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Abstract—Noise disturbances and time delays are frequently met in cellular

genetic regulatory systems. This paper is concerned with the disturbance analysis

of a class of genetic regulatory networks described by nonlinear differential

equation models. The mechanisms of genetic regulatory networks to amplify

(attenuate) external disturbance are explored, and a simple measure of the

amplification (attenuation) level is developed from a nonlinear robust control point

of view. It should be noted that the conditions used to measure the disturbance

level are delay-independent or delay-dependent, and are expressed within the

framework of linear matrix inequalities, which can be characterized as convex

optimization, and computed by the interior-point algorithm easily. Finally, by the

proposed method, a numerical example is provided to illustrate how to measure

the attenuation of proteins in the presence of external disturbances.

Index Terms—Disturbance attenuation, asymptotic stability, genetic regulatory

network, systems biology, time delay.
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1 INTRODUCTION

SINCE the days of Nobert Wiener, system-level understanding has
been a recurrent theme in biological sciences [1]. Traditionally, the
different phases involved in the cellular processes were analyzed
and characterized in isolation by using biochemical techniques,
leading to the view that they operate independently. As systems
biology emerges in the postgenomic era, one of the major
challenges in contemporary systems biology has been to under-
stand the gene regulation and function at the system level, for
instance, how proteins are synthesized from genes as transcription
factors binding to other genes, how DNA, RNA, and proteins
interact with each other and other small molecules to coordinate
multiple biological functions. These molecules and their interac-
tions compose a complex network, known as genetic regulatory
network (or simply, gene network).

Meanwhile, the development of modeling techniques has made
it possible to apply mathematical methods to describe the network

structure and predict the dynamic behavior of the genetic

regulatory networks [2], [3], [4], and a large variety of formalisms

have been proposed to model, analyze, and simulate genetic
regulatory networks, such as directed graphs, Bayesian networks,

Boolean networks, differential equations, and Petri nets (see also

[5] and references therein for a wider categorization of gene

network models). Although many approaches have been proposed
to specify the gene network structure, it is generally accepted that

finding the network topology is not sufficient to understand the

network dynamics. In the case of differential equation models, the

variables represent the concentrations of gene products, such as
mRNAs, proteins, and other small molecules, as time-dependent

values of the gene networks. Moreover, it is observed that genes

spend a lot of time at intermediate values, which implies that gene

expression levels tend to be continuous rather than binary [6]. The
advantage of the description with differential equation networks is

that one can take into account detailed information about genetic
regulatory mechanisms such as individual kinetics and interac-
tions among mRNAs and proteins. In addition, it is also
indispensable to study the genetic regulatory systems from the
viewpoint of nonlinear system theory due to the fact that GRNs are
strongly nonlinear and high dimensional.

In addition, it is recognized that it is system dynamics and
internal structures of the biological phenomena that give rise to the
functioning and function of cells [7]. In fact, stability is a
fundamental requirement of biological systems, with obvious
biological significance, see [8], [9] and references therein. In [10],
the authors investigated a simple genetic circuit model in Escher-
ichia coli to test the role of negative feedback in the stability analysis
of gene networks. Also, an important issue in modeling gene
expression is the fact that individual processes need a certain
amount of time to be finished [11], [12]. This motivates to consider
the effect of delay on dynamic behaviors of gene network, it has
been well known that delay is often the key factor to instability of a
given system, and thus, plays an important role in the dynamic
analysis of gene regulation [13]. A nonlinear model of genetic
regulatory networks with time delays was proposed, and sufficient
conditions were also obtained in the form of linear matrix inequality
in [14], where the transcription functions are assumed to act
additively to regulate a gene. Such a regulatory function is known to
be SUM logic [15], [16], which was first proposed in [17]. Sufficient
conditions for the stochastic stability of the genetic networks with
disturbance attenuation were also derived in [18], [19].

On the other hand, due to the fact that a realistic gene network
model should be identified from real-world gene expression time-
series data, it is well known that the modeling error is unavoidable
in practice, which makes the mathematical model uncertain.
Moreover, one of the objectives of modeling is to obtain
information about the input of the genetic regulatory networks,
such as physical and chemical stimuli, and environmental changes
[20]. It should be noted that the nature of these inputs and their
corresponding values may not be fully known or measurable due
to the complexity of biological processes [21]. When referring to
modeling genetic regulatory networks, it is very difficult to fully
detect the extrinsic signals, not to mention the fact that it is
impossible to completely know the intrinsic inputs affecting each
components of the gene network.

Motivated by the aforementioned reasons, in this paper, we
propose a genetic regulatory network model with time delays and
external disturbances, and investigate the dynamic performances
of genetic regulatory networks. To be specific, the effects due to
delays and external disturbances on the stability of gene networks
are studied, sufficient conditions, which are delay-dependent or
delay-independent, are established to measure the external
disturbance level by means of nonlinear control theory. Moreover,
an LMI optimization problem is further established to minimize
the attenuation level of disturbances. It should be noted that the
conditions obtained in this paper are expressed in a unified linear
matrix inequality framework, and can be verified easily by existing
standard software.

The remaining portion of this paper is organized as follows:
Section 2 gives a system-level description on GRNs and presents
the problem formulation. Section 3 is devoted to the stability
analysis of the gene network in the presence of both time delays
and external disturbances. A three-gene network is provided to
show the effectiveness and applicability of the theoretical results in
Section 4. In Section 5, we summarize our results.

Notations. Denote ZZn ¼4 f1; 2; . . . ; ng; let IR be the set of real
numbers; IRn denotes the n-column vectors; IRm�n is the set of
m� n matrices for which all components belong to IR. For any
real symmetric matrices P and Q, the notation P � Q (respec-
tively, P > Q) means that the matrix P �Q is positive
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semidefinite (respectively, positive definite). �j j denotes the

euclidean norm for vectors and �k k denotes the spectral norm

for matrices. Cð½��; 0�; IRnÞ and Cð½��; 0�; IRn
þÞ denote the family

of continuous functions � from ½��; 0� to IRn and IRn
þ, with norm

�j j�¼ sup���s�0 �ðsÞj j. diagð. . .Þ stands for a block-diagonal matrix.

The superscript “T” denotes matrix transpose and the symbol #

is used to represent a matrix which can be inferred by

symmetry. Matrices, if their dimensions are not explicitly stated,

are assumed to have compatible dimensions for algebraic

operations.

2 GENETIC REGULATORY NETWORK AND MODEL

DESCRIPTION

2.1 Genetic Regulatory network

In living organisms, gene expression is regulated by genetic

regulatory networks with interactions among DNA, RNA, pro-

teins, and small molecules. In general, the term gene refers to those

segments of one strand of DNA where genetic information can be

transferred to mRNAs in a process called transcription. mRNA is

then used as a template to synthesize proteins in a process called

translation. In turn, some of proteins, acting as transcription

factors, regulate the transcription process.
In addition, time delays and noise disturbances are common

and substantial in the signal transmission along the pathway of

gene networks. It is well known that gene transcription and mRNA

translation must take some time to generate the corresponding

product. Also, noise disturbances are always present during the

process of gene expression, which are usually generated by its

external environment. The whole scenario is shown from a system

level point of view in Fig. 1.

2.2 Problem Formulation

The following differential equations have been used recently to

describe the genetic regulatory networks [8], [22]:

dmiðtÞ
dt

¼ �aimiðtÞ þ fiðp1ðt� �Þ; p2ðt� �Þ;
. . . ; pnðt� �ÞÞ þ ui;

dpiðtÞ
dt
¼ �bipiðtÞ þ dimiðt� �Þ; i 2 ZZn;

8>>><
>>>:

ð1Þ

where miðtÞ and piðtÞ are the concentrations of the ith mRNA

and protein, and ai > 0 and bi > 0 are constant numbers,

representing the degradation rate of the ith mRNA and protein,

respectively. di > 0 is the production constant, and ui is defined

as a basal rate, which may be considered as the “leakiness” of

the promoter. In this paper, the function fi is taken as

fiðp1ðtÞ; p2ðtÞ; . . . ; pnðtÞÞ ¼
Pn

j¼1 fijðpjðtÞÞ, which is called SUM

logic, since each transcription factor acts additively to regulate

the gene i. Here, fijð�Þ is a monotonic function of the Hill form,

that is,

fij ¼
�ij

ðx=�jÞHj

1þ x=�jð Þ
Hj
;

if transcription factor j
is an activator of gene i;

�ij
1

1þ x=�jð Þ
Hj
;

if transcription factor j
is a repressor of gene i;

8>>><
>>>:

ð2Þ

where Hj is the Hill coefficient, �j > 0 is a scalar, and �ij is a
bounded constant, which denotes the dimensionless transcrip-
tional rate of transcription factor j to gene i. Such a SUM logic is
indeed exhibited in many natural gene networks [15], [16], [23],
[24]. Note that when n ¼ 1, (1) degenerates into a single-gene
network model, which has been proposed and investigated in [13].

Note

�ij
ðx=�jÞHj

1þ x=�j
� �Hj ¼ �ij 1� 1

1þ x=�j
� �Hj

0
@

1
A; ð3Þ

then, based on (2) and (3), the gene network in (1) can be
rewritten as

dmiðtÞ
dt

¼ �aimiðtÞ þ
Xn
j¼1

wijgjðpjðt� �ÞÞ þ li;

dpiðtÞ
dt
¼ �bipiðtÞ þ dimiðt� �Þ; i 2 ZZn;

8>><
>>:

ð4Þ

where

gjðxÞ ¼
ðx=�jÞHj

1þ ðx=�jÞ
Hj
ðj 2 ZZnÞ; li ¼ ui þ

X
j2Vi

�ij

with Vi being the set of all the transcription factor j which is a
repressor of gene i; W ¼ ðwijÞn�n is defined as follows: if
transcription factor j is an activator of gene i, wij ¼ �ij; if there is
no connection between j and i, wij ¼ 0; if transcription factor j is a
repressor of gene i, wij ¼ ��ij.

In this paper, we introduce external disturbances to model
(4) and consider the following gene network model in a vector-
matrix form:

dmðtÞ
dt

¼ �AmðtÞ þWgðpðt� �ÞÞ þ lþG1!ðtÞ;
dpðtÞ

dt
¼ �BpðtÞ þDmðt� �Þ þG2!ðtÞ;

~zðtÞ ¼ C1mðtÞ
C2pðtÞ

� �
;

8>>>>><
>>>>>:

ð5Þ

w h e r e mðtÞ ¼ ½m1ðtÞ;m2ðtÞ; . . . ;mnðtÞ�T , pðtÞ ¼ ½p1ðtÞ; p2ðtÞ; . . . ;
pnðtÞ�T , the system parameters A ¼ diagða1; a2; . . . ; anÞ > 0, B ¼
diagðb1;b2; . . . ; bnÞ > 0, and D ¼ diagðd1; d2; . . . ; dnÞ > 0 are diagonal
matrices, gðpðtÞÞ ¼ ½g1ðp1ðtÞÞ; g2ðp2ðtÞÞ; . . . ; gnðpnðtÞÞ�T , and l ¼ ½l1;
l2; . . . ; ln�T . !ðtÞ is the disturbance input which cannot be fully
measured and are not completely known beforehand. We assume
that !ðtÞ belongs to L2½0;þ1Þ, which implies that it is a function of
finite energy. G1 and G2 are the input matrices, C1 and C2 are the
output matrices, and ~zðtÞ represents the concentration of mRNAs
and proteins we are interested in.

Remark 1. It is worth pointing out that the theory developed in
this paper can be generalized to the case when the time
delays in (5) are different from each other. However, it is
anticipated that the introduction of multiple time delays will
result in more complicated notations, whereas no essential
difficulty will be added.

Remark 2. The disturbance input !ðtÞ can be viewed as additive
intrinsic and extrinsic signals that are not able to be detected.
The output ~zðtÞ can be thought as responses, if we are only
interested in mRNAs or proteins, then we can let ½C1; C2� ¼ ½I; 0�
or ½C1; C2� ¼ ½0; I�, respectively. Particularly, if we are only
interested in discussing the effect of disturbances on protein i,
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then we can just let ½C1; C2� ¼ ½0; ei�, where ei is the unit vector

with every element of ei being 0 except 1 at the ith element.

Let ðm�, p�Þ be the equilibrium point (steady state) of (5), that is,

it is a solution of the following equations:

0 ¼ �Am� þWgðp�Þ þ l;
0 ¼ �Bp� þDm�:

�
ð6Þ

The aim of this paper is to investigate the influence of disturbance

!ðtÞ on the stability of gene network (5). To achieve this, we will

shift the steady state ðm�,p�Þ to the origin by using the transforma-

tion xðtÞ ¼4 ½x1ðtÞ; x2ðtÞ; . . . ; xnðtÞ�T ¼ mðtÞ �m� and yðtÞ ¼4 ½y1ðtÞ;
y2ðtÞ; . . . ; ynðtÞ�T ¼ pðtÞ � p�, then we have

dxðtÞ
dt
¼ �AxðtÞ þWhðyðt� �ÞÞ þG1!ðtÞ;

dyðtÞ
dt
¼ �ByðtÞ þDxðt� �Þ þG2!ðtÞ;

zðtÞ ¼ C1xðtÞ
C2yðtÞ

� �
;

8>>>>><
>>>>>:

ð7Þ

where

hðyðtÞÞ ¼ ½h1ðy1ðtÞÞ; h2ðy2ðtÞÞ; . . . ; hnðynðtÞÞ�T

with hjðyjðtÞÞ ¼ gjðyjðtÞ þ p�j Þ � gjðp�j Þ.
We assume the initial condition of the genetic regulatory

network in (7) to be

xðtÞ ¼ ’xðtÞ; yðtÞ ¼  yðtÞ; �& � t � 0; & ¼ max �; �f g:

where ’x and  y both belong to Cð½�&; 0�; IRnÞ. Since gi is a

monotonically increasing and differentiable function with satura-

tion, it satisfies

0 � gjðs1Þ � gjðs2Þ
s1 � s2

� kj; kj > 0; j 2 ZZn; ð8Þ

for any different s1; s2 2 IR. From the relationship between g and h,

we obtain the following condition:

hjðsÞðhjðsÞ � kjsÞ � 0; j 2 ZZn; ð9Þ

for any s 2 IR.
For convenience, we denote K ¼4 diagðk1;k2; . . . ; knÞ throughout

the paper. In the following, we give the definition of disturbance-

level measurement from a nonlinear robust control point of view.

Definition 1. Network (7) is said to have attenuation level �, if it is

globally asymptotically stable for wðtÞ ¼ 0, and under zero initial

conditions ’xðtÞ ¼  yðtÞ ¼ 0, t 2 ½�&; 0�, it holds that

Z T

0

jzðsÞj2 ds � �2

Z T

0

jwðsÞj2 ds; ð10Þ

for any T > 0 and nonzero input disturbance wðtÞ.

3 DISTURBANCE ATTENUATION OF GENETIC

REGULATORY NETWORK

The problem to be addressed in this section is to study the effect of

external disturbances on the stability of gene networks (5)

theoretically. Based on the analysis in Section 2, we study the

stability of network (7) equivalently and present the main result in

the following theorem:

Theorem 1. If there exist matrices Q1 > 0, Q2 > 0, Q3 > 0, Q4 > 0,

Q5 > 0, a diagonal matrix � ¼ diagð�1; �2; . . . ; �nÞ > 0, and matrices

P11, P12, P22, X1, X2, Y1, Y2, such that the following LMIs hold:

�ð��; ��Þ ¼

�11 �12 �13 �14

# �22 �23 �24

# # �33 �34

# # # �44

2
6664

3
7775 < 0; ð11Þ

P ¼
P11 P12

# P22

� �
> 0; ð12Þ

where

�11 ¼
M1 P12DþX1 þXT

2 �AP12 � P12B

# �Q1 �X2 �XT
2 DP22

# # M3

2
64

3
75;

�12 ¼
0 0 P11W

D� 0 0

0 Y1 þ Y T
2 PT

12W

2
64

3
75;

�13 ¼
��X1 0 P11G1 þ P12G2

���X2 0 0

0 ��Y1 PT
12G1 þ P22G2

2
64

3
75;

�14 ¼
��AQ4 0

0 ���DQ5

0 ��BQ5

2
64

3
75;

�22 ¼ diag
�
� 2K�1�BþQ3;�Q2 � Y2 � Y T

2 ;�Q3

�
;

�23 ¼
0 0 �G2

0 ���Y2 0

0 0 0

2
64

3
75;

�24 ¼
0 0

0 0

���WTQ4 0

2
64

3
75;

�33 ¼ diag ���Q4; ���Q5; ��2I
� �

;

�34 ¼
0 0

0 0

���GT
1Q4 ���GT

2Q5

2
64

3
75;

�44 ¼ diag ���Q4; ���Q5ð Þ;

with

M1 ¼ �P11A�AP11 �X1 �XT
1 þQ1 þ CT

1 C1;

M3 ¼ �P22B�BP22 � Y1 � Y T
1 þQ2 þ CT

2 C2;

then the attenuation level � of the perturbed genetic regulatory

network in (7) is guaranteed for any ð�; �Þ satisfying � � �� and

� � ��.

From Theorem 1, one can see that we develop a sufficient
condition under which the genetic regulatory network in (5) with
wðtÞ ¼ 0 is globally asymptotically stable, and explore the mechan-
isms of gene networks to measure the disturbance level from the
L2 gain point of view. Also, for a preassigned disturbance level �,
the condition in Theorem 1 is delay-dependent, which further
implies that we can discuss the effect of time delays on the kinetics
of gene networks and estimate the maximal delay pair ð�; �Þ to
ensure that the attenuation level � of the perturbed genetic
regulatory network in (7) is guaranteed by means of Theorem 1.
This will be of importance in revealing the impact of delays on the
analysis of gene networks and introducing more flexibility in the
design of delay-tolerant genetic circuit.

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 8, NO. 1, JANUARY/FEBRUARY 2011 255



Remark 3. Under conditions (11) and (12), one may prove the

uniqueness of the equilibrium point by using a contradiction

argument. To be specific, if there exists another equilibrium

point ð �m, �pÞ different from ðm�, p�Þ, then by following the same

analysis in Theorem 1, one can prove that ð �m, �pÞ is also globally

asymptotically stable. Note that the conditions in Theorem 1 are

independent of the equilibrium point; thus, there exist two

globally asymptotically stable equilibria, which is impossible.

Remark 4. For fixed delay pair ð��; ��Þ, we may optimize the

disturbance level � by solving the following constrained

optimization:

�0 ¼4 min
S
�

subject to ð11Þ and ð12Þ;

where S ¼ f� > 0; Qi > 0; i ¼ 1; . . . ; 5;� ¼ diagð�1; �2; . . . ; �nÞ >
0; P11; P12; P22; X1; X2; Y1; Y2g. Note that the optimized value �0

can be attained by a simple bisection algorithm [25].

Remark 5. In a real gene network, the output zðtÞ may not be

composed entirely of network state, but also be corrupted by

the external disturbance wðtÞ. From the proof of Theorem 1, it

can be seen that this will not add significant difficulty and

similar results can also be obtained. In addition, one can show

that if the initial condition ’xðtÞ and  yðtÞ are not zero, then an

extra term should be added as follows:

Z T

0

jzðsÞj2 ds � �2

Z T

0

jwðsÞj2 dsþ V ð0Þ;

for some positive-definite function V ðtÞ.
Meanwhile, it is sometimes also the case that we may not know

how long it will take for an individual process to be finished

during the process of gene regulation. That is, we have no

information about the magnitude of time delays in the signaling

pathway, an interesting question one may raise is that whether we

can still obtain a bit conservative condition, under which the

attenuation level � of the perturbed genetic regulatory network in

(5) is guaranteed for any � > 0 and � > 0. Similar to Theorem 1, we

can obtain the so-called delay-independent condition on the

disturbance analysis of gene networks (the proof is omitted here).

Theorem 2. If there exist matrices Q1 > 0, Q2 > 0, a diagonal matrix

� ¼ diagð�1; �2; . . . ; �nÞ > 0, and matrices P11, P12, P22, such that

the following LMIs hold:

� ¼
�11 �12

# �22

� �
< 0; ð13Þ

P ¼
P11 P12

# P22

� �
> 0; ð14Þ

where

�11 ¼
N11 P12D �AP12 � P12B

# �Q1 DP22

# # N33

2
64

3
75;

�12 ¼
0 P11W P11G1 þ P12G2

D� 0 0

0 PT
12W PT

12G1 þ P22G2

2
64

3
75;

�22 ¼
�2K�1�BþQ2 0 �G2

# �Q2 0

# # ��2I

2
64

3
75;

with

N11 ¼ �P11A� AP11 þQ1 þ CT
1 C1;

N33 ¼ �P22B� BP22 þ CT
2 C2;

then the attenuation level � of the perturbed genetic regulatory

network in (7) is guaranteed.

4 APPLICATION TO THREE-GENE NETWORKS

In this section, we illustrate the application of the proposed results
to a biological network, which has been adopted as a mathematical
model, and experimentally studied in Escherichia coli [22]. The
network is a cyclic negative feedback loop with three repressor
genes (lacl, tetR, and cl) and their corresponding promoters. Here,
we incorporate time delays and external disturbances to the
repressor system in [22] to check the stability of the steady state.
Consider the following gene network described by six coupled
differential equations:

dmiðtÞ
dt

¼ �miðtÞ þ �i
1

1þ pHj ðt� �Þ
þ �0 þG1i!ðtÞ;

dpiðtÞ
dt
¼ ��ipiðtÞ þ �imiðt� �Þ þG2i!ðtÞ;

8>><
>>:

ð15Þ

where i and j have the following three pairs of values:
ði ¼ 1; j ¼ 2Þ; ði ¼ 2; j ¼ 3Þ; ði ¼ 3; j ¼ 1Þ. �i denotes the ratio of
the protein decay rate to the mRNA decay rate and H is the Hill
coefficient. From (15), we have

dmiðtÞ
dt

¼ �miðtÞ þ ��ið Þ
pHj ðt� �Þ

1þ pHj ðt� �Þ
þ �i

þ �0 þG1i!ðtÞ;
dpiðtÞ
dt
¼ ��ipiðtÞ þ �imiðt� �Þ þG2i!ðtÞ:

8>>>><
>>>>:

Then, by selecting

mðtÞ ¼ m1ðtÞ;m2ðtÞ;m3ðtÞ½ �T ; pðtÞ ¼ p1ðtÞ; p2ðtÞ; p3ðtÞ½ �T ;

and gjðxÞ ¼ x2=ð1þ x2Þ for any j, we obtain network (5) with the
following parameters:

A ¼
1 0 0

0 1 0

0 0 1

2
64

3
75; W ¼

0 0 ��1

��2 0 0

0 ��3 0

2
64

3
75;

B ¼ diagð�1; �2; �3Þ; D ¼ diagð�1; �2; �3Þ;

l ¼
�1 þ �0

�2 þ �0

�3 þ �0

2
64

3
75; G1 ¼

G11

G12

G13

2
64

3
75 G2 ¼

G21

G22

G23

2
64

3
75:

For numerical simulation, we choose the Hill coefficient H ¼ 2,
then we have K ¼ diagð0:65; 0:65; 0:65Þ. Moreover, we assume that
� ¼ 1 and � ¼ 2, and the other parameters are taken as

�1 ¼ 0:8; �2 ¼ 0:6; �3 ¼ 0:6; �0 ¼ 0;

�1 ¼ �2 ¼ �3 ¼ 1;

�1 ¼ 0:6; �2 ¼ 0:4; �3 ¼ 0:5;

G11 ¼ G13 ¼ 1; G12 ¼ 0;

G21 ¼ G22 ¼ 1; G23 ¼ 0:

By means of Theorem 1, it is easy to check that the genetic
regulatory network in (15) is globally asymptotically stable when
there are no external disturbances (!ðtÞ ¼ 0); thus, the steady state
m� ¼ ð0:7389; 0:5014; 0:5766ÞT , p� ¼ ð0:4435; 0:2008; 0:2880ÞT is a
stable and unique equilibrium. Figs. 2 and 3 show the trajectory
of the system state mðtÞ and pðtÞ with the initial state chosen as
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’ðtÞ ¼ ½0:3þ 0:5 sin t; 0:2þ 0:2 cos t; 1:0� 0:6 sin t�T a n d  ðtÞ ¼
½0:5þ 0:5 cos t; 0:4� 0:2 sin t; 0:8� 0:4 cos t�T .

Furthermore, if we are interested in the effects of additive

disturbance !ðtÞ on individual protein p1, p2, and p3, then we can

let C in (5) be ½1; 0; 0�, ½0; 1; 0�, and ½0; 0; 1�, respectively. By

Remark 4, we solve the LMIs in (11) and (12) to calculate the

attenuation level and obtain the optimal attenuation level �0 of

protein p1, p2, and p3, as 0.7432, 0.4684, and 0.4630 via Yalmip [26],

respectively, which further implies that the disturbance attenua-

tion levels of these proteins cannot exceed these corresponding

scalars. Equivalently, we have

Z T

0

jp1ðsÞ � p�1j
2 ds � 0:5523

Z T

0

jwðsÞj2 ds;

Z T

0

jp2ðsÞ � p�2j
2 ds � 0:2194

Z T

0

jwðsÞj2 ds;

Z T

0

jp3ðsÞ � p�3j
2 ds � 0:2143

Z T

0

jwðsÞj2 ds:

Therefore, in this gene network, it can be concluded that the

disturbances at p1, p2, and p3 are all attenuated by the network,

which was verified by the proposed theory. For numerical

simulation, we assume that wðtÞ ¼ 2=ð1þ 0:5tÞ, and the initial

condition as ’ðtÞ ¼ ½0:5; 0:2; 0:4�T and  ðtÞ ¼ ½0:1; 0:2; 0:3�T . Fig. 4

depicts the dynamic response of the perturbed genetic regulatory

network in (15), where the solid lines show the state trajectory of

protein under the excitation of external disturbances, and the

dashed lines illustrate the steady state of the undisturbed gene

network.

5 CONCLUSION

In this study, a nonlinear differential equation model of delayed

genetic regulatory network was proposed, and the dynamic

behaviors of such a class of networks were investigated. To be

precise, we presented the stability conditions for gene networks

with both time delays and external disturbances, and explored the

mechanisms of gene networks to measure the disturbance level from

the signal processing perspective. Moreover, we presented a convex

optimization algorithm to minimize the disturbance level by virtue

of L2 control theory. To verify the obtained theoretical results, a

three-gene network example was used for numerical illustration.

APPENDIX

PROOF OF THEOREM 1

According to Definition 1, we show that the attenuation level � of

the perturbed genetic regulatory network in (7) is guaranteed in

two steps. First, we prove that the genetic regulatory network in (7)

with wðtÞ ¼ 0 is globally asymptotically stable under the condition

(11), and then, we show that (10) is satisfied under zero initial

conditions.
Step I. It follows from (11) that

�ð��; ��Þ ¼ �11 �12

# �22

� �
< 0; ð16Þ

where

�11 ¼
�111 �112

# �113

� �
;

�111 ¼
~M1 P12DþX1 þXT

2 �AP12 � P12B

# �Q1 �X2 �XT
2 DP22

# # ~M3

2
64

3
75;

�112 ¼
0 0 P11W

D� 0 0

0 Y1 þ Y T
2 PT

12W

2
64

3
75;

�113 ¼ diag
�
� 2K�1�BþQ3;�Q2 � Y2 � Y T

2 ;�Q3

�
;

�12 ¼

��X1 0 ��AQ4 0

���X2 0 0 ���DQ5

0 ��Y1 0 ��BQ5

0 0 0 0

0 ���Y2 0 0

0 0 ���WTQ4 0

2
666666664

3
777777775
;

�22 ¼ diag ���Q4;���Q5;���Q4;���Q5ð Þ;
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Fig. 2. State response of mðtÞ of genetic regulatory network in (15) with wðtÞ ¼ 0.

Fig. 3. State response of pðtÞ of genetic regulatory network in (15) with wðtÞ ¼ 0.

Fig. 4. State response of pðtÞ of perturbed genetic regulatory network in (15).



with

~M1 ¼ �P11A�AP11 �X1 �XT
1 þQ1;

~M3 ¼ �P22B�BP22 � Y1 � Y T
1 þQ2:

For convenience, we denote xðt� �Þ and yðt� �Þ as x�ðtÞ and

y� ðtÞ, respectively. Choose the Lyapunov functional candidate

of the form

V ðtÞ ¼
X4

i¼1

Viðt; xðtÞ; yðtÞÞ; ð17Þ

where

V1ðt; xðtÞ; yðtÞÞ ¼
xðtÞ
yðtÞ

� �T
P

xðtÞ
yðtÞ

� �
; ð18Þ

V2ðt; xðtÞ; yðtÞÞ ¼ 2
Xn
i¼1

�i

Z yiðtÞ

0

hið�Þ d�; ð19Þ

V3ðt; xðtÞ; yðtÞÞ ¼
Z t

t��
xT ð�ÞQ1xð�Þ d�

þ
Z t

t��
yT ð�ÞQ2yð�Þ d�

þ
Z t

t��
hT ðyð�ÞÞQ3hðyð�ÞÞ d�; ð20Þ

V4ðt; xðtÞ; yðtÞÞ ¼
Z 0

��

Z t

tþ�
_xT ð�ÞQ4 _xð�Þ d� d�

þ
Z 0

��

Z t

tþ�
_yT ð�ÞQ5 _yð�Þ d� d�: ð21Þ

For techniques on the choice of Lyapunov functional, we refer the

readers to [27] for details. To facilitate the stability analysis of gene

network (7), we first calculate the time derivative of Viðt; xðtÞ; yðtÞÞ
along the trajectory of network (7), we have

_V1ðt; x; yÞ ¼ 2
�
xT ðtÞP11 þ yTPT

12

�
_xðtÞ

þ 2ðxT ðtÞP12 þ yT ðtÞP22Þ _yðtÞ; ð22Þ
_V2ðt; x; yÞ ¼ 2hT ðyðtÞÞ� _yðtÞ

¼ �2hT ðyðtÞÞ�ByðtÞ þ 2hT ðyðtÞÞ�Dx�ðtÞ; ð23Þ
_V3ðt; x; yÞ ¼ xT ðtÞQ1xðtÞ � xT� ðtÞQ1x�ðtÞ

þ yT ðtÞQ2yðtÞ � yT� ðtÞQ2y� ðtÞ
þ hT ðyðtÞÞQ3hðyðtÞÞ � hT ðy� ðtÞÞQ3hðy� ðtÞÞ; ð24Þ

_V4ðt; x; yÞ ¼
Z 0

��
_xT ðtÞQ4 _xðtÞ � _xT ðtþ �ÞQ4 _xðtþ �Þ
� �

d�

þ
Z 0

��
_yT ðtÞQ5 _yðtÞ � _yT ðtþ �ÞQ5 _yðtþ �Þ
� �

d�

¼
Z t

t��
xT ðtÞAQ4AxðtÞ � 2xT ðtÞAQ4Whðy� ðtÞÞ
�

þhT ðy� ðtÞÞWTQ4Whðy� ðtÞÞ � _xT ð�ÞQ4 _xð�Þ
�

d�

þ
Z t

t��
yT ðtÞBQ5ByðtÞ � 2yT ðtÞBQ5Dx�ðtÞ
�

þ xT� ðtÞDQ5Dx�ðtÞ � _yT ð�ÞQ5 _yð�Þ
�

d�: ð25Þ

Considering the relationship in (9) and noting � > 0, we can

deduce

� 2hT ðyðtÞÞ�ByðtÞ � �2hT ðyðtÞÞ�BK�1hðyðtÞÞ: ð26Þ

In addition, for any matrices X1 and X2, we have

2xT ðtÞX1

Z t

t��
_xð�Þ d�

¼ 2xT ðtÞX1xðtÞ � 2xT ðtÞX1x�ðtÞ; ð27Þ

2xT� ðtÞX2

Z t

t��
_xð�Þ d�

¼ 2xT� ðtÞX2xðtÞ � 2xT� ðtÞX2x�ðtÞ: ð28Þ

Likewise, for any matrices Y1 and Y2, we have

2yT ðtÞY1

Z t

t��
_yð�Þ d�

¼ 2yT ðtÞY1yðtÞ � 2yT ðtÞY1yðt� �Þ; ð29Þ

2yT� ðtÞY2

Z t

t��
_yð�Þ d�

¼ 2yT� ðtÞY2yðtÞ � 2yT� ðtÞY2y� ðtÞ: ð30Þ

It then follows from (22)-(30) that

_V ðtÞ ¼
X4

i¼1

_Viðt; xðtÞ; yðtÞÞ

� 1

��

Z t

t��

Z t

t��
	T ðt; �; �Þ�ð�; �Þ	ðt; �; �Þ d� d�;

where

	ðt; �; �Þ ¼
�
xT ðtÞ; xT� ðtÞ; yT ðtÞ; hT ðyðtÞÞ; yT� ðtÞ;

hT ðy� ðtÞÞ; _xT ð�Þ; _yT ð�Þ
�T
;

�ð�; �Þ ¼
�11 �%T1 �%T2
# ��Q4 0

# # ��Q5

2
64

3
75

þ �
T1Q�1
4 
1 þ �
T2Q�1

5 
2;

and

%1 ¼ XT
1 �XT

2 0 0 0 0
� �

;

%2 ¼ 0 0 Y T
1 0 �Y T

2 0
� �

;


1 ¼ Q4A 0 0 0 0 �Q4W 0 0½ �;

2 ¼ 0 �Q5D Q5B 0 0 0 0 0½ �:

Define

�1 ¼
XT

1 �XT
2 0 0 0 0

Q4A 0 0 0 0 �Q4W

� �
;

�2 ¼
0 0 Y T

1 0 �Y T
2 0

0 �Q5D Q5B 0 0 0

� �
;

then

�11 þ ��T1 diag
�
Q�1

4 ; Q�1
4

�
�1 þ ��T2 diag

�
Q�1

5 ; Q�1
5

�
�2

is a monotonic increasing matrix function with respect to � and � ,

respectively. Moreover, based on Schur Complement equivalence

in [28] and (16), we have �ð�; �Þ < 0, which further indicates that

_V ðt; xðtÞ; yðtÞÞ < 0 for any nonzero 	ðt; �; �Þ in (31). Thus, it follows

from [29] that the genetic regulatory network in (7) with wðtÞ ¼ 0 is

globally asymptotically stable.
Step II. We show that zðtÞ in (7) satisfies

R1
0 jzðtÞj

2 dt �
�2
R1

0 jwðtÞj
2 dt. For � > 0 and T > 0, we define

JðT Þ ¼4
Z T

0

½jzðtÞj2 � �2jwðtÞj2� dt:
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Observing the fact that

0 ¼
Z T

0

dV ðtÞ
dt

dtþ V ð0Þ � V ðT Þ;

where dV ðsÞ
ds is the time derivative along the trajectory of network

(7), we have

JðT Þ ¼
Z T

0

½jzðtÞj2 � �2jwðtÞj2� dt

þ
Z T

0

dV ðtÞ
dt

dtþ V ð0Þ � V ðT Þ

¼
Z T

0

jzðtÞj2 � �2jwðtÞj2
h i

dt

þ
Z T

0

2 xT ðtÞP11 þ yT ðtÞPT
12

� ��
� �AxðtÞ þWhðy� ðtÞÞ þG1!ðtÞð Þ� dt

þ
Z T

0

2 xT ðtÞP12 þ yT ðtÞP22

� ��
� �ByðtÞ þDx�ðtÞ þG2!ðtÞð Þ� dt

þ
Z T

0

�2hT ðyðtÞÞ�ByðtÞ þ 2hT ðyðtÞÞ�Dx�ðtÞ
�

þ 2hT ðyðtÞÞ�G2!ðtÞ
�

dt

þ
Z T

0

�
xT ðtÞQ1xðtÞ � xT� ðtÞQ1x�ðtÞ

�
dt

þ
Z T

0

�
yT ðtÞQ2yðtÞ � yT� ðtÞQ2y� ðtÞ

�
dt

þ
Z T

0

hT ðyðtÞÞQ3hðyðtÞÞ � hT ðy� ðtÞÞQ3hðy� ðtÞÞ
� �

dt

þ
Z T

0

Z t

t��
_xT ðtÞQ4 _xðtÞ � _xT ð�ÞQ4 _xð�Þ
� �

d� dt

þ
Z T

0

Z t

t��
_yT ðtÞQ5 _yðtÞ � _yT ð�ÞQ5 _yð�Þ
� �

d� dt

þ V ð0Þ � V ðT Þ:

Since the initial values ’x and  y are assumed to be zero, then

V ð0Þ ¼ 0. In addition, V ðT Þ � 0, 8 T > 0. Using a similar method in

Step I, we obtain from (11) that JðT Þ < 0, 8 T > 0. That is, the

attenuation level � of perturbed genetic regulatory network in (7) is

guaranteed, and the proof is thus completed.
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