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Abstract— The recent development of methods for extracting
precise measurements of spatial gene expression patterns from
three-dimensional (3D) image data opens the way for new
analyses of the complex gene regulatory networks controlling
animal development. We present an integrated visualization and
analysis framework that supports user-guided data clustering to
aid exploration of these new complex datasets. The interplay of
data visualization and clustering-based data classification leads to
improved visualization and enables a more detailed analysis than
previously possible. We discuss (i) integration of data clustering
and visualization into one framework; (ii) application of data
clustering to 3D gene expression data; (iii) evaluation of the
number of clusters k in the context of 3D gene expression
clustering; and (iv) improvement of overall analysis quality
via dedicated post-processing of clustering results based on
visualization. We discuss the use of this framework to objectively
define spatial pattern boundaries and temporal profiles of genes
and to analyze how mRNA patterns are controlled by their
regulatory transcription factors.

Index Terms— bioinformatics visualization, multimodal visu-
alization, integrating Infovis/Scivis, visual data mining, three-
dimensional gene expression, data clustering, cluster visualiza-
tion, gene expression pattern, temporal expression variation, gene
regulation, spatial expression pattern

I. INTRODUCTION

UNDERSTANDING the control of embryo development is
a fundamental question in biology. A cell’s unique fate is
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determined by specific combinations of developmental regulatory
factors that form part of complex genetic regulatory networks
ultimately coordinating the expression of all genes. As a result,
the developing embryo exhibits an extraordinarily complex set of
spatial and temporal gene expression patterns. The basic structure
of the genetic regulatory network is defined by the genome
sequence. However, we currently cannot adequately decipher this
information or correctly predict how patterns of gene expression
evolve.

The Berkeley Drosophila Transcription Network Project (BD-
NTP) is generating multiple complementary datasets to address
these challenges using the early Drosophila developmental regu-
latory network as a model. These data sets include in vitro- and
in vivo DNA binding data for key transcriptional regulators and,
of particular relevance to this work, 3D gene expression data that
describes the spatial output of the network at cellular resolution
for multiple time points [1], [2].

A large variety of questions can be addressed using these new
3D gene expression datasets [2], [3]. For some analyses, such
as logic-based network models, it is helpful to have an objective
description of the pattern of a gene at a particular time point,
i.e., to define which cells do or do not express a gene. Analysis
of the temporal dynamics of gene expression, i.e., how patterns
change over time, is essential for gaining a deeper understanding
of complex network inter-relationships. Knowledge of the input
and output of a network, i.e., the response of the gene expression
network at time t = ti+1 to the input of the expression levels of
regulators at time t = ti, is paramount to identifying regulatory
interactions.

To address these and other challenges, we need a flexible
visualization tool that allows for interactive exploration of the
data. Since drosophila melanogaster has been used as a model
for genetic research for decades, there exists a large accumulated
body of knowledge about it. A tool designed for the analysis
of 3D gene expression data must therefore allow researchers to
incorporate this existing knowledge in the analysis, for example
by providing ways to modify analysis results, and thus the visu-
alization, accordingly. The tool must also capture the biological
context of the embryo and allow different subsets of the data
(cells or gene expression patterns) to be examined.

While visualization is a powerful approach to gain deeper in-
sights into such complex data sets, it is limited in this case because
the intricate and often subtle nature of 3D gene expression data
makes visual detection of all existing features very difficult. For
example, a typical feature of interest would be various groups
of cells behaving similarly with respect to the expression of
several genes. A human’s eye and mind, however, cannot readily
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Fig. 1. 3D images, each containing a whole embryo (left), are transformed
into PointCloud files containing information about cell positions and the
expression of the measured genes. Our visualization tool, PointCloudXplore
(PCX), uses a 3D physical model to visualize the embryo (middle). To provide
an overview of all cells in PCX, the embryo is projected onto a rectangular
plane using cylindrical projection (right) along with annotations indicating
the anterior (A), posterior (P), dorsal (D) and ventral (V) orientation of the
embryo. Here, the expression pattern of the gene even skipped (eve) is shown
in red and the pattern of snail (sna) in green.

compute relative concentrations of gene products. Data clustering
has already proven to be very powerful at revealing details from
conceptually simpler forms of expression data, such as that from
microarray experiments, that are not easily detected visually in
raw data. Appropriately defining clustering parameters, such as
the number of clusters, as well as validation and interpretation
of clustering results, is a non-trivial endeavor. To overcome
these difficulties in both visual analysis and data clustering, we
have adapted data clustering for 3D gene expression analysis
by integrating it into PointCloudXplore (PCX). PCX is a vi-
sualization tool that features linked physical and information
visualization views specifically developed for visualization of 3D
gene expression data [4], [5].

Sections II and III present essential biological background nec-
essary for understanding this work. After describing our integrated
system in detail in Section IV, and evaluating the question of
how to choose the number of clusters k in Section V, we discuss,
using a few example cases, how our integrated data clustering
and visualization tool can be used in practice to address three
relevant questions: (i) How can we usefully divide cells into
distinct components of a gene’s expression pattern? (Section VI);
(ii) What is the temporal variation of a gene expression pattern?
(Section VII); and (iii) What components of a gene’s expression
pattern are related to the expression patterns of the regulatory
factors that control it? (Section VIII). In Section IX we present
our conclusions and describe future plans.

II. BACKGROUND

All cells of living organisms contain DNA, which encodes
the genetic information of the organism. Genes are functional
subsequences of the DNA. Most genes code for the amino
acid sequences of proteins and additional cis-regulatory elements
that help to determine in which cells the gene’s product will
be expressed. An important class of protein coding genes are
developmental regulatory transcription factors that function by
binding to cis-regulatory sequences in many genes and direct their
patterns of gene expression. Complex genetic regulatory networks
are built up where cascades of differently expressed transcription
factors ultimately regulate all genes’ expression. These networks
guide the development of all living organisms. The characteristic
spatial and temporal patterns of regulatory transcription factors
define the body plan of the developing animal (see Figure 1).

To provide a quantitative description of these patterns of
gene expression in the early Drosophila embryo, the BDTNP
has developed a data processing pipeline for extracting precise
measurements of spatial gene expression patterns in 3D space.
Drosophila embryos are first fluorescently stained and imaged

using two-photon microscopy (see Figure 1, left). Each image is
segmented to extract information, such as nuclear positions and
volumes, as well as expression values in the neighborhood of each
nucleus for the chosen genes [2]. The resulting PointCloud file
contains information about either protein or mRNA expression
of the genes. It is not practical to obtain the expression of more
than a few genes in a single embryo, due to the limited number
of different distinguishable fluorophores as well as the difficulty
in adding multiple labels to embryos.

To allow relationships between multiple transcription factors
and their target genes to be compared in a common coordinate
framework, PointClouds are registered into a Virtual Embryo us-
ing both morphology and a common reference gene to determine
cell correspondences [6], [7]. Because the spatial patterns of the
genes change rapidly during stage 5, we stage the embryos based
on invagination of cell membranes and group the PointClouds
into six temporal cohorts [2].

For temporal comparisons, different cohorts are matched using
the cellular flow fields that predict the positions of individual cells
at each time point [3], [7]. This method enables us to follow gene
expression levels within a particular cell over time using only
data measured in fixed embryos. Hence, each cell in the Virtual
Embryo contains gene expression levels for each of the six time
steps. This cellular-level link between embryos of different ages
makes it possible to study the development of gene expression
patterns over time, as well as to use an mRNA expression pattern
as an approximate substitute for a later protein expression pattern,
when suitable protein data is not yet available [7].

Figure 1 (middle image) shows a 3D representation of a Virtual
Embryo with an average expression pattern using the BDTNP’s
visualization tool PCX. To provide an overview of all cells while
preserving the relative spatial expression patterns, PCX offers a
second physical view in which a cylindrical projection maps all
cells onto a rectangular plane (see Figure 1, right). For simplicity,
here we use this Unrolled View as our standard physical embryo
view. A 3D view can equally be used to view embryos and
developmental stages with more complex morphologies than in
the early Drosophila embryo.

III. RELATED WORK

Data classification is the systematic grouping of data into
categories according to some criteria. Data clustering is a class of
techniques for unsupervised classification of data samples (here
cells) into groups (clusters) of similar behavior. Data clustering
provides means for the automatic discovery of data subclasses [8].

In some experimental contexts, such as expression microarrays,
gene expression data is often represented as a data matrix, where
each gene corresponds to a row and each data sample (cell,
microarray, experiment, or condition) to a column. Each matrix
entry describes the expression level of a gene in a specific
experiment. In these applications, data clustering has proven very
useful to classify expression data matrices and thereby identify
characteristic sub-structures of each matrix.

Gene expression data clustering can roughly be subdivided into
three applications: (i) clustering of genes to identify genes of
similar function [9]; (ii) clustering of data samples to identify,
for example, different tumor cell types [10]; and (iii) biclustering,
i.e., clustering of genes and data samples at the same time to
find subgroups of genes and data samples where highly similar
activities are seen for the genes in the subset of data samples [11].
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Clustering results are most commonly visualized using scatter-
plots, plots of statistics, and color table views with columns
and/or rows sorted with respect to the clustering. The broad
applicability of clustering to gene expression has led to the
development of several commercial and publicly available tools
for clustering and visualization of gene expression data [12],
[13], [14], [15], [16], [17]. However, these tools are limited to
what essentially are one-dimensional analyses of gene expression
in homogenized populations of cells. They do not take account
of spatial position nor the complex relationship of expression
across neighboring cells, and are consequently not suitable for
interactive visualization and exploration of 3D gene expression
data produced by the BDTNP.

Validation of clustering results and evaluation of an “optimal”
number of clusters k is an important problem in clustering of
gene expression data. A survey of computational cluster validation
techniques for gene expression data analysis is provided by Handl
et al. [18]. Cluster evaluation functions are commonly subdivided
in external and internal measures. External evaluation measures
compare the result of a single clustering with a known set of
class labels (the “gold standard” or “ground truth”). For our data
a “gold standard” is not known, and consequently, we cannot
consider external cluster evaluation functions. Internal evaluation
measures do not rely on a “gold standard” but evaluate the
clustering based on clustering results and the classified dataset.

The most common cluster evaluation measures consider the
compactness, connectedness, and/or separation of a clustering.
Such general measures, however, do not employ any specific
characteristic of gene expression data. The Figure Of Merit
(FOM ) is an internal measure for gene clustering proposed by
Yeung et al. [19] and extended by Datta and Datta [20] that
employs explicitly the redundancies and correlations often present
in gene expression data. In our application, the level of redundant
information is generally low. As a result, FOM and analysis
techniques such as the overabundance analysis proposed by Ben-
Dor et al. [21] are often not appropriate for our applications
but may be interesting when the cells of the embryo are to be
classified based on the information of a very large number of
genes. To the best of our knowledge, none of these existing cluster
quality measures directly employ the fact that genes are expressed
in characteristic spatial patterns.

Internal cluster quality measures have been used to estimate
the number of clusters k in a dataset. Estimation of an “optimal”
k is usually done by computing a series of clustering results
for an increasing number of clusters k. If a clustering algorithm
and internal evaluation measure are adequate for the data to be
classified, an “optimal” value of k can often be identified as a
“knee” (or elbow) of the resulting performance curve. Tibshirani
et al. [22] introduced the gap statistic, a statistical procedure that
formalizes this heuristic. Milligan and Cooper performed a Monte
Carlo evaluation of 30 procedures for determining the number of
clusters in a data set [23]. Existing cluster evaluation measures are
designed to find “one perfect” k. As we show later in Section IV-
D and V, when clustering cells in a 3D gene expression data set,
we typically find a series of valid values for k, rather than the
one “perfect” k.

To enable visualization of high-dimensional 3D gene expres-
sion data, PCX uses the established concept of linked multiple
views [24]. Henze [25] proposed a system based on multiple
views (termed portraits) for exploration of time-varying com-

Fig. 2. The data clustering and visualization pipeline. Each box represents
a stage of the pipeline, and contains the section number where we describe
that part of the pipeline in this paper.

putational fluid dynamics data sets; advanced queries can be
performed by selecting data subsets in these portraits. In the
WEAVE system, a combination of Physical Views and Infor-
mation Visualization Views (or abstract views as we refer to
them in this paper) is used for exploration of cardiac simulation
and measurement data [26]. Doleisch et al. [27] formalized the
concept of using abstract views to define data queries.

It is often useful to interactively select data samples from a
visual data representation, an operation generally referred to as
brushing. A brush is an object that defines one specific selection
of data samples. In PCX, brushing is used in a variety of views
to select groups of cells with respect to associated quantities. To
make this concept more intuitive to the biologist users, brushes are
referred to in PCX as cell selectors and the operation of brushing
as cell selection. Furthermore, cell selectors defined in one view
are also highlighted in all other views, greatly aiding identification
of further data properties. This process is termed linking.

PCX was also inspired by the work of Kosara et al. [28],
Piringer et al. [29], and Fua et al. [30], who described sev-
eral important extensions to standard scatter-plots and parallel-
coordinates which are incorporated as abstract views in PCX and
also used here [4], [5].

IV. DATA CLUSTERING AND VISUALIZATION PIPELINE

The PCX processing pipeline consists of two main intercon-
nected components: visualization and data clustering. Visual-
ization provides the ability to explore the data, to determine
appropriate parameters for the clustering, to validate and analyze
clustering results, and to modify clustering results using several
dedicated cluster post-processing techniques (see Figure 2). Clus-
tering provides ways for automatic identification of data features
by classifying cells into groups (the clusters) based on similarity
of their gene expression profiles. By highlighting clusters in the
visualization, analysis and comparison of specific data features
becomes possible, leading to a much more focused analysis of the
data. Figure 2’s flowchart shows the basic structure of the data
clustering and visualization pipeline as well as the connections
between its main components, which are described in detail in
the following subsections.

A. Visualizing 3D Gene Expression Data

As described above, PCX is a visualization tool specifically
developed for the analysis of 3D gene expression data [4],
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[5]. Physical and abstract views are integrated into a common
framework using the established concept of brushing and linking.
In physical views, color and height are used for visualizing
spatial gene expression patterns (see Section II). In abstract views,
physical cell positions are ignored and expression levels for
multiple genes are plotted with respect to each other using scatter
plots or parallel coordinates.

Selecting cells of interest can be executed in any view in PCX.
Depending on the view, different data properties are employed
to select cells. User-defined cell selections are then stored and
managed in a central cell selector management system. Since all
views have access to the same set of cell selectors, features of
interest can be defined in any one view and then further analyzed
in any other view (as will be shown later, in Figures 6, 13 and 14).
The most common way to visualize cell selectors in PCX is to
use a consistent color mapping. Depending on the current view,
additional functions for highlighting cell selectors are available,
such as cell selector-bands in 2D parallel coordinates (see, e.g.,
Figure 6 and 14).

B. Cluster Statistics

Analysis of statistical properties of clusters is essential for both
the validation and analysis of clustering results. Cluster properties
provided by PCX include the percentage of cells selected by
a cluster, as well as the minimum, maximum, average, and
standard deviation values for gene expression levels in a cluster.
To compare these statistical properties for one gene in multiple
clusters or multiple genes in one cluster, PCX provides box-plots
and multi-dimensional color/transparency histogram plots. In his-
togram plots, we use both color and transparency to visualize the
number of cells within a cluster that express the gene over a range
of expression levels. Average curve plots (with optional error bars
showing standard deviation values) aid in simultaneous analysis
of multiple clusters in multiple genes. A simple example shown
in Figure 3 illustrates the use of cluster statistics.

C. Data Selection

While it is possible to execute the clustering algorithms on an
entire dataset, a more typical use pattern is to focus clustering
on a data subset relevant to a specific line of scientific inquiry.
The researcher, therefore, needs to define which parts of the data
are relevant to address the current problem. In this section, we
describe the different steps involved in the data selection process,
as well as the effects of data selection on the cluster analysis,
and describe how spatial information can be incorporated in the
data analysis process. In the following two subsections, we will
then describe clustering of 3D gene expression data and post-
processing of clustering results.

3D gene expression data can be described as a matrix where
each row represents one cell and each column one cell attribute,
i.e., the expression of a gene at a specific time point or the x,
y, z position of the cells in physical space. In order to define
which parts of the expression data matrix are relevant, one needs
to define: i) which rows (cells), and ii) which columns (gene+time
point, x, y, z) are of interest. Note that this form of data is quite
different from that of gene expression microarray matrices, where
each row represents a gene and each column represents expression
under a different experimental condition, and spatial relationships
are meaningless.

Fig. 3. An analysis of characteristics of the giant (gt) expression pattern using
cluster statistics. a) An unrolled view showing the spatial structure defined
by five clusters. The red and orange cluster define the centers of the two
expression regions of gt, and the other clusters define the boundaries. b) A
curve plot showing the average expression profiles of the genes D, Kr, gt, and
hb in each of the five clusters (x-axis). The y-axis represents expression level.
c) A Box-plot comparing the expression of hb in the five clusters. The x-axis
represents expression level. d) A color/transparency histogram comparing the
expression of D, Kr, gt, and hb for cluster p 2 (green). The x-axies indicates
gene expression level. We use a “heat map” coloring scheme to indicate the
number of cells in the cluster having a given expression level: red indicates
many cells, while blue indicates few cells.

Cells of interest can be defined in PCX by using any cell
selector or by using the results of a previous data clustering.
Defining cells of interest focuses the analysis on a specific part
of the data and also reduces the impact of surrounding noise
on the analysis. By explicitly allowing data selection based on
cell location, PCX overcomes one of the limitations of clustering
methods designed for expression microarray data. By using an
earlier clustering to define cell subsets of interest, one can first use
PCX to group cells into a smaller number of clusters representing
the predominant data features and then refine these clusters
again using additional rounds of data clustering. In PCX, data
clustering, as well as validation of clustering results, can in this
way be performed in a step-by-step iterative process.

Defining which cell attributes are of interest is mandatory
prior to clustering in PCX since these attributes define the actual
biological context of the cells. To account for the complexities
of 3D expression data, a variety of unique cell attribute data
selection strategies is supported within PCX. First, genes of
interest are generally identified based on visualization of the
3D gene expression data as well as based on input from other
biological experiments, such as in vivo protein-DNA binding
affinity data. Second, to account for spatial location in the
clustering analysis, it is possible to directly use cell coordinates
as input to the PCX clustering process. Adding this data enforces
creation of spatially separated clusters along the AP (x) and/or
the DV (y and z) body axes. Individual weights can be defined
for x, y, and z. These weights are then considered in the distance
metric (see Section IV-D). However, in most cases the preferred
way to incorporate spatial information in the analysis process
is by splitting the newly computed clusters into their main
independent spatial components. The main advantage of such a
cluster post-processing technique over including cell coordinates
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Fig. 4. a) giant (gt) expression pattern classified using k-means clustering
with Euclidean distances and k = 3. b) Same, using k = 7 and including x cell
positions weighted with 0.24 (after normalization). c) A box-plot showing
the statistics in gt expression (x-axis) for the two main clusters of the result
shown in a) (first two entries on the y axis) and for the four main clusters
of the clustering shown in b). Including spatial information in the clustering
resulted in spatially separated clusters for the main regions of gt, as well as
in different threshold levels depending on the physical cluster locations.

in the clustering process is that cells with similar expression
behavior in different parts of the embryo can be identified, and
possible clustering artifacts due to the mixing of expression and
spatial information can be prevented.

We observed an improved quality of analysis results by adding
spatial information to the clustering process when classifying the
static pattern of a single gene that has a wide spatial distribution.
In the example shown in Figure 4, we classified the pattern of
the gene giant (gt) using k-means clustering with and without
using x (AP) cell positions in the clustering process. In the first
case, three clusters were created, each selecting cells expressing
gt at different levels, i.e., low, medium, and high expression
(Figure 4a). By considering x cell positions, we create separate
clusters for the different major spatial components of the gt
expression pattern (see Figure 4b). In this case, each cluster
includes only cells that express gt at specific levels, while the
minimum and maximum expression level selected by each cluster
also depends on its physical location. In this case, higher threshold
levels were created in the anterior, and lower thresholds in the
posterior region of the embryo (see Figure 4c). Creation of region-
dependent threshold levels is often desirable when analyzing the
static pattern of a single gene since each domain of a pattern may
be regulated differently and, therefore, different thresholds may
be appropriate. For gap genes with spatially distant, independent
expression domains, such as gt, this simple strategy works well,
whereas for patterns with shorter interdomain distances, such as
eve, this strategy fails.

D. Clustering 3D Gene Expression Patterns

To implement clustering operations in PCX, we we use portions
of the open source clustering library “Cluster 3.0” [31]. We
have integrated data clustering directly into PCX and created a
dedicated GUI that provides access to data clustering and allows
management of clustering results. Clustering algorithms currently
available in PCX include the most commonly used methods for
microarray gene expression data analysis, such as k-means, k-
median, and k-medoid clustering, as well as several hierarchical
clustering algorithms, and self-organizing maps (SOMs) [31], [9],
[10], [32]. All these clustering algorithms require an appropriate
distance function in order to define similarity between cells. In
PCX we included the most common metrics for defining distances

Fig. 5. An example clustering of giant(gt) and Krüppel (Kr) using k-means
clustering and Euclidean distances with k = 8. In the scatter-plot, the structure
of the clusters is shown in expression space, while the unrolled view reveals
spatial structures formed by the different clusters.

in gene expression space: Euclidean distance, city-block-distance,
and several derivatives of the Pearson correlation [31].

Some clustering algorithms require additional parameters, such
as the number of clusters k, to be specified by the user. In the
context of 3D gene expression data there exists in general not
a single “perfect” value for k, but we rather find a number of
valid values, each representing a different level of detail. This
behavior is due to the fact that quantitatively different expression
levels of a gene may lead to multiple different outputs of the
underlying genetic regulatory network. It is therefore valid to
subdivide elongated structures formed in gene expression space
into several sub-clusters.

For example, consider early-stage giant (gt) and Krüppel (Kr),
which are expressed in spatially non-overlapping patterns, leading
to formation of an L-shaped scatter plot (see Figure 5). Even
though one could interpret this structure as one cluster – possibly
indicating a NOT relationship between gt and Kr – it is also
valid to subdivide this structure into, e.g., eight clusters, resulting
in one cluster representing background expression, a three-level
description of the pattern of Kr, and a four-level description of
the gt pattern.

The choice of k depends on the level of detail required by the
user. Therefore, PCX uses an interactive process to define k based
on visualization. The spatial structure formed by the cells selected
by clusters, cluster statistics, and standard data visualizations
provides a way to decide if the number of clusters should be
increased or reduced. Depending on the characteristic spatial
patterns of genes, the cells included in a cluster often define
some coherent spatial pattern. Thus, the presence of clusters
that show high spatial scattering may be an indication that the
chosen k was too large. To assist in this evaluation process, we
have developed a dedicated cluster quality measure indicating the
physical scattering of clustering results along with a function for
suggesting a good initial k. These measures will be described in
more detail in Section V. In Section VI, an example is provided
where the pattern of eve is classified using different values of k.

Like a manually created cell selector, an automatically created
cluster defines a subset of cells in the embryo and can, therefore,
be stored and visualized in the same way as cell selectors. Thus,
clustering can be used for highlighting data features in physical
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Fig. 6. Filtering applied to an example cluster. The cluster is split into its
four independent spatial components (red, blue, and two shown in green).
The profiles of these regions in gene expression space are shown in parallel
coordinates. Here, the genes slp1, hb, Kr, gt, kni, and tll, which were used
to obtain this clustering result, are each represented by one axis, and the
percentage of expression is shown in ordinate direction (y-axis). One can see
that the blue cells are spatially more distant to the main component of the
cluster (red) than the green cells, and that they show a higher divergence from
the main spatial component of the cluster in gene expression space.

or abstract views, enabling a much more focused analysis. In the
visualization, PCX allows colors to be assigned to clusters either
randomly, manually, or according to the average or ranked average
expression of a selected gene in each cluster. Using physical
views, the spatial pattern defined by a cluster can be analyzed, and
abstract views allow for identification of cluster characteristics in
gene expression space.

E. Cluster Post-processing

Cluster post-processing is essential to allow users to mod-
ify clustering results with respect to validation results or prior
knowledge. There are four ways to post-process clusters in PCX.
Manual correction and cluster filtering are two ways to correct
small groups of misclassified cells. Cluster merging and splitting
provide means to derive coarser or finer representations based on
spatial information from the initial clustering.

Manual correction of clustering results can be performed in
any physical view. By drawing on the embryo surface, one can
interactively add and erase cells from the selection defined by a
cluster. In contrast, filtering provides an automatic way to correct
misclassified cells. Because genes are expressed in coherent
spatial patterns, outliers in physical space tend to be also outliers
in gene expression space. Therefore, we have developed a cluster
filtering method that identifies and reassigns misclassified cells
to the spatially neighboring cluster that is closest in expression
space. First, all spatially independent components of a cluster
that consist of less than M cells are identified. To rule out false
filtering, a minimum distance in physical space as well as a
maximum error in expression space can be defined. In the example
shown in Figure 6, it would be possible to exclude the cells
shown in green from the filtering process either by increasing the
minimum spatial distance or by reducing the maximum allowed
error in expression space.

Merging clusters allows coarser representations to be created
from an initial finer clustering. Such coarser descriptions often
provide a clearer visualization that focuses on the main question
being addressed (see, e.g., Section VI). Splitting clusters, on the

other hand, provides means to derive finer representation from
clusters based on spatial information. A cluster often consists
of several spatially independent components (for example Fig-
ure 12), which may need to be treated differently in subsequent
analysis. In general, however, one major component of a cluster
may be defined by a number of small spatially independent com-
ponents. PCX uses a modified single linkage clustering approach
to split up such a cluster into a selected (often smaller) number
of components.

The splitting algorithm works as follows. A cluster is first
split into all its spatially independent components. The smallest
components are subsequently merged with the spatially closest
component. This approach is computationally more efficient and
less sensitive to outliers than a classical single linkage clustering
and also guarantees that the independent spatial components of a
cluster are preserved while small, scattered components can still
grow to define major cluster components. An example for cluster
splitting will be described later in Section VI.

V. IDENTIFYING GOOD VALUES FOR k, THE NUMBER OF

CLUSTERS

Many clustering algorithms, such as k-means, require the user
to specify as an input parameter the target number of clusters,
k. The quality of clustering results often depends on a proper
choice of k. Unless users have a priori knowledge concerning
the number of clusters present in the data, it is helpful for
the user that the software offers a reasonable, initial value for
k. Different approaches for finding an “optimal” k have been
proposed. Among them, those based on internal cluster measures
appear to be more appropriate for our application [18], [23].
Our objective here, as described below, is to provide the user
assistance in interactively searching for a good k as opposed to
trying to automatically compute the optimal value of k.

Even though internal cluster quality measures (see Section III)
may be useful here, we are not aware of any such measure
that takes the specific characteristics of 3D gene expression data
into account. Since genes are often expressed in compact spatial
patterns, we expect the derived clusters to be spatially compact.
The presence of computed clusters with high spatial scattering
typically suggest that the value of k was too large. Because
we do not use information about physical cell position in the
clustering process, spatial compactness is a criterion available as
an independent measure for clustering quality. As we will discuss
below, spatial cluster scattering can also serve as a measure to
indicate a series of adequate values of k. Combining spatial cluster
scattering and the clustering error in expression space yields a
method to identify a good initial value for k that accurately reflects
the structures present in the data, but with relatively low spatial
scattering.

We propose to use

εscatter(k) = ∑
k
i=1 R1(i)

∑
k
i=1 R∞(i)

(1)

as an objective measure for the relative spatial scattering of a
clustering result. Rs(i) (with s > 0) is the number of spatially
independent components of cluster i consisting of at most s cells.
R1(i) thus defines all single cell regions in cluster i. R∞(i) is
the total number of spatially independent regions in cluster i.
εscatter ∈ [0,1] is independent of the clustering algorithm, usually
has discontinuities, and shows a larger variation for smaller values
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Fig. 7. Cluster evaluation functions ε̃exp (red) and εscatter (blue) for the
clustering of gt and Kr, with w = 5 and m = 36. The suggested k is eight as
shown in Figure 5.

Fig. 8. The patterns of gt and Kr are classified using k-means clustering, as
in Figure 5, but with a) k = 5 and b) k = 19. One can see that the suggested
k = 8 provides a compromise between a high level description as shown in
a) and a detailed description as shown in b).

of k than for large values of k. Local minima of εscatter indicate
values of k for which clusters are relatively compact, and thus
indicate a series of appropriate values of k. In the context of
3D gene expression data, clustering errors introduced by single
cells isolated in physical space are quite common and our choice
for εscatter performs well. An alternative approach might work
better when these cluster outliers consist of small groups of cells.
One approach might be a less sensitive weighted cascade measure
that also accounts for larger regions as potential scatter, such as
εsc(k) = ∑

p
s=1( 1

s ∗∑
k
i=1 Rs(i))

∑
p
s=1( 1

s ∗∑
k
i=1 R∞(i))

, with p > 0 being much smaller than
the number of cells.

To evaluate the clustering error in expression space we use εexp,
the average distance, in expression space, of a cell to the center
of the cluster it belongs to,

εexp(k) =
1
n

n

∑
i=1

dist(center(ci),ci), (2)

where n is the number of clustered cells, ci is the ith cell,
center(ci) is the center of the cluster to which ci belongs, and
dist(·, ·) is the distance operator used in the clustering process.

We compute εscatter and εexp for 2 ≤ k ≤ m, with m being the
first value where εscatter > 50%. If the pattern of only one gene
is used in the clustering, we use εscatter > 60% as termination
criterion instead because variations in background expression
have a stronger impact on the cluster analysis, and because more
complex structures are possible when multiple genes with spa-
tially overlapping patterns are clustered. By using these thresholds
for εscatter, we ensure that we iterate over all potentially useful
clusterings and do not terminate prematurely. We use k = 2 as
starting point because it represents the first potentially useful
clustering. Furthermore, considering the relatively large value of

εexp(1), starting at k = 1 would result in a suggested value for k
that is too small.

To identify a value w for k for which the error in expression
space is sufficiently low to well characterize the data, we identify
the first k for which the decrease in εexp is lower than the
average decrease ∆̄εexp = εexp(2)−εexp(m)

m−2 . Alternatively w could also
be defined as the k that corresponds to the point of the εexp
evaluation curve that is furthest from the line defined by εexp(2)
and εexp(m) [33]. While the first approach tries to find the k
for which the expression error has sufficiently decreased, the
second approach tries to identify the so-called “knee” of the εexp
evaluation curve. Both methods depend on m, but this dependency
is well behaved, i.e., with increasing m the suggested w changes
slowly and continuously. During the research and development of
this work, both methods seem to work equally well.

We use the following algorithm to identify a good initial k > w
that also results in a relatively low physical scattering:

k = w+1
l = k
for i← l to m

do


if (εscatter(i) < εscatter(l)+ t)

then


k = i
if (εscatter(i) < εscatter(l))

then l = i

Initially, k is set to w + 1, which is the lowest value that
results in a sufficiently low expression error. Then, the algorithm
tries to optimize the expression error as well as the physical
scattering by searching for a k > w that also results in a relatively
low physical scattering. Here we use a threshold of t = 4% –
determined through emperical testing – to restrict the maximal
allowed increase in εscatter with respect to l, i.e., the k with
the lowest relative physical scattering visited so far. Since εexp
decreases with increasing values of k, the error in expression space
for the suggested k is guaranteed to be smaller than εexp(w).

Alternatively, one can also view the problem of finding a
good initial k as an optimization problem by looking for the
k that minimizes εtotal(k) =| ε̆exp(k)− 1

w ε̆scatter(k) |, where both
εexp and εscatter are normalized. Conceptually, the first approach
is more intuitive, does not require normalization of the evaluation
functions, and will always suggest a minimum of εscatter if an
adequate local minimum exist. Using εtotal for finding a good
initial k has the advantage that it does not rely on a threshold t.
Furthermore, it may result in a more reliable suggestion in cases
where εscatter is degenerate since εtotal does not directly rely on
the notion that the physical scattering increases with increasing
values of k. In practice both approaches have shown to be useful.

Beginning with an initial, suggested value of k, the user can
then determine the “best” k based on the information from
the cluster evaluation and previews of the different evaluated
clustering results using an Unrolled View. Even though the initial,
suggested value of k may not always be optimal, our testing has
revealed there is value in providing a “reasonable” value or range
of values for k.

Figure 7 shows the cluster evaluation functions for the clus-
tering of gt and Kr. To provide an overview of both functions
in one plot, we show εscatter along with ε̃exp(k) = εexp(k)

εexp(2) . The
suggested k is eight, which is also a strong local minimum of
εscatter. The corresponding clustering result for k = 8 is shown in
Figure 5. Figure 8 shows two additional example classifications
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Fig. 9. a) The expression pattern of eve at stage 5:9-25%; Classification of eve with b) k = 2; c) k = 3; and d) k = 6. While the k = 2 clustering produced
a threshold that was too high, erasing too many cells from the pattern, the k = 3 clustering was better able to identify the seven stripes of the eve expression
pattern. The k = 6 clustering identified additional characteristic variations within the stripes along the DV-axis as well as an additional cluster that selects
some inter-stripe cells showing some higher expression of eve.

Fig. 10. Cluster evaluation functions ε̃exp (red) and εscatter (blue) for
the clustering of the eve expression pattern (left), with w = 4 and m = 9.
The suggested k is five, which is the largest k for which only one cluster
representing low background eve expression is created (right).

of gt and Kr using k = 5 and k = 19. k = 5 is the highest level
for which εscatter = 0 and k = 19 is a local minimum of εscatter
(εscatter(19)≈ 35.29%) close to the middle of the range. Here, we
see that the suggested level of k = 8 provides a good compromise
between high-level and low-level descriptions of the patterns. The
value of k that is best suited to investigate a biological question
depends to a large degree on user requirements. Further example
usages of εscatter and εexp are provided in Sections VI and VII.

εexp and εscatter are global cluster quality measurement func-
tions in the sense that the clustering quality is evaluated based
upon the entire dataset (in this case, all classified cells). Global
error measures might not be appropriate if the user performs a
clustering of a larger number of cells but is interested only in a
small subset of clusters defining some local feature of interest.

VI. SINGLE PATTERN ANALYSIS

Genes are frequently expressed in complex patterns that show
a wide range of quantitative changes in expression across the
cells of an embryo. Although for some analyses, the data is
best left unclassified in this form —simply using the expression
values in all cells— it can also be revealing to divide a single
pattern into one or more distinct regions. For example, on/off
descriptions of expression have been useful in logical models of
gene networks [34], [35].

However, discretizing a gene pattern via manual thresholding
can be problematic – it may be very time-consuming, and the
choice of thresholds is arbitrary and not fully data-dependent.
To address this challenge, one can use, for example, k-means
clustering and Euclidean distances to compute a number of data-
dependent thresholds. Each of the k clusters then represents a
specific threshold range that can be interpreted as a different
confidence level. Different components of a pattern may be
regulated by different genes, so different thresholds may be
appropriate for different regions. Cluster post-processing, such
as splitting clusters into their main spatial components, allows

different threshold levels to be selected for different components
of a gene pattern. Alternatively, as described in Section IV-
C, for genes with clearly distinct spatial expression domains,
cell positions may be used in the initial clustering to enforce
creation of separate clusters for spatially distant components of a
pattern. Rather than choosing some arbitrary thresholds, clustering
automatically suggests thresholds based on the histogram of
the data. The k-means clustering algorithm seeks to minimize
the mean squared distance from each data point (cell) to its
nearest cluster center. To achieve this goal, the k-means algorithm
will create k cluster centers positioned according to the density
distribution of the expression values of the selected gene.

Figure 9 shows three example classifications of the eve expres-
sion pattern using different numbers of clusters k. While k = 2
produces a threshold that is too high and does not capture all
parts of each stripe, a clustering with k = 3 correctly identifies
the seven stripes of the eve expression pattern. By increasing
the number of clusters, additional details within the stripes along
the dorsal-ventral axis can be seen, as well as an additional
cluster selecting cells in the inter-stripe regions. This complex
description illustrates that thinking of a gene as being either on or
off is usually too simplistic. The fact that clustering automatically
reveals differences along the dorsal-ventral axis demonstrates the
usefulness of such analyses. The pair-rule genes, such as eve, are
not typically thought of as dorsal-ventral regulators, but consistent
with the clustering results, careful quantitation of the levels of
eve and similar gene’s expression has shown they indeed show
up to two-fold changes in expression along the dorsal-ventral axis
suggesting a dorsal-ventral component in pair-rule regulation [3],
[2]. Analyzing the actual meaning of these moderate changes
requires computational tools, such as cluster analysis, to provide
objective measures of their significance.

Figure 10 (left) shows the curves of the cluster evaluation
functions εscatter and ε̃exp. In this case, εscatter is rather smooth
and monotonically increasing indicating that all k with εscatter > 0
may result in valid clusterings of the eve pattern. This behavior
can be explained by the very high signal-to-noise ratio of the eve
expression data, which was averaged from dozens of embryos.
The suggested k is five, which is the largest k for which only one
cluster representing low eve expression is created (see Figure 10,
right). A clustering with k = 5 provides a compromise between a
high-level and low-level description of the eve expression pattern.

Binarized versions of the eve pattern (i.e., on/off descriptions)
can be created by merging the different clusters, allowing one
to easily compare the different classifications by defining their
overlay (see Figure 11). While k = 3 and k = 6 result in similar
classifications of the seven stripes, the clustering with k = 2 misses
many cells of the pattern. Thus, first generating multiple clusters
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Fig. 11. Comparison of the clustering results shown in Figure 9. a)
Comparison of k = 2 (red) and k = 3 (blue) classification of eve; b)
Comparison of k = 3 (red) and k = 6 (blue) classification of eve. In b),
the additional inter-stripe cluster found in the k = 6 clustering is shown
in dark green. The percentage of cells of the whole embryo selected by
the different components are: k2 = 31.31%; k3 = 42.596%; k6 = 42.892%;
k3− k2 = 11.287%; k6− k3 = 0.296%; k6 interstripe cluster = 21.06%.

Fig. 12. a) A cluster consisting of 296 spatially independent components;
b) The same cluster split into its seven main spatial components. Splitting
of clusters is essential, e.g., to allow comparison of different main spatial
components of a cluster.

and then merging them can provide a more accurate binarization
of an expression pattern than an initial k = 2.

Cluster merging and splitting can also be useful for comparing
different gene patterns or for comparing different components of
a single gene’s pattern. In Figure 13, for example, the individual
clusters shown in Figure 9d have been merged and then split
to obtain one cluster representing each stripe. Figure 12 shows
an example where the cluster that defined the boundary of the
stripes, consisting of 296 spatially independent components, is
split into its seven main components using the modified single
linkage method described in Section IV-E.

Once derived, we use these individual stripe clusters to high-
light the seven eve stripes via color in different abstract views. For
example, the expression behavior of gt, hb, and Kr –three known
transcriptional regulators of eve– can be revealingly analyzed
within each of the eve stripes using a 3D scatter-plot (Figure 13).
Here, large differences between stripes are visible, the seven
stripes form very distinct point clusters within the scatter-plot.
This behavior is consistent with current models suggesting that the
eve expression pattern does not simply consist of seven identical
stripes, but that many stripes are regulated independently. The
available data suggests that gt, hb, and Kr control some stripes,
but the scatter-plot suggests that these factors have the potential
to regulate all stripes by their unique combinations of expression
levels. Such plots can be very useful in identifying potential novel
regulatory relationships between transcription factors and their
targets.

Generally, scatter-plots have proven to be a very intuitive and
informative gene expression space visualization, but are limited
due to the fact that only three gene dimensions can be visualized
at once. PCX also provides 2D and 3D parallel coordinates
to support simultaneous visualization of many more genes [4].
In Figure 14, the same clusters as in Figure 13 are shown in

Fig. 13. An unrolled view showing seven clusters, each selecting one stripe of
the eve expression pattern (bottom left). The same clusters shown in a scatter-
plot of early-stage Kr (red), gt (green), and hb (blue). Color indicates to which
cluster a cell belongs, while cells not selected by any cluster are colored
gray. The stripes form characteristic clusters in expression space indicating a
potential relationship between eve and the displayed genes.

Fig. 14. The same clusters as in Figure 13 are shown in a 2D parallel
coordinate view of early stage hb, gt, kni, Kr, tll. The average expression of
the seven clusters in the different genes are shown via additional, thicker lines
of darker colors and the associated standard deviations are shown via boxes
placed on each parallel axis. Highly transparent color bands shown in front
of the plot are used to further highlight the different clusters.

a 2D parallel coordinate view of early stage hb, gt, kni, Kr,
and tll indicating additional expression differences between the
spatial clusters. Because numerical PointCloud datasets are not
easily comprehensible, the clustering and cluster manipulation
capabilities in PCX provide a reasonably objective method for
dividing quantitative spatial expression data into computationally
analyzable units.

VII. TEMPORAL VARIATION ANALYSIS

Gene expression patterns are not static but highly dynamic.
Understanding the temporal profile of a gene expression pattern
is essential if we are to understand complex relationships between
genes. Even though visual inspection of an expression pattern
at different time steps provides an impression of the general
temporal behavior of a gene, many important features, such as
groups of cells with a similar temporal expression profile, are not
easily detected and visual quantification of temporal change is not
accurate. For example, the pattern of giant (gt) expression can be
seen to change between six time cohorts within one hour, but it
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Fig. 15. The expression pattern of giant (gt) shown at six different time cohorts of stage 5 of embryo development.

Fig. 16. Based on the patterns of gt shown in Figure 15, cells were classified into seventeen clusters as suggested by εscatter and εexp. Two clusters selected
cells showing only background expression of gt at all time steps and are therefore not shown here. Clusters 1, 8, and 16 were each split into their two
main spatial components. The remaining clusters were not split, since no significant divergence in the temporal expression profile between their main spatial
components could be identified. a) An unrolled view showing all eighteen clusters of interest. b-h) The user grouped the eighteen temporal clusters into seven
main groups based on their average temporal expression profiles in gt. The six time steps are shown on the x-axis and the expression level on the y-axis of
each plot. The spatial patterns defined by the different clusters are displayed in the accompanying unrolled view plots.

Fig. 17. Cluster evaluation functions ε̃exp (red) and εscatter (blue) for the
clustering of the six time steps of gt with w = 10 and m = 54. The suggested
k is seventeen. εscatter further indicates that seventeen is the highest k for the
particular level of detail with relatively low overall physical cluster scattering.

is not possible to rigorously describe how (see Figure 15). To
show how PCX can assist in the analysis of the spatio-temporal
expression pattern of genes, we have used clustering to classify
cells into groups of similar temporal behavior.

In Figure 17, the curves of the cluster evaluation functions
εscatter and ε̃exp are shown. The suggested number of clusters
k is seventeen, which is also a local minimum of εscatter with
εscatter(17)≈ 31.88%. The overall behavior of εscatter indicates that
k = 17 is the largest k at the particular level of detail for which
εscatter is still relatively low. A comparison of εscatter(17) to the
next two lower local minima of εscatter – with εscatter(12)≈ 31.21%
and εscatter(10) ≈ 29.25% – shows only a moderate increase in
εscatter. When comparing εscatter(17) to the εscatter values of the
next two larger local minima of εscatter – with εscatter(19) ≈

36.34% and εscatter(22)≈ 40.14% – a significantly higher increase
in relative physical cluster scattering is visible. This behavior can
be interpreted as an indication that k = 17 may also provide a
good compromise between a high-level and low-level description
of the temporal variation of the gt expression pattern. A level of
k = 17 was also confirmed to be appropriate by users of PCX.

Figure 16 shows as an example the result for gt, in which its
expression patterns at six successive time cohorts were classified
into seventeen clusters using k-means clustering and Euclidean
distances. Two of the seventeen clusters selected cells showing
only background expression at all time steps and are not shown.
Each of the other fifteen clusters show distinct average expression
profiles (the differently colored lines plotted in Figure 16), though
some clusters show profiles that are closely related. In the figure,
the user has grouped these clusters into seven main sub-groups
based on their temporal average expression profiles, shown in
panels b-h. In addition, clusters 1, 8 and 16 have each been
split into two components to separate their anterior and posterior
components.

Several trends can be readily seen from the different views
of the analysis. The unrolled physical views show that clusters
with similar average temporal expression profiles frequently, but
not always, are adjacent to one another in the embryo. Expression
within a set of clusters in the very anterior of the embryo increases
particularly during the later time cohorts (visible, for example,
in Figure 16b). Expression in the posterior margins of both of
the major early gt stripes drops rapidly over the time series
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Fig. 18. a) The transcription factors gt, hb and Kr at stage 5:0-3% are used as input to the clustering; their potential target is eve stripe 2 at stage 5:9-25%
(see Section VI). b) Cells were classified into 22 clusters of which eight are of particular interest. Five clusters actually model eve stripe 2 and three define
the inter-stripe region between stripes 1 and 2, and stripes 2 and 3. Cluster filtering was applied to three single cells only. Clusters were split in order to
separate the stripe-like clusters with similar expression profiles from other spatially distant sub-clusters in the anterior and posterior region of the embryo. c)
An average curve plot of the five clusters within eve stripe 2 showing the characteristic expression profiles of Kr, gt, and hb. d) Average expression curves
for the three inter-stripe clusters. In both average curve plots, Kr, gt, and hb are shown on the x-axis and the level of expression along the y-axis.

(Figure 16f-h). It is known that the location of the posterior gt
stripe moves anteriorly during this time series [36], [3], but the
data show a much more complex pattern of temporal change
than has been observed previously. These results suggest that
a complex combination of regulatory interactions drives these
patterns.

VIII. MULTIPLE PATTERN ANALYSIS

To dissect the complex regulatory interactions between genes,
the expression patterns of different transcription factors that
potentially act together as regulators may be used as input to
cluster analysis. Cells are classified into clusters that have similar
combinations of expression for the input set of regulators. Each
cluster thus describes one potential sub-pattern that a regulatory
network composed of these factors could give rise to. The total
number of clusters then gives an approximation of the maximal
complexity of the output of the network. The results of such a
clustering can also be compared to the expression patterns of
suspected target genes to assess possible regulatory relationships.

To provide an example of such multi-gene clustering, we exam-
ined the relationship between the three transcriptional regulators
giant (gt), hunchback (hb), and Krüppel (Kr) and the second
stripe of the eve gene. These three factors are well-characterized
regulators of this expression stripe; hb is an activator and Kr
and gt are repressors [37]. As discussed in Section VI, the seven
stripes of eve form characteristic clusters in gene expression space
with respect to gt, hb, and Kr expression. By using these three
factors’ expression patterns as input to a clustering analysis, we
can identify the potential expression pattern components that can
be defined based on these regulators (see Figure 18). We used their
mRNA expression values from the first temporal cohort (0%-3%
invagination) to simulate their protein expression values at the
third temporal cohort (9%-25% invagination) – the stage of the
eve comparison target. We have found this lag, on average, to be
optimal for all regulators [7]. In the example, cells are classified
into twenty-two clusters that map to locations throughout the
embryo. Eight of these clusters are of interest to the control of eve
stripe 2, five that lie within the stripe and three in the flanking
inter-stripe regions. The five clusters within stripe 2 define the
center, the anterior and posterior borders, as well as a ventral

portion of the stripe, suggesting that these characteristic parts of
stripe 2 may be different (see Figure 18b).

To validate the structure formed by the clusters against the
target pattern, cluster colors are mapped onto an expression
surface of eve, in which height shows the level of expression
(Figure 19). It can be seen that the five clusters fit closely to the
expression pattern of the target stripe 2.

Based on the average expression curves, the characteristic
expression pattern of the potential regulators in the eight clusters
that are within and flanking stripe 2 are easily visible (see
Figure 18c, d). Here, hb is expressed at high levels in all clusters
except those posterior of stripe 2, consistent with its known role
as an activator of stripe 2. Kr is expressed at high levels only
posterior of stripe 2 and gt is expressed at high levels only anterior
of stripe 2, consistent with their known roles as repressors that
define the posterior and anterior borders of stripe 2, respectively.

Interestingly, the two clusters that form short ventral patches on
eve stripe 2 (yellow and blue) show significantly lower expression
of hb than the two clusters that lie dorsally to them (red and
green) (see Figure 18c, d). This correlates with a lower level of
eve expression in this ventral margin (Figure 19) and suggests
that this reduced expression may be the result of lower activation
by hb. hb is typically thought of as regulating gene expression
only along the anterior/posterior axis of the embryo. The cluster
analysis suggests that it may also be able to mediate differential
transcription along the dorsal-ventral axis. However, if we were
to add a dorsal-ventral gene, such as snail (sna) (see Figure 1)
into the analysis, it would be difficult to distinguish if the ventral
gap in eve stripe 2 resulted from direct inhibition by sna, if
sna acted via inhibiting ventral hb expression, or if all three
expression patterns are parallel manifestations of dorsal-ventral
patterning systems, each acting separately. Thus, cluster analysis
can be used for identifying interesting correlations that might
result from novel biological interactions or phenomena, but the
analyses should be confirmed by experimental data.

This case study illustrates that clustering the expression patterns
of multiple regulators can provide confirmation and additional
insights into known regulatory interactions. It is likely that the
extension of this strategy to less well-characterized systems will
suggest potential regulatory interactions that can then be tested
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Fig. 19. To validate the structure formed by the five clusters against the
target, cluster colors are mapped onto an expression surface of eve where
surface height shows the level of eve expression. The visualization shows
that the clusters and the target stripe fit closely.

by other means.

IX. CONCLUSIONS

Our overall objective for this work has been to provide impor-
tant new capabilities to accelerate scientific knowledge discovery.
Our work helps biologists, who aim to discover potentially new,
experimentally verifiable biological interactions, by providing the
ability to to define, analyze, and iteratively refine clusters in
multiple, linked views. For computational biologists, we have
presented objective methods for classifying quantitative data-
points in spatial datasets.

We have shown how data clustering and visualization can be
integrated into one framework and how our system can be used
effectively to explore and analyze 3D spatial expression data. A
system of linked multiple views is used for data exploration and
for steering the analysis process, helping bridge spatial patterns
of expression with abstract views of quantitative expression
information.

Data clustering then provides means for automatically defining
cell selections, depicting characteristic data features and in this
way improving the visualization. We have shown how dedicated
post-processing of clustering results based on visualization and
user knowledge improves the analysis. We have demonstrated
how the combination of εscatter as measure to describe the relative
physical scattering of clustering results and εexp to suggest a
good initial value for k in combination with visual validation of
clustering results can be used to determine appropriate values for
k.

Analysis of 3D spatial gene expression data is a challenging
task requiring unique strategies not encountered in studies of 1D
non-spatial data, such as microarray expression data. Using our
integrated data visualization and clustering approach, we have
shown how the pattern of a gene and its temporal variation can be
defined and analyzed. We have shown how suspected relationships
between genes can be analyzed to address the question of how the
pattern of a gene is created by the action of multiple regulators.

Along with the first release of the BDTNP 3D gene expression
database, we have also made a version of PCX freely available
to the public [1]. Data clustering and 3D parallel coordinates are
currently in active use by BDTNP members and will soon also
be included in the public version of PCX.

In PCX, spatial information is incorporated in the analysis
process mainly by using cluster post-processing techniques such
as splitting of clusters. Alternatively, x, y, and z cell positions can

directly be added to the cluster analysis. However, this may result
in clusters defined by a complex mix of spatial and expression
influences which may not be easy to interpret.

Development of additional analysis techniques that effectively
integrate spatial and gene expression information is one focus of
future work. Adaptation of spatial clustering methods, such as
the dual clustering approach proposed by Cheng-Ru et al. [38],
is only one promising approach. Alternatively, one could perform
clustering based on gene expression information only, then split
the resulting clusters into spatially distinct sub-clusters, and then
perform a re-clustering based on the centers of the detected sub-
clusters. In PCX we currently use hierarchical clustering only for
partitioning of the data. By traversing the data hierarchy created
in a hierarchical clustering, exploration of the data at multiple
levels of detail becomes possible. In addition to clustering of cells,
clustering of genes as well as biclustering promises to provide
further insights into the data. In addition, matrix decomposition
techniques, such as principal component analysis (PCA) and
singular value decomposition (SVD) [39], [40], have successfully
been applied to other types of gene expression data. Integration
of these and other analysis techniques into PCX should further
increase its value for practical use and impact.
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