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The Plexus Model for the Inference of
Ancestral Multi-Domain Proteins
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Abstract—Interactions of protein domains control essential cellular processes. Thus, inferring the evolutionary histories of
multi-domain proteins in the context of their families can provide rewarding insights into protein function. However, methods to infer
these histories are challenged by the complexity of macro-evolutionary events. Here we address this challenge by describing
an algorithm that computes a novel network-like structure, called plexus, which represents the evolution of domains and their
combinations. Finally, we demonstrate the performance of this algorithm with empirical data sets.
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1 INTRODUCTION

Proteins containing mobile domains pose major prob-
lems to phylogenetic inference of protein families [1].
The sequencing of higher eukaryote genomes revealed
that many protein coding genes bear hallmarks of
hybridization and recombination events [2]. Many such
evolutionary cassettes fold into sizable, distinct units
that can be easily recognized in the three-dimensional
structures [30]. Other recognizable and frequent ele-
ments are short motifs. Two proteins might be non-
homologous for the major part of their sequence and
only joined by a short mobile domain. If more domains
and proteins are analyzed, it is easy to envisage a
scenario where two proteins without any homology
would be considered similar to each other via a third.
For phylogenetic analysis of species proteins with
such promiscous domains could be removed from
the data, which stabilizes the results at the expense
of information content. For the task of determining
evolutionary histories of families containing multi-
domain proteins (MDPs) such information is essential,
and recombination cannot simply be ignored as the
vast majority of proteins in the higher eukaryotes
consist of several domains [4]. As evolutionary events
are rare, most of the resulting architectures are simple.
However, in human about 10% of all proteins have
highly complex domain architectures composed of
about 200 domain families that combine frequently [5].
These MDPs are involved in essential cellular pro-
cesses, including chromatin remodeling and signal
transduction. Domain structure is a dominant feature
for elucidation of protein-protein interaction [28].
Here, we introduce a novel graph-theoretical model,
called plexus, to infer an evolutionary scenario for
MDPs. A plexus is a graph that embeds the given trees
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by invoking macro-evolutionary events. We formulate
the MDP evolution problem as finding the plexus with
the lowest score, describe an effective heuristic to solve
it and show that its implementation performs well in
practice.

1.1 Related Work

After the discovery of mobile domain combinations in
the 1980s, it required complete eukaryotic genome
sequences for thorough investigations of the phe-
nomenon [2]. Genome wide studies typically ignore
relationships of the sequence fragments and do not
attempt to map individual macro-evolutionary events.

Quantitative studies found the number of observed
neighbors for a domain to follow a power-law distri-
bution [6].

Phylogeny-oriented work concentrated on analyzing
evolutionary events that establish multiple-domain
compositions, and derive phylogenetic trees from
domain combinations using parsimony-based criteria
or clustering approaches [9], [10], [23]. Przytycka et al.
used a parsimony-based approach and simplified gene
fusion, domain shuffling and retrotransposition events
into tractable merge and deletion operations [11]. Fong
et al. constructed a more elaborate model with 3
subclasses of fusion events for MDPs to reconstruct
domain trees [12]. A recent study of mechanistic
events found that fusion of two genes rather than
retrotransposition-based mechanisms gives rise to
multi-domain proteins [25].

Previous work mostly investigated general princi-
ples of protein evolution. In contrast, methods for
the reconstruction of MDP histories based on macro-
evolutionary events are still in their infancy, and
studies of particular protein families typically resorted
to manual annotation [13], [14].

[15] suggested an approach incorporating domain
histories to reconstruct ancestral domain composi-
tions from a given collection of domain trees and a
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Fig. 1. Basic events in MDP evolution. Multidomain-
proteins are represented by boxes containing domain
nodes. Different domain families are depicted by dif-
ferent domain node shapes. Fission is not part of our
approach, as it is modeled with elementary events (see
Fig. 2), and thus depicted in grey.

Fission Coordinated losses Fusion Input trees

Fig. 2. Three equally plausible explanations for fission
events for two domains found in three proteins, which
will all yield the same phylogenetic trees and extant
domain compositions (right). Note that in coordinated

losses the dashed edges are not reconstructable from
extant domains.

given species tree. Each domain node of a domain
tree is mapped to a node of the species tree. The
domains in a species node are partitioned to represent
multi-domain proteins in the parent species with the
weighted minimum number of merges and deletions
in comparison to the child species. Their method relies
on the following critical assumptions: the correctness
of the domain trees, the correctness of a species tree,
and the correct mapping of each domain tree node
into the species tree, all of which may not be satisfiable
in practice.

Suitably restricted networks to model macro-
evolution events have been explored where trees are
no longer sufficient and several approaches were used
with success for phylogenetic displays and mapping of
events, reviewed in [16]. Our approach relates to [17],
which is aimed at the reconstruction of phylogenies
with recombination events. However, this and similar
models are not directly applicable to reconstruct the
evolution of MDPs.

1.2 Our Contribution

Our novel graph-theoretic network, called plexus al-
lows to describe scenarios for the evolution of a
collection of domain trees. A plexus is obtained
by embedding them in a gene network, which can

be embedded in a species tree if one is available.
Initially, only domain compositions of extant genes
are known. Architectural details such as the order of
the domains in a protein are not used and do not
need to be specified. The initial configuration of the
plexus assumes all internal genes to consist of only one
domain, and extant compositions are thus modeled
by multiple fusions at the leaf level, which is a highly
implausible scenario. To create larger ancestral MDPs,
internal nodes of the domain trees are merged in a
bottom-up fashion according to a parsimony criterion.

The plexus that minimizes the overall change in
MDP composition is considered to be the most plausi-
ble. As the search space of plexus topologies given a
collection of domains is very large, tackling the prob-
lem requires the use of an effective heuristic, which
describes the conditions under which two internal
nodes in the domain trees can be merged to create
an ancestral multidomain protein (d-compatibility,
t-reconcilability) and a global score that needs to
be minimized. The configuration obtained by gene
merging reveals inconsistencies in the input trees,
which are then corrected (tree correction). A final step
called path detachment is used to further improve
the quality of the reconstruction, since the previous
steps could have lead to early fusions which introduce
unnecessary domain losses.

The implementation performs well in practice, which
we demonstrate on a selection of proteins with fre-
quently recombining domains.

2 A MODEL FOR THE EvoLUTION OF MDPs

The composition of extant proteins and the phy-
logenetic relationships between domains yield the
information required for the reconstruction. In our
model, evolutionary events are mapped to the domain
trees and ancestral proteins are postulated. We now
give an overview of the types of events and derive
the plexus model.

2.1

In the context of this work we disregard the order of do-
mains in the proteins and consider five macroevolution-
ary events (Fig.1). Copy events represent either gene
duplication or speciation, in cases when no species
tree is being used those two events go undistinguished.
Fusion describes the union of two genes via loss of
terminal and initial segments or translocation leading
to an MDP. This most important event with respect
to the variation in the domain composition typically
involves joining adjacent genes [25]. Insertion of addi-
tional domains has been observed but contributes little
variation overall [25]. Losses originate from truncations
due to premature stop codons or silencing of exons.
Many perceived losses might be missing annotations
as domain prediction has a high false-negative rate [18].
The rare event of the birth of a domain is called gain

Evolutionary Events
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and the introduction is mapped as the root of a domain
tree. A repeat describes the addition of a domain (e. g.
by tandem duplication). Fission of an MDP is a complex
process requiring the gain of both a start and a stop site
in the right order. The process has been hypothesized
to involve reading frame shifts [19]. An alternative
scenario for fission involves gene duplication with
subsequent coordinated domain losses, which has
been shown to explain the evolution of the monkey-
king gene family [20]. A third variant explains the
observations by a fusion process (see Fig.2). We model
fission by a combination of other basic events and the
score for plexus is invariant to the explicit series of
events.

2.2 The Plexus

Evolution of multi-domain proteins cannot be repre-
sented in a phylogenetic tree when fusions or other
hybridization events need to be mapped. Phylogenetic
networks have been used to infer a consensus for
species evolution via gene trees or map duplication
and reticulation events to a species tree [16]. We opted
to model these promiscuous substructures of genes in
a more refined representation, which we call plexus.

Generally, a plexus is a meshwork of branching and
rejoining strands, e.g. a network of blood vessels in
the choroid plexus or nerves in the solar plexus. The
strands are not simply convoluted but have a direction
as in blood flow or action potential propagation.
We use this image to describe the aggregation and
segregation of phylogenetic domain trees over time,
forming multi-domain proteins at every convergence.

Here, a plexus is a nested graph structure, consisting
of domain trees embedded into a gene network and
an optional species tree. To construct it, inner nodes in
the domain trees are joined into gene nodes to create
ancestral domain compositions such that their connec-
tions can be described with one of the evolutionary
events above. Additional internal nodes on the edges
can be introduced where necessary.

The true sequence of evolutionary events is un-
known. It might contain sequences of events such as
birth and complete disappearance of a domain family
that cannot be recovered from the extant sequence data
and domain compositions. This hypothetical construct
is called expanded plexus and describes the putative
true sequence of MDP evolution events (see Fig.3, left
side and Fig.1).

We call a plexus that is derived from a richer
model counterpart. The reconstructable counterpart of
an expanded plexus is constrained to MDP evolution
events that we could infer in principle. However,
the repeated loss and gain of domains could lead to
arbitrarily long paths. We can restrict the topologies
to a finite number by requiring that each gene node
must contain at least one domain node with out-
degree > 2, which makes the number of domain tree

Expanded Reconstructable Compact

Fig. 3. Counterparts of plexus for a set of MDPs and
their domain trees. Edges mark inheritance relations
between domains (dots) in genes (rectangles). Differ-
ent domain trees are shown in different colors. The
expanded plexus consists of evolutionary events (see
Fig. 1). Its non-reconstructable edges are dashed and
disappear in the reconstructable counterpart. Some
of the resulting inner gene nodes may then contain
only domain nodes with combined in- and out-degree
< 1. Contracting their out-edges (dashed) results in the
compact counterpart.

nodes an upper bound to the number of gene nodes.
By contracting out-edges of gene nodes containing
only domain nodes of out-degree 1, we transform a
reconstructable plexus into its compact counterpart. In
Fig.3 (middle), these are the gene edges made up by
the dashed edges.

Reconstruction of a compact plexus is therefore the
aim of this endeavour and the problem is reduced
to partitioning domain tree nodes. It is still infeasible
to evaluate all potential partitions and we have de-
veloped a heuristic to find the best scoring topology.
In the following section, we will give a more rigid
formalization in order to derive the scoring scheme
and the heuristic.

3 RECONSTRUCTION OF THE COMPACT
PLEXUS

3.1 Basic Definitions and Notation

Let G := (V,E) be a directed acyclic graph (DAG)
with an edge set E(G) and a node set V(G). Note that
rooted phylogenetic trees and networks are DAGs. We
denote the in-degree and the out-degree of a node
v € G by deg”(v) and deg®(v) respectively. The
edge contraction of an edge (v,w) € FE is achieved
by first identifying v with w, and then deleting the
resulting loop. For nodes v,w € V and j € Z* U {c0}
we (i) write v ~; w, if v # w and there is a path
from v to w of at most j edges in G, and (ii) define
vo~v_jow = w o~j v If oo~y wand B> 1, we
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write v > w and call v a predecessor of w, and w a
successor of v. In the case k = 1, we use the terms direct
predecessor or parent and direct successor or child accord-
ingly. When using the plural predecessors/successors,
direct predecessors/successors are included. We say
that v and w are connected if v ~41o w. We call
LCA{v1,...,vx} :=minf{v € V(GQ) | v; < v,1 <i <k}
the least common ancestor (LCA) of {vi,...,v;}. Let
k,l € Z U {—00,00}, then we define the k-neighborhood
ofaset U CVitobe NF(U) :={v eV |IueUl:
v ~p u}, and NUE(U) := N¥(NY(U)). For instance,
given a directed path a — b — ¢, N*{a} = {b,c} and
NtHa} = NHb} = {c}.

3.2 Plexus and Evolutionary Events

We first formalize the plexus as a model for MDP
evolution.
Definition 1 (Plexus):

o Let D be a directed forest of phylogenetic domain
trees such that all nodes of a tree belong to the
same domain family and no two domains of the
same family belong to different trees. Let a DAG
G represent a phylogenetic network of genes, and
S a species tree. d denotes domain nodes, g gene
nodes and s species nodes.

o Let v: V(D) — V(G) be a function that maps
domains to genes, and A(g) := {d € V(D) |
v(d) = g} be the set of all domains in gene
g € V(G).

o Similarily, let o: V(G) — V(S) be the species of a
gene, and I'(s) := {g € V(G) | 0(g) = s} all genes
in species s.

We call a tuple (D, G, S,v,0) a plexus iff

o There are no empty genes: |A(g)| # 0 for all g €
V(G).

o There is a gene edge if and only if there is at least
one domain edge between the domains in the
two genes: 3(g1,92) € E(G) © 3(di1,dz) € E(D) :
v(d1) = g1,7(d2) = go.

o Each domain maps to a gene higher than those of
its successors: Vdy,dy € V(D) : dy > do = v(dy) >
v(dz).

o Each gene maps to the least common ancestor
species of all its successor’s species or higher:
Vg € V(G) : 0(g) > LCA{o(¢1),...,0(gn)} for all
successors gi, ..., gn of gene g.

As a preliminary for defining evolutionary events, let
v (g1,92) == {p € Algr) | 3¢ € Algz) : (p.c) € E(D)}
be the set of domains in gene g; that have children
in gene go, and v~ (g1,92) :={c € A(g1) | Ip € A(g2) :
(p,c) € E(D)} the set of domains in gene g; with
parents in go. We then provide a formalization of the
events shown in Fig. 1 except fission, which is not used
in our model.

Definition 2 (MDP evolution events):

o Let (g1,92) € E(G) and deg™(g1) = deg™ (g2) = 1.
Let k € N, We call {g1, g2} a loss event of size k if
1A(g1)] = k = |A(g2)| = [ (g1, 92)| = [~ (92, 91)|.

o Similarily, we call {g1,92} a gain of size k if
|A(g1)| = |A(g2)| = k = [v" (g1, 92)| = [v™ (92, 91)]-

o A gain or loss of size 0 is called a neutral event.

o We call {g1,92} a repeat of size k and ¢, a repeat
node if A(g1) = vV (g1,92), A(g2) = v~ (g2,91) and
|A(g1)| + k= A gal.

o Let C :={(g1,9)}'y C E(G), deg™(g1) =k —1

and deg (g2) = ... = deg (gx) = 1. We call
C a copy event if |A(g1)] = ... = |A(gx)| and
all domains in A(g;) have exactly one direct
successor in each A(gz2),...,A(gx).

o Let F:={(g;,01)} ., C E(G),deg” (1) = k—1>
1 and deg’(g2) = ... = deg¥(gx) = 1. We call
F a fusion event if Usz v=(q1,9:) = A(g1) and
all domains in A(g2),...,A(gx) have exactly one

direct successor in A(gy).

Loss, gains, fusions, copies and repeats are refered
to as MDP evolution events.

Let P be a plexus. We call P expanded if for each of
its gene nodes g; € V(G) either {(g1,92) | g2 € N*{g}}
or {(g2,91) | g2 € N"*{g1}} is an MDP evolution event.
P is called reconstructable if no non-terminal gene node
contains any domain node for which the sum of its in-
and out-degree is < 1. A reconstructable plexus Py is
called the reconstructable counterpart of an expanded
plexus P iff it can be obtained by subsequently deleting
any non-terminal nodes that have a combined in- and
out-degree < 1 and their incident edges. Let (g1, g2) €
E(G) such that VYd; € vt(gi,g2) : degt(dy) = 1
and Vdy € v (g2,91) : deg (d2) = 1. (g1,92) is
called contractible. The operation of contracting all
(d1,d2) : v(d1) = g1,7(d2) = g2 and merging g; with go
is called gene edge contraction. A plexus Pc¢ is said to be
contracted if it contains no contractible gene edges, and
contracted counterpart of a plexus P if it is contracted
and can be obtained by contracting gene edges in P.
This is similar to the concept of minors in undirected
graphs. A contracted plexus P¢ is called the compact
counterpart of a plexus P, if there is a reconstructable
counterpart Pr of P such that Pc is a contracted
counterpart of Pr.

3.3 Scoring Evolutionary Scenarios

To measure the quality of our reconstruction, we
introduce a score on the compact plexus that considers
evolutionary events by a unified criterion. Only losses,
gains and fusions are events in which gene nodes
connected by a gene edge contain nodes that are not
related to any node in the other gene node. In contrast
to copy and repeat, the direct successor gene nodes
are intrinsically different from their predecessors. The
number of these domains is therefore a good measure
to model evolutionary changes.

Unfortunately, compactification imposes contraction
to gene edges in fusion, gain and loss, and hence
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to exactly those events that we consider to be of
evolutionary importance. However, we can reconstruct
these events from the compact counterpart.

The number of losses accounting for an edge
(91,92) € E(G) is |A(g1)] — |[v" (g1, 92)|- Fusions and
addition of a gained domain to an existing MDP can be
calculated similarily by |A(g2)| — |V~ (g2, g1)| for edges
(91,92) € E(G). It is noteworthy to mention that the
order of fusions is lost during compactification but the
number of domain changes depends on that order. For
example consider a gene node with in-degree 3 and
predecessor gene nodes of size 1, 2 and 3. Combining
genes of sizes 1 and 2 first creates an out-edge of size
3, and then merging with the third gene node creates
an out-edge of size 6. In contrast, combining genes
of sizes 2 and 3 first produces out-edges of size 5
and 6, so the score would have to be 2 edges higher.
In other words, there are reconstructable plexiis with
different fusion sequences that have the same compact
counterpart. The fusion score defined above is higher
than that of any fusion order in the expanded plexus,
since it equals (deg™ (g2) —1)- >, en-1(g,3 [V~ (92, 91).
Under the assumption that successive fusion events
are typically rare, we tolerate this overestimate.

The compact plexus might contain gene edges which
are transitive with respect to the species tree, i.e. an
edge (g1,92) for which o(g2) ¢ {0(g1)} UNYo(g1)}.
The intermediate genes that initially mapped to the
species between o(g1) and o(g2) got lost during
compactification. Nevertheless, these genes need to
be reflected in the score, since they were lost in all but
one speciation lineage in every intermediate species.
To quantify the number of lineages in which a gene
got lost, we define the following:

Definition 3 (Path reductivity): Let A be a DAG. For
each directed path (v1,...,v,) € A we define the path
reductivity

n—1

o)l o= 3 (deg* (vy) — 1)

=2

|(’U17...

Then 7(v1,v,) is defined to be a minimal path from
vy to v, with respect to path reductivity. If more than
one such path exists, one is chosen by chance.

Note that only nodes between v, and v,, are included,
since only these intermediate nodes induce losses.
We will use this definition for whole gene losses in
scoring as well as in our heuristic to estimate the
number of domain losses we induce during recon-
struction. The number of gene losses along a gene
edge due to speciation events between ¢(g1) and o(g2)
is |m(o(g1), 0(g2))|- To score such an event, we multiply
it by the number of domains being lost. If no repeat
is involved, this can be described as the number of
domain edges between these two genes, which equals
v (g1,92)| or [V (g2, 91)|- In repeats, the latter will
be larger by the number of additional domains. Since
g1 could then be mapped to the same species as g2

due to its out-degree being 1, we use the first, hence
[V (91,92)] - Im(0(91), 7 (92)) -

Combining the above and summing over all edges
defines a parsimony score which measures changes in
domain composition over evolutionary time:

Definition 4 (Compact plexus score): Let
P = (D,G,S,v,0) be a compact plexus. Then
the compact plexus score for P, denoted by S(P), is
defined as

2.

(91,92)€E(G)
+(|m(o(g1), o (g2)| = 1) [* (g1, 92) ]
As each |A(g;)| is added for each in- and out-edge,

the score can be split into a node part Sy and an edge
part Sg:

(A9 +A(g2)] = [ (92, 91)]

S: =Sy +Sg
with
Svi= Y (deg™(9) +deg™(9))]A(9)]
geV(G)
and
Sp= Y [(r(e(gr),o(g2))] = 1) [F (91, 92)]

(91,92)€E(G)
- |V7(92791)H

In principle, events could have different probabilities,
which would be hard to compute in the absence of
benchmark data. Fusion and large loss events are
known to be rare, which is reflected in their high
score [7].

Given the scoring scheme above, we now define the
following problem:

Problem 1 (MDP evolution): Instance: A forest D of
domain trees, a species tree S (possibly a single null
node) and a partition L of their combined leaf set such
that each set gene node corresponds to a known MDP
composition. Find: A compact plexus P in which L is
the leaf gene node set and which displays D such that
the plexus score S(P) is minimal.

4 OUR SOLUTION

The definition of our reconstruction problem above
applies to input trees free of errors. It is unknown
whether there is an analytical solution within ac-
ceptable run-time complexity for undistorted input.
A thorough evaluation would be worthwhile but is
beyond the scope of this work. In real applications
the input trees typically contain numerous wrong
splits. Trees built on domains use less information
than trees on full-length proteins simply because they
are shorter. As this is a problem which is hard to
avoid, principles for building a heuristic will have to be
derived from targeting it specifically. As a consequence,
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Fig. 4. Gene node merging and transitive gene edge
reduction. On the left, the two grey gene nodes are
separated. In the middle, they have been merged into
a single gene, now containing all domains of the two
original genes. The merged node’s out-degree is now 4.
Reducing gene edges by piping domain edges through
gene nodes along the transitive path (right side), it is
reduced to 2 again.

these heuristics might not be optimal for undistorted
input, but perform well in practice.

Our method employs a greedy approach, aimed
specifically at dealing with real data. In order to
minimize the costly fusion events, we merge gene
nodes according to a compatibility criterion, which
is defined by whether a reduction of transitive edges
below the merged gene results in an out-degree not
greater than the maximum out-degree of the original
gene nodes (d-compatibility). This transitive reduction
is accompanied by a change in the domain-to-gene
mapping v, which introduces domain losses along
transitive paths. The number of such domain losses
defines the cost for merging two genes, which serves
as a key in a priority queue containing gene pairs. A
second criterion aims at minimizing the introduction
of compositions that would lead to a global increase
in domain losses (¢-reconcilability). After each merge,
and mapping of the new gene to the LCA species of
its successors, a number of keys have to be updated,
since new compatibilities and different costs (usually
smaller) could have been introduced. We show that
the number of required updates is rather small. The
heuristic converges quickly to a state in which only
incompatible gene node pairs remain in the queue,
which is the termination criterion.

We now provide a detailed description of the
concepts being employed in our heuristic.

4.1 Gene Node Merging

Definition 5 (Gene node merging): Let g1,92 € V(G).
Then the gene node merging U: V(G) x V(G) —
V(G) is defined by adding edges (gi2,c) for all
c € NYg1} UNYga} and (p,g12) for all for all
p € N"1{g}JUN"1{g,} to E(G), changing the mapping
~v such that «(g1) and ~y(g2) becomes 7(g12), and

o(g12) = LCA{o(g1),0(g2)}, and finally deleting ¢;
and gy from V(G).

The process is illustrated in Fig.4 (left and middle).
As can be seen, the out-degree of the newly created
gene can exceed the out-degree of the genes it replaces.
Not only does this introduce poorly resolved copy
events, it also induces new fusions. This happens if
the merging induces transitive edges:

Definition 6 (Transitive edge and path): Let G be a
graph. An edge (vi,v2) € E(G) is called transitive
if vo € N¥{v1} for any k > 1. A transitive path of a
transitive gene edge (v1,v2) is any path (v1,...,v2).

Whenever transitive edges occur, we can decrease
the out-degree again by applying transitive reduction
to transitive edges. Instead of just deleting gene edges —
and domain edges along with them — we “redirect” the
domain edges through genes along the transitive path,
introducing additional domain losses (Fig. 4, right).

Definition 7 (Transitive gene edge reduction): Let
(91,9x) € E(G) be a gene edge, and w(g1,gx) be a
transitive path (gi1,...,gx) of minimal reductivity
with length k. The transitive gene edge reduction
is performed by replacing (g1,9x) by a path
(91,95, --,95_1,9%), splitting domain edges in
A(g1) x A(g2) accordingly such that d; € A(g)) and
merging g; with ¢] for all 1 <i < k.

Since every domain is lost deg™ (g) —1 times in every
gene node g along a transitive path, choosing 7 (g, g.)
to be the path into which an edge is reduced locally
minimizes the number of domain losses, since it is the
path of minimal reductivity:

Definition 8 (Reduction cost of a gene edge): Let
(g91,92) be a gene edge reduced into a minimum
reductivity path 7(g1, g2). The reduction cost is defined
to be the number of additional domain losses being
induced during reduction, which equals

r(g1,92) == |7(g1,92)| v (91, 92)]
= |m(g1,92)| v (92, 91)]

if both gene nodes are not repeat nodes, and 0
otherwise.

In order not to merge any combination of gene nodes,
we require that the out-degree which can be obtained
by transitive reduction does not exceed the maximum
out-degree of the two nodes. Instead of enforcing the
input trees to be binary, this allows for local differences
in the tree resolution (see Fig.5).

Theorem 1 (Minimal obtainable out-degree): Let
91,92 € E(G) be two irreducible gene nodes such
that g1 ¢ N*©°{go} UN~>°{g2}. Let g12 be a gene node
obtained by merging g; and g». Then the minimal
out-degree deg“(gi12) that can be obtained by a
sequence of transitive reductions to out-edges of g;2 is
deg”(g12) = [N"{g1 }|+|N"{g2}|+|N"{g1} " N*{go}| -
IN'{g1} N N>*{ga}| — [N>*{g1} N N'{go}].

Proof: g1 ¢ N*°{g2} UN~>°{g2} ensures that no
cycles are introduced and the gene graph remains
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Fig. 5. In the left figure, merging of two genes has
not increased the out-degree. In the center, though two
trees are binary, the merge result has an out-degree of
three as this does not exceed the out-degree of the third
tree. On the right hand side however, an out-degree
of three exceeds that of all merged trees and is thus
forbidden.

acyclic. |N'{g1}| + |[N'{gz}| is the out-degree of gi»
before any transitive reduction and disregarding any
multiple edges (children are treated as different even
if they are the same). Any outgoing edge from g;
points to an element ¢; € N'{g; } by definition. For all
¢i € N*{g2} there is a path from go into which their
incoming edges can be reduced. The same argument
holds for N>*{g;} N N*{g>}. Since N'{g;} € N*{g;}
and N'{go} € N*°{g,}, we account for that there can
only be one edge between any two genes. However we
subtracted |[N'{g:} N N*{g>}| twice as either edge is
being reduced into the other, so we have to compensate
by adding it one time. O
We can find all pairs of gene nodes that can be
merged without violating neither out-degree nor com-
pact plexus properties by the following criterion:
Definition 9 (d-compatibility): Two irreducible gene
nodes g1, g» are called d-compatible if deg®(g1 U go) =
max{deg® (g1),deg?(g2) } < d, i.e. one can obtain a
gene node with an out-degree that does not exceed
neither the largest of the original nodes nor a given
upper bound by merging ¢g; and g and applying
a sequence of transitive reductions to the merged
gene node. However, if either of them is a leaf, or
g1 ¢ N©{g2} UN~">{gs} (gene nodes are related), then
they are incompatible. If exactly one of the gene nodes
is a repeat node, it is only compatible if its direct
successor is also a direct successor of the other node.
The latter condition avoids repeat nodes g; being
merged with nodes far up in the plexus, since other-
wise they would be compatible to any g € N':~>{g,}
and induce many losses. Interestingly, for gene node
merging we have to consider exactly those evolu-
tionary events we do not consider for our scoring
scheme, and vice versa. Also, d-compatibility prevents
the introduction of fission events, as all domain nodes
would have on out-degree < 1, but the merged gene’s
out-degree would be 2. Choosing some d # oo is
usually not required and will only have some positive
effect if one of the domain trees is very poorly resolved.
Nodes with high out-degree would then tend to falsely
attract a number of other gene nodes. Setting d to a
reasonable value will take care that poorly resolved

{2¢, 3m, 2@} {2¢, 3m, 2@}
TeARS IR
\ NN
\ \
TEEILAD 3ideyy
{2¢,4m, 20}|{20, 2u, 2@} | {20, 4u, 20} |{2¢, 2u, 2@}

Fig. 6. Composition profiles. In the reconstruction of
a gene node we show a typical artifact from errors
in the phylogenetic reconstruction that leads to addi-
tional domains in the ancestral gene, here the bullet-
shaped domain nodes in the left figure. Despite the
left variant containing two copies of that domain family
the outdegree-profile (in braces) for both variants is
identical.

nodes are not being merged at all.

d-compatibility alone leads to domain compositions
that do not resemble recent MDPs, leading to many
losses as seen in Fig.11(b). Many compatibilities arise
merely by chance or by false tree splits. We therefore
ensure that gene nodes resemble recent compositions by
the following:

Definition 10 (Composition profile): Let M =
{di,...,d;} be a set of domains in a gene node. M
is partitioned into subsets {Fi,...,F,} of nodes
that belong to the same input tree. The set of
domain families is denoted by representatives
p:={F1,...,Fn}. Let m(-) : F; — N be the mapping
m(F;) = 2|{n € F; | deg™(n) =0} + Y yep, deg™ (d).
Then (p,m) is called the composition profile of M.

Definition 11 (t-reconcilability): A profile p; is called
t-reconcilable to a profile p, if it does not contain any
domain not in p, and VF} € py : 3F2 € po : F} =
F2,m(F}) < m(F?) +t, where t is a non-negative
integer describing a chosen tolerance value.

Simply put, a value is assigned to each domain
family that describes how often a domain of this family
occurs in a composition. Those without children are
given the same value as those with two children, those
with just one child are weighted half. A gene node
in a compact plexus will either contain only nodes
without children, or no node without children. The
reasoning behind this definition is illustrated in Fig. 6:
on the right the upper gene node resembles its left
direct successor, whereas on the left it contains one
bullet-shaped domain more than any of its direct
successors. Both predecessor gene nodes have the
same profile, since in the left subfigure each bullet-
shaped domain has only one out-edge. We might
call this a coordinated loss of this domain; it can be
caused by a tree root being placed in the gene node
above, but will often occur due to false tree splits.
These might introduce disruptions to the optimal
topology. t-reconcilability aims to compensate for this,
while providing a concept of similarity to recent
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Fig. 7. A part of a gene graph G after a merging
two genes, resulting in gene g. Paths through this
gene are represented by bold edges. Grey nodes
represent those genes for which d-t-distance has to be
reevaluated in the following combinations: {g} x {x,y},
{p} X {p’,p”,a’,a”}, {p/} x {p’p//’ CLN}, {p//} X {p’p/7 a/}’
{z} x {p,p',p",a’,a"}. For the other nodes, denoted by
o, there is no other node for which ¢ could have induced
any changes in their d-t-distance. In this example, we
would only have to reevaluate 63 out of 1540 pairs
(~4.1%).

compositions. One should choose ¢ to be small to
avoid meaningless ancestral compositions and large
loss counts, since every domain that exceeds any extant
composition will have to be lost at some point. Notice
that, in contrast to d-compatibility minimizing local
loss counts, t-reconcilability aims on globally avoiding
the introduction of foreseeable losses. On the other
hand, setting ¢ = 0 assumes that the topologies of all
input trees are correct, which will rarely be the case.
The larger ¢, the more the solution will tend towards
one that would be obtained by d-compatibility alone
and would thus again allow random compatibilities
to play their role. ¢ = 1 typically yields the best
results. Combining d-compatibility and ¢-reconcilability
provides us with a criterion for the merges to prefer
and to avoid:

Definition 12 (d-t-distance): If two gene nodes g1, g»
are d-compatible and the profile of g; U go is ¢-

reconcilable to a profile of any input composition, their
d-t-distance ¢(g1,g2) is 7(g1 U g2), otherwise it is co.

d-t-distance provides a measure of preference for
merging genes. We use it as key for pairs of genes in
a priority queue. The actual heuristic is fairly simple:
pick the pair with the shortest d-¢-distance and merge
it, until the shortest distance is co. By merging, the
topology of the plexus changes, and the d-t-distance
of some pairs might change, most notable for two
nodes becoming compatible since the newly merged
node induces a path between their direct successors.
Recalculating costs for all pairs would be inefficient
and priorization would no longer be efficient.

An a-priori set of candidates excluding all gene
nodes that cannot be compatible with the current
gene node ensures a tractable solution space. d-t-
distance is directly tied to d-compatibility, which again
is determined by the reducing paths involved. We
therefore have to recalculate all pairs of genes that will
be affected by newly created paths through g5 (see
Fig.7). Trivially, predecessors of g;5 are incompatible
to successors, and gi2 is incompatible to both, so these
updates can be made without recalculation. The pairs
that have to be recalculated are the following:

Theorem 2 (Merge-affected gene node pairs): Let g be
the gene node resulting from a merge. Then the set A of
gene node pairs affected in terms of their d-t-distance
is the union of the three sets

{g} x [(N® gl UNDT2{g}) \ (N*{g} UN">{g})]
N=>{g} x [N~ {g} \ N*{g}]

Vg-1 € N"Hg}: {g-1} x INT®{g} \ N> {g_1}]

Proof: Let g, € N¥{g}. (1) The newly created
gene node g could be compatible to any ge,—1,
since there would be a reducing path g,..., g
such that (geo,—1,95) € F(G), hence N*~1{g} is
a set of potentially d-compatible nodes. The same
argument holds for any g;,_., which implies that
(91,005 - -+, g1) is a reducing path to (g,91) € E(G).
Since N™>°{¢g}UN>{g} is the set of all nodes connected
to g, these can be excluded from the candidate set,
hence (N~ {g}UN'~{g})\ (N"*{g} UN~>*{g}) con-
tains all nodes possibly d-compatible to g. (2) g might
have connected paths that could possibly be reducing.
Any direct predecessor of nodes on any path through
g could form a reducible edge with that node. Thus
any node g_o, could be compatible with any go. 1,
unless go,—1 is connected to g_.,, which is the case iff
goo,—1 € N*{g}. Thus, N"*{g} x [N~ {g} \ N>*{g}
contains all pairs for which g potentially induces
reducing paths. (3) ¢ is also a direct successor of
each g_;, thus (¢g_1,9) € E(G) is an edge that is
possibly reducible by a path g_,...,g, unless it is
a predecessor of g_;, since connected nodes are d-
incompatible. Hence N=>°{g} \N=>°{g_; } is the set of
possibly d-compatible nodes for a g_;. O
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Fig. 8. Example for two steps of tree correction.

Initially, we alternate between transitive reduction of
all gene nodes and merging the two gene nodes with
the shortest d-t-distance, until there is no pair whose
distance is < co. We avoid merging repeat gene nodes
with copy gene nodes and thus violating compact
plexus properties by inserting an additional gene node
in the copy gene node’s out-edge and merging it with
the repeat gene node.

4.2 Postprocessing

Two simple procedures can lower the number of losses
and curate the compact plexus.

Tree Correction: The above heuristic can introduce
gene nodes below existing ones, pushing some tree
nodes higher during gene node merges, thereby stretch-
ing subtrees which introduces coordinated losses. The
same effect can be observed for false tree splits. As
compensation, we introduce tree correction (Fig.10):
consider the coordinated loss of the bullet-shaped
domains in Fig. 6. The obvious solution would be to
combine the two domain nodes on the left side into
one as shown on the right side. This however can
only be done if they have the same parent or their
respective parents can also be merged. This gives rise
to a recursive definition of domain compatibility. Let
d1,ds be two domains of the same domain tree which
are mapped to the same gene g = v(d1) = v(d2). di
and d» are said to be compatible domains if (1) both
have exactly one child, and the child of d; is in a
different child gene of ¢ than ds (as shown in Fig.6),
or (2) for each child gene g. of g, assuming w.lL.o.g.
that d; has at most as many children in g. as d», there
is a compatible child of ds for each child of d;. Leaf
domains are always incompatible. More formally, let
NI{d;}, N {ds} be the children of di,d; in g., and let
IN2{d1}| < |N2{ds}|. Let B be a bipartite graph whose
node sets are N!{d; } and N!{d>}, and there is an edge
if and only if two domains are compatible. We say
that g. is resolved with respect to di,d> if N}{d;} is
completely contained in a maximal matching in B.
dy,dy are compatible if all children of g are resolved
with respect to d;, ds. Tree correction starts by merging
compatible domains which have the same parent,
and recursively merges compatible children until no
further changes can be made (Fig.8). Subsequently,
compactification is applied to ensure a compact plexus.

N
J;J L]

Fig. 9. Example for path detachment. Further losses
are removed by a maximal split of domain, followed up
by gene edge contraction.

Fig. 10. Tree correction changes domain trees based
on the plexus topology. The upper figure shows a plexus
after merging. It clearly has a tree-like structure, which
makes the distortions in the domain trees visible. Many
genes show coordinated losses as examplified in Fig. 6,
which induces false repeats especially at the root. The
lower figure shows the same plexus after tree correction.
The structure of the gene graph is kept, but all false
repeat repeats and coordinated losses are eliminated.

Path Detachment: The number of unnecessary
losses can be further reduced. Let there be any gene
edge path ((g1,92),(92,93)). If all domain nodes in
A(g2) that have parents in g1 (i.e. v~ (g2, 91)) only have
children in g3 (i.e. N*(v=(g2,91)) € A(g3)), then this
induces unnecessary domain losses, as the composition
g2 is only supported by one direct successor. One can
therefore split the gene node g, into v~ (g2, ¢1) and
g2 \ v~ (92,91), and apply this procedure recursively
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to their direct successors, thus reducing the number
of loss events (see Fig.9). Again, subsequent gene
edge contraction maintains the integrity of the compact
plexus.
Combining all of the above yields our final heuristic:
Algorithm 1: Heuristic for compact plexus reconstruc-
tion

[uy

: plexus P, d, t

2. for g1,92 € V(G) do

3. Q.push(c(g1,92,d,t)) : (91, 92))

4: end for

5: while @) has finite key do

6 (91,92) = Q.pop()

7. g:=g1Uge

8:  transitive reduction to g

9. for (g1,92) € A do

10: Q.update(c(g1, g2, d, 1) : (91,92))
11:  end for

12: end while

13: recursive tree correction from all roots
14: recursive path detachment from all roots

4.3 Time Complexity

The merge step dominates the running time. To decide
which gene nodes to merge, one has to calculate path
distances between their direct successors. A plexus is
a DAG, so shortest paths for all pairs can be calculated
in O{|V||E|} [8]. Since initially the gene graph is a
DAG for which |E| C O{|V]}, and the number of
edges does not increase during gene merging, all-pairs
shortest paths can be calculated in of{|V|*}.

Finding the smallest d—compatlblhty by pairwise
comparison takes time in O{|V|*}. With L being the
leaf set, |L| < |V is the number of profiles one has to
check, S0 the tlme for fmdmg the d-t-closest pair lies in
O{[V]> +|L|-|[V|*} € O{|V|}. As the number of gene
nodes decreases with every merge, one has to perform
this O{|V|} times, if all distances are recalculated in
each step. Hence the time complexity of the merge
step is of{|v|"}. Traversing the plexus for both tree
correction and path detachment does not add any
terms above that bound.

In terms of absolute running time, our results are
preliminary. Our original proof-of-concept implemen-
tation took about 3 minutes for the larger examples
in this paper. Besides implementation details, the
long running time can be primarily attributed to
recalculating all d-t-distances instead of using the
optimization illustrated in Fig.7. A faster version is
currently under development, first tests showed an
improvement to about 5 seconds.

5 APPLICATION

Our heuristic is relevant to protein domains that occur
in different contexts. With thousands of available
genomes and many of the promiscous domains oc-
curing in dozens of copies, large domain trees can be

[ HAT C-terminal
SNF N-terminal
| BROMO
HMG
| BAH
AT hook

Two compact plexis of domains in
(a) we

\ I
\\\\\ /ﬁt\\\ N

(b) S(P) = 131

il

Fig. 11.
histone acetyltransferase complexes. In

WA A

used 1-reconcilability, tree correction and path
detachment, resulting in a late fusion event of
the BROMO domain. In (b) only d-compatibility
was used. Labeled high-resolution figures

can be downloaded for detailed analysis from
http://genome.cs.iastate.edu/CBL/ISBRA10/thesis.zip
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constructed. For this work, we chose examples that
remain comprehensible to the reader and depictable
in figures. Many multi-domain proteins are involved
in transcriptional regulation, e.g. via chromatin re-
modeling, and we selected our examples from this
context.

We initially ensured the results of the heuristic
on previously published proven albeit simple exam-
ples [15] and obtained identical results (not shown).
For input data with no errors or inconsistencies, several
of the steps described above are unnecessary.

5.1 Construction of Phylogenetic Trees on Do-
mains

To obtain typical input data, we started at the sequence
level by selecting suitable domain combinations and
species. Domains were identified with hmmsearch in
the UniProt database [22], parsed and aligned with
hmmalign from the HMMER package, version 3.0 [24].
Maximum Likelihood trees were constructed using
PhyML under the VT model, four rate categories and
estimated v [26]. Notung 2.6 was used to root the
domain trees [27] using duplications without losses
and known species trees. Other methods to root the
tree to remove the dependency on the species tree,
such as outgroups or using the midpoint of the longest
branch can be used alternatively.

5.2 BROMO Domains and Histone Acetyltrans-
ferases

We selected the proteins containing the BROMO, the N-
terminal SNF2 and the C-terminal conserved helicase
domains of the histone acetyltransferases in H. sapiens,
D. melanogaster, S. cerevisiae, S. pombe, and A. thaliana.
The BROMO domain is one of the most frequently
recombining domains [5] and plays a crucial role in
the recognition of acetylated lysines on histone tails.
We also obtained trees for additional domains found
with the three marker domains (see Fig.11)

Our result obtained heuristically scored 78 (Fig. 11).
The fusion of BROMO and SNF2 domains is the
most important single event in the resulting plexus. It
happens after duplication of ancestral SNF2 domain
proteins and is not lost in any of its children. The
heuristic obtains useful results even in the face of
incomplete and erronous input data. The AT hook
domain — more of a motif really — is difficult to iden-
tify and absent or incompletely identified in several
proteins. Our solution depicts the presence of AT hooks
in several proteins as independent fusion events. While
it is rather probable that intervening sequences also
carry the motif, this solution is satisifiable given the
input data.

When t-reconcilability, path detachment and tree
correction are not used, the results decrease in quality
rapidly (Fig. 11(b)). The elements in the resulting trunk
do not resemble the composition of extant MDPs and
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Fig. 12. Reconstruction of Jumoniji-associated domains.
The color of a tree denotes its domain family. Proteins
are presented in rounded boxes, extant proteins are
labeled. See 5.3 for in-depth explanations.

induce multiple losses. The BROMO domain fusion
is placed at the top, which leads to many losses of
the BROMO domain and thereby increases the score
significantly. Genes in the central trunk are mostly
mapped to the ophistokonts rather than the fungi or
metazoa, which further increases the score.

5.3 Jumonji-associated Domains

The Jumonji protein (jmj) is a histone demethylase,
which regulates chromatin structure and is involved in
embryonic development. It is often associated with ad-
ditional promiscous domains such as ARID/BRIGHT
or PHD [29]. We built trees as above on domains
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in proteins containing the N-terminal JMJ domain
in H. sapiens, D. melanogaster, S. cerevisiae, S. pombe,
and D. rerio (Fig.12). The resulting plexus topology is
determined by the N- and C-terminal JMJ domains,
which are present in all extant proteins. Previous
characterizations were based on the C-terminal domain
only [29]. Problems in the input trees can be readily
identified and the plexus can serve a test of congruence
of the input trees. The JMJ3 proteins in S. pombe (center
right) implausibly results from a fusion of the C-
terminal and N-terminal domain, which would require
the fission and subsequent fusion of the same domains.
More likely, one of the domain trees contains a wrong
split. Phylogenetic trees built only on one domain
are blind to such discrepancies. Another noteworthy
event in the plexus is the prediction that there were
two events leading to proteins containing PHD and
JMJ domains, a gain in the top of the main center main
trunk and a split and fusion leading to the predecessors
of KDM4A in human and Drosophila. While this might
appear implausible at first, it should be noted that
others have observed similar re-inventions of domain
architectures using high-quality domain trees [23]. A
survey of a larger body of possible fusion events of
the PHD domain would be of interest.

6 CONCLUSION AND OUTLOOK

We introduced a graph-theoretic concept to model
MDP evolution, derived an optimization problem and
presented an approach to solve it. The application to
real data infers credible scenarios for the evolution
of MDPs and can reveal inconsistencies in the input
trees. Further improvements to d-compatibility could
enhance the use of real data, and extending it to
weighted paths would allow the use of bootstrap-
valued DAGs instead of trees to deal with the am-
biguities in phylogenetic signals. It could also be
modified to handle unrooted trees. Including domain
order into the model and modifying the compatibility
constraint would be helpful in separating true losses
from missing annotations. There are several issues on
how to determine a consensus order, especially when
a domain has two related domains of another family
on either side.

As shown in Fig. 11(b) in the heuristic, random com-
patibility can be a problem. Although we adress it by
t-reconcilability, path detachment and tree correction,
the development of a statistical model that assigns a
p-value to a plexus topology would be worthwhile.

Additional properties could be exploited to improve
a heuristic solution or find an approximation. The
various concepts in our heuristic are in parts rooted in
practical considerations, and their interdependencies
are not explicitly stated. We would like to find a mono-
lithic formulation and translate the plexus construction
to a known algorithmic problem.

Constraint optimization approaches might allow
for considerable speedup in the implementation and
possibly find optimal solutions.
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