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Abstract
DNA microarray gene expression and microarray based comparative genomic hybridization
(aCGH) have been widely used for biomedical discovery. Because of the large number of genes
and the complex nature of biological networks, various analysis methods have been proposed. One
such method is "gene shaving," a procedure which identifies subsets of the genes with coherent
expression patterns and large variation across samples. Since combining genomic information
from multiple sources can improve classification and prediction of diseases, in this paper we
proposed a new method, "ICA gene shaving" (ICA, independent component analysis), for jointly
analyzing gene expression and copy number data. First we used ICA to analyze joint
measurements, gene expression and copy number, of a biological system and project the data onto
statistically independent biological processes. Next we used these results to identify patterns of
variation in the data and then applied an iterative shaving method. We investigated the properties
of our proposed method by analyzing both simulated and real data. We demonstrated that the
robustness of our method to noise using simulated data. Using breast cancer data, we showed that
our method is superior to the Generalized Singular Value Decomposition (GSVD) gene shaving
method for identifying genes associated with breast cancer.
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1. Introduction
The human genome is estimated to have about 20,000 to 25,000 protein-coding genes [1]. A
variety of techniques for the analysis of gene expression data have evolved to exploit the
huge amount of information obtained with oligonucleotide arrays [2] and complementary
deoxyribonucleic acid (cDNA) microarrays [3,4]. DNA microarray technology has been
proven to be an effective approach for identifying genes which are potential therapeutic
molecular targets [5]. This technique lacks the power for detecting regional variations of the
genome. On the other hand, array comparative genomic hybridization (aCGH) allows
assessment of changes in chromosomal DNA sequence copy numbers across the genome
and provides valuable information regarding genetic alternations in diseases such as cancers
[6,7]. The aCGH technology is an invaluable tool in oncology, which uses microarrays to
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perform high resolution and genome-wide screening of DNA copy number changes. Several
important applications of aCGH have been reported in cancer research [8], and clinical
genetics [9].

With the vast increase in biological information, the problem of integrating different types
of genomic measurements has become a great challenge. The integration of chromosomal
copy number variation (CNV) with gene expression will probably identify new therapeutic
targets that could not be identified by analysis of independent platforms alone [10]. Recent
investigations [11–14] have shown the promise of integrated analysis of CNV and gene
expression. Most studies demonstrate that copy number variation affects the expression
levels of those genes contained within that CNV. Copy number variations are both directly
and indirectly correlated with changes in expression and it is beneficial to examine the
indirect effects of CNVs [11]. Optimal power to find such associations can only be achieved
if analyzing copy number and gene expression jointly [12]. By combining genomic data
from different sources, it is possible to obtain an integrated genome-wide view of gene
aberration and their effects on gene expression [13,14]. Gene over or under-expressions
usually correspond to increased or decreased copy numbers, respectively (e.g., see Fig. 1).
An integrated analysis of gene expression data with copy number data can reveal their
intrinsic connections.

Combined analysis of copy number and gene expression microarrays of the same or similar
tumor samples has revealed a major and direct effect of allelic imbalance on gene expression
in a variety of cancer types, including breast [15,16], pancreatic [17], colorectal [18],
prostate [19], and lung [20] cancer. On a global level, 40–60% of the genes at higher level of
amplification showed elevated expression, while 10% of highly over-expressed genes were
amplified. In low-level copy number aberrations, only about 10% of the genes have been
reported to show coherent changes in gene expression [21]. Fig. 1, displays the Pearson
correlation coefficients for all possible combinations of gene expression and copy number
changes from the NCI-60 cell lines [22], indicating that a correlation exists between the
expression levels of genes and copy number changes around the same locations of the
genome (along the diagonal line). Variations in gene expression and gene copy number are
strongly linked to diseases such as breast cancer and have a bit positive over negative
correlations [23]. Genes in tumorigenesis show associations between copy numbers and
expression levels. Some copy number changes extend over larger chromosomal regions.

Integrating data from different sources such as gene expression and copy number can
increase the reliability of the analysis results and the prediction of prognosis. Association
between copy number changes and gene expression levels have been studied in [16,21,22],
and ~ 12% of gene expression variation can be explained by differences in copy numbers
[19]. Integration of DNA copy number alterations and gene expression profiling may also
result in improved classification and prognosis in breast cancer. For example, Chin et al.
[24] found that the accuracy of risk stratification according to the outcome of breast cancer
disease can be improved by joint analyses of gene expression and DNA copy number.
Several approaches have been described to identify a subset of genes, whose expression
levels are most significantly associated with copy number changes in the corresponding
genomic region [25]. The singular value decomposition (SVD) or the principal component
analysis (PCA) has been a popular method for analyzing and reducing the dimension of
gene data [26,27]. The SVD model describes the overall observed genome-scale molecular
biological data as the outcome of a simple linear network. However, the gene expression and
copy number data are separately analyzed using the SVD method. The generalized singular
value decomposition (GSVD) model describes the two genome-scale molecular biological
datasets as the outcome of a simple linear comparative network, where a few independent
sources, some common to both datasets whereas some are exclusive to one dataset or the
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other, affect all the genes in both datasets. In 2006, Berger et al. [28] applied an iterative
shaving method based on the GSVD of their joint data sets to identify subsets of genes with
similar gene expression or copy number patterns. The SVD and GSVD models are usually
used to model DNA microarray data. The GSVD is already a trusted method for analyzing
and reducing the dimension of gene data in two breast cancer cell line and tumor datasets for
the identification of gene subsets that are biologically validated. The independent
component analysis (ICA) and PCA are very similar in some respects; however, the goals of
the two methods are different. The ICA finds the statistically independent components and is
more suitable for separating mixed signals and uncovering hidden biological processes from
the observed measurements.

The GSVD based approach assumes that gene expression or gene copy number data is
generated by the linear combination of a set of biological processes. However, this
assumption might not be realistic. The ICA uses a more general statistical assumption (as
described in Sec. 2.2), which is more appropriate for modeling and analysis of genomic data.
ICA has been recently successfully used for the joint analysis of fMRI, EEG and genomic
imaging data [29,30]. Motivated by these facts, we used the ICA technique to jointly
analyze gene expression and copy number data and the preliminary results were encouraging
[31]. In this paper, we present our recent results on the development of an ICA based
iterative dimension reduction method and apply it to analyze both gene expression and copy
number data in order to identify subsets of genes with coherent expression patterns and large
variation across subjects. We examine the robustness of the method to noise and its
convergence properties using simulated data. We apply the method to breast cancer cell line
and breast cancer tumor studies and demonstrate the effectiveness of the method. With our
proposed algorithm, we can identify a list of variant genes and select genes that correspond
to functionally related groups. When compared with the GSVD based method, improved
performance is obtained in identifying genes that are known to contribute to the progression
of breast cancers.

2. Method
We introduce our ICA based method for the integrated analysis of gene expression and copy
number change data and then apply it to the identification of gene subsets in the breast
cancer cell and breast tumor data in combination with a gene shaving method.

2.1 Gene shaving
Large scale gene expression studies, such as those conducted using cDNA arrays, often
provide millions of data points. A PCA based statistical method called 'gene shaving' was
introduced in [27] to identify groups of genes that have coherent patterns of expression with
large variance across samples, or groups of genes that optimally separate the sample into
predefined classes. Gene shaving differs from hierarchical clustering and other widely used
methods for analyzing gene expression studies in that genes may belong to more than one
clusters, and the clustering may be supervised by an outcome measure. Fig. 2 shows a
schematic procedure of the gene shaving process based on the PCA. The goal of gene
shaving is to extract coherent and typically small clusters of genes that vary as much as
possible across the samples. The first principal component of the current cluster of genes is
computed. This eigen-gene is the linear combination of genes with largest the variance
across samples. We compute the correlation of each gene with the eigen-gene, and shave off
the genes having lowest correlation. The process is then repeated on the reduced cluster of
genes.

The shaving process shown here requires repeated computation of the largest component of
a large set of variables and retains the typically 90–95% of genes with the highest variance

Sheng et al. Page 3

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2011 December 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



at each iteration until all clusters (such as the top 5–10% highest variant genes) are found.
The gene shaving method is a potentially useful tool for the exploration of gene expression
data and for identification of interesting clusters of genes whose expressions are highly
predictive of certain cancers and patient survival.

2.2 ICA approach
Independent component analysis (ICA) is a recently developed method in which the goal is
to find a linear representation of unknown non-Gaussian data so that the components are
statistically independent, or as independent as possible. Such a representation seems to
capture the essential structure of the data in many applications, including feature extraction
and signal separation. The ICA is becoming an increasingly popular tool for analyzing
biomedical data. Liebermeister [32] proposed using the linear ICA for microarray analysis
to extract expression modes, where each mode represents the linear influence of a hidden
cellular variable. However, to our knowledge, no results have been reported to use ICA for
the combined analysis of gene expression and copy number datasets.

Consider an observed m-dimensional random vector denoted by X = (x1,…,xm)T, which is
generated by the source signals S with an unknown process [33]:

(1)

where S = (s1, …,sn)T is an n-dimensional vector, and is not observable; Amxn is an unknown
mixing matrix; and Nt is Gaussian noise. Typically m >= n, so A is usually of full rank. A
typical ICA model assumes that the elements in the source signal S are statistically
independent, and are mostly non-Gaussian, with an unknown but linear mixing process.

The goal of ICA model is to estimate a separation matrix Wnxm such that Y is a good
approximation to the true sources S.

(2)

The separation matrix W is the approximate inverse of the mixing matrix A and can be
estimated from the observed data to ensure independent coefficients S, with non-Gaussian
distributions. Therefore, ICA is an approach for solving the blind source separation (BSS)
problem. This approach has been used to solve the cocktail party problem, where several
people are speaking simultaneously in the same room. The problem is to separate the voices
of different speakers from their mixed voices recorded by a few microphones in the room.
The ICA model for blind source separation (BSS) is shown in Fig. 3.

Some classical approaches to solving BSS problem include the maximization of information
transformation, maximization of non-Gaussianity, mutual information minimization, and
tensorial methods. Some of the most commonly used ICA algorithms are the FastICA [34],
Infomax [35] and joint approximate diagonalization of eigen-matrices (JADE) [36]. In this
paper, the FastICA algorithm was utilized, which has been proven to be effective for our
data. It performs centering and whitening as a preprocessing step.

We now apply the ICA model to our gene expression or gene copy number change data and
Eq. 1 can be generalized as:

(3)
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where the input matrix Rmxp contains gene expression or gene copy number data; Unxp is an
n×p matrix containing all unknown source signals; p is the number of genes and m is the
number of experiments.

We project each input set onto the kth column of A corresponding to the direction of the
highest variance to find the highest parallel contribution from data R

(4)

where ak is a m×1 vector, i.e., the kth column of A, and T denotes matrix transposition.

The projection direction, the kth column of A can be sought, corresponding to the maximum
value of the sum of the kth row of matrix AT˙A.

2.3 Joint ICA
The common technique used to analyze the input data is to project the original data on a
lower-dimensional subspace expanded by orthogonal components of the decomposition and
find clusters that are tight and far away from other clusters. Instead of the orthogonal ones,
here we get a subspace spanned by statistically independent components based on the ICA
We apply the ICA model to uncover the complex biological process that lead to two
different measurements, e. g., gene expression and gene copy number variations. Based on
the ICA analysis of these two joint datasets, we accomplish the goal of “gene shaving”. An
iterative dimension reduction method based on ICA is proposed to analyze both gene
expression and copy number data in order to locate functionally related gene subsets.

Joint ICA [29,30] is an approach that enables us to jointly analyze data from multiple
modalities collected in the same set of subjects. The gene expression and copy number data
can be better analyzed in a unified framework in which the two set of data are fused. We
assume the independence of gene expression and copy number data respectively, using the
following generative models for the data:

(5)

where: RA and RB represent the matrix of gene expression and copy number changes,
respectively; UA and UB represent their source signals, and AA and AB are their mixing
matrices. Our idea is motivated by the algorithm for fusion of fMRI and ERP data proposed
by Calhoun et al. [29,30], but applied to gene expression and copy number separately. When
the ICA is applied to the union of gene expression and copy number, it is similar to the
algorithm by Calhoun et al. [30].

Because aberrations in gene expression and gene copy number are correlated, the elements
of the mixing matrices should be correlated. The idea of creating snapshots of the ERP and
fMRI data can be translated into fusing the mixing matrices of gene expression and copy
number in our case. Both mixing matrixes can be interacted to find the direction of the
highest variance on both data sets. The joint contribution from RA and RB can be computed
as:

(6)
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We compute top the 5% percent of genes with the highest parallel contribution from RA and
RB corresponding to the highest variances. We project the original data in the kth direction
as:

(7)

where mAk and mBk are the kth column of MA and MB, corresponding to the direction of the
largest variance from the matrix pair RA and RB, respectively.

2.4 Joint ICA based Gene shaving algorithm
The genes are iteratively projected onto the vector corresponding to the independent
component with highest variance. The projection corresponds to the direction of highest
variation in the original data. The joint ICA method can be extended to accomplish the goal
of “shaving” based on the chosen direction. We proposed the following algorithm and its
two variants for clustering genes where the genes may be of different significance in both
data sets. 90–95% of the genes are retained from data sets with joint ICA in the direction of
the highest variance, from which the corresponding genes that contribute to cancer
progression are identified.

Algorithm 1. Gene shaving based on the selection of genes from the aCGH data. The
schematic procedure of this algorithm is shown in Fig. 4, where each individual procedure is
connected with solid lines.

Given the matrix RA of aCGH and the matrix RB of gene expression for the same
organisms or the same clones of the same samples, we perform the following steps:

1. Preprocess microarray data; quality filtering, normalization, and data
transformation.

2.
Form the matrix .

3. Compute the mixing matrix MA using the FastICA algorithm, analyze and select
the direction of projection.

4. Project R onto the independent component according to the chosen direction,
which corresponds to largest variance.

5. Retain the top η = 95% of genes with the highest contribution from RA and select
the related genes from RB corresponding to retained aCGH data.

6. Reform the matrix R after shaving.

7. Repeat Steps 3–6 if the number of genes is greater than or equal to the set number
of samples.

8. Analyze the clusters with the top 5 percent highest variant genes through
visualization and functional assessment.

There are two variants of Algorithm 1, depending on the selection of genes in terms of
aCGH and/or cDNA data.

Algorithm 2. Joint ICA gene shaving based on the selection of genes from cDNA data.
Algorithm 2 is similar to algorithm 1, but genes are selected in terms of cDNA data. The

Sheng et al. Page 6

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2011 December 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



schematic procedure of this algorithm is shown in Fig. 4, in which each individual procedure
is connected through solid and dotted lines.

Algorithm 3. Joint ICA gene shaving based on the selection of genes from both the matrix
RA of aCGH and the matrix RB of cDNA. The genes with the lowest correlation from RA or
RB are all shaved off. The schematic procedure of this algorithm is shown in Fig. 4, in
which each individual procedure is connected through solid and dashed lines.

These algorithms are appropriate for different data sets, which is similar to the GSVD
method when using different project angle parameters [28]. Algorithm 1 depends more on
copy number data; Algorithm 2 depends more on gene expression; and Algorithm 3 depends
on both of them. We apply these iterative procedures in the following section to locate
functionally related gene subsets, corresponding to similar and dissimilar patterns of
variations in gene expression and/or gene copy number changes.

3. Results and Discussion
We applied the ICA gene shaving method for dimension reduction and clustering analysis of
combined aCGH and cDNA expression data. In order to test the robustness of the method to
noise, we generated simulation data as described in Berger et al. [28] and compared ICA
gene shaving and GSVD gene shaving when the data contain noise. Our proposed
algorithms were applied to demonstrate efficacy to real data from breast cancer cell lines
and a breast cancer tumors, which were preprocessed by normalization and log2-
transformation. The algorithms were implemented in Matlab and the codes and data are
available for download on the website [37].

3.1 Test on Simulation Data
Copy number data were generated using the model proposed by Wang et al [38], which
defined three states: amplified (a), deleted (d) and normal (z). Gene expression data were
generated based on the model of Attoor et al [39]. Gene expression was defined as: over (o),
under (u) and constant (c) expression state. The relation between copy number and gene
expression states was modeled using a simple state flow. The connection between the data
was modeled by the transition probability matrix [22]:

(8)

In our simulations, we assumed a strictly correlative model between copy number and gene
expression states using the transition probability matrix, P=I3×3.

By increasing the noise variance, different groups of genes were observed after the shaving
iterations were completed. In order to evaluate the robustness of the method to noise, the
gene list percentage similarity (PS) was computed by counting the number of genes obtained
from noisy data (ND) intersecting with that obtained from the original data (OD) [28].

(9)

where Tot is the number of total genes in the list.
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We compared our proposed ICA gene shaving method with the GSVD gene shaving by
analyzing of an ensemble of 1,000 expression and copy number data sets in a simulation
study. Each set has N = P = 1,500 genes in 3 samples. We analyzed 75 remaining genes.
Additive random noise was generated 1,000 times for each variance level. We compared the
two methods based on the percentage similarity (PS) index. The results were shown in Fig.
5.

The results in Fig. 5 show that the ranges of PS for both gene expression and gene copy
numbers decrease with the increase of noise level, regardless of the shaving method used.
The PS value with ICA gene shaving method is always higher than that of GSVD gene
shaving, which indicates that the ICA gene shaving method is more robust to the noise.

3.2 Cell Line Case Study
After the proposed ICA gene shaving method has been proven to be effective on simulated
data, it was then tested on real biological data. Three breast cancer cell lines with similar
copy number profiles on chromosome 17 were analyzed [40]. The SKBR3, BT474 and
UACC812 cell lines all have amplified regions around the ERBB2 gene, which is known to
play roles in the progression of breast cancers [15].

From the original dataset from Hyman et al [15], we parse out genes from chromosome 17.
Each set has N = P = 619 genes in 3 samples. We retained the top 5 percent of the most
interesting genes in chromosome 17. We detected genes and genomic locations from gene
expressions and copy numbers with high variations, as shown in Fig. 6 and Fig. 7,
respectively. We obtained a list of genes and copy numbers that captured the highest shared
variation with our proposed method. Fig. 8 shows the list of gene subsets from the ICA and
GSVD gene shaving respectively based on gene expression data, while Fig. 9 displays the
list of gene subsets based on gene copy number changes. Fig. 10 displays the top 15 highest
variant genes from combined gene expression and copy number changes using the ICA and
GSVD methods respectively.

From the gene list provided, we observe that all ERBB2 genes were successfully extracted
using our ICA gene shaving method while one ERBB2 gene was extracted using the GSVD
gene shaving method. Our method was also able to uncover several HOX family genes
(HOXB3, HOXB6 and HOXB7), which have been found to contribute to the progression of
several cancer types [41]. Thus, our ICA gene shaving method found more genes related to
breast cancers than the GSVD gene shaving method.

3.3. Analyzing Breast Cancer Cell Lines and Breast Cancer Tumors
We present another case study using the data from breast cancer cell lines [15] and breast
tumors [42].

Our ICA gene shaving method was applied to the breast cancer cell lines [15] with
Algorithms 1–3. We report the top 50 of the highest variant genes corresponding to
algorithm 3 in Fig. 11 and Fig. 12 in terms of gene expression and copy number ratios,
respectively. We can observe the correlation across the samples for over- or under-expressed
genes, in addition to amplified or deleted genes. The genes in Fig. 11 capture the highest
expression variations, which represent extremely over- and under-expression with similar
transcriptional responses. Similarly, the genes in Fig. 12 capture the highest variation in the
copy number changes. We can isolate the groups of genes that have similar and dissimilar
patterns of gene expression and copy number. The genes with high copy number changes
show highly similar expression characteristics. Fig. 11 and Fig. 12 demonstrate the ability of
our algorithms to locate genes with highest variation and with the strongest correlation
across all the samples.
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In the study of 37 breast tumors conducted by Pollack et al. [42], it was reported that the
copy number changes played a direct role in the transcriptional program of human breast
tumors [42]. Based on the analysis of breast tumor data, we show the top 50 highest variant
genes using the ICA gene shaving (Algorithm 1–Algorithm 3) respectively on both gene
expression and copy number data as shown in Fig. 13. We also compared with the GSVD
gene shaving method of different relative significance as shown in Fig. 14.

From Fig. 13 and Fig. 14, our ICA gene shaving method has better ability to locate genes
with highest variation in copy numbers than using the GSVD gene shaving method. The
subsets of genes with similarly higher and lower gene copy number changes can be
identified with the ICA gene shaving method. No patterns of similar gene expressions were
observed in the list of genes with the top 25 highest (positive or negative) variant gene
expression using either the GSVD gene shaving or the ICA gene shaving method.

We summarize parameters such as p-values in selecting genes used in the ICA and GSVD
based gene shaving methods, as in Table 1 and Table 2. They are for analyzing both gene
expression and copy number data, and for analyzing breast cancer cell lines and breast
cancer tumors respectively. The lower P-value is, the more statistically significant the
detected cluster is. Table 2 and Fig. 13–14 all show that even though ICA gene shaving
method has better quality in detecting the clusters than the GSVD method, it is still not good
enough to distinguish clearly the top highest gene expressions for the study of breast cancer
tumors [42].

We also applied our method to identify gene subsets that contribute to breast cancer tumors.
Genes with the highest statistical significance include ERBB2, MUC1, and GRB7 with
concomitant changes in copy number and expression levels. For the tumor samples, our ICA
gene shaving method was able to locate known or candidate oncogenes successfully. The
GSVD gene shaving method obtained all three oncogenes (ERBB2, CCND1 and MYC)
and two candidate oncogenes (GRB2 and TPD51) corresponding to projection angle “max”;
two oncogenes (ERBB2 and MYC) and two candidate oncogenes (TPD52 and GRB7)
corresponding to “min”; and two oncogenes (ERBB2 and MYC) and a candidate oncogenes
(GRB7) corresponding to “zero”. Our ICA gene shaving method obtained all three
oncogenes (ERBB2, CCND1 and MYC), and three candidate oncogenes (GRB2, TPD52
and GRO1) corresponding to “Algorithm 1”; two candidate oncogenes (GRB2 and GRO1)
corresponding to “Algorithm 2”; and three candidate oncogenes (GRB2, TPD52 and GRB7)
corresponding to “Algorithm 3”. These genes were known to contribute to the progression of
breast cancer tumors but were missed by the GSVD gene shaving method.

Our method was successfully used to locate important genes that exhibit patterns of similar
and dissimilar variations. All three oncogenes and more candidate oncogenes are obtained
by the three algorithms of the ICA gene shaving method, even if no patterns of similar gene
expressions are observed. “Algorithm 1” depends more on the gene copy number data set,
and “Algorithm 2” depends more on the gene expression data set. “Algorithm 3” uses both
the gene expression and copy number data sets equally. These algorithms are appropriate for
different data sets, which is similar to the GSVD method when using different projection
angles [28].

4. Conclusion
Combining genomic data from different sources promises to be a very robust, reliable and
efficient technique. In this paper, we integrate gene copy number changes with gene
expression for locating subsets of genes with similar and dissimilar patterns of variations.
The combined datasets result in more accurate identification of gene subsets associated with
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cancers and diseases. We compared the ICA based gene shaving method with the GSVD
based one. When tested on simulated data, the ICA gene shaving method increased
performance by about 10% over that of the GSVD gene shaving in terms of the gene list
percentage similarity value, which indicates the improved robustness of the method to noise.
Statistical analysis was performed using both copy number and expression data to identify
genes, showing differential expressions associated with copy number alterations.

The SVD method has been used for the analysis of gene expression and copy number data
[26], which are, however, not analyzed in an integrated manner. The GSVD based gene
shaving method was proposed in [28] to integrate the two datasets. It has been used to
identify gene subsets in breast cancer cell lines and breast cancer tumors, but also has
limitations. Our proposed ICA gene shaving method improves this method by using a more
realistic model, as demonstrated in our simulation study. Furthermore, testing on real breast
cancer cell and breast tumor data shows that the ICA gene shaving method can identify
genes that were missed by the GSVD gene shaving method, which are known to contribute
to the progression of breast cancers. All three oncogenes and more candidate oncogenes can
be obtained with our ICA gene shaving method. This method will contribute to better
medical diagnosis and prognosis with improved identification of gene subsets associated
with diseases and cancers.

The ICA method appears to be useful for gene data analysis, but it also has some inherent
limitations. If gene component processes exhibit saturation or other nonlinear properties, it
may not be appropriate for analysis using a wholly linear model. The ICA algorithm
assumes that the distribution for each signal component is statistically independent. This
criterion provides an essentially unique decomposition of the data, but it may not necessarily
be the desired representation for all purposes. There are new developments or other variants
of ICA methods such as the group ICA [29] and we are currently exploring their use in
integrated genomic data analysis.
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Figure 1.
Display of the Pearson’s correlation analysis between copy number and gene expression
level across the NCI-60 cell lines. This indicates correlations existed along the diagonal line
where the copy number variations cause the corresponding gene expression changes.
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Figure 2.
The procedure of the “gene shaving” method for isolating interesting genes from a set of
DNA microarray experiments as used in [27].
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Figure 3.
A basic ICA model for blind source separation.
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Figure 4.
The schematic procedure of joint ICA gene shaving to identify gene subsets.
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Figure 5.
The effects of additive noise on PS value in cDNA and aCGH data using GSVD gene
shaving and ICA gene shaving algorithm, respectively.
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Figure 6.
Plot of selected genes from cDNA gene expression data. This plot shows the original cell
line expression data for the SKBR3, BT 474 and UACC812 cell lines over chromosome 17.
The circled genes were selected using our ICA gene shaving method.
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Figure 7.
Plot of selected genes from aCGH copy number data. This plot shows the original cell line
copy number data for the SKBR3, BT 474 and UACC812 cell lines over chromosome 17.
The circled genes were selected using our ICA gene shaving method.

Sheng et al. Page 22

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2011 December 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8.
These plots show the selected genes using (a) the GSVD gene shaving method and (b) the
ICA gene shaving method respectively, based on cDNA gene expression.
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Figure 9.
These plots show the selected genes using (a) the GSVD gene shaving method and (b) the
ICA gene shaving method respectively, based on aCGH copy number data.
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Figure 10.
We retain the gene expression values of the top 15 highest variant genes from combined
gene expression and copy number changes using the ICA and GSVD methods respectively.
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Figure 11.
The top highest variant genes of gene expression in 14 samples are retained using algorithm
3 in the study of breast cancer cell lines [15]. The pattern shows the highest parallel
contributions to the iterative projections with gene shaving.
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Figure 12.
The top highest variant genes with gene copy number changes in 14 samples are retained
using algorithm 3 in the study of breast cancer cell line [15].
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Figure 13.
The top three pictures are the lists of genes with the top 50 highest variant gene expression
using three ICA gene shaving methods, respectively. The bottom three pictures are the list of
genes with the top 50 highest variant copy numbers using three ICA gene shaving methods,
respectively. The subsets of genes which have similar gene copy number changes can be
identified. The data is from the study of breast tumors [42].
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Figure 14.
The top three pictures are the lists of genes with the top 50 highest variant gene expression
using three GSVD gene shaving methods, respectively. The bottom three pictures are the
lists of genes with the top 50 highest variant copy numbers using three GSVD gene shaving
methods, respectively. “Max” indicates no significance in the copy number data set relative
to the gene expression data set; “Min” indicates no significance in the gene expression data
set relative to the gene copy number data set; “zero’ indicates that genes may be of equal
significance in both data sets. The data is from the study of breast tumors [42].
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Table 1

A comparison of parameters used for the study of breast cancer cell lines [15]

Methods Parameter/Algorithm P-value(gene expression) P-value(copy number)

θmax < 0.001 < 0.001

GSVD θmin < 0.001 < 0.001

θ0 < 0.001 < 0.001

algorithm 1 < 0.001 < 0.001

ICA algorithm 2 < 0.001 < 0.001

algorithm 3 < 0.001 < 0.001
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Table 2

A comparison of parameters used for the study of breast cancer tumors [42]

Methods Parameter/Algorithm P-value(gene expression) P-value(copy number)

θmax 0.7748 <0.001

GSVD θmin 0.8766 < 0.001

θ0 0.8968 < 0.001

algorithm 1 0.4156 < 0.001

ICA algorithm 2 0.5321 < 0.001

algorithm 3 0.3432 < 0.001
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