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We study the problem of merging genetic maps, when the individual genetic maps are given as directed acyclic graphs. The
problem is to build aconsensus map, which includes and is consistent with all (or, the vast majority of) the markers in the individual
maps. When markers in the input maps have ordering conflicts,the resulting consensus map will contain cycles. We formulate the
problem of resolving cycles in a combinatorial optimization framework, which in turn is expressed as an integer linear program. A faster
approximation algorithm is proposed, and an additional speed-up heuristic is developed. According to an extensive setof experimental
results, our tool is consistently better than JOINMAP, both in terms of accuracy and running time.
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1. INTRODUCTION

Genetic linkage maps are arguably the cornerstone of a
variety of biological applications including map-assisted
breeding, association genetics and map-assisted gene
cloning, just to name a few. Traditionally scientists
have focused on building genetic maps for a single map-
ping population, task for which a wide variety of soft-
ware tools are available and have satisfactory perfor-
mance, e.g., JOINMAP1, CARTHAGENE2, ANTMAP3,
RECORD4 TMAP5 and MSTMAP6.

In recent years, the rapid adoption of high-
throughput genotyping technologies has been paralleled
not only by an increase in the map density but also by a
variety of marker types. Today it is increasingly common
to find several genetic maps available for the same or-
ganism, usually for different sets of genetic markers and
obtained with a variety of genotyping technologies. No-
table examples are genetic linkage maps based on micro-
satellites in human7 and in cattle8, and maps based on se-
quence length polymorphism in mouse9 and rat10, just
to name a few. In the case of maize, for instance, seven
distinct mapping populations ofZea mayshave been
used11. When multiple maps are available, one could en-
vision to construct a bigger single map (hereafter called
consensus map) that includes all the markers.

A consensus map provides a higher density of mark-
ers and therefore a greater genome coverage than the in-
dividual maps. As the name suggests, the consensus map
should be consistent with the order of the markers from

the individual maps. However, this may not always be
possible since the presence of errors is very likely to in-
troduce conflicts between the individual maps. Due to the
way individual genetic maps are assembled, two types of
errors are observed, namely local reshuffles and global
displacements. Local reshuffles refer to inaccuracies in
the order of nearby markers, whereas global displace-
ments refer to the cases where a few markers are placed
at positions far from the correct ones. When addressing
conflicts to build the consensus maps, one should take
into account both types of errors.

1.1. Related works

Several systematic approaches have been proposed to
construct consensus maps12; 13; 1; 14; 11. The method
adopted by Beaviset al.12 for the integration of maize
maps is to pool together the genotyping data from the
individual mapping populations, and then rely on tradi-
tional mapping algorithms to build the consensus map.
Although this pooling strategy is commonly used, it has
several shortcomings. First, it cannot be used in all cir-
cumstances. For example, when the data are obtained
from different populations (e.g., one dataset obtained
from a double haploid population and another from a re-
combinant inbred lines population), then they cannot be
merged and treated equivalently afterward. Second, the
pooling method results in a large number of missing ob-
servations. A large amount of missing observations com-
bined with the limited tolerance to missing data by exist-
ing mapping algorithms inevitably deteriorates the qual-
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ity of the consensus map.
An alternative approach, like the one used in the tool

JOINMAP13; 1, is to first obtain the consensus estimates
of pairwise genetic distances by weighting for population
structure and size. Then, the tool searches for a map that
minimizes an objective function that measures the fit of
the map to the distance estimates and the overall quality
of the map. The drawbacks of this approach are twofold.
First, it is well-known that distance estimates are not very
accurate when based on a small sample of recombination
events. Construction of genetic maps based on approx-
imate estimates will result in inaccuracies in the order-
ing between markers on the consensus map. Second, the
computational problem of searching for an optimal map
with respect to the objective function being used is very
time consuming. For instance, the most recent version
of JOINMAP took three monthsof computation to con-
struct a consensus map from three individual maps of
barley containing a total of 1,800 markers (the markers
are divided into 7 linkage groups of roughly equal sizes).
Despite these drawbacks, JOINMAP is still the only off-
the-shelf software package available to build consensus
maps.

The most recent approach to the problem relies on
graph theory and was initially proposed by Yapaet al.14

and later extended by Jacksonet al.11 Yapaet al.14 use
directed acyclic graphs (DAG) to represent maps from in-
dividual populations. The set of DAGs are then merged
into a consensus graph on the basis of their shared ver-
tices. A directed cycle in the resulting graph indicates an
inconsistency among the individual maps with regard to
the order of the markers involved. In order to resolve the
inconsistencies, Jacksonet al.11 propose to break cycles
by removing a minimum weight set of feedback edges.
This objective function is reasonable when dealing with
local reshuffles. However in the presence of global re-
locations, it is not appropriate because too many edges
need to be deleted in order for all the cycles to be bro-
ken. A similar approach is to remove a minimum weight
feedback vertex set from the graph. The obvious draw-
back of this method is that the markers corresponding to
the deleted vertices will be excluded from the consensus
map.

1.2. Our contribution

We follow the graph theoretical paradigm outlined in [11,
14] and represent individual genetic maps as DAGs. The
individual maps are combined into a single directed graph
according to their shared vertices. Any ordering conflict
among the individual maps will result in cycles in the
combined graph. Here, we propose to resolve the cycles
by removing the smallest set of (feedback) marker occur-
rences. Note that we are not deleting markers but marker
occurrences. A marker may occur in multiple individual
maps. A marker occurrence refers to the appearance of a
marker in a particular individual map. The deletion of a
marker occurrence will not affect the occurrences of the
same marker in other maps.

Trying to identify and eliminate a small number of
marker occurrences from some of the maps is a better
strategy than the one proposed in [11] because it more ac-
curately reflects the type of errors that may be present in
the individual maps. We formulate the optimization prob-
lem resulting from this strategy via integer linear pro-
gramming (Section 3), and we propose an approximation
algorithm to solve it. We also devise an heuristic to de-
compose the original problem, in the case the size of the
instance to be solved is too large.

As soon as all cycles in the consensus map are re-
solved, we process the resulting graph with another novel
algorithm whose objective is to simplify the DAG to help
geneticists to be able to visualize and make use of the
consensus map (Section 4). This step involves remov-
ing redundant edges and merging nodes on the consensus
map without introducing conflicts. In the last step, a final
algorithm produces a linear order of the markers which is
consistent with the consensus graph (Section 5).

The last two steps of our approach, i.e., condens-
ing the markers and linearizing the DAG, further distin-
guishes our approach from those in [14, 11]. The final
output of our workflow is a linear order of marker binsa

which is a format geneticists are used to work with. The
output of the methods by Yapaet al.14 and Jacksonet
al.11 is however a DAG, which is often too complex
and convoluted to make much sense out of it. For the
same reasons, we did not compare our experimental re-
sults against those methods.

In Section 6 we carry out an extensive evaluation of
our algorithms on synthetic data. We compare the perfor-

aA bin is a set of markers for which the relative orders are undetermined.
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mance of our method with JOINMAP. Our approach pro-
duces consistently better results than JOINMAP, both in
terms of accuracy and running time. Our method is also
superior to the method of pooling together genotyping
data from individual maps. We have also employed our
software on the genotyping data we collected for three
mapping populations (about 1,800 markers) for barley,
but we had to omit those results from this manuscript due
to lack of space.

2. PRELIMINARIES AND NOTATIONS

A genetic linkage maprepresents the linear order and the
pairwise distance of markers on a chromosome. The dis-
tance between two adjacent markers, expressed incenti-
morgans(cM), is determined by the frequency of genetic
recombination occurring in the region between them.
Two markers are one centimorgan apart if one observes
an average of 0.01 crossovers per meiosis in the region
enclosed by the two markers. The set of markers for
which no recombination is detected is called abin. For
markers in the same bin, their relative orders are undeter-
mined. From this point forward, a genetic map is com-
posed of a sequence of bins (of marker) and the distance
between them.

Some notations are in order. LetΠ denote a
genetic linkage map, and letMΠ denote the set of
markers included inΠ. Given a set of mapsΩ =

{Π1, Π2, . . . , ΠK}, we defineMΩ to be theuniverseof
all the markers, i.e.,MΩ = ∪K

i=1MΠi
.

Given a mapΠ we defineGΠ = (MΠ, EΠ) to be
the directed weighted graphinducedby the map, where
the set of edgesEΠ is defined asEΠ = {(mi, mj)|mi is
in the bin immediately preceding the bin ofmj} and the
weight of an edge(mi, mj) is set to the distance between
the corresponding bins. The notion of induced graph can
be extended to a set of maps. LetGΩ = (MΩ, EΩ)

be the directed weighted graph induced byΩ, where
EΩ = ∪K

i=1EΠi
. The weight of an edge inGΩ is set to

be the average of the weights of the corresponding edges
in the original maps.

We usemi to refer to a generic marker, andmj
i to re-

fer to the occurrence of markermi in mapΠj . We further
defineNΩ to be the set containing all the marker occur-
rences. If we select a setR ⊆ NΩ, asubmapΠ(R) of Π

with respect toR is defined by deleting the occurrences
of all markers not inR from the mapΠ. The subproblem
Ω(R) of the original problemΩ restricted toR is defined

asΩ(R) = {Πi(R)|Πi ∈ Ω}.
Figure 1 illustrates the notationsΠ, Ω, GΠ, GΩ, MΩ,

NΩ, Π(R) andΩR for a small example.

3. RESOLVING ORDERING
CONFLICTS

Let Ω = {Π1, Π2, . . . , ΠK} be the set of input maps for
which we want to build a consensus map. Merging maps
Π1, Π2, . . . , ΠK into a consensus DAG is straightforward
when there are no conflicts. If some of the markers have
conflicting orders among the input maps, thenGΩ con-
tains cycles. In order to resolve cycles, we propose to
delete the smallest set of marker occurrences. More pre-
cisely, if we first assign weights to the individual maps
to represent their quality (i.e., high weight is associated
with high quality), the problem is to delete the minimum-
weight set of marker occurrences so that the resulting
subproblem is conflict-free. The optimization problem
that emerges from this strategy is the following.

Minimum-Weight Feedback Marker Occurrence Set
(MWFMOS)
Input: Ω andw, whereΩ is a set of individual maps
from which one would like to build a consensus map,
andw is the associated weight function onNΩ where
w(mj

i ) is the weight of marker occurrencemj
i . With-

out loss of generality, we assume thatw(mj
i ) > 1 for

all mj
i ∈ NΩ.

Objective: identify a setD of minimum total weight
so that the subproblem restricted toNΩ − D is
conflict-free (i.e., the graph induced by the subprob-
lem,GΩ(NΩ−D), is acyclic).

It is relatively easy to prove that MWFMOS is NP-
complete when the number of maps is unbounded. The
proof uses a reduction from the minimum feedback edge
set problem (not shown here due to space restrictions).
We still do not know whether MWFMOS is still NP-
complete when the number of maps is bounded by a con-
stant, but we suspect it is.

The solution to the MWFMOS problem with in-
put (Ω, w) can be obtained by solving MWFMOS for
the non-overlapping subproblems corresponding to the
strongly connected components inGΩ. The optimal so-
lution to the original problem is simply the concatenation
of the optimal solutions to the subproblems. In the fol-
lowing, we will be focusing on solving MWFMOS for a
subproblem only.
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Ω = {Π1,Π2}
Π1 = [(m2) 2 (m3, m4) 1 (m5) 2 (m6, m7)]
Π2 = [(m1) 1 (m2, m3) 2 (m5) 1 (m4, m7)]
MΩ = {m1, m2, m3, m4, m5, m6, m7}

NΩ =



m1
2, m1

3, m1
4, m1

5, m1
6, m1

7,

m2
1, m2

2, m2
3, m2

4, m2
5, m2

7

ff

R =



m1
2, m1

3, m1
4, m1

5, m1
6, m1

7,

m2
1, m2

2, m2
3, m2

4, m2
7

ff

Π1(R) = Π1

Π2(R) = [(m1) 1 (m2, m3) 3 (m4, m7)]
Ω(R) = {Π1(R), Π2(R)}

m2

m3

2

m4

2

m5

1 1
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2

m7

2

m1
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1
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1
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2 2
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1
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1

m1

m2

1
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1

2
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2

m5

2

1.5

1 1

m6

2

m7

1.5

m1

m2

1

m3

1

2

m4

2.5

m7

3

3

m5

1

3 1

m6

2 2

GΠ1
GΠ2

GΩ GΩ(R)

Fig. 1. Two simple genetic linkage maps, along with the corresponding notations used in this paper. MapsΠ1 andΠ2 both consist of four bins
(enclosed in parentheses). The numbers in between adjacentbins indicate the distances between them. MapsΠ1 andΠ2 are not consistent with each
other because there is a cycle inGΩ betweenm4 andm5. Removingm5 from Π2 resolves the conflict.

3.1. An LP-based algorithm

Let I = {F1, F2, . . . , FK} be a subproblem ofΩ corre-
sponding to a strongly connected component inGΩ. A
submapFi is hereafter called afragmentsince it is a con-
tiguous piece of an individual map fromΩ. Each frag-
mentFi has the same format asΠi. Throughout this pa-
per, we useΩ to denote the original problem, andI to
denote a subproblem ofΩ.

A conflict in I is characterized by a pathmj1
i1
→

mj1
i2

, mj2
i2
→ mj2

i3
, . . . , mjn

ik
→ mjn

i1
(not to confused

with a path inGI), whereinmj1
i1
→ mj1

i2
means that

markermi1 precedes markermi2 in fragmentFj1 (mark-
ersmi1 andmi2 do not have to be in adjacent bins). Note
that the path starts and ends with the same marker in two
different fragments. LetP be the set of such paths.

GivenP , we formulate MWFMOS as an Integer Lin-
ear Program (ILP) as follows.

Min
∑

xj
iw(mj

i )

S.T.
∑

mj
i
∈p xj

i ≥ 1 ∀p ∈ P (1)

xj
i ∈ {0, 1}

wherexj
i is the binary variable associated with the marker

occurrencemj
i which is set to 1 ifmj

i is to be deleted and
set to 0 otherwise. The LP relaxation of the above ILP
is straightforward. The number of constraints in (1) is
|P |, which is at mostO(K!|MI |K), whereK is number
of fragments inI and|MI | is the total number of distinct
markers inI. The upper bound is a polynomial in the size
of the input ifK is fixed. The dual of the LP relaxation

of (1) is the following program.

Max
∑

yp

S.T.
∑

p∋mj
i
yp ≤ w(mj

i ) ∀m
j
i ∈ NI (2)

yp ≥ 0 ∀p ∈ P

whereyp is the associated variable with pathp ∈ P , and
NI is the set containing all the marker occurrences inI.
The following LP is equivalent to (2).

Min λ

S.T.
∑

p∋mj
i
yp ≤ λw(mj

i ) ∀m
j
i ∈ NI

∑
p∈P yp = 1 (3)

yp ≥ 0 ∀p ∈ P

The optimal solution to (3) is the reciprocal of the
solution of (2). To simplify the notation, we can rewrite
(3) in the matrix representation.

Min λ

S.T. A~y ≤ λ~w (4)

~y = 1 and ~y ≥ 0

Each row ofA corresponds to a marker occurrence
in NI and each column ofA refers to a path inP . We
haveA[r, c] = 1 if and only if mj

i ∈ NI corresponding
to therth row of A is on the path corresponding to the
cth column ofA. With ~y = 1, we mean

∑
p∈P yp = 1.

Due to the large number of variables, solving opti-
mally (4) can be very time consuming. In the following,
we show how to achieve an(1 + ǫ)-optimal (or simply

bA solutionλ is said to be(1 + ǫ) optimal if λ < (1 + ǫ)λopt, whereλopt is the optimal solution. An(1 + ǫ) optimal solution is sometimes simply
called anǫ-optimal solution.
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ǫ-optimal) solutionb. To find such an approximate solu-
tion, we follow the method proposed by Plotkinet al.15

Let ~z be the dual variables associated with (4), and let us
defineC(~z) = min~y|~y=1 ~ztA~y.

Consider an error parameter0 < ǫ < 1/6, a fea-
sible primal solution(~y, λ), and a feasible dual solution
~z. λ is 6ǫ optimal if the following two relaxed optimality
conditions are met:

(1 − ǫ)λ~zt ~w ≤ ~ztA~y (5)

~ztA~y − C(~z) ≤ ǫ(~ztA~y + λ~zt ~w) (6)

A sketch of the algorithm to find a6ǫ optimal solu-
tion is presented in Figure 2. The performance guarantee
of our algorithm APPROXSOLVE is presented as Theorem
1, and the time complexity of the algorithm is presented
as Theorem 2.

Lemma 1. Let (~y, λ) and~z be feasible primal and dual
solutions that satisfy both condition (5) and (6). Then,
(~y, λ) is an(1 + 6ǫ) optimal solution.

Proof. This Lemma corresponds as Lemma 2.1 in [15].
To be self-contained, we present the proof here.
From (5) and (6), we have:C(~z) ≥ (1 − ǫ)~ztA~y −

ǫλ~zt ~w ≥ (1− ǫ)2λ~zt ~w − ǫλ~zt ~w ≥ (1− 3ǫ)λ~zt ~w.
Hence,λ ≤ (1 − 3ǫ)−1C(~z)/~zt ~w ≤ (1 − 3ǫ)−1λ∗ ≤

(1 + 6ǫ)λ∗.

Theorem 1. AlgorithmAPPROXSOLVE returns an(1 +

6ǫ) optimal solution to (4).

Proof. The theorem follows from Lemma 2.2 in [15]. To
be self-contained, we present the proof here.

According to Lemma 1, in order to prove Theorem 1,
we only have to show that condition (5) and (6) are both
satisfied when Algorithm APPROXSOLVE stops. Since
condition (6) is met by the while loop at line 4, we only
have to show that (5) is satisfied when the algorithm
stops.

We first show that whenα ≥ α0 = 2 ln(2|NI |ǫ
−1)

λǫ , ~z

as assigned by the “for” loops at line 3 and 10 in algo-
rithm APPROXSOLVE will satisfy condition (5).

Let I = {i : (1 − ǫ/2)λwi ≥ ~ai
t~y}. Let

j ∈ I. λzjwj = λeα ~aj
t~y/wj ≤ λeα(1−ǫ/2)λ =

λeαλe−αǫλ/2 ≤ λeαλe−ln(2|NI|ǫ
−1) ≤ ǫ

2|NI|
λeαλ ≤

ǫ
2|NI |

[λ~zt ~w]. Consequently,λ~zt ~w =
∑

i∈I λziwi +
∑

i/∈I λziwi ≤
∑

i∈I λziwi +
∑

i/∈I
1

1−ǫ/2zi~ai
t~y ≤

∑
i∈I λziwi + 1

1−ǫ/2~ztA~y ≤ ǫ
2λ~zt ~w + 1

1−ǫ/2~ztA~y.
Therefore, we have(1− ǫ)λ~zt ~w ≤ ~ztA~y

Notice thatα is initialized to be2α0 and whenever
maxr ~ar

t~y/wr ≤ λ/2, α gets recomputed. Therefore
condition (5) is satisfied throughout the execution of Al-
gorithm APPROXSOLVE.

Lemma 2. Let (~y1, λ) and ~z1, where ~z1 =

{ 1
wr

eα ~ar
t ~y1/wr}

|NI|
r=1 , be primal and dual solutions that

do not satisfy (6). Let(~y2, λ) and ~z2 be the solutions
in the next iteration, i.e.~y2 = (1 − δ)~y1 + δỹ, and let
α, δ andǫ be defined in AlgorithmAPPROXSOLVE. Let
Φ1 = ~z1

t ~w, Φ2 = ~z2
t ~w. Φ1 − Φ2 > λǫ2Φ1/4.

Proof. Φ2 = ~z2
t ~w =

∑
i eα ~ai

t ~y2/wi =∑
i eα ~ai

t((1−δ) ~y1+δey)/wi =
∑

i eα ~ai
t ~y1/wieαδ ~ai

t(ey− ~y1)/wi .
Sincewi > 1, ~y1 = 1 andỹ = 1 =⇒ |~ai

t(ỹ− ~y1)/wi| <

1. Sinceδ = ǫ
4α =⇒ |αδ~ai

t(ỹ− ~y1)/wi| < ǫ/4 < 1/4.
According to Taylor’s expansion,ex < 1 + x + 2x2 for
|x| < 1/4. By plugging inx = αδ~ai

t(ỹ − ~y1)/wi we get
eαδ ~ai

t(ey− ~y1)/wi < 1+(αδ~ai
t(ỹ− ~y1)/wi)+2(αδ~ai

t(ỹ−

~y1)/wi)
2

< 1 + (αδ~ai
t(ỹ − ~y1)/wi) + ǫ

2 (αδ~ai
t(ỹ + ~y1)/wi)

Therefore, Φ2 =
∑

i eα ~ai
t ~y1/wieαδ ~ai

t(ey− ~y1)/wi <∑
i eα ~ai

t ~y1/wi + αδ(C(~z1) − ~z1A~y1) + ǫ
2αδ(C(~z1) +

~z1A~y1)

Φ2 < Φ1 + αδ(C(~z1)− ~z1A~y1)+ ǫ
2αδ(C(~z1) + ~z1A~y1)

Φ1 − Φ2 > αδ(~z1A~y1 − C(~z1))− ǫαδ ~z1A~y1

Due to the fact that(~y1, λ) and ~z1 do not satisfy (6), we
haveΦ1 − Φ2 > λǫαδ ~z1

t ~w.
According to the choice ofδ, Φ1 − Φ2 > λǫ2Φ1/4

Theorem 2. Algorithm APPROXSOLVE converges in
O( 1

ǫ3λ∗ log(|NI |ǫ−1)) iterations, whereλ∗ is the optimal
solution to (4).

Proof. Notice that during the execution of Algorithm
APPROXSOLVE, λ is a monotonically decreasing se-
quence withλi > 2λi+1. Let the sequence ofλ be
λ0, λ1, λ2, . . . , λn, whereλn > λ∗ is the final output.
Whenλ = λk, theneαλk/2 ≤ Φ ≤ |NI |eαλk

Due to Lemma 2, it takes at most
O( 1

ǫ3λk
log(|NI |ǫ−1)) iterations to cutλ from λk to

λk+1. Sinceλi > 2λi+1, the overall time complexity is
determined by the last step. Hence the overall running
time isO( 1

ǫ3λ∗ log(|NI |ǫ−1)).

Step 5 in algorithm APPROXSOLVE can be solved
by running all pairs shortest path algorithm (details not
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APPROXSOLVE(~y0, ǫ)

1: ~y ← ~y0; λ← maxr ~ar
t~y/wr; α← 4 ln(2|NI |ǫ−1)/(λǫ); σ ← ǫ/(4α);

{ ~ar is the transpose of therth row vector of matrixA. |NI | is the number of rows inA}

2: for r = 1, . . . , |NI | do
3: zr ← eα ~ar

t~y/wr/wr

4: while (~y, λ, ~z) does not satisfy (6)do
5: ỹ ← argmin~y|~y=1~z

tA~y

6: ~y ← (1 − σ)~y + σỹ

7: if maxr ~ar
t~y/wr ≤ λ/2 then

8: λ← maxr ~ar
t~y/wr; α← 4 ln(2|NI |ǫ−1)/(λǫ); σ ← ǫ/(4α);

9: for r = 1, . . . , |NI | do
10: zr ← eα ~ar

t~y/wr/wr

11: λ← maxr ~ar
t~y/wr;

12: return ~y, λ, ~z

Fig. 2. A sketch of our LP-based algorithm

shown here), which takes timeO(|NI |
3 log |NI |). The

vector ~y does not have to be stored in memory ex-
plicitly since all we need isA~y which takes space
O(|NI |). Combining the running time for each iter-
ation with the upper bound on the number of itera-
tions, the overall time complexity of APPROXSOLVE is
O( 1

ǫ3λ∗ log(|NI |ǫ−1)|NI |3 log |NI |). Note that the time
complexity does not depend on|P |.

Given the near optimal solution~z to the dual of (4),
the near optimal solution to the LP relaxation of (1) is
~x ← ~z/C(~z). In our algorithm we apply two types of
rounding to convert the fractional solution~x to an inte-
gral solution, and then choose the better one among the
two.

The first method is randomized. The randomized
rounding algorithm progressively deletes marker occur-
rences until all the conflicts are resolved. In each step,
the method samples a marker to be deleted according
to a probability distribution proportional to~x. The so-
lution obtained is further reduced to a minimal solution
by removing redundant marker occurrences. The second
rounding method employs a greedy strategy. The mark-
ers occurrences inNI are sorted into the descending or-
der according to their associated probabilities. We delete
just enough marker occurrences to resolve all the con-
flicts. Again, the solution is further reduced to a minimal
solution by removing redundancies.

3.2. A speed-up heuristic

The LP-based algorithm works well when either the size
of the subproblem is small (i.e.,|NI | is small) or the num-
ber of markers to be deleted is small (i.e.,1/λ∗ is small),
the latter of which is usually the case in practice. How-
ever if both |NI | and1/λ∗ are large, the LP-based al-
gorithm can be still too slow. In this case, we advise to
employ an heuristic algorithm which breaks a large sub-
problemI into even smaller sub-subproblems.

Our heuristic algorithm uses the notion of node
betweenness originally proposed by Girvan and
Newman16. Recall that thebetweenness centralityof
a node in a graph is equal to the number of shortest
paths that go through it. The intuition is that nodes with
high betweenness usually correspond to hubs, and their
deletion will likely break the graph into disconnected
components.

Now letmj1
i andmj2

i be a pair of occurrences of the
same marker in two individual maps. A path between
mj1

i and mj2
i is the shortest if it traverses the smallest

number of marker occurrences. LetQ be the set of all
such pairwise shortest paths. If there are multiple short-
est paths between a pair, we arbitrarily choose one to be
included inQ. Observe thatQ is a subset ofP in the ILP
(1).

We define theweighted betweenness centralityof a
marker occurrencemj

i as the number of shortest paths
in Q that go through nodemj

i divided by its weight
w(mj

i ). The higher the centrality, the more likely it is the
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“true bad” marker occurrence that should be deleted. Our
heuristic algorithm works by computing the centrality for
every marker occurrences and then iteratively deleting the
ones with the highest value. The step is repeated until the
sizes of the sub-problems are all small enough to be han-
dled by our LP-based algorithm. The pseudo-code for our
algorithm is presented in Figure 3.

4. CONDENSING THE MARKERS

Having resolved the conflicts inΩ, the graphGΩ is now
a DAG. In practice however, the graphGΩ is overly com-
plex. For example,GΩ contains a large number of re-
dundant edges. A directed edge(mi, mj) is said to be
redundantif there is an alternative (distinct) path from
mi to mj in GΩ. For reasonably large individual maps,
the resulting consensus graphs obtained after the removal
of redundant edges can still be very complex.

Recall that a bin represents a set of nearby markers
for which the relative orders are undetermined. In this
step, we aim to simplifyGΩ by condensing markers into
bins. In order to clearly differentiate the bins constructed
in this step from the bins in the original maps, we refer to
the former ones assuper-markers.

The rationale for combining markers into super-
markers is the following. If two markers always appear
paired in the same bin of the original individual maps,
then there is no way to determine the relative order be-
tween them and they should be drawn as a single super-
marker. Generalizing this observation, we define the no-
tion of co-segregatingmarkers as follows. Given a set of
mapsΩ = {Π1, Π2, . . . , ΠK}, two markers(mi, mj) are
said to beco-segregatingif they satisfy the following two
conditions (A)mi andmj belong to the same bin in at
least one of the maps inΩ, and (B) there is no path from
mi to mj or frommj to mi in GΩ. The first condition is
intended to ensure that the markers to be condensed into
a super-marker are indeed close. The second condition
is intended to ensure that the relative order between the
markers to be condensed into a super-marker is undeter-
mined.

The co-segregation relation does not define an equiv-
alent relation, because it does not satisfy the transitiv-
ity property. Furthermore, when we group markers into
super-markers, we must be careful not to introduce new
conflicts. In order to address these issues, we employ
a greedy iterative algorithm to carry out a maximal de-
composition of the markers into super-markers. In each

step, we condense one pair of co-segregating markers into
a super-marker. The original problemΩ is being trans-
formed into a new problemΩ′ (which has one less marker
thanΩ). We keep repeating this iterative process until
no co-segregating markers can be found. LetΩf be the
final set of maps andGΩf be the corresponding induced
DAG. We further remove redundant edges fromGΩf , and
let the final graph obtained by this procedure beDAGΩ.
DAGΩ is guaranteed to have the following property.

Theorem 3. The in-degree and out-degree of the vertices
in DAGΩ are at mostK, whereK is the number of maps.

Proof. Let Πf ∈ Ωf be one of the final individual maps.
Let MΠf be the set of super-markers contained inΠf .
Consider any two super-markersmi andmj from MΠf .
If mi andmj belong to different bins inΠf , thenmi and
mj are ordered (meaning eithermi is beforemj or the
reverse). On the other-hand, ifmi andmj belong to the
same bin, sincemi andmj do not form a co-segregating
pair (due to the greediness of our algorithm), there must
be a path from eithermi to mj or from mj to mi in
DAGΩ. Therefore, if we restrict our attention to a sin-
gle mapΠf ∈ Ωf , DAGΩ defines a total order on the set
of super-markersMΠf . As a result, each super-marker
can have at most one immediate predecessor and one im-
mediate successor from one individual map. Since each
super-marker can appear in at mostK maps, the theorem
follows.

5. LINEARIZING THE DAG

In this last step, we processDAGΩ to produce a linear or-
der of the bins (super-markers). The linear order must be
consistent with the partial order of the bins, i.e., if there
is a path from binbi to bin bj in DAGΩ, thenbi should
precedebj in the linear order. In the case when there is no
path between a pair of bins, we have to impute the order
of the two bins as well as the distance between them.

Let us defineD[bi, bj ] to be the distance from a bin
bi to another binbj in DAGΩ. If there is only one path
from bi to bj , thenD[bi, bj ] is trivially assigned the length
of that path. If there are multiple paths frombi to bj , we
set D[bi, bj ] to be the average length of all paths from
bi to bj, which can be efficiently computed by dynamic
programming.

Now, let bi andbj be two bins that are not ordered
in DAGΩ. Our algorithm determines the relative order
betweenbi andbj as follows. There are three cases.
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FASTDELETE(Ω, δ)

1: S ← ∅;
2: done← false

3: while notdone do
4: done← true;
5: for each connected components inGΩ(NΩ−S) do
6: I ← the corresponding sub-problem
7: if |NI | > δ then
8: done← false;
9: Q← ∅;

10: for m ∈MI do
11: A← the set of occurrences of markerm in I

12: for mi ∈ A do
13: for mj ∈ A do
14: p← a shortest path frommi to mj if there exists one
15: Q← Q + {p}

16: calculate the node centrality for each maker occurrence inNI based on setQ and the associated weights
17: v ← the marker occurrence with the highest centrality
18: S ← S + {v}

19: return S

Fig. 3. A sketch of our heuristic-based algorithm

• If bi and bj have common ancestors and common
successors. LetA be the set of common ances-
tors andS be the set of common successors. Let
p ∈ A be one of the ancestors ands ∈ S be
one of the successors. We define the distance from
bin bi to bin bj with respect to the common an-
cestor and successor pair(p, s) as∆(p,s)[bi, bj ] =

D[p, s]
(

D[p,bj ]
D[p,bj ]+D[bj ,s] −

D[p,bi]
D[p,bi]+D[bi,s]

)
. The fi-

nal distance∆[bi, bj ] is averaged over all(p, s) pairs,
i.e. ∆[bi, bj ] =

∑
p∈A,s∈S ∆(p,s)[bi, bj]/(|A| |S|).

If ∆[bi, bj ] is positive, then the preferred order isbi

beforebj. Otherwise, the preferred order isbj before
bi.
• If bi and bj have only common successors. Let

S be the set of successors and lets ∈ S be one
of the successor. The distance from binbi to bin
bj with respect tos is defined as: ∆s[bi, bj] =

D[bi, s] − D[bj , s]. The final distance∆[bi, bj] is
again averaged over all successors, i.e.∆[bi, bj] =P

s∈S
∆s[bi,bj ]

|S| .
• If bi andbj have only common ancestors.D[bi, bj]

is similarly computed as in the previous case.

The algorithm we propose to linearizeDAGΩ is

similar to the topological sorting algorithm. LetT be the
list of ordered bins (T = ∅ initially). At each iteration,
our algorithm determines the next markers to be ordered.
If s is uniquely determined under the partial order given
by DAGΩ, then we simply appends to the end ofT .
Otherwise, ifS is the set of multiple choices,s is chosen
so that

∑
t∈S,t6=s ∆s,t is maximized.

6. EXPERIMENTAL RESULTS

We implemented our algorithms in C++ and carried out
extensive evaluations on both real data sets and synthetic
data sets. Due to lack of space we will present only
the results for synthetic data. Our software tool, called
MERGEMAP, is available upon request from the authors.

6.1. Evaluation of the
conflict-resolution

The purpose of this set of experiments is to assess the
effectiveness and efficiency of our conflict-resolving al-
gorithm. Each data set of this experiment consists of six
individual maps, which are all noisy copies of one single
true map. Thetrue map of a data set is simply a per-
mutation ofm markers, where the parameterm ranges
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from 100 to 500 (representing a spectrum of maps from
medium sizes to extra large sizes). The distances be-
tween adjacent markers are fixed to be 1 cM. To gener-
ate an individual map from thetrue map, we first swapη
randomly chosen adjacent pairs, and then we relocateγ

randomly chosen markers to a random position. Theη

swaps are intended to mimic local reshuffles while theγ

relocations are intended to mimic global displacements,
the two types of errors that may present in a genetic map.
In our experiments,η ranges from 10 to 30 andγ ranges
from 2 to 6.

For each data set, a consensus map was constructed
by MERGEMAP by running the conflict resolution mod-
ule, followed by the bin condensation and the final lin-
earization. The consensus map was compared with the
truemap and the number of erroneous marker pairs were
counted. We call a pair of markerserroneouswhen their
order in consensus map differs from the order in the true
map. When the consensus map is identical to the true
map, the number of erroneous marker pairs is zero. On
the other hand, when the consensus map is the reverse of
thetruemap, the number of erroneous markers is equal to
m(m−1)/2. For each choice ofm, η andγ, ten indepen-
dent random data sets were generated. For each dataset,
the number of erroneous marker pairs and the running
time were collected. The mean and standard deviation
for both performance measures were computed, and are
summarized in Figure 4.

As Figure 4 illustrates, MERGEMAP is very accurate
in detecting the problematic markers and deleting them
before merging the individual maps. In most cases, the
number of erroneous marker pairs is less than ten, and
in a few cases the number of erroneous pairs is equal to
zero. Whenη orγ increases, the problem becomes harder
and the quality of the consensus map deteriorates. On the
contrary, asm increases the number of erroneous pairs
decreasesc.

The running time of MERGEMAP increases asm or
η or γ increase, but our software tool is relatively effi-
cient. For the largest dataset withm = 500 markers,
η = 30 and γ = 6, MERGEMAP finishes within 2-3
hours. In contrast, JOINMAP takes severalweeks to as-
semble maps with 300 or so markers.

6.2. Comparison with J OINMAP

The objective of this set of experiments is to evaluate the
entire process of building consensus maps from “scratch”
(i.e., starting from synthetic genotyping data). The syn-
thetic genotyping datasets are generated according to a
procedure which is controlled by six parameters. We at-
tempted to model the genotyping process to be as realistic
as possible. The parameters are the numberK of map-
ping populations, the numberm of markers, the number
R of “bad markers” on each mapping populations, the
genotyping error rateη and the missing rateγ. The sixth
parameterx controls the percentage of the markers shared
by two individual maps. The latter is an attempt to model
what happens in practice, where the data for individual
maps only represent asubsetof the universe of genetic
markers.

The entire procedure to generate a synthetic geno-
typing dataset can be divided into four steps. In the first
step, a “skeleton” map is produced withm markers. The
markers on the skeleton map are spaced at a distance of
0.5 centimorgan plus a random distance according to a
Poisson process with a mean of2 centimorgans. The
“skeleton” map serves the role of thetrue map.

Following the generation of the skeleton map, in the
second step the raw genotyping data for theK map-
ping populations are then generated sequentially. Here
we assume that the mapping populations are all of the
DH (double haploid) type, and that each population con-
sists of 100 individuals. The genotypes for the individ-
uals are generated as follows. The genotype at the first
marker is generated at random with probability 0.5 of be-
ing A and probability 0.5 of beingB. The genotype at the
next marker depends upon the genotype at the previous
marker and the distance between them on the skeleton
map. If the distance between the current marker and the
previous marker isd centimorgans, then with probability
d/100, the genotype at the current locus will be the oppo-
site of the one at the previous locus, and with probability
1− (d/100) the two genotypes will be the same. Finally,
according to the specified error rate and missing rate, the
genotype state is flipped to model the introduction of a
genotyping error or is simply deleted to model a missing
observation.

cThe only outlier in the figure is the casem = 300, η = 20 andγ = 6. We examined the raw data, and found that the high mean and standard
deviation is due to one single data set, for which our algorithm failed to place one single marker in the right place. This single bad marker contributed
172 erroneous marker pair in total. When averaged over the ten runs, the single bad marker contributed 17 to the average number of erroneous pairs.
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Fig. 4. The number of erroneous marker pairs obtained with MERGEMAP (LEFT) and the average running time (RIGHT) for various choices ofm,
η andγ. Each point in the figure is an average of the results obtainedfrom ten independent data sets. The standard deviation for the corresponding
statistic is represented as the error bar in the above figures.

In the third step, “bad markers” are added to each
mapping population. To do so,R markers are first se-
lected at random from each population. The genotypes
for those chosen markers across all the 100 individuals
are flipped with probability 0.3. Due to the very high er-
ror rate introduced for these markers (they are “bad” after
all), their positions in the individual genetic maps will be
unpredictable. We note thatR is small relative tom, and
therefore the probability that two individual populations

share a common bad marker is very small. When they do,
we discard the entire dataset and generate a new one.

The fourth step of generation procedure involves re-
moving a fraction of markers from each individual map.
A random subset of(1 − x)m markers is deleted from
each mapping population, wherex varies from 0.35 to
0.7 in our experiments. As a result, two mapping popula-
tions sharex2m markers on average.

For each data set, individual genetic maps are assem-
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bled by our tool MSTMAP6. The individual maps are
then fed into MERGEMAP to build the consensus map.
We denote this approach of building the consensus maps
as MSTMAP+MERGEMAP.

Here we compare the performance of
MSTMAP+MERGEMAP against the software tool JOIN-
MAP. According to our knowledge, JOINMAP is the
most popular tool for building consensus map in the
community. However, due to the fact that JOINMAP

is GUI-based (non-scriptable) and is extremely slow as
soon as the number of markers exceeds 150, we were only
able to collect results for a few relatively small data sets.
As mentioned in the introduction, an alternative approach
to the problem of constructing consensus maps is to pool
the genotype data for all the individual populations and
then apply any existing genetic mapping algorithms by
treating the pooled data set as a single population. When
pooling individual datasets, a large number of missing
observations will have to be introduced. Following this
idea, we constructed a consensus map with MSTMAP by
first combining the raw mapping data from multiple pop-
ulations into a pooled dataset. We call this latter approach
MSTMAP-C.

We consider two parameter sets, which we thought
to be rather realistic. In the first, the parameters are
m = 100, K = 6, x = 0.7, η = 0.001, γ = 0.001 , and
R = 0. In the second we changedR = 2, while the rest
of the parameters were kept identical. For each choice of
the parameters, ten random data sets are generated. The
number of erroneous marker pairs and the running time
is recorded. The results for the two parameters set are
presented in Figure 5.

Figure 5-RIGHT shows that MSTMAP+MERGEMAP

is orders of magnitude faster than JOINMAP (they-axis
is in log-scale). The difference in running time be-
comes more apparent whenm is large. Also observe that
MSTMAP-C can be faster than MSTMAP+MERGEMAP.

Figure 5-LEFT shows that (1) the consensus maps
obtained by MSTMAP+MERGEMAP are significantly
more accurate than the ones produced by JOINMAP and
that (2) MSTMAP-C have comparable accuracy to JOIN-
MAP. We believe that the same conclusions can be de-
rived for larger datasets.

In order to investigate the extend of the advan-
tages brought upon by the tool MERGEMAP we per-
formed an extensive comparison between MSTMAP-C
and MSTMAP+MERGEMAP for a variety of parameter

settings. For example, Table 1 summarizes the results for
K = 6, x = 0.7. For this choice of parameters, it is clear
that MSTMAP+MERGEMAP outperforms MSTMAP-C
for each choice of the parameters. The running time for
MSTMAP+MERGEMAP is comparable with those pre-
sented in Figure 4 (data not shown), whereas the run-
ning time for MSTMAP-C is always very short, within
a few minutes regardless of the size of the input. Similar
conclusions can be drawn for the cases whereK = 8,
K = 10 andK = 12 (data not shown due to space re-
strictions).

7. CONCLUSIONS

We presented a suite of novel algorithms to construct a
consensus map from a set of genetic maps given as DAGs.
The individual genetic maps are merged into a consensus
graph on the basis of shared vertices. Cycles in the con-
sensus graph indicate ordering conflicts among the indi-
vidual maps, which are resolved according to a parsimo-
nious approach that takes into account two types of er-
rors that may be present in the individual maps, namely,
local reshuffles and global displacement. From the set of
experimental results reported here, we can conclude that
our tool outperforms JOINMAP both in terms of accuracy
and running time.
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