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Abstract
Modeling of biological networks is a difficult endeavour, but exploration of this problem is
essential for understanding the systems behaviour of biological processes. In this contribution,
developed for sparse data, we present a new continuous Bayesian graphical learning algorithm to
cotemporally model proteins in signaling networks and genes in transcriptional regulatory
networks. In this continuous Bayesian algorithm the correlation matrix is singular because the
number of time points is less than the number of biological entities (genes or proteins). A suitable
restriction on the degree of the graph’s vertices is applied and a Metropolis-Hastings algorithm is
guided by a BIC-based posterior probability score. Ten independent and diverse runs of the
algorithm are conducted, so that the probability space is properly well-explored. Diagnostics to
test the applicability of the algorithm to the specific data sets are developed; this is a major benefit
of the methodology. This novel algorithm is applied to two time course experimental data sets: 1)
protein modification data identifying a potential signaling network in chondrocytes; and 2) gene
expression data identifying the transcriptional regulatory network underlying dendritic cell
maturation. This method gives high estimated posterior probabilities to many of the proteins’
directed edges that are predicted by the literature; for the gene study, the method gives high
posterior probabilities to many of the literature-predicted sibling edges. In simulations, the method
gives substantially higher estimated posterior probabilities for true edges and true subnetworks
than for their false counterparts.
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1 Introduction
Protein modification and gene expression studies are often conducted to study the temporal
relationships between different entities, proteins or genes, after some perturbation of their
environment. These studies have the potential to yield important information about the
entities’ interactions, pathways and associations, information that might be identified by
appropriate modeling methods. Often, the very high cost of obtaining and processing the
samples forces the number of sampled time points to be small; however, many different
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entities are often examined. This causes the time series data of the various entities to be
sparse, thus presenting modeling challenges.

In contrast to this sparse situation, when the number of time points t exceeds the number of
entities k then direct use of methods such as partial correlations [1] and testing for non-zeros
(and thus associations) in marginal covariance matrices [2] are potential approaches for
inferring connections between the entities as graph edges.

In order to use partial correlation or zero covariance methods in the sparse data situation,
one might be tempted to restrict the number of utilized entities or modules to be less than the
number of time points by either selecting a representative or average of each type (e.g. a
type might be a cluster of entities with a similar response pattern) [3] or by simultaneously
predicting modules of commonly acting entities while predicting the network [4]. This can
be a benefit, but when t is quite small, say around 6, only a very small number of entities or
modules could then be used, which would yield little biological information.

Because (full) partial correlations require non-singular covariance matrices which do not
exist in the sparse, k > t, setting, some researchers use shrinkage, lasso, and other
regularization techniques to estimate these partial correlations, e.g., [5], [6], [7], [8] and [9].
Others compute low-order partial correlations which only adjust for a small number of
entities, e.g. [10], [11] and [12].

In developing models, some researchers [13], [14], discretize each entity’s values into a
small number of bins, while others [12] use continuous data. In this paper, we retain the
original continuous data, develop rigorous continuous modeling techniques based on
multivariate log-normal theory, construct independent robust probability-based movements
through the association space, and produce diagnostics to test the suitability of our method
for specific data sets.

One can develop network models based on two different time paradigms. In a previous
paper [15], the next state time paradigm was considered. In next state, it is assumed that a
predicting entity’s level at one sampled time point influences a response entity’s level at the
next time point in accordance with a stationary Markov process. For a data set which fits this
model well, based on the next-state diagnostic tests, network models can be developed.
However, in some cases, these diagnostics suggest that the next-state model is not
appropriate; in particular, when modeling biological processes the next-state model can be
very sensitive to the sample times that are chosen.

In this paper, we focus exclusively on the cotemporal time paradigm. The resulting models
represent associations between entities’ measurements at the time points, cotemporally,
rather than from one sampled time point to the next. For this cotemporal setting we assume
that the k entities’ values at the t sampled time points give us approximations to t
independent samples of the associations between the entities. In Section 4, we present
diagnostics to test this and other model assumptions for particular data sets.

Just as with general observational studies that are cotemporal in nature, when searching for a
potential causal association between two particular variables (entities) it is necessary to
adjust for the levels of the other variables [16], [17]; otherwise they confound searches.
When the number of time points, t, does not exceed the number of entities, k, despite not
being able to compute the full partial correlations (and thus linearly adjust for all other
entities), the method searches for the best small sets of predictors and estimates probabilities
for other restricted sized sets. Entity i is in a highly predicting set for entity j if it out
competes (in a likelihood sense) all but a small set of other entities, and it provides
additional predicting power for j beyond that of the other entities in the small set. Restricting
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the number of predictors (here, parents in the directed acyclic graph) has the added benefit
of only claiming associations that are most profound and thus greatly simplifying
interpretations and increasing algorithmic speed [18].

This cotemporal model is an example of a dependency network [19] which is based on low-
order (small number of predictors) regression. This limitation on the number of parents has
similarity to sparse networks that are developed under low-order conditional independence
[12], [20]. For both, a particular directed association (edge) into an entity is only claimed if
its presence substantially improves a model which already has a small number of potentially
strong (predicting) edges. As in dependency networks, the graphical modeling adjusts for
potentially confounding entities before claiming an association, represented by an edge,
between two particular entities.

In this paper, we conduct rigorous cotemporal modeling after extensive searching over the
hilly graphical network space, and we estimate probabilities for graphs and edges. Just as
importantly, we construct diagnostics to evaluate of the utility of the models for a given data
set. In Section 2, the details of the modeling are presented, beginning with the assumption
that the vector of the k entities’ values at a given time point follows a multivariate log-
normal distribution. The number of possible networks is often extremely large. Section 3
describes an algorithmic search for the best networks and for estimating probabilities of
edges and networks. In Section 4, the testing diagnostics, used to evaluation the suitability of
our method for particular data sets, are presented. Section 5 describes the two sets of
biological data that are used in this paper. Sections 6 and 7 apply the cotemporal modeling
process to experimentally derived protein modification and gene expression data sets,
respectively. Simulations involving our method and other methods are presented in Section
8. Section 9 summarizes the methodology and results.

2 Multivariate Log-Normal Distributions and Directed Acyclic Graphs
The application of a log transform to the original data changes the common multiplicative
(percentage change) chance errors to additive ones, which converts rightskewed
distributions for the entities’ levels into more normal ones [21]. In order for each of the k
(protein or gene) entities to be calibrated on the same scale, we standardize the list of
logarithmic values for each respective variable; specifically for each value, we subtract the
list’s mean over the t time points and divide by its standard deviation. The resulting data is
then modeled based on multivariate normal distributions. Use of the above normal
(Gaussian) assumption is very popular in graphical modeling. For example, this distribution
is used to model the Arabidopsis thaliana isoprenoid gene network [12], the Arabidopsis
thaliana transcriptome gene network [22], and human cortical networks [23]. Due to
standardization, mean vectors will consist of zeros while the covariance matrix will be
equivalent to the correlation matrix.

For this paper, t, the number of time points, does not exceed k, the number of entities; as a
consequence, our sample covariance matrix is singular [24] hence maximum likelihood
estimation over all entries is not feasible. Therefore, we use directed acyclic graphs (DAGs)
to iteratively separate the likelihood into smaller parts which can be evaluated and then
combined to maximize directed likelihoods. These likelihoods are then utilized to estimate
information scores which allows for comparisons of directed graphs.

In the formation of a particular DAG, the entities are ordered and, as a consequence, a
potential entity’s parents can only come from those entities above it in the ordering. The
DAG achieves separation of the full log likelihood by expressing it as the sum of the
conditional log likelihoods of each entity given its respective parents. Also, each conditional
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distribution can be estimated independently of the others. In [25] these directed acyclic
graph properties are proved when the number of parents is not limited, while [26] and [12]
reason that these properties should approximately hold when there are restrictions on the
number of parents. It should be emphasized that a given DAG has the same likelihood no
matter which allowable ordering is used in forming the DAG; this common likelihood is the
likelihood of the DAG. For each parent of a entity, a directed edge exists from the parent to
the entity in the DAG.

A non-singular sample covariance matrix for an entity and its m parents will exist if and
only if m ≤ t − 2 [24]. Since for undirected graphs, entity i could be a parent of j (i → j) or j
could be a parent of i (j → i), we restrict the total number of edges into or out from any
specific entity to not exceed t − 2.

The Bayesian Information Criterion (BIC) is utilized as an inverse measure of the posterior
probability of a DAG. For a particular DAG G,

where the maximum is over the mean and covariance parameter set. Under non-informative
priors the posterior probability of a given DAG G is asymptotically proportional to
e−05BICG, which is larger for smaller values of BICG [27]. Thus, a DAG’s predicted
posterior probability is higher if the graph has better fit to the data, i.e., higher likelihood;
while it is lower if the graph has more complexity, i.e., more parameters; thus, parsimony
(simplicity) is appropriately rewarded for this model selection criterion. Using BIC in
graphical models is common, e.g. backward selection use in MIM version 3.2 (MIM 3.2
©David Edwards, 2004) [28], and a non-linear use in [29]. In our setting, the sample size n
is often not large, say n = 6, so BIC may not closely (inversely) relate to the actual posterior
probability. However, BIC is a Laplace (Taylor series based) approximation to the posterior
probability. Under our normal setting, BIC is an order n−½ [Θ(n−½)] approximation [30].
Also, BIC is a model selection criteria which directly balances model fit and model
complexity. In Section 8 we further examine BIC approximation by comparing it to a
specific non-informative prior posterior.

Note that for two different “non-informative” prior distributions, a given DAG’s exact
posterior distributions differ but the BIC scores and their estimated probabilities will not be
altered [31]. Under our normal “linear” setting, for a specific prior distribution, an exact
posterior distribution on a DAG can be computed based on the results of [30]. In Section 8,
we perform simulations to compare our BIC-based results with these prior-specific results.

For any restricted subset of the k total entities which contain both entities i and j, the
population covariance between i and j has as its maximum likelihood estimate the (same)
sample covariance between i and j (which is equivalent to the Pearson correlation, rij, since
the data are standardized).

Let R denote the full k × k sample correlation matrix. The number of parameters of a given
DAG is the sum of 2k and the number of {i,j} sets that are a component of at least one of the
conditional likelihoods. The number of parameters may be considerably less than the sum of
the numbers of parents over all entities. A DAG’s maximum log likelihood is the sum of the
maximum of the logs of the conditional likelihood’s over the k entities; each of these is
easily estimated using properties of conditional multivariate normal distributions [24].
Specifically, if for a DAG G, entity j does not have any parents, then entity j’s estimated

(maximum) log conditional likelihood is . The constant c in
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the above log conditional likelihoods has the value of  which does not depend on
the graph G. Otherwise, if we let j̃ denote entity j’s parent set for G, then entity j’s log

conditional likelihood is estimated by  where the two subscripts
on R specify the respective row and column(s) determining the submatrix of R. Thus the
BICG score and estimated relative posterior probability can be determined for any DAG. The
posterior probability for an undirected graph is the sum of the posterior probabilities for its
associated DAGs.

Algorithm 1

The decision process of the Metropolis-Hastings algorithm, searching for best models and
high probability edges using Bayesian Information Criterion. The function random() returns
a random value between 0 and 1, uniformly. For a more liberal burn-in stage the −½ on line
4 is replaced with a larger value, −0.1.

1: Generate New from the immediate neighbors of Current

{If New is an improvement over Current then unconditionally accept New, else probabilistically accept New}

2: if BICNew < BICCurrent then

3:   Current ← New

4: else if random() < e−½(BICNew – BICCurrent) then

5:   Current ← New

6: end if

When there are no restrictions on the number of parents, then there are Markov likelihood
equivalence classes for graphs where two DAGs are in the same class if their associated
undirected graphs are the same and if the collider directed edges are the same [32]. (Two
directed edges are collider directed edges when they terminate in the same node.) It has been
hypothesized that when strong directed associations are observed then a cause-effect relation
may hold [33]. Our setting is an approximation to the above since we have restrictions on
the number of parents. In the cotemporal paradigm, one can observe edges between siblings
(both sharing a common parent). However, since our procedure assigns high probability to
an edge only if it substantially improves predictability (via likelihood) above that of other
edges, the chances of sibling edges is lessened. Specifically, the parent/sibling edges might
be valued higher than the sibling/sibling edges, and the siblings may add little additional
predictability.

Given our restriction on the number of parents, we chose to conduct our algorithm over the
commonly used space of directed acyclic graphs. In other studies, some researchers have
conducted searches over the space of entity orderings [34], or over Markov equivalence
classes [35].

3 Metropolis-Hastings Algorithm
3.1 A Particular Run of the Algorithm

Under our restriction of no more than t − 2 undirected edges into k vertices, there is a total of

(1)
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undirected graphs. This number is quite large for even moderate k and t. For example, when
k = 12 and t = 6 then the number of undirected graphs, MU, exceeds 1032. Similarly, if we let
MD be the number of directed graphs with all vertex degrees bounded by t − 2, then MD >
MU. It is not computationally feasible to perform a brute force search of the spaces of
directed or undirected graphs.

In order to search for the DAGs and the undirected graphs of highest estimated (BIC based)
posterior probability as well as to estimate posterior probabilities for entities’ pairwise
associations and for graphs, we developed a version of the Metropolis-Hastings algorithm
[36], [37]. Our version is for the cotemporal setting with a vertex degree restriction not to
exceed t − 2. By the theory of aperiodic irreducible Markov chains [36], the longrun fraction
of the time that our Metropolis-Hastings algorithm visits a particular DAG should
approximate its (BIC based) posterior probability.

Our algorithm begins with an initial DAG, Current. Fundamentally, as shown in Algorithm
1, a single replicate in the algorithm makes a single move from the Current DAG to a
potential replacement DAG, New. A single move within the space consists of one edge
added or removed in the current DAG’s underlying undirected graph as well as a re-ordering
of the entities, yielding a re-orientation of the edges. A valid single move retains the
restriction of no more than t − 2 edges associated with any entity. If the potential
replacement DAG, New, has higher proportional posterior probability than that of the
current DAG Current, e−0.5BICNew > e−0.5BICCurrent, then New is accepted as the current
DAG, Current. Otherwise, the potential replacement DAG, New, is accepted as the current
DAG with probability e−0.5(BICNew–BICCurrent). This possible acceptance of a non-improving
model makes the Metropolis-Hastings algorithm a robust search process. If the potential
DAG, New, is not accepted, then the current DAG remains as Current.

The algorithm continues for a very large number of replications. For a single run, we use 5
million burnin iterations and then 50 million regular iterations. Run data collected include
the sorted list of the top 200 observed DAGs based on estimated relative posterior
probability, e−.5*BICDAG, over all 50+5 million iterations. If a DAG with high estimated
posterior probability is only viewed in the burn-in, it still has high estimated posterior
probability. The relative frequencies of each of the entity-to-entity directed and undirected
edges are also computed over the 50 million regular replicates.

3.2 Multiple Runs of the Algorithm
As with any global searching algorithm, we must be concerned with the effectiveness of the
Metropolis-Hastings guided search over the space of DAGs. Even though we are using
continuous data, the small number of time points means that the landscape of the space has
the potential for many models corresponding to local probability maxima. To better insure
the success of the algorithm in visiting virtually all maxima of large probability, ten
independent runs are used. These are combined as discussed in Section 3.3.

The 10 separate runs of our algorithm are based upon 5 different strategies for determining
the initial undirected graphs, each coupled to 2 different burn-in acceptance criteria.
Specifically, the 5 different strategies for the initial undirected graphs are: (a) initial selected
undirected edges corresponding to the highest absolute Pearson correlations (r’s) between
the entities, (b) same as a but replacing up to 10% of the original selected edges with edges
corresponding to lower absolute r, (c) same as a but randomly replacing up to 20% of the
original selected edges, (d) same as a but randomly replacing up to 50% of the original
selected edges and (e) initial selection of edges completely at random. These give a diverse
array of starting points. The 2 different acceptance criteria for the burn-in period are: (1) the
regular acceptance criterion (as discussed in Section 3.1) and (2) a more liberal acceptance
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criterion, based on a larger exponent, −0.1, than the −½ shown on line 4 in Algorithm 1, this
exponent is reset to −½ at the end of the burn-in period. The more liberal criterion gives
more wide-spread movement during the burn-in period.

3.3 Combining the Runs and Probability Estimates
The 10 runs are combined, and we obtain relative frequencies of each of the entity-to-entity
directed and undirected edges over the 500 million regular replications. Specifically the
combined relative frequency for a particular entity-to entity direct edge is simply the sum of
the frequencies of those directed graphs containing this directed edge, divided by 500
million. An analogous method produces the combined relative frequencies for an entity-to-
entity undirected edge.

Many of the top 200 DAGs from one run will also be in the top 200 DAGs of another run.
Ideally, the combined list of distinct top DAGs over the 10 runs will have far less than 10 *
200 = 2000 DAGs. This combined list, TopD, is the amalgamation of the ten runs’ top 200
DAG lists. The estimated posterior probability of a particular DAG j is proportional to
e−.5BICDGj. If the combined top directed graphs list possesses nearly all of the total
probability (see Section 3.4) we are able to estimate the probability of a DAG DGj in the list
by

(2)

Any undirected graph can have either direction for each of its edges; so, any undirected
graph is the disjoint union of its corresponding DAGs. Thus, the probability of any
undirected graph is the sum of the probabilities of its corresponding DAGs. Therefore, we
form a combined undirected list of top undirected graphs, TopU, which consists of those
undirected graphs which have at least one corresponding DAG in the combined top directed
list. Finally, we initially estimate the probability of any undirected graph UGk in the top
undirected list by

(3)

where DG ∈ Xk if and only if DG ∈ TopD and the undirected graph induced by DG is UGk.

The probability of a given entity-to-entity directed edge is the sum of the probabilities of all
DAGs that have the particular directed edge. The probability of the entity m to entity n
directed edge is initially estimated by

(4)

where DG ∈ Ym,n if and only if DG ∈ TopD and m → n belongs to DG. Similarly the
probability of the undirected edge between entity m and entity n is initially estimated by
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(5)

where UG ∈ Zm,n if and only if UG ∈ TopU and m ↔ n is an edge in UG.

3.4 Estimated fraction of the probability space
The estimated probabilities of the top directed graphs tend to diminish rapidly, often in an
approximately exponential fashion, as one goes down the top directed list. The lower ranked
directed graphs in the list often have trivially small estimated proportional probability. It
appears that the set of directed graphs that are not in the top directed list might have very
small probability and thus the fraction of the total probability that is accounted for by the top
directed list would be close to 1.0.

A rough estimate of this fraction is obtained by first examining the natural logarithm of the
initially estimated probability of a top DAG versus its index in the TopD list, listed in
decreasing order of their probabilities. (Fig. 5(c) and 12(c) are examples of this.) If the
logarithm is asymptotically linear over the entire domain then a linear regression of the
logarithm of the initially estimated probability versus index over the nearly linear region is
utilized in order to forecast the proportional probability for the set of DAGs that are not in
the top list. The total area under the curve over all MD directed models, is then roughly
approximately by

where ND is the number of DAGs in TopD. The adjusted posterior probability f̂i of DGi is

Since MD is quite large, the denominator of this probability can not be reliably computed.
However,

Since MD >> ND and β̂1 < 0, eβ
̂1(MD – ND) is essentially 0. Now the above expression further

reduces to

Hence the adjusted probability for DGi, f̂i, is approximated as
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It follows that  estimates the fraction of the total probability
which is accounted for by the combined top directed list, TopD. However, it should be
emphasized that even if there is a strong log-linear relationship over indices and f̂ is close to
1.0 then there could still be non-trivial probability that was not discovered during the search,
especially if a well fitting log curvi-linear trend over indices would suggest it. Even if such
non-trivial probability exists, then our restriction of model averaging to the TopD list (using
the Eq. 2–5) is in the spirit of Occam’s window restriction to a top group of models, [31]
and [38].

In the biological studies, as will be discussed in Sections 6 and 7, f̂D is extremely close to
1.0 so no adjustments to the probabilities, as computed in Section 3.2, are recommended. If
the fraction is non-trivially below 1.0, then we could adjust each of the estimated
probabilities in Section 3.3 by multiplying each by f̂D in order to obtain adjusted probability
estimates.

As another look to see if the probability space has been well explored, we roughly estimate
the fraction of the total probability that is accounted for by the the top undirected list, f̂U.
The estimated probabilities of the top undirected graphs also diminish as the index of list
increases. The derivation of this estimate is analogous to the one for the directed list except
now NU is the number of observed top undirected graphs, and the logarithm of the initially
estimated probability of an undirected graph is used instead of the one for a directed graph
(e.g. Fig. 5(d) and 12(d). In our biological studies, f̂U like f̂D, is extremely close to 1.0; this
provides some complementary evidence that these probability spaces have been well
explored by the algorithm.

4 Statistical Diagnostics
One major advantage of our method is the ability to use diagnostics to examine the
suitability of our method for a given data set. These diagnostics include evaluation of
normality, non-existence of outliers, independent time point contribution, and homogeneity
of variance.

First, we examine the original multivariate log normal assumptions by examining q-score
plots [24] for each entity’s list of t log-transformed values. A q-score plot on standardized
data shows the expected standard normal values, the q-scores, versus the standardized data
values. Therefore, these points should fall close to the line y = x, and thus have high Pearson
correlation r, if the (logged) data values follow a normal distribution.

Second, we examine the residuals from the predictions with our best, highest posterior
probability, DAG. Separately for each entity, we examine the residual values over time after
adjusting for associated entities’ values. Each entity is checked for compliance with the
following: a.) that the magnitudes of the standardized residuals are not extreme, e.g. do not
exceed 3.0 in absolute value, indicating that outliers do not exist, b.) that the plot of the
residuals resemble white noise (random independent scatter) over time, with non-extreme
first-order autocorrelations [40], in order to support independent time point contributions,
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and c.) that the q-score plots of the standardized residuals reasonably comply with those of a
standard normal distribution.

Third, we produce plots of the above standardized residuals versus the entities’ predicted
values. We look for close to white noise over the predicted values to check for homogeneity
of variances within entities. The lack of increasing or decreasing spread about zero would
suggest such homogeneity. If all of these above diagnostics are met, then the method has
strong utility for the data set.

5 Biological Data
Two different sets of time course data are used to illustrate this algorithm and to evaluate the
effectiveness of the algorithm across different modalities. These data sets were chosen to
represent diversity of data types, protein modification (representing a signal transduction
network) and gene expression (representing a transcriptional regulatory network), and a
diversity of time frames, from minutes to twenty-four hours. Both of these data sets have a
small number of time points in relationship to the number of proteins or genes.

The signal transduction data was originally collected in the Loeser laboratory [41]. These
data were collected in chondrocytes, using Western blots to monitor the phosphorylation of
proteins following stimulation of the chondrocytes with IGF-1, insulin-like growth factor.
Phosphorylation of isoforms and, in several cases, multiple phosphorylation sites was
observed. The data set of 11 protein measurements was sampled at 6 times points. The
protein names, isoforms and phosphorylation sites are: Src Homology Domain isoforms: Shc
p46 Y317, Shc p52 Y317, and Shc p66 Y317; Akt phosphorylation sites: Akt T308 and Akt
S473; extracellular signal-regulated kinase isoforms: Erk p44 Y202/Y204 and Erk p42
Y202/Y204; p70 S6 Kinase: phosphorylation sites (p70 S6K T389 and p70 S6K T421/S424);
Forkhead: Fkhd S256; and, glycogen synthase kinase 3: GSK 3b S9. Measurements were
taken at 0, 5, 10, 15, 30 and 60 minutes.

Based on the work of [41]–[43] some of the components of the signaling network from
IGF-1 stimulation of chondrocytes are known. In particular, intensive studies of the MAPK/
ERK and PI3 kinase pathways yield strong suggestions for the chondrocyte signaling
pathway network. The literature-based model shown in Fig. 1 was established by searching
the Signal transduction Knowledge Environment Connection Maps (STKE, http://
stke.sciencemag.org) [44]. There were four relevant pathways, namely insulin signaling
[45], integrin signaling [46], fibroblast growth factor receptor [47], and epidermal growth
factor receptor [48]. A composite signaling network extracted from these literature sources
is shown in Fig. 1.

Gene expression in dendritic cells was observed using microarrays in the Hiltbold laboratory
(Hiltbold et al., submitted). Dendritic cells are a key regulator of the human immune
response. Gene expression was observed during the maturation of dendritic cells following
stimulation with poly I:C, polyinosinic-polycytidic acid sodium salt, a mimic of viral
infection. The expression of 12 genes was extracted from the microarrays at 5 time points.
Expression of the following genes was observed: Interferon beta (Ifn-beta), Interferon
alphas (Ifn-alphas) (represented by four genes α2, α 4, α5, and α7), 2’5’OAS, IFI35, IP10,
IRF-1, IRF-7, IRF-8, PSMB8. Dendritic cells were harvested and gene expression measured
on microarrays at 0, 1, 3, 16, 12 and 24 hours. Gene expression measurements were
normalized and analyzed in a standard fashion using the Affymetrix QC Toolbox
(www.affymetrix.com). Data reported are the log ratio compared to time 0, yielding 5
measurements that were input into the algorithm.
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The literature-based transcriptional regulatory network underlying dendritic cell maturation
is shown in Fig. 2. This model was compiled from several sources: two literature reviews
[49] and [39] and from the pathways generated through the use of Ingenuity Pathways
Analysis (Ingenuity®Systems, www.ingenuity.com). Review of the literature indicates that
dendritic cell maturation is divided into early, middle and late stages, represented in Fig. 2.
Sibling relationships should exist between genes expressed in the early stage; likewise,
genes expressed in the middle stage (or the late stage) should be related as siblings. Genes
for interferons alpha and beta are expressed in the early and late stages. All other genes are
expressed in the middle stage of dendritic cell maturation.

6 Chondrocyte Signaling Models
Recall that the chondrocyte data set consists of 11 protein modifications measured at 6 time
points. For easier comparison to the dendritic cell gene study with 5 utilized time points, we
restrict the number of edges into any of the proteins to be at most 5 – 2 = 3. As discussed in
Section 3.2, we conduct 10 independent analyses of these data; each run consisted of
5,000,000 steps during initialization, and 50,000,000 regular steps. The burn-in and regular
stages for the 10 runs were discussed earlier in Section 3.2.

Relative edge frequencies, the fractions of times the individual edges occurred in models,
are computed across the combined 500,000,000 regular examinations of the search space.
These directed and undirected edge frequencies are shown in Fig. 3(a) and 3(b). These edge
frequency graphs are not subject to the vertex degree restriction since the edges here reflect
edge frequencies over all 500,000,000 steps.

Combining the 10 sets of top 200 directed acyclic models from the chondrocyte protein data
set yields a composite set of 269 DAG models, considerably less than the maximum possible
2,000. Fig. 5(a) and Fig. 5(c) show the relative posterior probabilities of these top directed
acyclic models, and the logarithm of this distribution, respectively. From these 269 directed
models, 57 undirected models were found. Fig. 5(b) and Fig. 5(d) show the relative posterior
probabilities of these top undirected graphs, and the logarithm of this distribution,
respectively. Using methods discussed in Section 3.4, our estimates of the total probability
visited are f̂d = 0.999849 and f̂u = 0.999808, with left-hand endpoints of 100 and 5,
respectively. Thus, although a small fraction of the model space was examined, we roughly
estimate that nearly all of the probability associated with that space has been examined.

From the 269 top directed models and 57 top undirected models and using Equations (4) and
(5), directed and undirected edge probabilities are estimated and shown in Fig. 3(c) and 3(d),
respectively. These edge probabilities support many of the relationships in the literature
model shown in Fig. 1. The high probability red and green directed edges from the Shc
isoforms to various other downstream proteins, coincide with the literature model. Also, Akt
(T308) has a high posterior probability of being a predictor (parent) of Fkhd (S256). Also,
there was high posterior probability of associations for both the sibling relation of GSK 3b
(S9) with Fkhd (S256) and for the common descendant relation of p70S6k (T389) with GSK
3b (S9). Figure 3(c) suggests there may be some cyclic association between Shc p66 (Y317)
and Akt (S473) even though the model is based on acyclic graphs.

Theoretically, in the long run the directed edge probabilities seen in Fig. 3(c) and 3(d)
should agree with the directed frequencies as shown in Fig. 3(a) and 3(b). However, the
difference in the edge frequencies and probabilities underscores the difficulty of working
with the sparse data, and demonstrate that the edge frequencies can poorly predict
probabilities even after a very large number of replications.
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The top overall directed acyclic and undirected models are shown in Fig. 4(a) and (b),
respectively. Their respective probabilities, prob(DG) = 0.068781 and prob(UG) =
0.302922, have been computed using Equations (2) and (3). From Equation (1), the a priori
probability of any undirected model is on the order of 10−28, thus the algorithm has non-
trivially identified the Fig. 4(b) model as the most likely undirected model. As seen in Fig.
4(a), proteins Shc p46 (Y317) and Shc p42 (Y317) have no parents; as a consequence, these
proteins will not contribute to all parts of the upcoming diagnostics.

The q-score plot for the standardized, logged data of all the proteins is seen in Fig. 6. The
plot has a correlation of 0.9561 over all data values. The figure’s caption also contains the
correlation values for the individual proteins. Eight of the eleven proteins’ original (logged)
data were very good matches to normal distributions. The other three proteins appear to have
small deviations from normality, but they are not large and our procedures should be robust
to small deviations from normality, as are the t-test and linear regression test [52].

In Fig. 7, the residuals from the best DAG of the chondrocyte data over time are plotted. The
residuals are the differences between the data and the predicted values from the best directed
graph. Each of the proteins’ residual curves do not deviate strongly from random variation
about zero, with non-significant first-order autocorrelations, suggesting that the residuals are
close to white noise over time; thus the independent time point assumption is reasonable for
this data set. Also note that GSK 3b (S9) and p70S6K (T421/S424) are predicted best by the
graph since their residuals were the smallest.

Fig. 8 is a plot of the standardized residuals from the best DAG versus the predicted values.
Again, it is close to white noise over the x-axis now suggesting homogeneous residual
variances over parents’ (predictors’) levels. Also, there are no outlying observations since all
the standardized residuals easily fall in the interval (−2.0, +2.0).

The q-score plot for the standardized residuals from the best DAG is shown in Fig. 9. The
near linearity of the plot and the high correlations presented in the figure’s caption, suggest
that the normality assumption is reasonable. Ten of the eleven proteins’ correlations were
not significantly different from 1.0.

Based on these diagnostics, our methodology is applicable to the above chondrocyte data
set. Approximate normality is very reasonable for most proteins’ (logged) data as it is for
residuals from the best overall directed model. Also, the residuals resemble random
independent scatter over both time and predicted values, suggesting valid regression models.
Finally, Fig. 3(c) shows high probabilities for several protein-to-protein directed edges
which appear in Fig. 1, the composite chondrocyte literature model.

One major additional benefit of our method is the use of the TopD and TopU lists and their
associated graph’s estimated probabilities to approximate the probability of subgraphs. For
example, suppose one desired to examine the probability of connectivity between Akt
(S473), Akt (T308), and Fkhd (S256). This probability can be directly estimated as a sum of
the probabilities of all undirected graphs in TopU in which there are at least two edges
between the three proteins. For the chondrocyte data, the estimate of this probability is 0.99.
Using the proteins Akt (S473), GSK 3b (S9) and Shc p46 (Y317), the estimated probability is
0.00. Both of these estimates are consistent with Fig. 4. This idea will be discussed further in
Section 8.

The five methods from [5] and [53], based on estimating partial correlation, were also
applied to the chondrocyte data set. Of the five methods, only pls, based on partial least
squares regression, discovered significant edges. Of the 7 significant edges, 5 are present in
our models shown in Fig. 3(d) and 4(b). All of these five significant edges are colored red
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and blue in Fig. 3(d). The other two edges had the least significant partial correlation values
of the 7.

7 Dendritic Cell Maturation Models
The gene expression data set consists of 12 genes at 5 time points during dendritic cell
maturation. We again restrict the number of edges into or out from a given gene to be at
most 3. As described in Section 3.2, there were 10 independent runs. As before the top 200
graphs of each of these runs were amalgamated.

Relative edge frequencies are computed across the combined 500,000, 000 regular probes
conducted by the Metropolis-Hastings algorithm. These frequencies are shown in Fig. 10(a)
and 10(b).

Combining the 10 sets of top 200 directed acyclic models from the dendritic set yields a
composite set of 211 DAGs. From these 211 directed acyclic models, 21 undirected models
are found. Fig. 12 shows plots of these distributions and of the log of the these distributions.
The values f̂u = 0.992799 and f̂d = 0.999491, with both left-hand endpoints 1, roughly
suggest that the 10 independent runs of the algorithm successfully searched the probability
space.

From the 211 top DAG models and 21 top undirected graph models, edge posterior
probabilities are estimated and shown in Fig. 10(c) and 10(d). The edge probability
information shown in Fig. 10(d) suggests IRF1 is an important predictor of IP10, while
IRF8 is an important predictor of PSM8. Fig. 10(d) additionally suggests the existence of
strong associations between IFNβ and IFNα4, between IFNα2 and IFNα5, and between
2’5’OAS and IFI35. All of the above relationships are thought to be sibling relationships in
the dendritic cell literature model, Fig. 2. The literature model’s parent/child relationships of
IFNα7/IFI35, and IFNβ/IP10 also receive high estimated posterior probabilities by our
method.

Six models tied for the top DAG, a representative one is shown in Fig. 11(a). It (and each of
the other five) has a probability of 0.012621, computed using Equation (2). The top
undirected graph is shown in Fig. 11(b); its probability is 0.140293, from Equation (3).

Fig. 13 has the overall q-score plot for the original standardized, logged data. There is some
lack of linearity suggesting slightly less tail probability than that of a normal distribution.
However, this should not bias the results, especially since all genes’ r values do not
significantly differ from 1.0.

The residuals from the (representative) best directed model for the dendritic cell data are
plotted over time, Fig. 14. There are slightly more trends in this plot than were in the
corresponding plot of the chondrocyte data; however, the independent time point assumption
approximately holds. A few of the genes, IFNβ, IFI35 and 2’5’OAS, were especially well
predicted by their parents (predictors) as demonstrated by their small absolute residuals. The
residuals are the differences between the data and the extracted signals (predicted values).
Here, as with the chondrocyte data, the residuals are similar to white noise, as they should
be.

Fig. 15 is a plot of the standardized residuals from the best DAG versus predicted values.
There is no major deviation from white noise, and all of these residuals are between −2.0
and +2.0 which suggests homogeneity of variance. Also, there are no outlying values that
bias the estimates.
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The q-score plot for the best directed graph’s standardized residuals over all the genes is
shown in Fig. 16. The q-scores r’s for the genes’ residuals are large and not significantly
different from 1.0, suggesting normality.

Our diagnostics demonstrate that our methodology is applicable to the dendritic cell data set.
All the genes’ (logged) data and residuals suggest approximate normality. Except for a high
first-order autocorrelation for one gene, IRF7, all residuals show random independent scatter
over both time and predicted values. The single high autocorrelation might make edges
involving IRF7 to be less likely than they would be otherwise, but it will not have dramatic
effects on the overall picture of predicted associations between the genes. Finally, our model
gave high probabilities for several (gene-to-gene) sibling edges and for two directed edges
that are claimed in the composite literature model (as presented in the discussion of Fig. 10).

The estimated probability of connectivity between IRF1, IP10 and PSMB8 is estimated from
the TopU list and the associated graph probabilities; it is 0.93. Similarly, the estimate of the
probability of a connection between IFNa5, IRF8 and 2’5’OAS is 0.00. These computed
estimates are consistent with Fig. 11. This idea will be discussed further in the next section.

The five methods from [5] and [53] were also applied to the dendritic cell data set. pls
discovered 8 significant edges, and ridge discovered 1 significant edge. Of the 8 significant
edges discovered by pls, 6 are present in Fig. 10(d), 5 are present in Fig. 11(b), and 2 are in
neither of these two figures.

8 Simulations
Several randomly generated data sets for each of two settings and one data set for each of
many other instructive settings were utilized to examine the performance of our method. For
comparison, several other estimation procedures taken from the literature were applied to the
same generated data sets.

The methods discussed in this paper assume that the standardized logged data follow a
multivariate k-variate (entity) normal distribution with mean, 0 ̄, and covari-ance/correlation
matrix Σ = ρ. The data sets used for the statistical simulations involve randomly generating t
(the number of time points) vectors from such a distribution with a specified ρ. Another
important parameter for our estimation method is the maximum vertex degree m.

Nine data sets were generated and analyzed from the following settings: k = 9, t = 5, m = 2, ρ
a 9 × 9 block diagonal matrix of three 3×3 blocks each of which is

Another nine data sets were generated and analyzed from k = 15, t = 10, m = 3, and ρ in a
similar block diagonal structure with now five of the above 3×3 blocks.

Also, single data sets were generated and analyzed using an analogous form for ρ and the
following different combinations of (k, t,m): (9, 5, 3), (12, 7, 2), (12, 7, 3), (12, 7, 5), (30, 20,
2), (30, 20, 3), (30, 20, 18), (15, 10, 2), and (15, 10, 8).

For the 23 simulations when m was low (m = 2, 3) the method’s edge probability estimates
show consistency with the generating model. In these simulations, the generating correlation
matrix had some entries with high (off diagonal) correlations (0.81,0.9), while the rest had
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zero correlations. For those entries with high generators, the method’s undirected edge
probability estimates were consistently higher than those corresponding to the zero
generators. For nearly all of the simulations, the simulation’s average of the estimates over
the high generators’ entries was more than three times the average of our estimates from the
zero generators. The average of the high generators’ undirected probability estimates over
the 23 simulations is 0.39, while the corresponding average over the zero generators is 0.08.

However, for simulations when m was large (m = 5, 8, 18), the space of allowed edges was
expanded to the point where the TopD lists from different runs were often extremely
different. The total number of DAGs in the overall TopD list often exceeded 1,000, and the
resulting edge probability matrices were not suggestive of the generated setting.

For all of the above simulated data sets, several published regularized estimates of the partial
correlation matrix were also computed. Specifically, the shrinkage, partial least squares,
ridge regression, lasso and adaptive lasso methods with their associated selection choices
were examined as in [5] and [53]. For nearly all of the simulations, the partial correlation
estimates were close to the partial correlations of their respective generators.

As previously mentioned at the end of Sections 6 and 7, one benefit of the method is the use
of the amalgamated TopD and TopU lists, along with the probabilities of the associated
graphs, to estimate the probabilities of subgraphs. Recall that in these simulations, the
correlation matrices consisted of a block diagonal structure of 3×3 blocks of high (ρ ≥ 0.81)
positive association within blocks, and no (ρ = 0) association between blocks. For the 23
simulations where m was kept low (m = 2,3), the method did quite well in suggesting 3-way
connectivity when it exists and not suggesting it when it does not. Specifically, for each of
the simulations, three true triples and seven false triples were randomly chosen, and the
probability estimates of a 3-way connection were computed for each. The average of the 3 ×
23 = 96 probabilities of 3-way connectivity estimates over the true triples was 0.78, while
the average of the 7×23 = 161 probability of 3-way connectivity estimates over the false
triples was 0.08. Separately, for each of the 23 individual simulations, the true triple
probability average was at least twice that of the false triple average; for most of the
simulations, the true triple probability average was more than 20 times larger than the false
triple probability average.

The BIC-based posterior probabilities were compared with Raftery et al.’s [54] specific non-
informative prior posterior likelihoods by utilizing their Bayes factor for a response (entity
node) under normal linear regression and their specific set of hyperparameters. Since the
Raftery et al.’s likelihood equation is only applicable when there is at least one predictor
(parent), it was necessary to derive (using ideas from [55, Theorem 7.6.1, pages 417–419])
the corresponding Bayes factor for a node when there is not a predictor. The product of the
Bayes factors over all nodes (with or without parents) of a DAG yields the Bayes factor for
the DAG. For both the chondrocyte and dendritic cell data sets and for many of the
simulated data sets, the TopD DAG’s BIC-based probability ratios were compared to their
respective specific noninformative prior-based probability ratios. Each DAG’s ratio was
relative to the corresponding performance of the DAG with the best BIC score. Due to
outlying ratio pairs, Spearman’s correlation was used as a measure of the ratio’s
relationship; this correlation was found usually to be at a low positive level, nearly always in
the −0.1 to 0.3 range. The BIC-based posterior probability estimates are not greatly aligned
with the specific non-informative prior posterior probability estimates.
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9 Conclusions
The method focuses on the all too common biological modeling situation where the number
of time points does not exceed the number of entities. In this situation, the data is quite
sparse and the covariance matrix is singular. Multivariate normal theory was employed to
find the maximum likelihoods as well as to accurately compute the numbers of parameters
for restricted networks. The Bayesian Information Criterion (BIC) scores were used in order
to estimate approximate posterior probabilities.

Diagnostics which test the suitability of this paper’s method for a particular data set are
developed. These diagnostics test the three main assumptions of the method: (log)
normality, independent time point contributions, and homogeneity of residual variances. For
both of this paper’s biological data sets, the diagnostic tests suggested reasonable adherence
to the assumptions for nearly all of the entities.

In order to cover the probability space well, our method conducts and amalgamates 10
independent diverse runs of a robust search algorithm; a rough estimate is computed for the
method’s coverage of the probability space. The paper’s results include not only probability
estimates for full networks, but also probability estimates for both directed and undirected
edges between entities as well as for any subgraphs of interest. These edge probabilities are
often considerably different from their frequencies of occurrences in the algorithm.

For both the chondrocyte and dendritic cell data sets, diagnostics suggest that the method
gives insight into the network. Also, the method’s results match several of the literature
based theorized results (see discussions of Fig. 3 and Fig. 10). Importantly, the diagnostics
test the applicability of the process for other data sets.

Several simulations examined the utility of this paper’s method. When the maximum vertex
degree m was kept low the method’s probability estimates were often substantially larger for
true edges than for false edges. Also, the probability estimates for true 3-way connectivity
was much greater than for false 3-way connectivity. The simulations suggest that there is
often low positive association between our BIC-based method and a specific non-
informative prior-based method. However, the BIC-based method, which rewards for higher
likelihood and penalizes higher complexity, helps in detecting associations.

In future work, further examination of the use of specific prior settings is planned. As well,
the extension of the core idea of robust search of the DAG probability space in order to
estimate probabilities for edges, subnetworks and networks will be applied to more complex
experimental designs.
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Fig. 1.
Composite signal transduction network extracted from the literature and expected to be
observed following IGF-1 stimulation. Phosphorylation in the following proteins was
measured: Shc, Erk, Akt, p70 S6 kinase, Forkhead (Fkhd), and glycogen synthase kinase 3b
(GSK 3b). Shc and Erk exist as multiple isoforms and these were observed independently in
the experiments: Shc p46, p52, and p66 and Erk p42 and p44 (indicated by light and dark
gray nodes, respectively). The relationship between these isoforms within the signaling
network is not known from the literature. Phosphorylation of Akt and p70 S6 kinase was
measured at two sites each: Akt T308 and S473; p70 S6 kinase T389 and T421/S424
(indicated by pink nodes). Fkhd and GSK 3b were each measured at one phosphorylation
site (S256 and S9, respectively). The dark (direct) directed edges from the Erk
phosphorylation sites to the p70 S6 kinase states that phosphorylation of Erk directly
influences phosphorylation of this kinase. Similarly the dark directed edges from the Akt
phosphorylation sites to Fkhd (S256) and GSK3b (S9) suggest that phosphorylation of Akt
directly influences Fkhd (S256) and GSK3b (S9) phosphorylation. The light (non-direct)
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directed edges going from the Shc isoforms indicates that phosphorylation of Shc directly
influences phosphorylation of non-measured proteins which influence activation of the
measured Erk, p70 S6 kinase, and Akt.
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Fig. 2.
Composite literature model of the genes expressed during the early (blue nodes), middle
(yellow, pink, and green nodes), and late (blue nodes) stages of dendritic cell maturation.
Different colors for the genes in the middle stage represent groups of genes under control of
a single transcription factor. Directed edges show gene expressions that should follow in a
time-based fashion. Irf-7, expressed in the middle stage of maturation, is thought to cause
the re-expression of the interferons in the late stage [39]; this is represented by the (red and
black) directed edges between the interferons and Irf-7 that extend in both directions. The
four interferon alpha genes IFNα2, IFNα4, IFNα5, and IFNα7 are represented in the
literature model by the single node IFNαs; no literature distinction is currently available
between the four.
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Fig. 3.
Edge frequencies (F) and edge probabilities (P) in directed (d) graphs and undirected (u)
graphs for the chondrocyte data. The frequencies (F) are the fractions of time that the
individual protein-to-protein directed (d) and undirected (u) edges occurred in models
obtained from the combined 500, 000, 000 regular M-H examinations. The probabilities (P)
are estimated posterior probabilities for directed edges and undirected edges using Equations
4 and 5, respectively, across the 550, 000, 000 regular and burn-in M-H examinations. The
edge frequencies are often considerably different from their corresponding edge
probabilities. This difference demonstrates that frequencies can poorly predict probabilities
even with a very large number of M-H examinations of the search space. The edge
frequency/probability color legend, used here and in following figures is: [0.95,1.0], red;
[0.8, 0.95), green; [0.5, 0.8), blue; [0.2, 0.5), light blue; [0.5, 0.2), black; [0.0, 0.05), clear.
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Fig. 4.
Highest posterior probability overall directed and undirected networks for the chondrocyte
data. The respective probabilities, prob(DGd) = 0.068781 and prob(UGu) = 0.302922, were
computed using Equations (2) and (3), respectively, across all 550,000,000 regular and burn-
in M-H examinations. The algorithm produced these as the most likely predictions for the
overall directed and undirected chondrocyte network models.

John et al. Page 25

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2014 March 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
Relative graph probabilities (G) and their natural logarithms (L) versus Index for the top
directed (d) graphs and top undirected (u) graphs across all 550,000,000 regular and burn-in
M-H examinations for the chondrocyte data. The values of f̂d = 0.999849 and f̂u = 0.999808
were computed using starting index values of 100 and 5, respectively.
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Fig. 6.
Q-score plot for all of the standardized logged chondrocyte data. The individual Pearson
correlation, r, values for the 11 sets of proteins are (in the order of Fig. 7 legend): 0.7795*,
0.7590*, 0.9875, 0.9648, 0.9522, 0.9556, 0.9058, 0, 8681*, 0.9174, 0.9927, and 0.9762. The
r value for the entire set is 0.9561. The three starred values are significantly different from
1.0 suggesting some deviation from normality for the original logged data of these three
proteins; the other 8 proteins’ r values are not significantly different from 1.0, suggesting
their normality [50].
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Fig. 7.
The residuals exhibit the differences of the data and the best directed model’s predicted
values for the chondrocyte data. Each protein’s residuals over time do not substantially
deviate from white noise with frequent short runs of both positive and negative residuals
over time. First-order autocorrelations in order of residuals of the above-listed chondrocyte
proteins are: −0.8211, 0.6451, 0.1702, −0.3169, −0.7028, −0.7905, −0.1616, −0.7947,
0.4377, 0.3212, and −0.5981. None of these are significantly different from 0.0 [51], the
assumption of random uncorrelated residuals is supported.
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Fig. 8.
The standardized residuals versus the predicted values for the best directed model
representing the chondrocyte data are shown (line legend shown in Fig. 7). The vertical lines
for Erk p42 (Y202/Y204), Shc p46 (Y317) and Shc p42 (Y317) reflect the absence of parents,
as seen in Fig. 4(a). The lack of any strong trends in the standardized residuals over the
predicted levels suggests homogeneous variances. Also, since all standardized residuals are
in the interval [−2.0, +2.0], there are no apparent outliers.
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Fig. 9.
The q-score plot of the standardized residuals for all proteins from the best directed
chondrocyte graph. The Pearson correlation r over all the proteins is 0.9961. The individual
r values for the 11 proteins are: 0.9679, 0.9627, 0.9875, 0.9342, 0.9642, 0.9758, 0.8414*,
0.9880, 0.9174, 0.9927, and 0.9461. The one starred value is statistically significantly
different from 1.0 (but not highly so) suggesting some deviation from normality for the
residual of p70S6K (T389) from the best directed model; however, the normality assumption
is reasonable for the other 10 proteins. Overall, the residuals are close to being normally
distributed.
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Fig. 10.
Edge frequencies (F) and edge probabilities (P) in directed (d) graphs and undirected (u)
graphs for the dendritic model space. The frequencies (F) are the fractions of time that the
individual protein-to-protein directed (d) and undirected (u) edges occurred in dendritic
models obtained from the combined 500, 000, 000 regular M-H examinations. The
probabilities (P) are estimated posterior probabilities for directed edges and undirected
dendritic edges computed using Equations 2 and 3, respectively, across the 550,000,000
regular and burn-in M-H examinations. The edge colorings are as in Fig. 3. The edge
frequencies are often considerably different from their corresponding edge probabilities.
This difference demonstrates that frequencies can poorly predict probability even with a
very large number of M-H examinations of the search space.
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Fig. 11.
The top overall network undirected graph (b) and a representative top directed graph (a) for
the dendritic cell data after 10 runs searched through 500 million graphs. The estimated
probabilities of these top models are prob(DGd) = 0.012621 and prob(UGu) = 0.140293.
These predict overall directed and undirected network models.
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Fig. 12.
Relative graph probabilities (G) and their natural logarithms (L) versus Index for the top
directed (d) graphs and top undirected (u) graphs across all 550,000,000 regular and burn-in
M-H examinations for the dendritic cell data. The values of f̂d = 0.999491 and f̂u = 0.992799
were computed using starting index values of 1 and 1, respectively. The linearity of L-u is
not optimal for high indices but if we adjust for their concave nature the estimate for f̂u
would be even closer to 1.000.
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Fig. 13.
Q-score plot for all of the original standardized logged dendritic cell data. The Pearson
correlation r value for the entire set is 0.9622. The corresponding individual r values for the
12 sets of genes (in the order of the gene legend in Fig. 14) are: 0.9369, 0.9801, 0.9942,
0.9864, 0.9450, 0.9493, 0.8913, 0.9455, 0.8924, 0.9690, 0.9329, and 0.9573. None of these r
values are significantly different from 1.0, thus suggesting normality for the original logged
data [50].
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Fig. 14.
Dendritic cell residuals from the best directed model, Fig. 11(b), versus time, separately for
each gene. First-order autocorrelations in order of the above listed genes are 0.9984*,
0.3826, −0.2126, −0.1950, −0.0997, −0.0734, −0.1563, −0.4261, −0.4078, 0.1780, −0.5361,
and 0.3993; only the IRF7 gene’s first-order autocorrelation is significantly different from
0.0, and white noise seems reasonable for all genes except possibly IRF7 [51].
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Fig. 15.
The dendritic cell standardized residuals versus the predicted values for the best directed
model (line legend shown in Fig. 14). The vertical lines for IFNα2, IFNα7, IFNβ, IRF7 and
IRF8 reflect the absence of parents (predictors), as seen in Fig. 11(a). The lack of any strong
trends in the standardized residuals over the predicted levels suggests homogeneous
variances. Also, since all standardized residuals are in the interval [−2.0, +2.0], there are no
apparent outliers.
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Fig. 16.
The q-score plot of the standardized residuals for all genes from the best directed dendritic
model. The Pearson correlation r over all the genes is 0.99026. The individual r values for
the 12 sets of genes are 0.93692, 0.96887, 0.98886, 0.98644, 0.97715, 0.95892, 0.94196,
0.95744, 0.89238, 0.97731, 0.93216, and 0.9599. None of these r values are significantly
different from 1.0, thus suggesting normality for all genes residuals from the best directed
model.
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