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Abstract
The topology of β-sheets is defined by the pattern of hydrogen-bonded strand pairing. Therefore,
predicting hydrogen bonded strand partners is a fundamental step towards predicting β-sheet
topology. At the same time, finding the correct partners is very difficult due to long range interactions
involved in strand pairing. Additionally, patterns of aminoacids observed in β-sheet formations are
very general and therefore difficult to use for computational recognition of specific contacts between
strands. In this work, we report a new strand pairing algorithm. To address above mentioned
difficulties, our algorithm attempts to mimic elements of the folding process. Namely, in addition to
ensuring that the predicted hydrogen bonded strand pairs satisfy basic global consistency constraints,
it takes into account hypothetical folding pathways. Consistently with this view, introducing
hydrogen bonds between a pair of strands changes the probabilities of forming hydrogen bonds
between other pairs of strand. We demonstrate that this approach provides an improvement over
previously proposed algorithms. We also compare the performance of this method to that of a global
optimization algorithm that poses the problem as integer linear programming optimization problem
and solves it using ILOG CPLEX™ package.
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I. Introduction
The prediction of protein structure from protein sequence is a long-held goal that would provide
invaluable information regarding the function of individual proteins and the evolution of
protein families. The increasing amount of sequence and structure data, allowed to decouple
the structure prediction problem from the problem of modeling of protein folding process.
Indeed, a significant progress has been achieved by bioinformatics approaches such as
homology modeling, threading, and assembly from fragments [22]. At the same time, the
fundamental problem of how actually a protein acquires its final folded state remains a subject
of controversy. Can successes/failures of computational method shade some light on this issue?

It is generally accepted that proteins fold to their global free energy minimum. Through his
famous Paradox, Levinthal made an important point that a protein cannot explore all
conformational states in the search of the optimal conformation and therefore a protein chain
has to fold by following some directed process or a folding pathway [19]. One view that has
been gathering a lot of support since at nearly three decades is the concept of hierarchical
protein folding [1], [2], [6], [17], [18], [26]. Consequently, many structure prediction
algorithms use hierarchical approach in which the structure is assembled in a bottom up fashion

NIH Public Access
Author Manuscript
IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2008 December
8.

Published in final edited form as:
IEEE/ACM Trans Comput Biol Bioinform. 2008 ; 5(4): 484–491. doi:10.1109/TCBB.2008.88.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(e.g. where smaller locally folded fragments are assembled into larger folded units [4], [11],
[20], [29]).

Protein structure is hierarchic: protein primary sequence is organized into secondary structures
and the spatial arrangement of these structures defines protein fold. In this work we focus on
particular type of secondary structures - β-strands. Here, by a β-strand we understand a
continuous segment of aminoacids adopting an extended conformation, and stabilized by
hydrogen bonds between such strands. An assembly of β-strands that, trough hydrogen-bonds
between pairs of strands, forms a continuous surface in the space is called a β-sheet. The order
of hydrogen-bounded β-strands within a β-sheet defines the topology of the β-sheet.

Studies of β-sheets topology indicate that the way strands assemble into larger sheets may be
quite complex. While about half of hydrogen bonded pairs of strands are adjacent in the
sequence of strands within protein sequence, many are separated by a significant distance.

The problem of predicting the paring between β-strands, despite of many attempts, remains
unsolved. Early work by Hubbard [9] has been followed by other studies directed towards
understanding and predicting β-sheet topology [10], [21], [28], [31], [32], [34], [35]. In a more
recent work, Cheng and Baldi [5] addressed the strand pairing problem using a three-stage
approach. In the first stage they compute, for the input protein sequence, the scores (estimated
probabilities) of residue pairs as potential partners in a β-strand pairing. This computation is
performed by a neural network with input describing a window of size five around each residue
and the additional information about the distance between the two residues in the protein
sequence. In the second stage, the above pairwise scores are used to define alignment scores
for pairs of strands, and for each pair a highest scoring alignment is found with the use of
dynamic programming. The alignment scores are used in the third and final stage to run a
greedy selection algorithm.

The important novelty of the approach of Cheng and Baldi when compared with previous
methods (e.g.Hubbard [9], Zhu and Braun [35] and Steward and Thornton [31]) is that the
prediction of residue pairs that are partners in strand pairing is not performed independently
for each pair, but instead it takes into account a wider context; to wit, the information about
10 surrounding residues and the distance between them.

Cheng and Baldi reported 59% positive predictive value and 54% sensitivity which is
significantly better than what is achieved by a naive algorithm predicting that all pairs of strands
that are consecutive in the sequence form hydrogen bonded partners is space. (The performance
of such naive algorithm was approximated to be 42% positive predictive value and 50%
sensitivity [5].)

The third stage of algorithm of Cheng and Baldi is a very simple greedy algorithm, which raises
a question: Would a more elaborate approach increase the quality of prediction even further?
In particular, would a more sophisticated optimization method (e.g., as discussed by Berman
and Jeong in [3]) improve on these earlier results. To address this question, we designed a new
optimization algorithm. The objective of this algorithm is very similar to the approach of Cheng
and Baldi, but rather than having a two-stage greedy selection heuristic, it poses the problem
as integer linear programming optimization problem and solves it using ILOG CPLEX™
package.

We also consider a second approach based on the ideas borrowed form principles of hierarchical
folding. In her classic 1977 paper, Richardson proposed a set of folding rules where consecutive
β-strands grow into larger hydrogen-bonded structures in successive steps, and blocks of
strands obtained in this way coalesce, providing they are consecutive in the chain [25].
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Richardson showed, by manual inspection, that 37 known strand topologies can be constructed
using these rules.

Subsequently, Przytycka et al. [24] proposed a modified set of folding rules for all -proteins
where the folding rules were motivated by the prevalent supersecondary structures. The
concept of folding rules stems from the assumption of the hierarchic nature of protein folding.
Namely, first one or more pairs of neighboring strands are brought together to form super-
secondary structures such as hairpins. The formation of these substructures brings to relative
spatial proximity pairs of strands that are distant in sequence, increasing the probability of
contacts between them. At each stage of this hierarchical process, a compact substructure is
formed. It has been hypothesized, that such procedures are related to actual folding pathways.
Obviously such folding rules remain hypothetical and simplistic. However, the fact that that
majority of fold families (>80%) can be completely folded using rules proposed in [24]
indicates that such approach can be helpful in prediction of β-sheet topology in general, and
the pairing of β-strands in particular.

In a more recent paper, Maity et al. proposed the view in which previously formed, so called,
foldons guide and stabilize subsequent foldons to progressively build the native protein [20].
A subsequent paper proposed predetermined pathway optional error (PPOE) folding model
which puts together cooperative formation of native-like foldon units and the sequential
stabilization process together generate predetermined stepwise pathways with an allowance
for optional missfolding errors [16]. Compact substructures generated by folding rules can be
naturally seen as such stabilized foldons.

The assumption that proteins fold through such stepwise process provides also the cornerstone
of protein folding simulations in the LINUS program [30] as well as in the more recent zipping
and assembly model [23]. In both cases, the energy contacts of neighboring residues is
computed first and only after enforcing stable contacts detected in this way, further contacts
are estimated. Thus the energy of those subsequent contacts is dependent on the contacts made
in the previous step.

How can one bring the ideas behind models of hierarchical folding into strand paring
prediction? Scores from a crystal structure typically do not indicate kinetic pathways but rather
estimate contact probabilities in a folded structure. Since folding rules of Przytycka et al. ensure
that at each step the partially formed substructures are compact, they provide a way of
organizing strands into putative foldons without performing folding simulations. In the current
work, we consider only one type of a initial foldon, motivated by the hairpin supersecondary
structure. This initial compact substructure can be subsequently extended, via a narrow set of
folding rules, to form a larger compact unit. In future, we plan to extend this approach to more
complex folding steps. Here, we take an advantage of the fact that the scoring function
developed by Chang and Baldi, due to the specific machine learning procedure applied by these
authors, is very successful in recognizing hairpins (and in general contacts between strands
that are consecutive is sequences). This allows for discovering putative initial foldons which
can then be propagated with our folding rules. The idea of stabilization and propagation of
subsequent foldons implies that strands that brought together into spatial proximity as a result
of previously made contacts between other strands, have increased probability of making a
contact. In our simple approach, this is achieved by dynamically increasing the scores of pairs
of strands that are brought to common spatial neighborhood by formation of a compact
substructure.

Both, the linear programming algorithm and greedy folding rule promoting algorithm, provided
noticeable improvement over the previous approach. Importantly, a more significant
improvement was obtained with the approach that promotes folding rules. This is remarkable,
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since in the case of integer linear program we are heuristically solving a NP-complete problem
using about 100 times more time than folding rules promotion algorithm (almost entire time
of the latter algorithm is consumed by the dynamic programming that computes optimal
pairing/alignment for each pair of strands).

While the improvement, taken in absolute numbers, is not drastic (about 2.7% in sensitivity
and 1% in positive predictive), one has to keep in mind that the problem is quite hard and the
improvement of Cheng and Baldi over a naive algorithm was only 4−5 times larger. In another
perspective, without any new predictor or data source we decreased the number of false
positives by 10% while increasing the number of true positives.

II. Methods
We assume that we are given a protein sequence together with the secondary structure
annotation. That is we assume that, for each input protein sequence, we know where each
strands starts and ends. Our goal is to find, for each strand, its hydrogen-bounded strand
partners.

We start by introducing the common notions used in the description of the three algorithms
discussed in this paper:

• strand: interval of residue indexes predicted to form a β-strand; we visualize a strand
as a sequence of boxes where each box represents an amino-acid. The number in the
box corresponds to the index of the amino-acid in the protein sequence.

• contact: adjacency (hydrogen bonding) of two strands, as in Fig. 1; each contact is
represented by a sequence of adjacent pairs of residues. For each pair of strands, we
store only contacts that are optimal for this pair.

• side of a strand: Each strand has two sides denoted here by upper and lower side
respectively.

• side of a contact: Each contact has two sides denoted also by upper and lower side
respectively.

• parallel contact: a contact where the indexes of residua of contacting strands have
the same monotonicity (both are increasing or both are decreasing)

• anti-parallel contact: a contact where the indexes of the residua of contacting strands
have opposite monotonicity.

• score of a contact: sum of scores for all pairs of residues adjacent in the contact. For
the original Chang-Baldi algorithm and our Integer Linear Programming Algorithm,
the scores for pairs of residues are directly computed by Cheng-Baldi neural network.
For our greedy path promoting algorithm, the initial scores are also the neural network
scores, but they can be increased (this is done by multiplication of a given score by a
scalar) if a folding rule applies.

Thus a contact, c, is characterized by following parameters: upper strand, lower strand, parallel
(or not), the offset (relative shift of the strands). The score of c, E(c) was computed using
dynamic programming (we allowed a single gap of length 1 in the alignment).

A solution returned by a strand paring algorithm is a collection of contacts that satisfies the
following (minimal) constraints:

• uniqueness: a single pair of strands may form at most one contact;
• sidedness: contacts of a strand are on one of the two sides of that strand;
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• overlap-free: each residue can participate in at most one contact on the same side;
• direction-consistent: contacts on the same side of a strand are either all parallel, or all

anti-parallel.

In Fig. 1, contacts b and c are in conflict as not overlap-free, while contacts a and c are in
conflictas not direction-consistent.

While these constraints are necessary, they allow for many impossible combinations of
contacts. After some experimentation we added the constraint that a solution is cycle-free (as
did Cheng and Baldi [5]). In the data set, among all 916 protein chains and ca. 9000 strands
there were only 80 cycles. At the same time, without prohibition of all cycles, our program
was returning solutions with many cycles, ca. 99% of them wrong.

Lastly, we disallowed contacts with score below 0.06 from further consideration. This caused
the number of predicted contacts (true and false positives in Table I) to roughly coincide with
the number of actual contacts (true positives and false negatives).

A. ILP formulation
We can view the strand pairing problem as an optimization problem which identifies a solution
with the maximum sum of contact scores, where the score are designed to approximate the
energy function. As shown in [5], this problem cannot be solved in polynomial time in the
worst case. However, in almost all instances in the test set, an ILP solver found provably
optimal solutions.

While there are many ILP methods used for protein structure prediction (e.g., see [14], [15],
[33]) none of them operated in our particular framework, instead, they were used in the context
of all-atom model, threading etc.

A contact is characterized by these parameters: upper strand, lower strand, parallel (or not),
the offset (relative shift of the strands). The score E (c) of a contact c was computed using
dynamic programming (we allowed a single gap of length 1 in the alignment). We kept only
the contacts with the optimal offset values.

For every possible contact c we introduced a variable xc, and for every pair of strands i, j a
variable yi,j. The value of xc indicates if contact c is in the solution (xc = 1) or not (xc = 0).
Similarly, yi,j = 1 means that strands i and j were paired, i.e.that we selected a contact that binds
these two strands together.

To formulate our ILP we introduce two classes of 0−1 vectors: Ci,j such that Cc = 1 if and only
if contact c binds strand i with strand j, and (S) such that γ(S)i,j = 1 if and only if . We
also set conflict(c, d) to be true if there is a conflict between contact c and contact d.

We wish to solve the following ILP:

This set of constraints is often too large as an input to ILP solver: when the number of strands
reaches 20, the number of cycle-free constraints reaches 106 and for the largest protein domains,
with more than 40 strands, it exceeds 1012.
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To avoid that problem, we start with a single cycle-free constraint with S = {1, . . . , n} and run
a row generation loop: we submit ILP, we obtain a solution, and if it contains a cycle of strands
we add a cycle-free constraint for its set of nodes. When the number of repetitions is too large
(as it happened in ca. 15% of the cases) we give up and return the solution of the greedy
algorithm described below.

B. Greedy algorithm with pathway-based promotion
The greedy algorithm constructs a set of contact, by increasing the solution set one contact at
the time, always choosing the new contact with the maximum possible score. On one hand, the
initial choices may limit subsequent choices and thus prevent the algorithm from finding a
solution with the maximum score. On the other hand, the greedy algorithm is much more
flexible in checking the consistency requirements, as they do not have to be formulated in the
form of linear inequalities. Additionally, such stepwise approach allows for dynamic
modification of scores and promoting strand paring consistent with our folding rules.

In the preliminary stage of the algorithm, for each pair of strands we pre-select the best parallel
and the best anti-parallel contact, and we order them according to their score. We consider
candidates starting with the one with the largest score, and we never consider a candidate again.

We represent contacts with unordered pairs of strands, which means that we do not declare
which strand is the upper one and which one is lower. This allows us to avoid, for example,
the following anomaly: we greedily choose contacts for pairs (1,2) and (3,4), and decide that,
say, strands 1 and 3 are upper ones. Then we cannot choose contact (1,4): if in the latter strand
1 is upper, we have conflict with (1,2), and if strand 4 is lower, we have a conflict with (3,4).

Such representation makes it less obvious how to verify the constraints of sidedness, overlap-
free and direction-consistent. (Verifying the constraints of uniqueness, cycle-free constraint,
as well as metric consistency described below is straightforward.) The crucial observation is
that given a set of contacts we can efficiently test if there exists a consistent assignment of
sides. To check for the existence of a consistent assignment we construct the following
consistency graph:

• The nodes of the consistency graphs are (strand) contacts
• There is an edge between two nodes if and only if the corresponding contacts share

a strand (e.g.(i, j) and (k, j)) and either (a) one is parallel and one is anti-parallel, or
(b) they share a residue of the common strand.

Figure Fig. 2 (a), shows the consistency graph for the set of contacts from figure Fig. 1. Note
that two contacts that are connected by an edge in the consistency graph cannot be assigned to
the same side of the common strand. Consequently, there exists consistent assignment of sides
to these contacts if and only if the corresponding consistency graph is two-colorable. In
particular, this criterion tells us that there does not exist an consistent assignment of sides to
the tree contacts from figure Fig. 1. Figure Fig. 2 (b), shows consistency graph for a different
hypothetical set of contacts and Fig. 2 (c) shows a consistent assignment of sides to these
contacts.

Since two-colorability of a graph is an easy problem, thus one can test efficiently if there exist
a consistent assignment of sides to a given set of contacts.

Connected components of the consistency graph have an important interpretation. Namely,
such components correspond to β-sheets. The strands of such β-sheet can be mapped onto a
grid in such a way that strands form rows and paired partners are adjacent in common columns
(Fig. 2). Such a layout provides a very crude approximation of the β-sheet geometry (in 3D the
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surface of a β-sheet is actually curved) but still it allows for a conservative estimate of the
minimal length of coils that join the strands in the components. If such a coil is actually shorter,
we disallow the candidate. As before, we disallow a candidate if it would create a cycle.

Up to this point, the algorithm does not differ from that of Cheng and Baldi in a significant
way. (Their notion of consistency as exhibited by their program is a bit different than the one
described in the paper, but in the evaluation it was indistinguishable).

The new element introduced in our algorithm is that after selecting a consecutive contact, say
between strands i and i+1, we increase the score of contacts between strand pairs (i, i + 2), (i
− 1, i + 1), (i − 1, i + 2) by a multiplicative factor (here factor two was used) and change their
position within the ordering to reflect that.

This rule is explicitly promoting a folding pathway. It is actually a part of a more general rule
in [24], but it restricts it here to the cases of the relatively small separation between strands and
thus, as discussed later, the most reliable scores.

As mentioned before, there are biophysical reasons for which the probability of hydrogen
bonding between strands i and i + 2 (Fig. 3) is increased under assumption that i is already
hydrogen bonded. Namely, strand i + 2 would stabilize the conformation already acquired by
strands i and i + 1. The higher probability of bonding between strands i − 1 and i + 2 upon
hydrogen bonding between i and i + 1 is in turn justified by the loss of entropy of subchain
separating strands i − 1 and i + 2 resulted from the hairpin formation. This rule can be extended
to strands i − 2 and i + 3 but with the current scoring schema it had no effect on the results (see
Discussion section).

III. Results
We used the data set of Cheng and Baldi (see [5], page 176) that consists of 916 protein chains
that contain up to 45 β-strands.

We also used the output of their program that given a sequence of amino acids (residues) returns
(a) a sequence of secondary structure identifications (α-helix, β-strand, coil) and (b) for every
pair of residues classified as β-strand it provides a pseudo-probability that these two residues
face each other in a pairing of two β-strands. To evaluate the result we used their file of DSSP
identifications of correct secondary structure identifications and correct pairing of β-strand
residues.

We defined the population of possible answers in two ways: pairs of β-strands as identified by
PREDICT_BETA_FASTA.SH and as identified by DSSP [12]. Given a pair of predicted strands, we defined
the pairing to be true positive(correctly predicted) if for at least one residue of one strand there
was a residue in the other strand that was in a contact described by DSSP (predicted by the
evaluated program). These two definitions yielded different numbers, but they registered
roughly the same differences between various programs, so our conclusions do not seem to
depend on this somewhat arbitrary definition.

We compare three programs: the three-stage program of Cheng and Baldi, ILP optimizer and
our greedy algorithm with pathway based promotion. The differences in the quality of
predictions are very consistent when we use various measures. We use T and F to indicate the
number of true and false predictions and ⊕ and ⊖ to indicate positive and negative predictions.
In particular,  denotes the set of true positives, while  denotes the set of false positives.
To evaluate the set of prediction, we use the correlation coefficient, as well as positive
predictive value/sensitivity pairs.
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The correlation coefficient was 0.555 for Cheng and Baldi's, 0.567 for ILP optimizer and 0.577
for the greedy with pathway based promotion.

IV. Discussion and conclusions
We considered two new methods of predicting β-sheet pairing partners using the machine
learned scores for inter-residue contacts from [5]. In the first method, we computed optimal
set of pairs by solving an instance of integer linear program while the second method was based
on ideas borrowed from hierarchical views on protein folding.

The fact that the ILP optimizer provided an improvement over the previous approach indicates
that more sophisticated optimization approach can be helpful. On the other hand, imposing
pairing preference according to our folding rules provided a more significant improvement,
despite the fact that this procedure frequently leads to a solution with suboptimal total score
(as measured by the sum of Cheng-Baldi neural network of scores of contacting pairs of
residues). Thus the optimal score does not always lead to the correct structure. The fact that
stabilization of one portion of a protein's structure contributes to the formation of subsequent
contacts [8], [27] suggests that enforcing such folding cooperatively by dynamic change is the
scoring function may improve the results of a greedy approach to strand pairing prediction.

Such folding cooperativity has been explored by Dill et al. in their hydrophobic zipper
hypothesis: hydrophobic contacts act as constraints that bring other contacts into spatial
proximity, which then further constrain and zip up the next contacts, etc. [7] and, in the zipping
and assembly model [23]. The assumption that proteins fold through such stepwise process is
also a cornerstone of protein folding simulations in the LINUS program [30].

The proposed folding-rule promoting strand pairing algorithm can be seen as a generalization
of the hydrophobic zipper hypothesis, where the cooperativity of folding is modeled on the
secondary structure level rather than on the residue level. The folding rules are designed so
that each stage forms another foldon-like substructure. Here we implemented only a very basic
set of folding rules where subsequent folding steps follow a formation of a hairpin-like
structure. In the future, more complete set of rules based on the work of Richardson [25] and
Przytycka [24] et al. could be added.

Effectively, currently implemented folding rules apply only to strands that, while not being
neighbors in protein sequence, are separated by relatively small number of other strands.
However, in a recent work, Kamat and Lesk [13] demonstrated that a vast majority of contacts
between secondary structures in general and between strands in particular are between
secondary structures which a separated in the sequence by at most a few other secondary
structures. Thus, for most proteins, the correct predictions of contacts between those strands
determine all or nearly all contacts. Therefore correct prediction of the contacts between pairs
of strands that are not separated by very large sequence distance is extremely important for the
strand pairing prediction.

In this work we demonstrated that a simple, model based algorithm, may perform better than
a heavy duty integer linear programming. Our method of enforcing folding rules by simply
increasing scores by a multiplicative factor is arguably naive. However having only one
additional parameter decreases the possibility of overtraining. Our results suggest that the
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future line of research should include developing a scoring function that would allow to explore
the cooperativivity of the folding process more fully.
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Fig. 1.
Conflicting and non-conflicting contacts. Each box represents an aminoacid (the number in a
box corresponds to the index of the corresponding aminoacid in the protein chain) and rows
of boxes represent strands. The contacts b and c are in conflict as they are not overlap-free,
while contacts a and c are in conflict as they are not direction-consistent.
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Fig. 2.
Examples of consistency graphs. Recall that in the construction of the graph, the contacts are
treated as unordered pairs of strands and they don't have assigned sides. (a) The consistency
graph for the set of contacts from Figure 1; (b) A consistency graph for a different hypothetical
set of contacts; (c) β-sheet corresponding to the connected component of the consistency graph
(b)
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Fig. 3.
Pathway promoting rules. Three configurations that upon formation of contact between strands
i and i + 1 promote contacts between (a) strands i − 1 and i + 1 (b) strands i and i + 2 (c) strands
i − 1 and i + 1.
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Fig. 4.
The table of pairwise scores for 2C-Methyl-D-erythritol-2,4-cyclodiphosphate Synthase (PDB
id: 1iv1, chain a). The entries in the table correspond to color-coded scores: purple codes
correspond to scores in the interval 2/3 to 1, and each subsequent color-code (purple-blue, blue,
blue-green, red, red-orange, orange, orange-yellow and yellow etc.) codes an interval decreased
by 2/3 factor (and white for the remaining values down to zero). Black background codes the
true contacts, purple ovals are the contacts found by Cheng & Baldi, and the pink ovals are the
contacts found by our version of greedy. After contact 2−3 was selected, contact 1−4 (between
strand 1 and strand 7) was promoted over 1−2; once we got contacts 1−4−3−2, contact 1−2
was blocked by cycle-free rule; moreover 1−5 was blocked by 5−6 and 5−7, thus 1−7 became
the best available contact for 1 — as well as for 7.
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