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Abstract: A reliable and accurate identification of the type of tumors is crucial to the proper treatment 

of cancers. In recent years, it has been shown that sparse representation (SR) by 1l -norm 

minimization is robust to noise, outliers and even incomplete measurements, and SR has been 

successfully used for classification. This paper presents a new SR based method for tumor 

classification using gene expression data. A set of metasamples are extracted from the training 

samples, and then an input testing sample is represented as the linear combination of these 

metasamples by l1-regularized least square method. Classification is achieved by using a 

discriminating function defined on the representation coefficients. Since l1-norm minimization leads 

to a sparse solution, the proposed method is called metasample based SR classification (MSRC). 

Extensive experiments on publicly available gene expression datasets show that MSRC is efficient for 

tumor classification, achieving higher accuracy than many existing representative schemes. 
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1. Introduction 

A tumor is a neoplasm or a solid lesion formed by an abnormal growth of cells. A reliable and 

accurate identification of the type of tumors is crucial to the effective treatment of cancers. Tumor is 

different from cancer. A tumor can be benign, pre-malignant or malignant, while only the malignant 

tumor can be called cancer. The management of cancer has been attracting tremendous attention 

because cancer is a potentially life-threatening disease caused by the unchecked proliferation of cells. 

DNA microarray is a biotechnology that simultaneously monitors the expression of tens of 

thousands genes in cells [1]. One important and emerging application of microarray gene expression 

profiling is tumor classification [2,3]. Many classification methods originated from statistical learning 

theory have been adapted for molecular data classification or clustering [3-10,25,26,39]. Golub et al. 

[3] successfully classified acute myeloid leukemia from acute lymphocytic leukemia using gene 

expression data. Huang et al. [9] proposed to used independent component analysis (ICA) based 

penalized discriminant method for tumor classification. Brunet used nonnegative matrix factorization 

(NMF) to cluster tumor samples. A major methodological concern of such methods is the problem of 

over-fitting, i.e., method become over-optimized to perform well on the training set, but does not 

generalize well to new data from the same class of cancer [11].  

Sparse representation (SR) is a new and powerful data processing method, which is inspired by 

the recent progress of l1-norm minimization based methods such as basis pursuing [12], compressive 

sensing for signal reconstruction [13-15], and least absolute shrinkage and selection operator (LASSO) 

algorithm for feature selection [16]. By using the SR technique to represent the input testing face 

image as a sparse linear combination of the training samples, an SR based classification (SRC) 

method was proposed in [18] for face recognition. Ideally, in SRC it is expected that a testing sample 
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can be well represented by using only the training samples from the same class. In such case, the SR 

coefficient vector will have only a few significant coefficients. In order to find the SR coefficient 

vector, l1-regularized least square [17] is used. Unlike conventional supervised learning methods, 

where a training procedure is used to create a classification model for testing, the SRC does not 

contain separate training and testing stages so that the over-fitting problem is much lessened. The 

SRC method has been successfully used in face recognition [18] and tumor classification [19]. In 

these methods, a testing sample is represented as the linear combination of the original training 

samples, and the representation error over each class is used as an indicator to classify the testing 

sample. However, the original training samples may be not as efficient as the eigenfaces [20] or 

metasamples [5], which contain the intrinsic structural information of the data, to represent the input 

testing samples.  

A metasample is a linear combination of the gene expression profiles of samples, which can 

capture the alternative structures inherent to the data. The samples are analyzed by summarizing their 

gene expression patterns in terms of expression patterns over the metasamples. In [5, 21], the 

metasample expression patterns discovered by NMF provide a robust clustering of samples*. In [22], 

the authors proposed a similar method called Eigenarrays, which are extracted by using singular value 

decomposition (SVD) or principal component analysis (PCA) from the gene expression data. For the 

convenience of expression, we use the word metasample throughout the paper. The metasamples can 

be computed by using SVD, PCA, NMF or other linear or nonlinear models such as ICA and 

nonlinear ICA [23,24]. 

In this study we propose to represent each testing sample as a linear combination of a set of 

                                                        
* In [5], the authors used the term “metagene” to represent metasample.   



4 

metasamples extracted from all the training samples. Classification is achieved by using a 

discriminating function of the representation coefficients on the metasamples obtained by 

l1-regularized least square. Since l1-norm minimization could lead to sparse solution, our approach is 

then named as metasample based sparse representation classification (MSRC).  

The rest of the paper is organized as follows. Section 2 describes the methods proposed in this 

study. The SR of tumor samples and the metasample model of gene expression data are first presented, 

and the algorithm of MSRC is consequently given. Section 3 presents the numerical experiments. 

Section 4 concludes the paper and outlines directions of future work. 

The abbreviations used in this paper are summarized as follows.  

Table 1. Abbreviations 

SR sparse representation  
SRC SR based classification  
MSRC metasample based SRC  
NMF nonnegative matrix factorization  
SNMF sparse NMF 
SVD singular value decomposition  
PCA principal component analysis  
ICA independent component analysis  
SVM support vector machines  
KNN K-nearest neighbors  
GEMS gene expression model selector  
BW between-categories to within-category 
LASSO least absolute shrinkage and selection operator 

 

2. Methods  

2.1 Sparse Representation of Testing Tumor Samples 

The basic problem of supervised tumor classification is how to use the labeled training samples from 

the k object classes to correctly identify the class to which a new testing sample belongs. Consider a 

training gene expression dataset represented by an m n×  matrix A with m  genes and n  samples. 
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Since the microarray data typically contain thousands of genes on each chip, and the number of 

collected tumor samples is much smaller than that of genes, we have m n . The element qla  in A 

is the expression level of the q-th gene in the l-th assay (1 , 1q m l n≤ ≤ ≤ ≤ ). The n-dimensional 

vector qr , i.e., the q-th row of A , denotes the expression profile of the q-th gene. Alternatively, the 

m-dimensional vector lc , i.e., the l-th column of A , is the snapshot of the l-th assay (cell sample). 

Here we suppose that the n samples belong to k object classes ( k n≤ ).  

We arrange the in  samples of the i-th class (1 i k≤ ≤ ) as a matrix ,1 ,2 ,[ , , ] i

i

m n
i i i i nA ×= ∈c c c  

with each sample being a column. Given that the training samples of the i-th class are sufficient, any 

new (testing) sample my∈  in the same class will approximately lie in the linear span of the 

training samples associated with class i [18]: 

,1 ,1 ,2 ,2 , ,i ii i i i i n i ny α α α= + + +c c c                        (1) 

for some scalars ,i jα ∈ , 1,2 ij n= ， ， . 

For tumor classification, the membership i of the new testing sample y is unknown. We arrange the 

training data samples of each class in matrix A . Suppose that the samples with the same class are 

conjoint, i.e., 1 2[ , , ]kA A A A= , then the linear representation of y can be rewritten in terms of all 

the training samples as 

0y Ax=                                  (2) 

where, ideally, 

0 ,1 ,2 ,[0, 0, , , , , 0, ,0]
i

T n
i i i nx α α α= ∈                    (3) 

is a coefficient vector whose entries are zero except for those associated with the i-th class. In other 

words, the nonzero entries in the estimate 0x  will be associated with the columns of A  from a 

single object class i so that we can assign the testing sample y to that class.  

Now, the key problem to be shoved is how to calculate 0x . From Eq. (3) we can see that the 

representation of y  is naturally sparse if the number of object classes k  is large. The problem can 
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be converted into how to find a column vector x  such that y Ax=  and 0x  is minimized, where 

0x  is the 0l -norm of x and it is equivalent to the number of nonzero elements in vector x , i.e., the 

so-called sparse representation (SR). It can be expressed as the following optimization problem: 

             0 0
ˆ arg minx x=   subject to Ax y=                         (4) 

Finding the solution to the above SR problem is NP-hard due to its nature of combinational 

optimization [27]. Fortunately, recent development in the theory of SR and compressive sensing 

[13-16] reveals that if the solution being sought is sparse enough, the solution to the 0l - minimization 

problem in Eq. (4) is equivalent to the solution to the following 1l -minimization problem: 

                1 1
ˆ arg minx x=   subject to Ax y=                         (5) 

This problem can be solved in polynomial time by standard linear programming methods [12]. 

For A , whose size m n>> , Eq. (5) does not have exact solutions. To solve this problem, we 

consider a generalized version of Eq. (5), which allows for certain degree of noise, i.e., find a vector 

x  such that the following objective function is minimized:  

{ }2 1( , ) min
x

J x Ax y xλ λ= − +                           (6) 

Using this, Eq. (5) is reduced to solving an 1l -regularized least square problem. The positive 

parameter λ  in Eq. (6) is a scalar regularization that balances the reconstruction error and sparsity. 

This optimization problem can also be solved by standard linear programming methods [12]. In this 

study, we use the truncated Newton interior-point method [17] to solve this problem.   

 

2.2 Metasample of Gene Expression Data 

Generally speaking, metasample of gene expression data is defined as a linear combination of several 

samples, which may capture alternative structures inherent to the data and provide biological insight. 

Another viewpoint of metasample is that we can approximate the gene expression pattern as linear 
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combinations of these metasamples. Mathematically, the gene expression dataset matrix A  can be 

factorized into two matrices  

                         ~ ,A WH                                    (7) 

where matrix W  is of size m p× , with each of the p  columns defining a metasample. Matrix H  

is of size p n× , with each of the n  columns representing the metasample expression pattern of the 

corresponding sample (refer to Fig.1). 

 

 

 

 
Fig. 1 The metasample model of gene expression data. Each sample (column in A) in the data matrix is 
considered to be a linear combination of underlying basis snapshots (metasamples) in the matrix W 
(columns in W). Each column in H represents the metasample expression pattern of the corresponding 
sample. 
 

Many works have been published on extracting the metasamples [5, 22, 23]. Alter et al. [22] used 

SVD to transform the gene expression data from the “genes × samples” space to diagonalized 

“eigengenes × eigenarrays (i.e., metasamples)” space, where the eigengenes (or eigenarrays) are 

unique orthonormal superposition of the genes (or samples). They found that sorting the data 

according to the eigengenes and eigenarrays gives a global picture of the dynamics of gene expression, 

in which individual genes and arrays appear to be classified into groups of similar regulation and 

function, or similar cellular state and biological phenotype, respectively. After normalization and 

sorting, the significant eigengenes and eigenarrays can be associated with observed genome-wide 

effects of regulators, or with measured samples, in which these regulators are overactive or 

underactive, respectively. 

A = W H×

Metasample 
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In our previous works [9, 25], ICA was used to model gene expression data as shown in Fig 1. In 

this model, the samples are considered to be a linear mixture of statistically independent basis 

snapshots (i.e., metasamples). On the other hand, Brunet et al. [5] used NMF to describe the gene 

expression data in terms of a small number of metasamples. Then the samples are analyzed by 

summarizing their gene expression patterns in terms of expression patterns of the metasamples. It was 

shown in [5] that the metasample expression patterns provide a robust clustering of samples.  

Form the above analysis we see that the metasamples can be extracted using several methods, 

such as SVD, ICA and NMF, etc. Based on the method used, different names were proposed, 

including eigengene, eigenarray, independent basis snapshot and metasample. We choose the name 

“metasample”. In the following section, we use SVD and sparse NMF (SNMF) to extract the 

metasamples for classification because of their efficiency. 

 

2.3 Metasample based Sparse Representation Classification 

Since the metasamples contain the inherent structural information of training samples, in this study we 

propose to use them to design the classifier instead of the original samples in training dataset. We 

extract the metasamples from the samples in each class respectively, i.e., we factorize each 

sub-dataset matrix iA  into two matrices:  

                        ~i i iA W H                                   (8) 

where iW  is an im p×  matrix and iH  is a i ip n×  matrix. ip  is the number of metasamples of 

the i-th class. In practice, the value of ip  can be determined experimentally. In this study, we use 

SVD and SNMF to solve Eq.(8) for iW . 

After computing the metasamples iW  of each class, we use W  to represent the metasamples 

from all the k classes: 
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1 2[ , , , ]kW W W W=                                (9) 

Given a new test sample y , we can compute its SR by minimizing 

{ }2 1( , ) min ,
x

J x Wx y xλ λ= − +                        (10) 

where the positive scalar regularization parameter λ  is determined experimentally. 

Ideally, the nonzero entries in the representation vector x will all be associated with the columns 

of W from a single class i , allowing us to assign the testing sample y to the class i. However, noise 

and modeling error will inevitably lead to small nonzero entries associated with multiple object 

classes [18]. To solve this problem and for a more robust classification, we classify y based on how 

well y can be reconstructed by using the coefficients from each class as in [18]. 

For each class i , let : n n
iδ →  be the characteristic function which selects the coefficients 

associated with the i-th class. For nx∈ , ( ) n
i xδ ∈  is a vector whose nonzero entries are the ones 

from class i in x . Using only the coefficients from the i-th class, one can reconstruct the given test 

sample y  as ˆ ( )i iy W xδ= . We then classify y  based on these approximations by assigning it to 

the class that minimizes the residual between y  and ŷ :  

                      2min ( ) ( )i ii
r y y W xδ= −                          (11)    

The classification algorithm can be summarized as following: 

Input: matrix of training samples 1 2[ , , , ] m n
kA A A A ×= ∈  for k  classes; testing sample 

my∈ .  

Step1: Normalize the columns of A to have unit 2l -norm. 

Step2: Extract the metasamples of every class using SVD or NMF. 

Step3: Solve the optimization problem defined in Eq. (10). 

Step4: Compute the residuals 2( ) ( )i ir y y W xδ= − . 
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Output: identity( y ) = arg min ( )ii
r y . 

Since our algorithm is based on metasamples, we name it the metasample based sparse 

representation classification (MSRC). The optimization problem in Eq. (10) is solved using the 

truncated Newton interior-point method, which is done by l1_ls MATLAB package available online 

(http://www.stanford.edu/~boyd/l1_ls). The Matlab codes of the proposed MSRC algorithm can be 

downloaded at http://www4.comp.polyu.edu.hk/~cslzhang/code/MSRC_IEEE.rar. 

MSRC can be seen as the combination of SRC [18] and metasample based clustering [5]. In SRC, 

the testing sample is represented as a linear combination of the original training samples. In 

metasample based clustering, each sample is represented as a linear combination of metasamples, 

which are extracted from the training samples. The common point of the two methods is that they are 

both using the coefficient vector for classification or clustering. The difference between them is that in 

the proposed MSRC, the testing sample is represented as a linear combination of metasamples 

extracted in a supervised manner from each class separately. 

 

2.4 Evaluation of Performance 

The proposed method is evaluated in comparison with some representative methods, including the 

SRC [18, 19], LASSO [40] and the widely used support vector machines (SVM) [28]. SVM has been 

successfully used for gene profile classification [28]. Considering the characteristics of ‘high 

dimensionality and small sample size’ of gene expression data, SVM may be the best classifier for 

classifying the original data [29, 30]. Statnikov et al. [29] and Pochet et al. [30] compared various 

methods for tumor classification and concluded that SVM is among the most efficient ones, 

outperforming K-nearest neighbors (KNN) and neural network. Based on this conclusion, KNN and 
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neural network will not be used in the comparison, though they are also useful for tumor classification. 

In addition, it has been reported that SRC has similar performance to SVM in classification [18].  

The experiments of two-class classification are given in subsection 3.1. We use classification 

accuracy, sensitivity and specificity, as the performance metrics. They are obtained by stratified 

10-fold cross-validation. The results of SVM are obtained by the Gene Expression Model Selector 

(GEMS), a set of software with graphic user interface for gene expression data classification. GEMS 

is publically available at http://www.gems-system.org/ and it was also used in [29] for the 

comprehensive study of many classifiers on gene expression cancer diagnosis. In this study, we use 

one-versus-rest SVM (OVRSVM) with Polynomial kernels to do the experiment because Statinkov et 

al. have shown that OVRSVM may be the best one for tumor classification [29]. 

 

Fig.2. An example of parameter selection. Data are split into mutually exclusive sets P1, P2 and P3. The 
performance is estimated in the outer loop by training on all splits but one, and using the remaining one 
for testing. The average performance over testing sets is reported. The inner loop is used to determine the 
optimal value of parameter C (in a cross-validated fashion) for training in the outer loop. 
 

Nested stratified 10-fold cross validation method [29] is used to select the parameters of the 

classifiers, which is based on two loops. The inner loop is used to determine the best parameter of the 

classifier. The outer loop is used for estimating the performance of the classifier. Fig. 2 shows a 
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simplified pictorial example of a nested stratified 3-fold cross validation applied to optimize the 

parameter C (which takes values ‘1’ and ‘2’) of a classifier. Note that in reality we will optimize a set 

of combined parameters. 

The multi-class classification experiments are given in subsection 3.2. Because the LASSO based 

method is designed for two-class classification problem [40], we do not use it for multi-class tumor 

classification. The numbers of training samples in different classes are unbalanced, e.g., in the lung 

cancer dataset, there are 139 adenocarcinoma samples but only 6 small-cell lung carcinoma samples. 

Thus in the experiments we can set different numbers of metasamples according to the numbers of 

samples in different classes, i.e., more metasamples will be extracted if the number of training 

samples of that class is bigger. However, the classification results may be biased towards classes with 

greater numbers of metasamples. On the other hand, if the number of metasamples of each class is set 

the same, it must be equal to or less than the smallest in , and thus we will lose the information 

contained in larger classes. With the above considerations and according to the results of nested 

stratified 10-fold cross validation, we choose 8ip =  if in >8. Otherwise, we let i ip n= .  

To study whether dimensionality reduction can improve the classification performance, we also 

applied SRC, LASSO, SVM and MSRC to subsets of selected top-ranked genes. It should be noted 

that since the number of genes are very large, an optimal selection of the genes is very 

computationally expensive. Considering that our aim is to validate whether gene selection can benefit 

MSRC and the fact that cancer is caused by the mutation of many genes, we use a simple method, i.e., 

the ratio of genes between-categories to within-category sums of squares (BW) method, to rank the 

genes, and select a comparatively large number of genes for the experiment. 
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3. Results 

3.1 Two-Class Classification  

Table 2. Summary of the datasets for the four binary tumor classification problems. 

Datasets 
Samples 

Genes
Class 1 Class 2

Acute leukemia data 19 19 5000 
Colon data 40 22 2000 
Prostate cancer data 77 59 12600
DLBCL 58 19 5469 

Table 3. The classification accuracies by different methods. 

Dataset SVM LASSO SRC MSRC-SNMF MSRC-SVD 
Acute leukemia 97.37 86.84 94.74 97.37 97.37 
Colon 85.48 85.48 85.48 90.32 90.32 
Prostate 91.18 91.91 94.85 91.91 95.59 
DLBCL 96.10 96.10 97.40 97.40 98.70 

Table 4. The classification sensitivity by different methods. 

Dataset SVM LASSO SRC MSRC-SNMF MSRC-SVD 
Acute leukemia 94.74 89.47 89.47 94.74 94.74 
Colon 92.50 90.00 92.70 92.50 92.50 
Prostate 93.51 90.91 93.51 90.91 94.81 
DLBCL 98.28 98.28 98.28 98.28 98.28 

Table 5. The classification specificity by different methods. 

Dataset SVM LASSO SRC MSRC-SNMF MSRC-SVD 
Acute leukemia 100 84.21 100 100 100 
Colon 72.73 77.27 72.73 86.36 86.36 
Prostate 88.14 93.22 96.61 93.22 96.61 
DLBCL 89.47 89.47 94.74 94.74 100 

 

Four publicly available microarray datasets are used to study the tumor classification problem: Acute 

leukemia dataset [3], Colon cancer dataset [4], Prostate cancer dataset [37] and Diffuse large B-cell 

lymphomas (DLBCL) dataset [36].  

The leukemia dataset is consisted of 38 bone marrow samples, which were obtained from adult 
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acute leukemia patients at the time of diagnosis and before chemotherapy. RNA prepared from bone 

marrow mononuclear cells was hybridized to high-density oligonucleotide microarrays to measure the 

gene expression values. For the colon dataset, gene expression in 40 tumor and 22 normal colon tissue 

samples was analyzed with an Affymetrix oligonucleotide array complementary to more than 6500 

human genes. The data set contains the expression of 2000 genes with the highest minimal intensity 

across 62 tissues. For the prostate dataset, the gene expression profiles were derived from prostate 

tumors and non-tumor prostate samples from patients undergoing surgery. Oligonucleotide 

microarrays containing probes for approximately 12600 genes and ESTs were used for obtaining the 

gene expression data. For the DLBCL dataset, RNA was hybridized to high-density oligonucleotide 

microarrays to measure the gene expression values. An overview of the characteristics of the four 

datasets is given in Table 2.  

The classification results (including accuracy, sensitivity and specificity) by using SVM, LASSO, 

SRC and the proposed MSRC are listed in Tables 3-5. SVD and SNMF are used to extract the 

metasamples of gene expression data, respectively. When using the two methods to extract the 

metasamples, we need to determine the number of metasamples of each class, i.e., the value of ip  in 

Eq. (8). Since there are only 2 classes and the difference of the number of samples in each class is not 

big, we let 1 2p p p= = . The value of p can be determined using the nested stratified 10-fold cross 

validation. Another parameter λ in Eq.(10) can also be determined using this method. Note that, the 

results of SVM and SRC in our experiments are slightly different from those reported in [19, 29]. This 

is probably because the distribution file of cross validation in our experiments is different from those 

in [19, 29]. 

To better illustrate the experimental results, we show the accuracies of our methods MSRC-SVD 
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and MSRC-SNMF in Figures 3-6 when different numbers of metasamples are used. The x-axis 

represents the p-dimension, i.e., the number of metasamples extracted from the original data; y-axis 

represents the accuracy of classification.  

From Tables 3-5 and Figures 3-6 it can be seen that for the four datasets, MSRC-SVD achieves 

better classification results than SVM and SRC, especially on the colon and DLBCL datasets. The 

proposed MSRC-SVD is very competitive for binary tumor classification. From Figures 3-6 we can 

also find that, compared with MSRC-SNMF, MSRC-SVD could achieve higher accuracy. This may 

be in conflict with the intuitive sense that SNMF could model the gene expression data in a more 

biological way [8]. From another viewpoint, however, SVD is the optimal model for reconstruction 

under 2l -norm. Certainly, more experiments could be performed to further validate this in the future. 
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Fig.3. The classification accuracy on the Acute leukemia dataset.  
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Fig.4. The classification accuracy on the colon dataset.  
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Fig.5. The classification accuracy on the Prostate cancer dataset. 
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Fig.6. The classification accuracy on the DLBCL dataset. 

Table 6. The classification accuracies by different methods (with gene selection). 

Dataset SVM LASSO SRC MSRC-SNMF MSRC-SVD 
Acute leukemia 
(2000*) 

97.37 89.47 97.37 97.37 100 

Colon (1000) 87.10 87.10 87.10 88.71 90.32 
Prostate (1500) 94.85 91.18 95.59 94.85 96.32 
DLBCL (800) 97.40 93.51 97.40 94.81 98.70 

* The number of selected top-ranked genes. 
 

Table 7. The classification sensitivity by different methods (with gene selection). 
Dataset SVM LASSO SRC MSRC-SNMF MSRC-SVD 
Acute leukemia 94.74 94.74 94.74 94.74 100 
Colon 92.50 92.50 90.00 92.50 92.50 
Prostate 92.21 90.91 94.81 92.21 94.81 
DLBCL 98.28 96.55 98.28 93.10 98.28 
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Table 8. The classification specificity by different methods (with gene selection). 
Dataset SVM LASSO SRC MSRC-SNMF MSRC-SVD 
Acute leukemia 100 84.21 100 100 100 
Colon 77.27 77.27 81.82 81.82 86.36 
Prostate 98.31 91.53 96.61 98.31 98.31 
DLBCL 94.74 84.21 94.74 100 100 

 

The experimental results with gene selection are shown in Tables 6-8 and Figures 3-6 

(MSRC-SVD+BW and MSRC-SNMF+BW). We can see that, except for MSRC-SNMF and LASSO, 

gene selection can improve the performance of all the other classification methods. For MSRC-SVD, 

gene selection can improve both the accuracy and the stability of the classification. For MSRC-SNMF 

and LASSO, no clear regularity could be found. 

 

3.2 Multi-class Classification 

We use five multi-class datasets to further investigate the performance of the proposed method. 1) The 

Lung cancer dataset [34], which contains 4 lung cancer types and normal tissues (i.e., 5 classes in 

total). This dataset includes 203 samples with 12600 genes. 2) The Leukemia dataset [33], which has 

three kinds of samples: acute myelogenous leukemia, acute lymphoblastic leukemia and 

mixed-lineage leukemia. This dataset includes 72 samples with 11225 genes. 3) The Small round blue 

cell tumors of childhood (SRBCT) [35], which is composed of 4 types of tumors. This dataset 

includes 83 samples with 2308 genes. 4) A dataset composed of 11 various human tumor types 

(11_Tumors [32]): ovary, bladder/ureter, breast, colorectal, gastro-esophagus, kidney, liver, prostate, 

pancreas, adeno lung, and squamous lung. This dataset includes 174 samples with 12533 genes. 5) A 

dataset composed of 9 various human tumor types (9_Tumors [31]): non-small cell lung, colon, breast, 

Ovarian, Leukemia, Renal, Melanoma, Prostate, central nervous system. This dataset includes 60 
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samples with 5726 genes. 

All the five datasets were produced by oligonucleotide microarrays. Except SRBCT, for the other 

four datasets RNA was hybridized to high-density oligonucleotide Affymetrix arrays, and expression 

values were computed using the analysis tool: Affymetrix GENECHIP [29]. The SRBCT dataset was 

produced by using two-color cDNA platform with consecutive image analysis performed by the 

DeArray Software and filtering for a minimal level of expression [35].  

The experimental results are listed in Table 9. From the five experiments we can see that, for 

multi-class classification the proposed MSRC does not have clear advantages over SVM and SRC. 

The reason is that in these datasets, the training samples of some classes are very few so that the 

extracted metasamples cannot represent the intrinsic information of these classes. For example, the 

number of samples of each class in the 9_tumors dataset is listed in Table 10. We see that the samples 

of each class are very few, which makes the classification result of MSRC relatively poor on this 

dataset.  

Table 11 shows the experimental results with gene selection. Compared with Table 9, we can see 

that except for the 9_tumors dataset, little improvement is achieved by gene selection for the other 

three datasets. Since the accuracy on SRBCT dataset is 100% for all the classifiers, we did not apply 

gene selection on this dataset. 

Table 9. The multi-class classification accuracies by different methods. 

Dataset SVM SRC MSRC-NMF MSRC-SVD 
Lung cancer 96.05 95.07 94.09 95.07 
Leukemia 96.90 95.83 95.83 97.22 
SRBCT 100 100 100 100 
11_tumors 94.68 94.83 95.40 95.98 
9_tumors 65.10 66.67 60.60 63.33 
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Table 10. The sample numbers of every class in 9_tumor dataset. 

Tissues NSCL Colon Breast 
Numbers 9 7 8 

Tissues Ovarian Leukemia Renal 
Numbers 6 6 8 

Tissues Melanoma Prostate CNS 
Numbers 8 2 6 

Table 11. The multi-class classification accuracies (with gene selection). 

Dataset SVM SRC MSRC-NMF MSRC-SVD 
Lung cancer (2000) 96.62 95.07 94.09 96.06 
Leukemia (3000) 96.90 95.83 95.83 97.22 
11_tumors (1000) 96.07 95.40 93.10 96.55 
9_tumors (2000) 85.84 71.67 66.67 73.33 

 

3.3 The Required Number of Samples for Metasample Training  

From the aforementioned experimental results we see that our method could efficiently classify tumor 

data, especially when there are enough training samples of each class. On the other hand, if the 

training samples are very few, our method may not be better than SVM and SRC.  

To find out how many training samples are required by MSRC to perform better than SRC, we 

randomly select different numbers of samples from the four two-class datasets and the Leukemia 

dataset [33] for testing. Each class in these datasets has more than 18 samples. We randomly chose 6, 

10, 14 and 18 samples, respectively, from each class of the dataset for classification. Each experiment 

was repeated 10 times. The mean classification accuracies of 10-fold cross-validation are listed in 

Table 12. From this table we can see that MSRC will not have clear advantages over SRC when the 

number of training samples is less than 10. If there are 10 or more than 10 training samples, MSRC 

will be a good choice for tumor classification. This is consistent to the results in subsection 3.2.  
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Table 12. The mean classification accuracies on the randomly selected subsets. 

Number of samples 
for each class Dataset Accuracy(%) 

SRC MSRC 

6 samples 

Acute leukemia 89.16 89.16 
Colon 90.83 90.83 
Prostate 84.99 84.99 
DLBCL 90.00 90.00 
Leukemia 91.66 89.44 

10 samples 

Acute leukemia 93.00 94.50 
Colon 84.50 88.00 
Prostate 87.50 89.50 
DLBCL 95.00 95.00 
Leukemia 93.33 93.33 

14 samples 

Acute leukemia 96.07 96.43 
Colon 84.92 86.42 
Prostate 82.14 85.35 
DLBCL 95.71 97.14 
Leukemia 95.95 96.66 

18 samples 

Acute leukemia 93.60 94.71 
Colon 82.22 86.66 
Prostate 87.22 88.88 
DLBCL 93.88 95.55 
Leukemia 95.74 96.66 

 

4. Conclusion and Discussion 

Cancer diagnosis is one of the most important emerging clinical applications of gene expression data. 

In this study, we proposed a new sparse representation (SR) based approach for cancer diagnosis, 

which expresses each testing sample as a linear combination of a set of metasamples extracted using 

SVD or NMF from the training samples. Classification is achieved by a discriminating function of the 

SR coefficients, which are obtained by 1l -regularized least square optimization. The proposed 

metasample based SR classification (MSRC) was compared with the standard SR classification (SRC) 

and the benchmark SVM methods on 9 typical datasets. The results validated that MSRC is effective 

and efficient in tumor classification. Since it is not comprised of training and testing process, as other 
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classifiers, e.g., SVM, our method (including SRC) has no over-fitting problem.  

The experimental results also show that, compared with SRC, MSRC is a better choice if there are 

10 or more than 10 training samples. The reason may be that when there are 10 or more than 10 

training samples, metasamples can capture the intrinsic structural information of the data of each class, 

and thus MSRC shows superior classification performance to SRC. On the other hand, if the number 

of training samples is less than 10, the trained metasamples may not be able to capture sufficient 

intrinsic structural information of each class, and the performance of MSRC is similar to or slightly 

worse than SRC. This is one weakness of the proposed method, i.e. the training samples for 

metasample training cannot be too limited. What should be noted is that, our method is based on the 

hypothesis that the testing sample can be well represented as a linear combination of the training 

samples from the same class. If the hypothesis is invalid, our method will not work. Fortunately, the 

success of sparse representation in face recognition [18] and gene expression data classification [19] 

has demonstrated that this hypothesis holds well. Certainly, more experiments on more databases need 

to be performed in the future to further validate the proposed method.  

Since gene selection can enhance the accuracy of the classification [29], we also used gene 

selection to preprocess the gene expression data. As expected in theory, the experimental results 

showed that gene selection can enhance the performance of SVM, SRC, as well as MSRC-SVD. For 

MSRC-NMF, no clear rule can be found. In the future, we will investigate whether other metasample 

extraction methods, such as sparse PCA, KPCA, etc., will achieve better results. In addition, we will 

also investigate how to solve the metasample extraction and the testing sample classification as one 

unified optimization problem, which may improve the accuracy of classification. 
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