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ON THE ACCURATE CONSTRUCTION OF CONSENSUS GENETIC MAPS
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We study the problem of merging genetic maps, when the iddali genetic maps are given as directed acyclic graphs. The
problem is to build a&onsensus mapvhich includes and is consistent with all (or, the vast migjmf) the markers in the individual
maps. When markers in the input maps have ordering conftiotsresulting consensus map will contain cycles. We fortaulhe
problem of resolving cycles in a combinatorial optimizatioamework, which in turn is expressed as an integer linezagnam. A faster
approximation algorithm is proposed, and an additionabdp# heuristic is developed. According to an extensivefexperimental
results, our tool is consistently better thamNM AP, both in terms of accuracy and running time.
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1. INTRODUCTION the individual maps. However, this may not always be
Genetic linkage maps are arguably the cornerstone of apossuble smge the presence c?f e-rr.ors s very likely to in-
. . . o . ) . troduce conflicts between the individual maps. Due to the

variety of biological applications including map-assikte o .
way individual genetic maps are assembled, two types of

breeding, association genetics and map-assisted gene
. . . L errors are observed, namely local reshuffles and global
cloning, just to name a few. Traditionally scientists

o . . displacements. Local reshuffles refer to inaccuracies in
have focused on building genetic maps for a single map- .
. . . . . the order of nearby markers, whereas global displace-
ping population, task for which a wide variety of soft-
. . ments refer to the cases where a few markers are placed
ware tools are available and have satisfactory perfor-

T ) 3 at positions far from the correct ones. When addressing
mance, 8., INMAPY, CARTHAGENES, ANTMAFS, conflicts to build the consensus maps, one should take
RecorEY TMAP? and MSTuAPS, PS

In recent years, the rapid adoption of high- into account both types of errors.
throughput genptypmg t_echnolog|es has_ been paralleledl'l' Related works
not only by an increase in the map density but also by a
variety of marker types. Today it is increasingly common Several systematic approaches have been proposed to
to find several genetic maps available for the same or-construct consensus mélf,'sle; LA40Y The method
ganism, usually for different sets of genetic markers andadopted by Beavigt al4 for the integration of maize
obtained with a variety of genotyping technologies. No- maps is to pool together the genotyping data from the
table examples are genetic linkage maps based on microindividual mapping populations, and then rely on tradi-
satellites in humafand in cattl®, and maps based onse- tional mapping algorithms to build the consensus map.
guence length polymorphism in mogsand ratl just Although this pooling strategy is commonly used, it has
to name a few. In the case of maize, for instance, severseveral shortcomings. First, it cannot be used in all cir-
distinct mapping populations afea mayshave been cumstances. For example, when the data are obtained
uset-l, When multiple maps are available, one could en- from different populations (e.g., one dataset obtained
vision to construct a bigger single map (hereafter called from a double haploid population and another from a re-
consensus maphat includes all the markers. combinant inbred lines population), then they cannot be

A consensus map provides a higher density of mark- merged and treated equivalently afterward. Second, the
ers and therefore a greater genome coverage than the irpooling method results in a large number of missing ob-
dividual maps. As the name suggests, the consensus magervations. A large amount of missing observations com-
should be consistent with the order of the markers from bined with the limited tolerance to missing data by exist-

ing mapping algorithms inevitably deteriorates the qual-

*Corresponding author.
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ity of the consensus map. 1.2. Our contribution

An alternative approach, like the one used in the tool We follow the graph theoretical paradigm outlinedini[11,

JoinMarPE2 L s to first obtain the consensus estimates L .
o - - ___[14] and represent individual genetic maps as DAGs. The
of pairwise genetic distances by weighting for population . . . . ) . .
. individual maps are combined into a single directed graph
structure and size. Then, the tool searches for a map that

L S . . according to their shared vertices. Any ordering conflict
minimizes an objective function that measures the fit of

. : __among the individual maps will result in cycles in the
the map to the distance estimates and the overall quality

i combined graph. Here, we propose to resolve the cycles
of the map. The drawbacks of this approach are twofold. . grap brop y
o ) . by removing the smallest set of (feedback) marker occur-
First, it is well-known that distance estimates are not very

.7 rences. Note that we are not deleting markers but marker
accurate when based on a small sample of recombination . L

. : occurrences. A marker may occur in multiple individual
events. Construction of genetic maps based on approx-

. . . o o maps. A marker occurrence refers to the appearance of a
imate estimates will result in inaccuracies in the order-

. marker in a particular individual map. The deletion of a
ing between markers on the consensus map. Second, the

. . i marker occurrence will not affect the occurrences of the
computational problem of searching for an optimal map .
. - . . . same marker in other maps.
with respect to the objective function being used is very . . . -
. . . . Trying to identify and eliminate a small number of
time consuming. For instance, the most recent version

. marker occurrences from some of the maps is a better
of JOINMAP took three monthof computation to con- .
L strategy than the one proposedinl[11] because it more ac-
struct a consensus map from three individual maps of .
- curately reflects the type of errors that may be present in
barley containing a total of 1,800 markers (the markers

- . . . the individual maps. We formulate the optimization prob-
are divided into 7 linkage groups of roughly equal sizes). lem resulting from this strategy via integer linear pro-

Despite these drawbackhIIM AP is still the only off- . . L

) _ gramming (Sectiofl3), and we propose an approximation
the-shelf software package available to build consensus . . . L
maps algorithm to solve it. We also devise an heuristic to de-

_ compose the original problem, in the case the size of the
The most recent approach to the problem relies on.

o 12 instance to be solved is too large.
graph theory and was initially proposed by Yasial: .
1 12 As soon as all cycles in the consensus map are re-
and later extended by Jacksenal'=* Yapaet al'*= use . .
. . . solved, we process the resulting graph with another novel
directed acyclic graphs (DAG) to represent maps from in-

Igorithm wh bjective is to simplify the DAG to hel
dividual populations. The set of DAGs are then merged aigorithm whose objective 1S o simplity the onelp

) . i geneticists to be able to visualize and make use of the
into a consensus graph on the basis of their shared ver- . . .
. . . _ - consensus map (Sectibh 4). This step involves remov-
tices. A directed cycle in the resulting graph indicates an .

. . s : ing redundant edges and merging nodes on the consensus
inconsistency among the individual maps with regard to

: map without introducing conflicts. In the last step, a final
the order of the markers involved. In order to resolve the . . .
. . . 1T algorithm produces a linear order of the markers which is
inconsistencies, Jacksehal propose to break cycles . .
. . . consistent with the consensus graph (Sedflon 5).
by removing a minimum weight set of feedback edges.

. ) o ) ) The last two steps of our approach, i.e., condens-
This objective function is reasonable when dealing with . . o L
. ing the markers and linearizing the DAG, further distin-
local reshuffles. However in the presence of global re-

. . . guishes our approach from those inl[L4] 11]. The final
locations, it is not appropriate because too many edges . :

. output of our workflow is a linear order of marker tfins
need to be deleted in order for all the cycles to be bro-

. . . . which is a format geneticists are used to work with. The
ken. A similar approach is to remove a minimum weight

. output of the methods by Yapsat alt4 and Jacksoret
feedback vertex set from the graph. The obvious draw—aI 11 is however a DAG, which is often too complex

back of this method is that the markers corresponding toand convoluted to make much sense out of it. For the

the deleted vertices will be excluded from the consensus . .
map same reasons, we did not compare our experimental re-

sults against those methods.
In Sectior® we carry out an extensive evaluation of
our algorithms on synthetic data. We compare the perfor-

aA bin is a set of markers for which the relative orders are undeitemun
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mance of our method withAINMAP. Our approach pro-  asQ(R) = {II;(R)|II; € Q}.

duces consistently better results thamNM AP, both in Figurell illustrates the notatioifi 2, G, G, Mg,
terms of accuracy and running time. Our method is also Ny, TI(R) andQx for a small example.

superior to the method of pooling together genotyping

data from individual maps. We have also employed our 3, RESOLVING ORDERING

software on the genotyping data we collected for three  CONFLICTS

mapping populations (about 1,800 markers) for barley,
but we had to omit those results from this manuscript due
to lack of space.

LetQ = {II;, s, ..., Ik} be the set of input maps for
which we want to build a consensus map. Merging maps
Iy, s, . .., Ik into a consensus DAG is straightforward
when there are no conflicts. If some of the markers have
conflicting orders among the input maps, th@a con-

A genetic linkage mapepresents the linear order and the tains cycles. In order to resolve cycles, we propose to
pairwise distance of markers on a chromosome. The dis-delete the smallest set of marker occurrences. More pre-
tance between two adjacent markers, expressedriti- cisely, if we first assign weights to the individual maps
morgang(cM), is determined by the frequency of genetic to represent their quality (i.e., high weight is associated
recombination occurring in the region between them. with high quality), the problem is to delete the minimum-
Two markers are one centimorgan apart if one observesveight set of marker occurrences so that the resulting
an average of 0.01 crossovers per meiosis in the regiorsubproblem is conflict-free. The optimization problem
enclosed by the two markers. The set of markers forthat emerges from this strategy is the following.

which no recombination is detected is callethin. For
markers in the same bin, their relative orders are undeter-
mined. From this point forward, a genetic map is com-
posed of a sequence of bins (of marker) and the distance
between them.

Some notations are in order. Lé&l denote a
genetic linkage map, and let/;; denote the set of
markers included infll. Given a set of map$) =
{I1, 1y, ..., Ik}, we defineM, to be theuniverseof
all the markers, i.e Mq = UK | My, .

Given a mapll we defineGnn = (M, Erp) to be
the directed weighted graphducedby the map, where
the set of edge&’; is defined a®n = {(m;, m;)| m; is
in the bin immediately preceding the binof; } and the It is relatively easy to prove that MWFMOS is NP-
weight of an edgém;, m;) is set to the distance between complete when the number of maps is unbounded. The
the corresponding bins. The notion of induced graph canproof uses a reduction from the minimum feedback edge
be extended to a set of maps. L&, = (Mg, Eq) set problem (not shown here due to space restrictions).
be the directed weighted graph induced Qy where We still do not know whether MWFMOS is still NP-
Eq = UfilEni- The weight of an edge itr, is set to complete when the number of maps is bounded by a con-
be the average of the weights of the corresponding edgestant, but we suspect it is.
in the original maps. The solution to the MWFMOS problem with in-

We usem; to refer to a generic marker, amﬂ to re- put (2,w) can be obtained by solving MWFMOS for
fer to the occurrence of market; in mapIl;. We further ~ the non-overlapping subproblems corresponding to the
define N, to be the set containing all the marker occur- strongly connected components@h,. The optimal so-
rences. If we select a s& C Ng, asubmaflI(R) of I lution to the original problem is simply the concatenation
with respect taR is defined by deleting the occurrences of the optimal solutions to the subproblems. In the fol-
of all markers not ink from the magdI. The subproblem lowing, we will be focusing on solving MWFMOS for a
Q(R) of the original problens2 restricted toR is defined  subproblem only.

2. PRELIMINARIES AND NOTATIONS

Minimum-Weight Feedback Marker Occurrence Set
(MWFMOS)
Input: ©Q andw, whereQQ is a set of individual maps
from which one would like to build a consensus map,
andw is the associated weight function d&, where
w(m?) is the weight of marker occurrenee/. With-
out loss of generality, we assume thetn? ) > 1 for
all mf € Nq.
Objective: identify a setD of minimum total weight
so that the subproblem restricted 6, — D is
conflict-free (i.e., the graph induced by the subprob-
lem, Go(n, -y, is acyclic).
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Q= {II1, 112}
1 = [(m2) 2 (m3, m4) 1 (ms) 2 (me, m7)]
I = [(m1) 1 (m2,m3) 2 (ms) 1 (ma,m7)]
Mgq = {m1, ma, m3, ma, ms, me, m7}
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Fig. 1. Two simple genetic linkage maps, along with the correspumdiotations used in this paper. Mafs andIly both consist of four bins
(enclosed in parentheses). The numbers in between adjsicsrindicate the distances between them. MdpsandIls are not consistent with each
other because there is a cycleGly, betweenny andms. Removingms from Il resolves the conflict.

3.1. An LP-based algorithm

LetZ = {F, F»,..., Fx} be a subproblem df corre-
sponding to a strongly connected componenGin. A
submapF; is hereafter called lagmentsince it is a con-
tiguous piece of an individual map frofa. Each frag-
mentF; has the same format &k. Throughout this pa-
per, we us€ to denote the original problem, adto
denote a subproblem 6f.

A conflict in Z is characterized by a pabln{; —
miy, my; — mi,...,ml’ — m]" (not to confused
with a path inGz), whereinm]! — m]. means that
markerm,, precedes marker,, in fragmentF;, (mark-

ersm,;, andm;, do not have to be in adjacent bins). Note
that the path starts and ends with the same marker in two

different fragments. LeP be the set of such paths.

Given P, we formulate MWFMOS as an Integer Lin-

ear Program (ILP) as follows.
ST.Y i, >1VpeP (1)
z) € {0,1}

of (@) is the following program.

Maz > Yp
ST smi Yp < w(mf) Vmg € Nz (2
yp >0 VpeP

wherey, is the associated variable with patle P, and
N7 is the set containing all the marker occurrences.in
The following LP is equivalent td]2).

Min A
ST i Yp < Aw(m?) ¥m! € Nz
Zpep yp =1 3)
yp >0 VpeP

The optimal solution to[{3) is the reciprocal of the
solution of [2). To simplify the notation, we can rewrite
@) in the matrix representation.

Min A
S.T. Ay < \d 4)
y=1andy>0

Where:c{ is the binary variable associated with the marker Each row ofA corresponds to a marker occurrence
occurrencen] which is set to 1 ifn? is to be deleted and  in Nz and each column ofl refers to a path iP. We
set to 0 otherwise. The LP relaxation of the above ILP haveA[r,c] = 1 if and only if m{ € Nz corresponding
is straightforward. The number of constraints[ih (1) is to ther*" row of A is on the path corresponding to the
|P|, which is at mosO(K!|Mz|¥), whereK is number ¢ column ofA. With i = 1, we meard_ . pyp = 1.

of fragments irZ and| M| is the total number of distinct Due to the large number of variables, solving opti-
markersirZ. The upper bound is a polynomial in the size mally {@) can be very time consuming. In the following,
of the input if K is fixed. The dual of the LP relaxation we show how to achieve afi + ¢)-optimal (or simply

b A solution \ is said to be(1 + ¢) optimal if A < (1 + €)Aopt, Wherel,p; is the optimal solution. Arf1 -+ €) optimal solution is sometimes simply
called anc-optimal solution.
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e-optimal) solutioﬁ. To find such an approximate solu-
tion, we follow the method proposed by Plotleéh ala

Let Z be the dual variables associated with (4), and let us

defineC(Z) = ming 7 2* Ay.

Consider an error parametér< ¢ < 1/6, a fea-
sible primal solution(y, A), and a feasible dual solution
Z. A is 6e optimal if the following two relaxed optimality
conditions are met:

(6)

A sketch of the algorithm to find ¢ optimal solu-

059Lonardi

Zie] Az;w; + - 5/2 %Ay < —/\Z w + ?A]j
Therefore, we havél — e)\z'w < ' Ay

Notice thata is initialized to be2ag and whenever
max, a}ty“/wr < \/2, a gets recomputed. Therefore
condition [B) is satisfied throughout the execution of Al-

gorithm APPROXSOLVE. O

1
1—¢/2

Lemma 2. Let (yi,A) and Zi, where z]
{ie““7ty3/w"}‘r]iz‘, be primal and dual solutions that
do not satisfy[6). Letyz,)\) and z; be the solutions
in the next iteration, i.egs = (1 — §)yi + 7, and let
«, 0 ande be defined in Algorithm\PPROXSOLVE. Let

Oy = £, Dy = Z0. By — By > APy /4.

tion is presented in Figufd 2. The performance guarantee

of our algorithm AP PROXSOLVE is presented as Theorem
[, and the time complexity of the algorithm is presented
as Theorerfll2.

Lemmal. Let(y, A\) andZ be feasible primal and dual
solutions that satisfy both conditiofl (5) arld (6). Then,
(¢, A) is an(1 + 6¢) optimal solution.

Proof. This Lemma corresponds as Lemma 2.100n [15].
To be self-contained, we present the proof here.

From [3) and[(b), we haveC(”) > (1 — e)Ay —
AT > (1 — €)? N80 — (1 — 3e)\z"0.
Hence, A < (1 — 3¢)~! < (1=3e)7 I <
(1+6e)A*. |

Az

( )/ 7

2
w

Theorem 1. Algorithm APPROXSOLVE returns an(1 +
6e) optimal solution to[(#).

Proof. The theorem follows from Lemma 2.2 inJ15]. To
be self-contained, we present the proof here.

According to Lemma@l1, in order to prove Theorigim 1,
we only have to show that conditiofl (5) adl (6) are both
satisfied when Algorithm APROXSOLVE stops. Since
condition [®) is met by the while loop at line 4, we only
have to show thaf]5) is satisfied when the algorithm
stops.

We first show that when > g = %j'ii]) 7
as assigned by the “for” loops at line 3 and 10 in algo-
rithm APPROXSOLVE will satisfy condition [b).

Let I {i @ (1 — ¢/ w; > a;'y).

j e 1. lzw; = Ae@di T/wi < \eo(1—€/2)A
/\e(y)\ —aeX/2 < /\eake—ln(Q\NI\efl) < € /\ea/\

2| Nz|
g AZ'w]. Consequently \z'w = 37, Azw;

ZZ¢I Aziw; <o Aziw + ZZ_W 1+5/22id%t37

Let

IN + IA

—t

-t —

Proof. @, 2o W Zi i ys/w;

> 0@ (1=8)yi+67) /wi S Q1 fwi pad s (T—41) fwi
? 7

Sincew; > 1,71 = landy =1 = |a@}'(T—91)/wi| <
1. Sinces = = = |ada;' (§ —y1)/wi| < €/4 < 1/4.
According to Taylor's expansior? < 1+ x + 222 for
|z| < 1/4. By plugging inz = ada;* (§ — v1)/w; we get
0T T /wi < 14 (ada@) (G—11) Jwi)+2(add; (F—
yi)/wi)?

<1+ (ada;' (7 — 1) Jw
Therefore, 5 > <
S, T /v 4 0§(O() — AAG) + Sad(C(4) +
Z1Ay1)

Py < @y +ad(C(21) — 21 AYL) + 5ad(C(41) + 21 Ayt)
D1 — Py > ad(Z1Ay1 — C(21)) — eadZ1 AYd

Due to the fact thatyi, A) andz; do not satisfy[(b), we
haved®;, — &5 > \ead 7 0.
According to the choice of, &; —

%(045@7 (Y + i) /wi)
5Ty /i gadd; ' (§—yi) /w

i)+

Dy > Ae2®; /4 O

Theorem 2. Algorithm APPROXSOLVE converges in
O(=5= log(|Nz]e™h)) iterations, where\* is the optimal
solution to [4).

Proof. Notice that during the execution of Algorithm
APPROXSOLVE, A is a monotonically decreasing se-
quence with); > 2)\;;;. Let the sequence of be
Ao, A1, A2, ..., A, Where),, > A\* is the final output.
When\ = )., thene®/2 < & < |Nz|e®

Due to Lemma [P, it takes at most
O(ﬁlog(ﬂvﬂe*l)) iterations to cut\ from A, to
Akr1- Since); > 241, the overall time complexity is
determined by the last step. Hence the overall running
time isO( =5 log(|Nzle™)). ]

Step 5 in algorithm &PROXSOLVE can be solved
by running all pairs shortest path algorithm (details not
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APPROXSOLVE(yp, €)

1 — 90, A — max, 4, §/wy; @ — 4In(2|Nz|e 1) /(Xe); 0 — €/ (4a);
{ar is the transpose of the* row vector of matrixA. | Nz | is the number of rows ir }

2. forr=1,...,|Nz|do

3z — eo“frtg/wT/wT
4: while (7, \, Z) does not satisfy[{6jo
Y — argmingg—, 7' Ay

5

6§ (1-0)j+o7

7:  if max, a}tg/wr < A/2then
8: A — max, d,. ' J/w,; o — 4In(2[Nz|e~')/(\e); o — €/(4a);
90 forr=1,...,|Nz|do

10: Zyp — ea‘f"tﬂ/wT/wr

11: A « max, a';tg’/wr;

12: return ¢, A\, 2

Fig. 2. A sketch of our LP-based algorithm

shown here), which takes tim@(| Nz|?log |[Nz|). The  3.2. A speed-up heuristic
vector i/ does not have to be stored in memory ex-
plicitly since all we need isAy which takes space
O(|Nz]). Combining the running time for each iter-
ation with the upper bound on the number of itera-
tions, the overall time complexity of BPROXSOLVE is
O(=5= log(|Nz|e~1)|Nz[* log Nz|). Note that the time
complexity does not depend 0R)|.

Given the near optimal solutiofito the dual of [#),
the near optimal solution to the LP relaxation OF (1) is
& «— Z/C(%). In our algorithm we apply two types of

16

rounding to convert the fractional solutianto an inte- Newmal Recall that thebetweenness centralityf
gral solution, and then choose the better one among thea node in a graph is equal to the number of shortest

two.

The LP-based algorithm works well when either the size
of the subproblem is small (i.¢ V| is small) or the num-
ber of markers to be deleted is small (iB/ A« is small),
the latter of which is usually the case in practice. How-
ever if both|Nz| and1/A« are large, the LP-based al-
gorithm can be still too slow. In this case, we advise to
employ an heuristic algorithm which breaks a large sub-
problemZ into even smaller sub-subproblems.

Our heuristic algorithm uses the notion of node
betweenness originally proposed by Girvan and

paths that go through it. The intuition is that nodes with

The first method IS rantjomlzed. The randomized high betweenness usually correspond to hubs, and their
rounding algorithm progressively deletes marker OCCU geletion will likely break the graph into disconnected
rences until all the conflicts are resolved. In each Step’components.

the method samples a marker to be deleted accordin j j .
P 9 Now letm?* andm?’* be a pair of occurrences of the

to .a proba@hty .d|str|but|on proportional t.m.. The so—- same marker in two individual maps. A path between
lution obtained is further reduced to a minimal solution m?* andm? is the shortest if it traverses the smallest

by removing redundant marker occurrences. The seconq_“jmber of marker occurrences. L@tbe the set of all
rounding method- employs a grgedy strategy. Th-e mark'such pairwise shortest paths. If there are multiple short-
ers occurrences itVz are sorted into the descending or- est paths between a pair, we arbitrarily choose one to be

ger according to their associated probabilities. We deleteinCIuoIed inQ. Observe thaf is a subset of in the ILP
just enough marker occurrences to resolve all the con-

flicts. Again, the solution is further reduced to a minimal '

) _ ) We define thewveighted betweenness centralitya
solution by removing redundancies.

marker occurrencen! as the number of shortest paths
in @ that go through noden! divided by its weight
w(m!). The higher the centrality, the more likely it is the
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“true bad” marker occurrence that should be deleted. Ourstep, we condense one pair of co-segregating markers into
heuristic algorithm works by computing the centrality for a super-marker. The original problefis being trans-
every marker occurrences and then iteratively deleting theformed into a new problef?’ (which has one less marker
ones with the highest value. The step is repeated until thethan(2). We keep repeating this iterative process until
sizes of the sub-problems are all small enough to be hanno co-segregating markers can be found. Qétbe the
dled by our LP-based algorithm. The pseudo-code for ourfinal set of maps an@' be the corresponding induced

algorithm is presented in Figulé 3. DAG. We further remove redundant edges fr6fy;, and

let the final graph obtained by this procedurel®dGq,.
4. CONDENSING THE MARKERS DAGq is guaranteed to have the following property.
Having resolved the conflicts if, the graphG, is now Theorem 3. The in-degree and out-degree of the vertices
a DAG. In practice however, the graph, is overly com-  in DAGq are at mostk’, whereK is the number of maps.

plex. For example(Gq contains a large number of re-

dundant edges. A directed ed@@;,m;) is said to be .
Let My be the set of super-markers containedlif.

redundantif there is an alternative (distinct) path from ]
Consider any two super-markers andm; from Mp;.

m; to m; in Gq. For reasonably large individual maps, . N
the resulting consensus graphs obtained after the removai 7% @ndm; belong to different bins ial’, thenm; and

of redundant edges can still be very complex. m; are ordered (meaning eithet; is beforem; or the
Recall that a bin represents a set of nearby markers everse?. Op the other-handif; andm; belong to th-e
for which the relative orders are undetermined. In this S3M€ bin, sincen; andm; do not form a co-segregating

step, we aim to simplify5, by condensing markers into pair (due to the greediness of our algorithm), there must
be a path from eithem, to m; or from m; to m; in

DAGq. Therefore, if we restrict our attention to a sin-
gle mapll/ € Qf, DAG, defines a total order on the set
of super-markerd/r;s. As a result, each super-marker
can have at most one immediate predecessor and one im-
mediate successor from one individual map. Since each

Proof. LetIl/ € Qf be one of the final individual maps.

bins. In order to clearly differentiate the bins constrdcte
in this step from the bins in the original maps, we refer to
the former ones asuper-markers

The rationale for combining markers into super-
markers is the following. If two markers always appear
paired in the same bin of the original individual maps, s
then there is no way to determine the relative order be_super-marker can appear in at méSmaps, the theorem
tween them and they should be drawn as a single superfonows' -
marker. Generalizing this observation, we define the no-
tion of co-segregatingnarkers as follows. Given a set of
mapsQ) = {II;, I, .. ., IIx }, two markergm,, m;) are In this last step, we proceg3AG, to produce a linear or-
said to beco-segregatingf they satisfy the followingtwo  der of the bins (super-markers). The linear order must be
conditions (A)m; andm; belong to the same bin in at consistent with the partial order of the bins, i.e., if there
least one of the maps i, and (B) there is no path from is a path from birb; to binb; in DAGq, thend; should
m; to m; or fromm,; tom; in Gq. The first conditionis  precedé; in the linear order. In the case when there is no
intended to ensure that the markers to be condensed intpath between a pair of bins, we have to impute the order
a super-marker are indeed close. The second conditiorof the two bins as well as the distance between them.
is intended to ensure that the relative order between the  Let us defineD[b;, b;] to be the distance from a bin
markers to be condensed into a super-marker is undeterb; to another birb; in DAGq. If there is only one path
mined. fromb; tob;, thenD[b;, b;] is trivially assigned the length

The co-segregation relation does not define an equiv-of that path. If there are multiple paths frdmto b;, we
alent relation, because it does not satisfy the transitiv-set D[b;, b;] to be the average length of all paths from
ity property. Furthermore, when we group markers into b; to b;, which can be efficiently computed by dynamic
super-markers, we must be careful not to introduce newprogramming.
conflicts. In order to address these issues, we employ  Now, letb; andb; be two bins that are not ordered
a greedy iterative algorithm to carry out a maximal de- in DAGq. Our algorithm determines the relative order
composition of the markers into super-markers. In eachbetweerb; andb; as follows. There are three cases.

5. LINEARIZING THE DAG
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FASTDELETE((, 6)
1:
2:
3:
4:

5
6
7
8:
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

S — 0;
done «— false
while notdone do
done «— true;
for each connected componentsig v, 5y do
7 « the corresponding sub-problem
if [Nz| > ¢ then
done «— false;
Q «— 0;
for m € Mz do
A — the set of occurrences of markerin
for m* € Ado
for m? € Ado
p < a shortest path fromn? to m/ if there exists one
Q—Q+{p}
calculate the node centrality for each maker occurrenééitbased on sef and the associated weights
v <« the marker occurrence with the highest centrality
S — S+ {v}
return S

Fig. 3. A sketch of our heuristic-based algorithm

If b; andb; have common ancestors and common similar to the topological sorting algorithm. L&tbe the
successors. Letl be the set of common ances- list of ordered binsT = ( initially). At each iteration,
tors andS be the set of common successors. Let our algorithm determines the next markeo be ordered.

p € A be one of the ancestors and € S be If sis uniquely determined under the partial order given
one of the successors. We define the distance fromby DAGq, then we simply append to the end ofT".

bin b; to bin b; with respect to the common an- Otherwise, ifS is the set of multiple choices,is chosen

cestor and successor p&jr, s) as AP [b;,b;] =  sothaty, g, A, is maximized.
D[ 7b"] Dip,bi :
Dlp, s] (D[p,bj]if)[bj,s] - D[p,bi][iD][bi,s])' The fi-

nal distance\[b;, b;] is averaged over afp, s) pairs, 6. EXPERIMENTAL RESULTS
ie. Albib] = e ses AP [bi, b1/ (1A]1S]).

If A[b;, ;] is positive, then the preferred ordertis
beforeb;. Otherwise, the preferred orderisbefore

bi.

If b; and b; have only common successors. Let
S be the set of successors and det= S be one
of the successor. The distance from binto bin

b; with respect tos is defined as: A*[b;,b;] =

We implemented our algorithms in C++ and carried out
extensive evaluations on both real data sets and synthetic
data sets. Due to lack of space we will present only
the results for synthetic data. Our software tool, called
MERGEMAP, is available upon request from the authors.

6.1. Evaluation of the

Db, s] — D[b;,s]. The final distance\[b;, b;] is conflict-resolution

again averaged over all successors, 1¥b;, b;] = The purpose of this set of experiments is to assess the
W effectiveness and efficiency of our conflict-resolving al-
If b; andb; have only common ancestor$(b;, b;] gorithm. Each data set of this experiment consists of six
is similarly computed as in the previous case. individual maps, which are all noisy copies of one single

true map. Thetrue map of a data set is simply a per-
The algorithm we propose to linearizBAGq, is mutation ofm markers, where the parameter ranges
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from 100 to 500 (representing a spectrum of maps from6.2. Comparison with J OINMAP

medium sizes to extra large sizes). The distances be- L . . .
. ) The objective of this set of experiments is to evaluate the
tween adjacent markers are fixed to be 1 cM. To gener-

o ) entire process of building consensus maps from “scratch”
ate an individual map from thieue map, we first swapy . ) . .
. ) (i.e., starting from synthetic genotyping data). The syn-
randomly chosen adjacent pairs, and then we relogate | : .
. thetic genotyping datasets are generated according to a
randomly chosen markers to a random position. #he o .
: o ) procedure which is controlled by six parameters. We at-
swaps are intended to mimic local reshuffles while-the : L
) : o ; tempted to model the genotyping process to be as realistic
relocations are intended to mimic global displacements,

. . as possible. The parameters are the nunibef map-
the two types of errors that may present in a genetic map.

. ping populations, the numbes of markers, the number
In our experimentsy ranges from 10 to 30 andranges " ” . .
from 2 t0 6 R of “bad markers” on each mapping populations, the

%enotyplng error ratg@ and the missing rate. The sixth

For each data set, a consensus map was constructe

. . . parametes: controls the percentage of the markers shared
by MERGEMAP by running the conflict resolution mod-

by two individual maps. The latter is an attempt to model
ule, followed by the bin condensation and the final lin- y P P

- . what happens in practice, where the data for individual
earization. The consensus map was compared with the

: maps only represent subsetof the universe of genetic
true map and the number of erroneous marker pairs weremarkers
counted. We call a pair of markeesroneouswvhen their . .
. . . The entire procedure to generate a synthetic geno-
order in consensus map differs from the order in the true, . . g i
typing dataset can be divided into four steps. In the first

map. When the consensus map is identical to the true B R . .
o step, a “skeleton” map is produced with markers. The
map, the number of erroneous marker pairs is zero. On

. arkers on the skeleton map are spaced at a distance of
the other hand, when the consensus map is the reverse

. .5 centimorgan plus a random distance according to a
thetruemap, the number of erroneous markers is equal to _ . . .
. . Poisson process with a mean dfcentimorgans. The
m(m—1)/2. For each choice ofi, n and~, ten indepen-

“skeleton” map serves the role of ttree map.
dent random data sets were generated. For each dataset, . . :
. _ Following the generation of the skeleton map, in the
the number of erroneous marker pairs and the running .
. .. ~second step the raw genotyping data for tkiemap-
time were collected. The mean and standard deviation . . .
ing populations are then generated sequentially. Here
for both performance measures were computed, and ar ) .
, - we assume that the mapping populations are all of the
summarized in Figurig 4. . .
. . _ DH (double haploid) type, and that each population con-
As Figurd® illustrates, MRGEM AP is very accurate i o o
. . . _ sists of 100 individuals. The genotypes for the individ-
in detecting the problematic markers and deleting them i
. o uals are generated as follows. The genotype at the first
before merging the individual maps. In most cases, the . . -
number of erfoneous marker pairs is less than ten anCl”narker is generated at random with probability 0.5 of be-
P ’ ing A and probability 0.5 of being. The genotype at the

in a few cases the number of erroneous pairs is equal to .
. next marker depends upon the genotype at the previous
zero. Whem or v increases, the problem becomes harder

. ) marker and the distance between them on the skeleton
and the quality of the consensus map deteriorates. On the .

. . map. If the distance between the current marker and the
contrary, asn increases the number of erroneous pairs

previous marker ig centimorgans, then with probability
decreas@s .
L . d /100, the genotype at the current locus will be the oppo-
The running time of MRGEM AP increases as: or . . . S
) . , . site of the one at the previous locus, and with probability
7 or v increase, but our software tool is relatively effi- . .
) i 1—(d/100) the two genotypes will be the same. Finally,
cient. For the largest dataset with = 500 markers, . e o
- . according to the specified error rate and missing rate, the
n = 30.andy = 6, MERGEMAP finishes within 2-3 enotype state is flipped to model the introduction of a
hours. In contrast, JINMAP takes severaleeks to as- g P PP

. enotyping error or is simply deleted to model a missin
semble maps with 300 or so markers. genotyp . g i 9
observation.

°The only outlier in the figure is the case = 300, » = 20 andy = 6. We examined the raw data, and found that the high mean andasth
deviation is due to one single data set, for which our alporifailed to place one single marker in the right place. Tirigle bad marker contributed
172 erroneous marker pair in total. When averaged over theutes, the single bad marker contributed 17 to the averageeuof erroneous pairs.
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Fig. 4. The number of erroneous marker pairs obtained wittRRAEM AP (LEFT) and the average running time (RIGHT) for various clesiofm,
n and~. Each point in the figure is an average of the results obtdimed ten independent data sets. The standard deviatioméocdrresponding
statistic is represented as the error bar in the above figures

In the third step, “bad markers” are added to each share a common bad marker is very small. When they do,
mapping population. To do sa markers are first se- we discard the entire dataset and generate a new one.
lected at random from each population. The genotypes  The fourth step of generation procedure involves re-
for those chosen markers across all the 100 individualsmoving a fraction of markers from each individual map.
are flipped with probability 0.3. Due to the very high er- A random subset ofl — x)m markers is deleted from
ror rate introduced for these markers (they are “bad” aftereach mapping population, whesevaries from 0.35 to
all), their positions in the individual genetic maps will be 0.7 in our experiments. As a result, two mapping popula-
unpredictable. We note that is small relative ton, and tions share:>m markers on average.
therefore the probability that two individual populations For each data set, individual genetic maps are assem-
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settings. For example, Talllk 1 summarizes the results for

bled by our tool MS™MaPY. The individual maps are
K =6,z = 0.7. For this choice of parameters, it is clear

then fed into MERGEM AP to build the consensus map.

We denote this approach of building the consensus mapghat MSTMAP+MERGEMAP outperforms MSMAP-C
as MSTMAP+MERGEMAP. for each choice of the parameters. The running time for

Here we compare the performance of MSTMAP+MERGEMAP is comparable with those pre-

MSTMAP+MERGEM AP against the software toobin- sented in Figur&l4 (data not shown), whereas the run-
MAP. According to our knowledge,QINMAP is the ning time for MSTMAP-C is always very short, within

most popular tool for building consensus map in the a few minutes regardless of the size of the input. Similar

community. However, due to the fact thabidMApP conclusions can be drawn for the cases whgre= 8,

is GUI-based (non-scriptable) and is extremely slow as 8 = 10 andK = 12 (data not shown due to space re-

soon as the number of markers exceeds 150, we were onlgtrictions).

able to collect results for a few relatively small data sets.

As mentioned in the introduction, an alternative approach

to the problem of constructing consensus maps is to pool7' CONCLUSIONS

the genotype data for all the individual populations and We presented a suite of novel algorithms to construct a

then apply any existing genetic mapping algorithms by consensus map from a set of genetic maps given as DAGs.

treating the pooled data set as a single population. WherThe individual genetic maps are merged into a consensus

pooling individual datasets, a large number of missing graph on the basis of shared vertices. Cycles in the con-

observations will have to be introduced. Following this sensus graph indicate ordering conflicts among the indi-

idea, we constructed a consensus map with MS&# by vidual maps, which are resolved according to a parsimo-

first combining the raw mapping data from multiple pop- nious approach that takes into account two types of er-

ulations into a pooled dataset. We call this latter approachrors that may be present in the individual maps, namely,

MSTMAP-C. local reshuffles and global displacement. From the set of
We consider two parameter sets, which we thought experimental results reported here, we can conclude that

to be rather realistic. In the first, the parameters areour tool outperformsdiINMAP both in terms of accuracy

m = 100, K = 6,z = 0.7, n = 0.001, v = 0.001, and and running time.

R = 0. In the second we changdti= 2, while the rest

of the parameters were kept identical. For each choice of

the parameters, ten random data sets are generated. THeeferences

number of erroneous marker pairs and the running time 1. jansen J, de Jong AG, van Ooijen JW. Constructing dense
is recorded. The results for the two parameters set are  genetic linkage map3heor Appl Genet 102001), 1113—

presented in Figuid 5. 1122. . _
Figure-RIGHT shows that MQTAP+MERGEM AP 2. .Sphlex T, (ISaspln.C. .CARTHAG!.ENE. Constructlng and

. . . joining maximum likelihood genetic maps. Proceeding

is orders of magnitude faster thaoldMAP (the y-axis of ISMB(L997), pp. 258-267.

is in log-scale). The difference in running time be- 3. Iwata H, Ninomiya S. AntMap: constructing genetic link-

comes more apparent whenis large. Also observe that age maps using an ant colony optimization algorithm.

Breeding Science 5@006), 371-377.
4. Os HV, Stam P, Visser RGF, Eck HJV. RECORD: a novel
method for ordering loci on a genetic linkage majpeor

MSTMAP-C can be faster than MSAAP+MERGEMAP.
Figure[®-LEFT shows that (1) the consensus maps

obtained by MSMAP+MERGEMAP are significantly Appl Genet 1122005), 30—40.
more accurate than the ones produced bywdAp and 5. Cartwright DA, Troggio M, Velasco R, Gutin A. Genetic
that (2) MSTMAP-C have comparable accuracy toid- mapping in the presence of genotyping erragenetics

174(2007), 2521-2527.

Map. We believe that the same conclusions can be de- 6. WuY, Bhat PR, Close TJ, Lonardi S. Efficient and accurate

rived for larger datasets. construction of genetic linkage maps from noisy and miss-
In order to investigate the extend of the advan- ing genotyping. InProceeding of WAB(2007), pp. 395-
tages brought upon by the tool BMGEMAP we per- 406.

formed an extensive comparison between M®P-C 7. DibC, Faure S, Fizames @r,al.Acomprehensn{e genetic
map of the human genome based on 5,264 microsatellites.

and MSTuAP+MERGEMAP for a variety of parameter Nature 380(1996), 152—154.
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Fig. 5. Comparison between MSWAP+MERGEM AP, JOINMAP and MSTMAP-C in terms of number of erroneous marker pairs (LEFT) and run
ning time (RIGHT) forR = 0 and R = 2 respectively. The rest of the parameters are as shown irtlheftthe figures. Each bar represents an
average of ten runs and the error bar indicates the standaiatidn

Tablel. Comparison between MSAAP+MERGEMAP and

MSTMAP-C for K = 6,z = 0.7. Each number

in the table is the average of the results obtained from téepgandent runs

# erroneous pairs for MSMAP+MERGEMAP # erroneous pairs for MSTAP-C
n = 0.001 n =0.005 n =0.01 n=0.02 n =0.001 n =0.005 n =0.01 n = 0.02
v =0.001 v =0.005 v = 0.01 v=0.02 v =0.001 v =0.005 v = 0.01 v = 0.02
R=0
m = 100 3.6 10.0 16.3 17.9 11.5 15.1 18.0 21.0
m = 300 13.7 25.4 34.4 48.6 29.4 29.1 42.1 59.2
m = 500 20.9 43.0 56.0 86.9 42.2 56.2 74.3 99.3
R=2
m = 100 3.2 8.4 134 185 15.3 38.5 32.9 34.0
m = 300 11.0 27.6 37.2 55.8 36.9 45.3 48.7 64.9
m = 500 19.6 45.0 62.8 81.6 54.1 68.8 84.1 120.1
R=14
m = 100 33 12.0 10.6 16.4 24.4 321 37.0 44.1
m = 300 12.3 23.8 36.2 50.7 39.3 54.6 63.8 69.0
m = 500 18.4 46.8 61.2 76.8 59.0 75.2 89.2 120.9
R=6
m = 100 4.1 8.2 10.2 17.7 25.8 24.4 36.4 49.4
m = 300 9.6 22.1 31.3 46.4 40.9 52.4 64.6 78.2
m = 500 16.2 43.3 56.9 77.6 59.6 735 88.9 125.2
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