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Abstract—The literature on protein function prediction is currently dominated by works aimed at maximizing predictive accuracy,

ignoring the important issues of validation and interpretation of discovered knowledge, which can lead to new insights and hypotheses

that are biologically meaningful and advance the understanding of protein functions by biologists. The overall goal of this paper is to

critically evaluate this approach, offering a refreshing new perspective on this issue, focusing not only on predictive accuracy but also

on the comprehensibility of the induced protein function prediction models. More specifically, this paper aims to offer two main

contributions to the area of protein function prediction. First, it presents the case for discovering comprehensible protein function

prediction models from data, discussing in detail the advantages of such models, namely, increasing the confidence of the biologist in

the system’s predictions, leading to new insights about the data and the formulation of new biological hypotheses, and detecting errors

in the data. Second, it presents a critical review of the pros and cons of several different knowledge representations that can be used in

order to support the discovery of comprehensible protein function prediction models.

Index Terms—Biology, classifier design and evaluation, induction, machine learning.

Ç

1 INTRODUCTION

THERE is a general trend in the bioinformatics literature—
probably influenced by a similar trend in the machine

learning literature—of evaluating the quality of a classi-
fication model mainly in terms of predictive accuracy. An
evidence of this trend is the large number of works
performing protein function prediction with data mining
methods such as support vector machines or neural
networks—see [30], [66], [69], and [70] for a few examples.
These methods are usually very effective in terms of
predictive accuracy, but they are “black-box” methods that
provide little biologically meaningful explanation for their
prediction and give little new insight about the data or the
application domain to biologists.

The appropriateness of this black-box approach depends
on the application and the interest of the user of the
machine learning/data mining system. In many bioinfor-
matics applications such as protein function prediction,
ideally, the discovered model should be interpreted and
validated in the context of current biological knowledge, as
will be discussed in detail later.

This paper aims at offering two main contributions to the
bioinformatics literature. First, it presents the case for
discovering comprehensible classification models—particu-
larlyin the field of protein function prediction—that are not

only accurate but also interpretable by the user. More

precisely, this paper discusses the advantages of models for

protein function prediction that can be understood by users,

such as increasing the confidence of the biologist in the

system’s predictions, leading to new insights about the data

and the formulation of new biological hypotheses, and

detecting errors in the data.
The second main contribution of this paper is a critical

review of the pros and cons of different knowledge

representations particularly suitable for supporting the

discovery of comprehensible knowledge in the context of

protein function prediction.
Although the importance of intelligible protein function

prediction models has been pointed out by a few other

authors [9], [24], [63] in the context of specific research

projects, to the best of our knowledge, this is the first paper

to present both a detailed discussion of the case for

comprehensible protein function prediction models and a

review of the advantages and disadvantages of different

knowledge representations that can be used to obtain such

models.
This review paper seems timely because, as stated

earlier, the majority of the bioinformatics community is

currently focusing on maximizing predictive accuracy in

their predictions, ignoring important issues about biological

interpretation of computational predictions. For instance, in

general, reviews of automated methods for protein function

prediction—including extensive reviews such as [18] and

[54]—do not discuss the need or motivation for producing

comprehensible protein function prediction models. Bock

and Gough [4] briefly acknowledge the importance of

model comprehensibility, but there is no detailed discus-

sion of the motivation for discovering intelligible models or
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any discussion of the pros and cons of different knowledge
representations.

The remainder of this paper is organized as follows:
Section 2 discusses the differences between the instance-
based learning (IBL) and the model induction approaches
for protein function prediction. The paper focuses on model
induction systems, but the comparison between these two
kinds of systems provided in this section is useful to place
the latter in the context of the broader literature on protein
function prediction. Section 3 addresses in detail the case
for comprehensible protein function prediction models, in
contrast with the black-box approach that currently dom-
inates the literature in this area. Section 4 discusses some
kinds of knowledge representation that are more suitable
for supporting the discovery of comprehensible predictive
models, highlighting the pros and cons of different
representations in this context. Finally, Section 5 presents
the conclusions and suggests future research directions.

2 INSTANCE-BASED LEARNING VERSUS MODEL

INDUCTION APPROACHES

2.1 The Instance-Based Learning Approach

A common method for predicting protein functions is based
on transferring the functions of one or more homologous
proteins identified on the basis of their close similarity to
the target. This kind of method is hereafter referred to as the
IBL (or lazy learning) approach, and its basic principle is
demonstrated in Fig. 1. The system computes a similarity
score simi between the unknown protein and each of the
proteins with known function, where i ¼ 1; . . . ; n, and n is
the number of characterized proteins in the database. If the
system finds a protein with a high similarity to the
unknown protein, then the function of the former is
transferred to the latter.

The Smith-Waterman algorithm and its heuristic coun-
terpart BLAST are prominent examples of IBL systems. The
E-value reported by BLAST takes into account matches,
mismatches, insertions, and deletions in two protein
sequences and indicates the extent to which two proteins
are similar. A low E-value typically indicates high similarity
and often prompts biologists to transfer functional annota-
tion from a well-characterized protein to an unknown-
function target protein.

In terms of machine learning paradigms, this kind of
protein function prediction method can be considered as
belonging to the IBL or Nearest Neighbor paradigm [26],
sometimes called “lazy learning” [1]. The motivation for the

latter name is that the actual learning is postponed to the
moment when a new protein is to be classified. Methods
such as the Smith-Waterman algorithm and BLAST share
two core characteristics of IBL methods: 1) the training
phase essentially consists of storing known-function pro-
teins, and 2) the learning occurs in the testing phase, where
an algorithm is used to identify the training sequence most
similar to the target instance. This kind of method implicitly
uses the training data itself as a “model” in a loose sense of
the term, because it does not create any abstract model
generalizing from the specific instances in the data.

One advantage of an IBL method is that the simplicity of
its training phase makes it naturally incremental. That is, as
more and more proteins with known function are added to
the database, the training set is immediately expanded,
which should in principle increase the predictive accuracy
of new functional predictions.

Although IBL methods are useful and powerful in
many cases, they also have limitations. First, it is well
known that two proteins might have similar sequences but
perform different functions or have different sequences
and perform the same or a similar function [18], [20], [61].
For instance, in a case study about the classification of
voltage-gated potassium channels into four different
classes, Szafron et al. [62] pointed out that many of the
sequences had close homologues in other classes, rather
than their own classes. As another example, although
proteins belonging to the G-protein-couple receptor
(GPCR) superfamily have high structural homology, many
members of that superfamily have a remarkably low
degree of sequence similarity [14]. Some GPCRs—e.g., the
histamine receptors—may bind the same ligand and the
same G protein while having less than 25 percent
sequence identity, whereas other GPCRs have a much
higher degree of sequence similarity but unrelated func-
tional classes. The case of GPCRs is particularly important
since approximately 50 percent of the marketed medical
drugs target GPCRs [34], [16]. One could argue, however,
that this kind of limitation in the effectiveness of IBL
methods has to do not with the methods per se but rather
with the presence of “exceptions” in the data that do not
match well with the core characteristics of the methods.

Second, IBL methods do not directly take into account the
protein function when computing the similarity between
protein sequences. Hence, they can consider two protein
sequences as highly similar even when the regions of high
similarity are not determinants of protein function [56], [18],
in which case the high similarity should not be used to
transfer a function from the most similar sequence to the
target sequence. A recent study of GO term annotation errors
[32] illustrates this point. Jones and colleagues found that the
curated annotations with GO evidence code “Inferred by
Sequence Similarity (ISS)” had an estimated annotation error
of 49 percent, much larger than the annotation error rate for
other curated annotations—13 percent to 18 percent. The
authors recommend that curators should use the ISS
annotation only after carefully examining the annotated
similar sequence from which functions are being transferred
to the target sequence. This involves checking, for instance, if
the similar sequence contains protein domains different
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from the ones found in the target sequence, in which case the
transfer of GO terms from the former to the latter might not
be appropriate [18], [32], [54]. It is important to note, though,
that this limitation of current IBL methods is due mainly to
the use of unsuitable distance measures, based upon whole-
sequence comparisons. As understanding of critical residues
improves, new distance measures (e.g., combinations of
three-dimensional structures and properties of selected
residues) may improve the performance of IBL methods.

Third, there are many cases where no protein function
can be assigned to a given protein based on the use of an
IBL system, due to the lack of a sufficiently similar and
known sequence in the database. If no homologues match
the E-value cutoff, no prediction will be made for that target
sequence. For instance, at the time the Arabidopsis thaliana
genome was sequenced, about 30 percent of its genes could
not be assigned a function using BLASTP, due to the lack of
similar sequences of known function [3]. This example is
particularly relevant because A. thaliana is an important
“model organism” for identifying genes and determining
their functions.

Finally, IBL systems miss the opportunity to discover
explicit relationships between biochemical properties and
protein functions, which could significantly advance the
understanding of protein functions by biologists. For
example, when the prediction of function is based only on
sequence similarity, many other potentially relevant bio-
chemical properties of proteins are ignored [33], [61].

The above issues are a motivation to investigate another
approach to predict protein functions, based on the
induction of a classification model from data, as discussed
in the next section.

2.2 The Model Induction Approach

The IBL systems discussed in the previous section are in
contrast with other machine learning paradigms where an
algorithm first learns an explicit and abstract classification
model from the training data and then uses that model to
classify a new test instance. Such explicit predictive
classification models usually represent a generalization of
the data, and systems following this approach will be
hereafter called model induction systems. Note that such
systems follow an “eager learning” approach, by contrast
with the “lazy learning” approach of IBL systems. The term
eager learning is a broad term used to refer to any learning
technique that learns a classification model from the
training set of known-function proteins before any new
protein to be classified (in the test set) is observed.

The basic principle of model induction systems is
illustrated in Fig. 2. The unknown-function protein has its
function predicted by the model—which is supposed to
capture the main patterns in the data relevant for function
prediction—and so, there is no need to compare the target
protein sequence with all sequences in the database like in
the case of IBL systems illustrated in Fig. 1.

Concerning the interpretability of the induced classifica-
tion models, broadly speaking, there are two kinds of
models, namely, black-box models and white-box models.
Black-box models are typically hard to interpret, whereas
white-box models are usually interpretable. Examples of
black-box models are artificial neural networks, support

vector machines, and hidden Markov models. For instance,
an artificial neural network’s structure and the correspond-
ing interconnection weights do not provide any insight into
the biological nature of the genomic process [44].

Examples of white-box models are decision trees and
rule sets—as long as the size of the decision tree or rule set
is not too large, which would prevent their interpretation by
a biologist. An example of a protein function prediction
model expressed by a comprehensible decision tree can be
found in [59]. Several examples of function prediction
models expressed by a set of comprehensible rules can be
found in [11], [24], and [47].

Given the need for interpreting the induced model in
many applications, the data mining community developed
several methods for transforming a black-box model into a
white-box one—in particular methods for extracting com-
prehensible rules from artificial neural networks [28], [65]
or from support vector machines [19], [46]. Only recently,
such methods have started to be used by the bioinformatics
community [24].

A more detailed discussion of the motivation for
inducing white-box models will be presented in Section 3,
while a number of examples of comprehensible function
prediction models will be discussed in Section 4.2.

The model induction approach can be considered as
more general than the IBL approach, because the former can
create a model to predict protein functions even in the
absence of similarity between the target sequence and
sequences in the database [4], [15], [35], [68].

2.3 Hybrid Instance-Based Learning/Model
Induction Systems

IBL and model induction methodologies for predicting
protein functions are not necessarily mutually exclusive.
They have different pros and cons and can be combined
into a hybrid system, aiming to get the best of both worlds.

There are at least two different approaches for achieving
such a hybrid system. First, we can use the results of a
model induction algorithm to improve the results of an IBL
method. An example of this approach is found in [33],
where first, an IBL method is used to try to retrieve
sequences that are homologous to the target sequence. The
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problem is that some sequences are considered to be in the
“twilight zone,” i.e., their homology is uncertain, by the IBL
method. Then, a rule induction algorithm is used to induce
rules that classify the twilight-zone sequences into homo-
logous or not, reducing the uncertainty of the results
produced by the IBL method.

The second approach to hybridize IBL and model
induction methods consists of using the result of IBL to
improve model induction. An example of this approach is
found in [63], where the sequences identified as hits
(considered homologous to the target sequence) by an IBL
system are used to extract a relevant set of predictor
attributes for protein function prediction. As another
example of this approach, in [10], the results of PSI-BLAST
searches are used to produce homology-based predictor
attributes for a model induction system.

3 THE CASE FOR COMPREHENSIBLE PROTEIN

FUNCTION PREDICTION MODELS

This section discusses the motivation for producing a
comprehensible classification model mainly in the context
of protein function prediction and also, to some extent, in
biomedical informatics.

3.1 Improving the Biologist’s Confidence in the
Prediction

First of all, understanding the predictions made by a
classification model helps the biologist to get more
confidence in the prediction [63], [15]. This is important
because the model’s predictions are, by definition, compu-
tational predictions, rather than evidence from biological
experiments.

If the biologist has a high confidence in the model’s
predictions, she/he is more likely to believe in those
predictions and, in principle, more willing to invest the
time and money that are required to perform the very time-
consuming and expensive biological experiments necessary
for a definite confirmation of the model’s prediction.
Indeed, it can be argued that the ultimate value of any
computational prediction method is determined by the
cumulative success of the experiments inspired by the
method’s results [31].

The importance of a high confidence in a computational
prediction is well illustrated by a case outside the area of
bioinformatics but valid to the point being made here.
When there was a major accident in the Three-Mile Island
nuclear power plant, the automated system recommended a
shutdown, but the human operator did not implement the
shutdown because she/he did not believe in the system’s
recommendation [25].

3.2 Giving the Biologist New Insights about the
Data and Ideas for New Hypothesis Creation

Another reason for discovering comprehensible protein
function prediction models is that the model can be used
not only for predicting functions of individual proteins but
also for giving the biologist new insight about the data and
associated biological problem, advancing the understand-
ing of protein functions [24], [44], [63]. In particular, a
comprehensible model, duly interpreted by the biologist,

can provide new evidence confirming or rejecting some
previous hypothesis or even lead the biologist to formulate
new biological hypotheses.

Several examples of biological hypotheses whose for-
mulation was guided by the interpretation of a compre-
hensible protein function prediction model can be found in
[33]. Such new hypotheses can then be validated by new
biological experiments, in order to try to confirm those
hypotheses. There are several cases where the comprehen-
sible models produced by a data mining method have been
confirmed by further biological experiments [36].

The above point also influences how we can evaluate the
protein function prediction model, depending on whether
the model is a black-box or a white-box model. When
evaluating a black-box predictive model the only criterion is
predictive accuracy—or a combination of accuracy and
coverage. However, when evaluating a white-box predic-
tive model, we can also evaluate the comprehensibility and
“interestingness” of the model to its users.

For instance, Wong and Leung [72] found classification
rules with a relatively low or moderate degree of accuracy
(around 40 percent-60 percent) that were considered, by
senior medical doctors, novel and more accurate than the
knowledge of some junior doctors. In addition, as pointed
out by Clare and King [9], when measuring predictive
accuracy, a lack of statistical significance does not necessarily
mean that the rule is not biologically interesting. It is possible
that a rule is correct and interesting, but the number of
examples used by the classification algorithm was not large
enough to produce rules whose accuracy is deemed
statistically significant. A biologically interesting rule can
still advance our understanding of protein functions, despite
the lack of a large statistical confidence in the rule.

Finally, it should be noted that in some cases, human
experts find it difficulty to express their knowledge in a
formal way, so that the automated induction of a
comprehensible model seems a good approach for getting
that kind of knowledge. An example of such case is the use
of automated induction to discover classification rules
predicting the subclass of a tuberculosis agent belonging
to the M. tuberculosis complex [57].

Several examples of new insights about the data
provided by the induction of comprehensible classification
models will be mentioned in Section 4.2.

3.3 Detecting Errors in the Model or in the Data

Yet another reason for discovering comprehensible protein
function prediction models is to interpret the model in
order to potentially detect errors in it—possibly caused by
errors in the data. Sources of error in the predictions of a
protein functional classification model [63] include limited
training data quality and quantity and the use of an
algorithm unsuitable for the underlying data. These sources
are discussed in more detail below.

First, the quality of the classification model is propor-
tional to the quality of the training data. This quality is
limited at least by the predictive power of the available
attributes—the question of which kind of attribute is most
relevant for predicting protein functions is an open question
[45]—and by the amount of noise in the data. A simple
example of noise in the data, introduced by the use of a
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nonstrict methodology for data set creation, can be found in
[73]. In this work, the data set included proteins with any
GO annotation, regardless of the evidence code, which
indicates whether the protein function was inferred by not
very reliable means (e.g., electronic annotation) or more
reliable means (e.g., manual curation).

In this particular case, the noise associated with not
very reliable GO annotations could be avoided by a
stricter data set creation methodology, using only proteins
whose GO evidence code means that its annotated
function is very reliable. In other cases, however, noise
is more subtle, and it is associated with a fundamental
problem in the nature of the data—at least given current
high-throughput technologies.

As an example of noise in the data in the latter case,
Zhu et al. [74] points out that high-throughput protein-
protein interaction data usually has huge errors, because
the data does not contain any information about the
condition(s) under which interactions take place, and so,
the neighbors of a given protein may be involved in
several different pathways, lacking functional consistency.
As yet another example of intrinsic noise in the data, in a
recent work, Jones et al. [32] found that the curated
annotations in the GoSeqLite database had an estimated
annotation error rate between 28 percent and 30 percent.

In order to select the most relevant attributes in the data,
discarding irrelevant or noisy attributes, feature selection
techniques can be used. The use of this kind of technique in
protein function prediction can be found, for instance, in
[30], [2], [13], and [63].

Another potential source of error in the data is that
function annotations in biological databases are often
incomplete, and so, the lack of a functional annotation (a
class) for a protein does not necessarily mean that the
protein does not have that class. It may be the case that the
protein was simply not annotated yet with that class. An
example of such problem is provided in [31], where the
system predicted, for a given protein in the test set, the GO
term “chromatin binding.” From the point of view of the
system, this was a wrong prediction—a “false positive”—
because this term is not a descendant—in the GO direct
acyclic graph—of any GO term annotated for that protein.
However, the protein in question catalyzes acetylation of
chromatin substrates, so the seemingly “wrong” prediction,
from the system’s point of view, is biologically relevant
anyway. This is just one specific example of the general
problem that given the incomplete functional annotations in
biological databases, the lack of a given functional annota-
tion for a protein may be due to the lack of experiments
confirming that function, rather than to the true absence of
that function in the protein [7].

Hence, many apparent “false positive” functional pre-
dictions from the system’s point of view may not be
prediction errors at all. This problem reinforces the need for
evaluating a protein function prediction model by not just
its predictive accuracy, but also its biological relevance,
which can be achieved when a comprehensible classifica-
tion model is produced.

Second, the predictive accuracy of a model is limited by
the quantity of training data. In particular, as mentioned

earlier, many protein functional classification problems
involve a large number of classes, with a correspondingly
small number of examples (proteins) per class, which
seriously hinders the reliable prediction of the rare classes.
In the specific context of hierarchical protein functional
classification, classes at the deepest level of the hierarchy
(with fewer examples) are often predicted with an accuracy
significantly lower than the predictive accuracy of classes at
shallower levels of the hierarchy, where there are many
more examples per class [23], [35], [58].

A related problem involves the issue of imbalanced class
distributions, where some class(es) are much more frequent
than others, making it particularly difficult to predict the
minority class(es). A practical approach to try to solve this
problem involves undersampling the majority class, in
order to avoid a bias toward predicting the majority class in
general. This approach has produced good results in some
cases—e.g., [2] and [12].

Third, some prediction errors of the model will be
caused by the use of a classification algorithm that is not the
ideal algorithm for the underlying data. Actually, it is well
known in the machine learning and data mining literature
that no classification algorithm is superior to all others in all
application domains—this point has been shown both
theoretically [55], [52] and empirically [43], [42]. This is
because every classification algorithm has an inductive bias,
and the adequacy of a bias depends on the nature of the
data being mined. Despite some significant progress in the
area of “metalearning” [5], [43], [49], [50]—where the goal is
essentially to try to automatically select the best classifica-
tion algorithm for the data being mined—the selection of
the best classification algorithm for a given data set is still
an open problem.

Given all the previously discussed problems, it is
important to analyze an induced protein function predic-
tion model in order to detect errors in the model or in the
data. One example of a system that detects errors in
automated protein functions annotations by analyzing a
comprehensible classification model is the Xanthippe
system [71]. Xanthippe is a collection of exclusion rules
used to postprocess the output of other prediction
systems or to detect erroneous annotation in protein
annotation databases. For example, if a system predicts
the “SUBCELLULAR LOCATION: Mitochondrion” Swiss-
Prot comment for a bacterial protein, Xanthippe prevents
the attachment of this prediction to the protein entry.
Xanthippe collects exclusion rules by analyzing mutually
exclusive annotation items in Swiss-Prot entries and by
collecting input from curators. It also extracts less obvious
exclusion rules using a decision tree algorithm. The
attributes for the latter are primarily sequence patterns,
such as PFAM or PROSITE. The focus of the decision tree
algorithm lies on predicting the absence of a protein
annotation rather than the presence.

Another approach to detect errors in protein function
predictions consists of analyzing the examples (proteins)
wrongly predicted by a classification rule. Since a rule
represents an abstract generalized representation of a
correlation between the conditions in the rule antecedent
and the functional class predicted by the rule consequent,
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examining the examples that represent exceptions to such a
generalized pattern can give new insights to a biologist. By
exceptions, we mean proteins that satisfy all the conditions
of the rule but do not have the functional class predicted by
the rule.

For instance, Pappa et al. [47] examined the exceptions of
rules that predict postsynaptic activity based on conditions
referring to the presence or absence of PROSITE patterns
and found some of these exceptions quite revealing about
the relationship between some PROSITE patterns and
postsynaptic activity.

As another example, in [11], an analysis of exceptions of
classification rules predicting protein synthesis has revealed
that the used functional classification scheme did not
capture well the common nature of some proteins—an
important conclusion that could not have been drawn by
simply measuring the predictive accuracy of a black-box
classification model.

4 DISCOVERING COMPREHENSIBLE FUNCTIONAL

CLASSIFICATION MODELS

The previous section discussed why it is desirable to induce
comprehensible (“white-box”) protein function prediction
models from data—at least in cases where the discovered
knowledge will be interpreted and validated by biologists.
The main goal of this section is to present a critical review of
the pros and cons of different knowledge representations
that have been used to produce such comprehensible
models. This review is presented specifically in Section 4.1.
This is then followed by several examples of discovered
knowledge represented by comprehensible protein function
prediction models in Section 4.2.

4.1 The Pros and Cons of Different Knowledge
Representations for Comprehensible Models

Although there is no consensus in the data mining literature
about which knowledge representation is “the most”
comprehensible one [48], there is a reasonable consensus
that representations such as decision trees and rule sets are
more comprehensible than black-box representations such
as neural networks and support vector models.

Decision trees have the advantage of being a graphical
representation of discovered knowledge, and the hierarch-
ical structure of the tree provides information about the
relative importance of the attributes used for prediction: the
closer an attribute is to the root of the tree, the more relevant
it was deemed to be by the decision tree building algorithm.
By contrast, rule sets are not a graphical nor a hierarchical
representation, they rather consist of a set of modular IF-
THEN rules.

As shown in Fig. 3, a decision tree can be easily
converted into a set of IF-THEN rules by creating one rule
for each path in the tree from the root to a leaf node, and
doing this conversion often helps to simplify the discovered
knowledge. The reason for this simplification is that the rule
set representation can be considered somewhat more
flexible than the decision tree one as follows.

Each rule can be easily interpreted in a modular “local”
fashion, independent of other rules, without the need to
maintain a “global” decision tree structure. Note, for

instance, that the attribute at the root node of the decision
tree has to be used to predict the classes of all examples,
because that node is in every path leading to a leaf
node—where a class prediction is made. This seems
counterintuitive in some cases, because it is possible that
different proteins should have their functional classes
predicted by different sets of attributes, and the use of the
same attribute in all predictions can be unnatural—and
possibly be overfitting the data. Rule sets are not obliged to
have the rigid structure of using a given attribute for all
predictions, because different rules can naturally refer to
different sets of attributes. Of course, it is possible that all
rules in a rule set refer to the same attribute, but this will
happen only if the algorithm producing the rules decides
that this is the best way of maximizing predictive accuracy,
rather than being a structural constraint imposed in the
model regardless of its predictive accuracy as it is the case
with decision trees.

For this and related reasons, a rule set is often considered
to be simpler to interpret than its equivalent decision tree
counterpart [24], [51], and in practice, several protein
function prediction works use the approach of converting
a decision tree into a set of rules [38], [11].

It is also appropriate to discuss here the recent
trend—both in data mining and bioinformatics—of using
an ensemble of classifiers to improve predictive accuracy
[6], [30], [61], [67], [66]. It is well known that in general, an
ensemble of classifiers improves predictive accuracy by
comparison with the use of a single classifier [64]. On the
other hand, the use of ensembles also tends to reduce the
comprehensibility of the predictive model, in comparison
with the use of a single classifier, as follows.

A single comprehensible predictive model can be
interpreted by a biologist, but it is not practical to ask a
biologist to interpret an ensemble consisting of a large
number of comprehensible models. In addition to the
obvious problem that such an interpretation would be time
consuming and tedious to the biologist, there is also a more
fundamental conceptual problem. This is the fact that the
classification models being combined in an ensemble are
often to some extent inconsistent with each other—this
inconsistency is necessary to achieve diversity in the
ensemble, which in turn is necessary to increase the
predictive accuracy of the ensemble. Considering that each
model can be regarded as a “hypothesis” to explain
predictive patterns hidden in the data, this means that an
ensemble does not represent a single coherent hypothesis
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about the data but rather a large set of mutually inconsistent
hypotheses, which in general would be too confusing for a
biologist.

In the specific context of protein function prediction, an
example of the use of an ensemble of decision trees can be
found in [61]. Although this type of ensemble clearly
reduces the advantages of interpretability associated with
decision trees, for the reasons explained above, it might be
argued that an ensemble of decision trees still offers some
opportunities for a limited form of interpretation (being at
least more interpretable than a black-box model). For
instance, one can examine the attributes at the top node(s)
in the trees, in order to try to detect attributes that have
been consistently chosen to label the top node(s) across the
majority of the trees in the ensemble. Such attributes would
then be considered the most relevant ones for function
prediction.

In addition to decision trees and rule sets, another type of
white-box model that is often used in bioinformatics are
Bayesian networks—including the naı̈ve Bayes classifier,
which can be considered as the simplest kind of Bayesian
network for the classification task of data mining. Fig. 4a
shows an example of a Bayesian network, where PR00784 is
a PRINTS signature, and IPR002030 and IPR002113 are
InterPro signatures. The edges in the network represent
dependences between the attributes (nodes in the graph).
As shown in Fig. 4b, a naı̈ve Bayes classifier is represented
by a simple network structure where every attribute
directly depends on the class attribute (Mitochondria in

this example network) only, so that the attributes are
assumed to be independent from each other given the class.

Despite the potential of Bayesian networks for represent-
ing comprehensible knowledge due to the network’s
graphical structure [37], in practice, this potential seems
largely unexplored in the bioinformatics literature. In
general, works using Bayesian networks report only a
measure of predictive accuracy of the network, without
showing the actual network (not even a small part of it).
This is regrettable, and we encourage authors working with
Bayesian networks to report (at least the main part(s) of) the
constructed networks. Even the vast majority of works
using the naı̈ve Bayes classifier focus only on reporting its
predictive accuracy, rather than trying to interpret the
relevance of the computed conditional probabilities.

It is not difficult to interpret the probabilities of a naı̈ve
Bayes classifier, assuming that the user is familiar with
conditional probability concepts (which is the case for most
scientists), and this interpretation can be facilitated by the
use of visualization techniques. For instance, Szafron et al.
[62], [63] report classification models using a graphical
representation, based on bar graphs. In essence, each
functional class is associated with a stacked bar, consisting
of several subbars. Each subbar is associated with a
predictor attribute, and the length of a subbar within the
bar of a given class is proportional to the probability of
observing that attribute value in the proteins of that class.
An example of such a bar-graph-based visualization of a
naı̈ve Bayes classifier is illustrated in Fig. 5.

In any case, it should be noted that black-box and white-
box models are not mutually exclusive approaches. Both
types of models can be used in a hybrid system, trying to
combine the potentially somewhat greater predictive power
of black-box models with the advantage of comprehensi-
bility of white-box models. An example of such a hybrid
approach is found in [24], where in essence, a support
vector machine is used as a preprocessing method for a
decision tree induction algorithm.

It is interesting to note that concerning the explanation of
the predictions, IBL protein function prediction methods
are at a kind of intermediate position between the two
extremes of a completely black-box or completely white-box
model. On one hand, they do provide an “explanation”—in
the sense of corroborating evidence—for predicted func-
tions [26]. The explanation in question consists of showing
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Fig. 4. Examples of a Bayesian network and a naive Bayes classifier’s

network structure. (a) Bayesian network example. (b) Naive Bayes

example.

Fig. 5. Example of a bar-graph-based visualization of a naive Bayes

classifier.



to the biologist the sequences and functional annotations of
the nearest hit(s) to the target sequence. On the other hand,
this explanation is specific to each target sequence, and it is
an explanation at a low level of abstraction—i.e., at the level
of individual protein sequences.

Note that a white-box classification model can explain its
predictions at a higher level of abstraction, consisting of
rules or another type of comprehensible model that
represents a generic relationship in the data, referring to
many proteins at a time—e.g., referring to all the proteins
that satisfy the antecedent of the rule in the case of rule set
representations.

4.2 Examples of Discovered Knowledge
Represented by Comprehensible Protein
Function Prediction Models

To illustrate the potential of classification rules, several
example works are worth mentioning here. We emphasize
that the goal of this section is not to discuss in detail the
biological meaning and relevance of the discovered rules
mentioned here, since most of the works mentioned below
already include such a detailed discussion. Rather, the goal
of this section is mainly to show the diversity of the kinds of
predictor attributes that can be used to discover compre-
hensible protein function prediction models to illustrate
that several different types of biological insights can be
obtained by inducing comprehensible models from data.
Example works include the following:

. Clare and King [8] mined data about mutant
phenotype growth experiments with S. cerivisiae.
The predictor attributes represented growth media
for mutant phenotypes—attribute values denoted
the observed sensitivity or resistance of the mutant
compared with the wildtype. The predicted classes
were defined by the MIPS protein functional
classification scheme. The rule induction algorithm
discovered many comprehensible rules that had just
one or two conditions and had a good predictive
accuracy. These rules were simple to interpret and
clearly identified the most relevant attributes for
protein function prediction out of all the attributes,
giving experimenters knowledge about which
growth media are more informative for identifying
different functional classes of disruption mutants.

. Clare and King [10] did further experiments with a
rule induction algorithm applied to S. cerivisiae data,
using several different kinds of predictor attributes
and again predicting MIPS functional classes. They
reported the discovery of several comprehensible
rules, in particular 1) a rule having conditions
referring to the predicted secondary structure
(lengths and relative positions of alpha, beta, and
coil parts of the structure) and 2) a rule having
conditions referring to the degree of homology to
other kinds of proteins. These rules were shown to
be consistent with biological knowledge.

. Kretschmann et al. [38] described how they use
sequence patterns and organism information to
build decision trees and rules. Due to many user
requests, the rules predicting annotations for Uni-

ProtKB/TrEMBL are displayed on the UniProt web
page (www.uniprot.org) so that users can easily
trace back the origin of the annotation.

It should be noted that the previously quoted example
works in general report “high-level” rules, whose condi-
tions involved predictor attributes at a high level of
abstraction, gave new insight about the data, and led to
the explicit formulation of new biological hypotheses. The
next example works differ with respect to the level of
abstraction of the discovered rules:

. He et al. [24] obtained relatively “low-level” rules
predicting transmembrane segments, where the rule
conditions refer to the presence of specific amino
acids in specific positions of the sequence.

. This kind of low-level rule—with conditions refer-
ring to specific amino acids in specific positions—
was also discovered by Huang et al. [27], with the
difference that in this case, the rules predict protein
stability changes upon mutations.

Although the rules discovered in the previous two works
do not give as much insight about the data as rules having
higher level attributes, they were still considered inter-
pretable by the authors, and they were found to be useful to
guide “wetlab” experiments because the explicit sequence
features that caused the prediction to be made are
identified, and therefore, a specific mutation can be made
to validate the prediction. Therefore, biologists can narrow
the experiment scope by focusing only on certain changes in
amino acid sequence.

The discussion up to now assumed the use of a
conventional decision tree representation (from which rules
were derived), using axis-parallel splits in the attribute
space. Hayete and Bienkowska [23] compared axis-parallel
and oblique splits in the prediction of GO terms. Oblique
splits are more flexible than axis-parallel splits. This
flexibility is illustrated in the abstract two-dimensional data
space shown in Fig. 6, where only one oblique split is
needed to separate positive and negative classes in Fig. 6a,
while three axis-parallel splits are needed in Fig. 6b.
However, oblique splits are considerably more difficult to
be interpreted by biologists (because they are typically
produced by mathematical equations involving several
variables), as well as requiring much more processing time
than axis-parallel splits. Interestingly, in the previously
mentioned work, oblique splits did not improve predictive
performance with respect to simpler axis-parallel splits, so
axis-parallel splits were preferred due to their better
comprehensibility and shorter processing time.
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5 CONCLUSIONS

This paper presented a critical evaluation of the conven-

tional approach for measuring the performance of a protein

function prediction system, which is typically based on a

single quality criterion—namely, predictive accuracy. This

approach has very often led to the induction of “black-box”

predictive models that in general, although very accurate,

cannot be interpreted by biologists and so do not offer any

new insights to the latter.

As a refreshing alternative to this conventional approach,

the paper reviewed the importance of discovering compre-

hensible (“white-box”) predictive models, which can be

interpreted by biologists and be used as a source of ideas for

the creation of new hypotheses and insights about the data

and the target biological research problem. The paper also

discussed different knowledge representations that lend

themselves more naturally to the expression of comprehen-

sible models than the representations typically used in

black-box systems, therefore facilitating the goal of dis-

covering models that are easily interpretable by biologists.

Hence, it is hoped that this paper will motivate other

researchers and practitioners to pay more attention to the

important issues of discovering and interpreting—in the

context of current biological knowledge—comprehensible

protein function prediction models.

We emphasize that the induction of comprehensible

models with data mining techniques is by no means the

only useful approach for protein function prediction. Such

prediction is of course a very challenging problem in

general, and so, there are plenty of opportunities for using

alternative techniques. In particular, the induction of

comprehensible white-box models should be used as a

complementary approach to (rather than replacing) the more

conventional approaches of IBL systems and the induction

of black-box models aimed at maximizing predictive

accuracy only.

Concerning future research directions, although there are

several case studies reported in the literature where many

discovered rules were analyzed with respect to their

biological meaning and relevance, there are still many

problems to be solved. One major problem is that the number

of discovered rules is often very large, seriously hindering

rule interpretation by the biologist user. As examples of

this problem, He et al. [24], Kretschmann et al. [38], and

Laegreid et al. [39] report the discovery of about 20,000,

11,306, and 18,064 rules, respectively.

To cope with the interpretation of such a large number of

rules, one possible direction could be to apply a clustering

algorithm to the discovered rule set, in order to group

similar rules into the same cluster and then summarize the

contents of each cluster with a “typical prototype” rule or a

higher level rule that summarizes the original rules for that

cluster.

An alternative approach for future research could be to

borrow, from the data mining literature, methods that try to

select the most “interesting” (novel and unexpected) rules

out of a large set of discovered rules [17], [42], [53], [60].

Such methods seem still unexplored in the context of

bioinformatics.
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