships that scored above the threshold, and
the number of confirmed relationships for each of the weighting schemes investigated in the
first stage are shown in Table 2. The number of confirmed predictions in the May 2006 GO
database in the first 25, 50, 100, 200, 400, 800, and 1,600 predictions (ordered in the
decreasing order of their score) are shown in Fig. 4 for each of the eight weighting schemes.
These data show that for few predictions (25–100), atn and atm are able to predict most

Done et al. Page 7

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2013 July 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



correct relationships. Beyond 150 predicted relations, ntn and ntm also started to performed
well, with ntn yielding the most correct predictions.

However, by using the existing GO annotations as the gold standard, this type of assessment
is somewhat limited. Indeed, this approach only provides a lower bound for the number of
true positives because the real number of correctly predicted annotations could be much
higher than what is reflected in the current GO annotations used as a reference. In order to
address this, we also asked a human expert (A.D.) to assess the top 50 highest scoring
relations for each of the weighting schemes. Each predicted annotation was assessed on a
scale from −2 to 2 as follows: A score of 2 means that the predicted annotation is very well
supported by existing literature (at least two independent papers were found proving that the
predicted annotation is correct) or that specific relationship has been included in one of the
more recent releases of GO. A score of 1 was given when existing papers suggest that the
relationship is correct, without offering indubitable proof. Relationships for which no
support was found in the literature able to confirm or contradict them were given a score of
0. A score of −1 was given when papers were found suggesting that the relationship is not
correct, and a score of −2 was given when strong literature support was found to prove that
the relationship is not correct. The results of this assessment can be seen in Table 3. These
data show that ntn is the best performing scheme: among its 50 relationships that were
evaluated, 35 are strongly supported in the literature; another five are suggested by various
existing research results; on seven of them, there is nothing published yet; and only three
were contradicted by the existing knowledge. In the second stage, n2tn performed as good as
ntn, despite the fact that it requires fewer steps to compute its weights. The results of the
second stage are shown in Table 4.

As examples of predictions made using the n2tn scheme, SLC2A10 and SLC2A9 were
predicted to exhibit glucose transporter activity. The human gene SLC2A10 is the solute
carrier family 2 (facilitated glucose transporter), member 10 (a validated well-documented
structure). Obviously, SLC2A10 has glucose transporter activity. Yet, in spite of the fact that
this gene is annotated for the biological process glucose transport, it is not yet annotated for
the corresponding molecular function glucose transporter activity. At the same time, the
existing annotations for molecular functions are far less specific: sugar porter activity and
transporter activity. The human gene SLC2A9, the solute carrier family 2 (facilitated
glucose transporter), member 9, is in the same situation. As explained in the introduction,
the lack of such apparently simple extrapolations from one GO category to another is
frequent in GO and represents a serious problem for the tools that perform an automatic
functional profiling.

Probably, the most interesting prediction was beyond a simple extrapolation and involved
the human gene aquaporin 1 (Colton blood group) (AQP1). This gene was already annotated
in May 2003 for porin activity, transporter activity, and water transporter activity. Hence, it
was known that AQP1 is involved in water transport, but AQP1 was not annotated in the GO
database for the exact mechanism through which the gene achieves this function.
Interestingly, n2tn predicted that AQP1 exhibits water channel activity, which is a very
specific and very complex mechanism of water transport. Research proving that aquaporin
indeed forms a channel for the water molecules was awarded the Nobel Prize for Chemistry
in 2003 [29].

Overall, out of the top 50 functional annotations predicted using the best performing
weighting scheme, n2tn, we found support in the literature for 84 percent of them. For 10
percent of our predictions, we did not find any relevant publications, and 6 percent were
actually contradicted by existing literature.
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4 Conclusion
Gene annotation databases represent an essential resource for modern research in life
sciences. Such databases are used on a daily basis by thousands of researchers worldwide.
However, it is well known that these annotations are incomplete, and it is likely that some
annotations are also incorrect. In this paper, we presented a VSM/LSI approach that can be
used in combination with any one of 15 weighting schemes studied here in order to perform
a global semantic analysis of the contents of such databases. The technique described here
was able to predict novel functional annotations for known human genes. This technique is
independent of the organism and can be used to analyze the quality of the data in any public
or private annotation database. In our experiments with the human annotations from GO,
some the popular IR normalization schemes tested for the local weight and normalization
factor actually deteriorated the accuracy. Nevertheless, these normalization schemes may
still be useful for other data. On the other hand, our results show that the use of gene
frequency, inverse annotation frequency, and depth penalty applied to local and global
weights provides better results than the previously proposed binary approach [25].
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Fig. 1.
Depth calculations for local and global weights. The depth used for penalizing the local
weight of the indirect relationship between the gene CASP3 and the GO term programmed
cell death (GO:0012501) is calculated as the difference between the depth of GO:0008629
(which has a direct relationship with the gene CASP3) and the depth of GO:0012501 (both
computed from the root of the GO tree). The depth used for the global weight of the same
relationship is the depth of GO:0012501, also computed from the root of the GO tree.
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Fig. 2.
SVD of the gene-function association matrix GF. There are g genes and f functions. Sm is a
diagonal matrix such that Sij = 0 if i ≠ j and Sij ≥ 0 if i = j.
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Fig. 3.
The dimensionality reduction from m to k produces an approximation matrix  of the
original matrix GF. By reducing the dimensionality, we force the new matrix to capture the
latent semantics and filter out the noise. This essentially will capture those interactions that
are strongly represented in the data.

Done et al. Page 15

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2013 July 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Automated assessment results: the data points connected with lines represent the number of
confirmed predictions in the May 2006 GO database in the first 25, 50, 100, 200, 400, 800,
and 1,600 predictions (ordered in the decreasing order of their score) for each of the eight
weighting schemes; atm, atn, ntn, and ntm performed best, but the results were not
conclusive.
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TABLE 1

The Description of the Weighting Scheme Codes Used

Local weighting

Code Description

n None: gene frequency, gf, is used as the local weight.

m
Maximum: gene frequency normalized with respect to the maximum gene frequency in an annotation vector is used, i.e.,

a

Augmented: gene frequency is augmented as: 

Global weighting

t Inverse annotation frequency, iaf, is used as the global weight.

Normalization factor

n None: normalization factor is not used.

m

Maximum: each weight is normalized with respect to the maximum weight in an annotation vector, i.e., 

c

The weighting schemes used in this paper are denoted by three-letter codes, where the first letter refers to the local weight, the second to the global
weight, and the third to the normalization method used for the annotation vector. For instance, in ntn, the local weighting uses the gene frequency,
the global weighting uses the inverse annotation frequency, and no further normalization is performed.
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