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Abstract

Epithelia are sheets of connected cells that are essential across the animal kingdom. Experimental
observations suggest that the dynamical behavior of many single-layered epithelial tissues has
strong analogies with that of specific mechanical systems, namely large networks consisting of
point masses connected through spring-damper elements and undergoing the influence of active
and dissipating forces. Based on this analogy, this work develops a modeling framework to enable
the study of the mechanical properties and of the dynamic behavior of large epithelial cellular
networks. The model is built first by creating a network topology that is extracted from the actual
cellular geometry as obtained from experiments, then by associating a mechanical structure and
dynamics to the network via spring-damper elements. This scalable approach enables running
simulations of large network dynamics: the derived modeling framework in particular is
predisposed to be tailored to study general dynamics (for example, morphogenesis) of various
classes of single-layered epithelial cellular networks. In this contribution we test the model on a
case study of the dorsal epithelium of the Drosophila melanogaster embryo during early dorsal
closure (and, less conspicuously, germband retraction).
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1 Introduction

Structure of

Quantitatively understanding the mechanical structure and dynamical properties of epithelial
cellular networks is a compelling but complex task. Three main factors contribute to the
difficulty of this goal.

Firstly, single cells are made up of a number of distinct components, each contributing to
their mechanical structure [1]. The mechanical characteristics of networks of cells thus hinge
on the characteristics of single cells, each with their complex structural features [2].
Encompassing these components easily leads to high-dimensional, nonlinear, spatially
distributed models of cellular networks that are not likely to be prone to mathematical
analysis or to simulation on a computer over large cellular networks.

Secondly, at the cellular network level, dynamics are often influenced by a combination of
different forces (both internal and external to the network) acting simultaneously [3], [4], [5]
— isolating individual force mechanism contributions in the lab can be a daunting task — we
contend that a synthetic model can be an alternative solution.

Thirdly, the influence of genetic processes on the mechanical properties of cellular network
is currently an open field of investigation [6]: conducting manipulations in the expression of
certain genes can lead to significantly different mechanical properties. Encompassing such a
dependence at the modeling level can be very difficult.

This work focuses on the first two of the three issues described above. With the general goal
of developing a quantitative model comes a tradeoff between model descriptiveness and
precision on the one hand, and size, computability, and ease of analysis on the other. Taking
up this latter perspective, the main objective of this work is to develop a quantitative
mathematical model for the study of the dynamics of large and heterogeneous epithelial
networks. The model furthermore enables the investigation of the role played by forces
acting on the epithelium, as well as the study of the influence of the non-uniformity of its
mechanical properties on its dynamics. The model is developed with the main intention of
enabling the simulation of complex, large-dimensional networks of cells.

After benchmarking two different modeling approaches over their ability to encompass the
complexity of epithelial networks and the capacity of modeling subtleties of single cellular
mechanics, this work presents a model that strikes a balance between computable high-level
abstractions [7], [8], [9], [10] and specific low-level refined characterizations [11], [12],
[13]. We claim that the main features of the proposed modeling framework are that 1. it is
biologically well-grounded; 2. it is tractable for analysis and large-scale simulations; and 3.
it is promising in a number of diverse applications focusing on classes of single-layered
epithelial cellular networks.

the article

Section 2 recapitulates biological knowledge that is at the basis of cellular mechanics. Based
on this insight, Section 3 proposes important modeling criteria and distills them towards the
derivation of a novel modeling framework for single-layered epithelial cellular networks.

This part motivates the use of the discrete-element approach as a principal constituent of the
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model. This Section also elaborates on the mathematical formulation: first, the underlying
graphical structure is described; then, the dynamics are associated to the structure by
introducing spring-damper elements. Section 4 discusses the potentials and the limitations of
the proposed modeling framework. While this work does not claim to lead to any new
biological insight, with the goal of validating the approach Section 5 proposes a
experimental study, which focuses on simulating the dorsal epithelium of D. melanogaster
embryo during early dorsal closure (and in part germband retraction). Section 5.1 presents
how experimental data is utilized as a basis for the modeling framework (definition of the
graphical structure). Section 5.2 discusses how the dynamics are added to the model, as well
as how external forces and constraints are included. Section 5.3 presents the outcomes of the
simulations: it focuses on both qualitative and quantitative assessments of modeling
properties and of simulation assumptions. Finally, Section 6 concludes the work.

2 Biological Background

This Section recalls key empirical evidence on cellular mechanics. In order to gain
understanding on its mechanical and dynamical characteristics, a single epithelial cell is
dissected in terms of its own structural components and of its connections to adjacent
components.

2.1 Cellular Mechanics

Cells are highly dynamic: they stretch, crawl, change shape and divide [14]. Their
mechanical properties depend on their internal structure [15]. In many critical biological
processes, cells both exert and respond to forces toward and from their surroundings [16].
The mechanical properties of a cell are thus intimately related to its physical nature, as well
as to its position within a network of similar cells.

Cellular mechanics are determined by three key aspects: the internal structure of the cells,
which hinges on the presence of the cytoskeleton (Sec. 2.1.1); cell-cell connections within
the epithelium, as well as the connection of epithelial cells to other tissue layers (Sec. 2.1.2);
and two additional important mechanical characteristics [16], [17]: nonlinear elasticity and
anisotropy (Sec. 2.1.3).

2.1.1 Cellular structure—The cytoskeleton is a complex, heterogeneous and dynamic
structure, which affects both elastic and viscous characteristics of cells [8], [18], [19], [20]
(for possible modeling frameworks to encompass these properties see [10], [21], [22], [23]).
The cytoskeleton is a biopolymer network consisting of three major components (Figure 1):
microfilaments (made of actin), intermediate filaments, and microtubules. In addition to
these major components, a myriad of filament cross-linker, motor and regulatory proteins
also play a role.

Cell tensional forces depend on the three components mentioned above [24]. With regards to
the first filaments, actin accumulates as a circumferential belt along the cell membrane, at a
specific apical-basal depth. Circumferential actin belts of adjacent cells are connected to
each other through adherens junctions, see Figures 1(b) and 2, which thus contribute to
cytoskeletal structure and dynamics by connecting cytoskeleta of adjacent cells. An
adherens junction is a cell junction whose cytoplasmic face is linked to the cytoskeleton.
The connection of circumferential actin belts of adjacent cells creates a two-dimensional
network of actin, within the epithelial cellular network.

As for intermediate filaments, they operate as ropes connecting two points on the cell
membrane. They form a pattern of intersecting lines over the cell, as depicted in Figure 1(b).
The tension sustaining actin filaments is balanced by interconnected structural elements that
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bear compression, called microtubules [25], with The flexible protein structure [9]. They act
as struts pushing the cell membrane outwards, as depicted in Figure 1(b). Pushing
microtubules and pulling intermediate actin filaments meet at the cell membrane, around
adherens junctions, contributing together with actin belts to cell shape stability.

While the discussion has focused on the two-dimensional surface of circumferential actin
belts and the elements in between, there also exist cytoskeletal components connecting the
apical and basal cell membranes, thus developing along the third dimension of the cell (the
apical-basal axis, which crosses the cell surface). These filaments govern the stability of the
thickness of the cell under stretching and compressing loads.

While recent studies have addressed the issue of modeling the thickness of epithelial cells
[2], [26], since in epithelia much of the mechanical properties of cell networks is dictated by
the cell apical surface, a two-dimensional simplification is a good compromise that captures
many of the properties of interest. Also in the present study, we shall focus on two-
dimensional cellular properties and argue that, under careful working assumptions, the effect
of this third dimension can be left out.

2.1.2 Cell-cell connections and connection to the extra-cellular matrix—The
different cytoskeletal components of adjacent cells are connected by junctions (Figures 1(b)
and 2), which are composed of (among others) integrin and E-cadherin proteins. These
proteins are cell adhesion molecules nestled in the cell membrane and are connected to cell
adhesion molecules of neighboring cells [27] (see Section 2.1.2), creating a cellular
aggregate. The cell adhesion molecules can float through the cell membrane plane, which
suggests that the bilipid cell membrane does not play a significant contribution to the
structural balance of the cell. Most of the force is sustained by cytoskeletal components that
cross cell membranes. In developing epithelia, cell junctions often rearrange at a high
frequency, which facilitates cell motility and cell proliferation. In many other cases — with a
much lower frequency — rearrangements help stabilizing the epithelium. Because epithelia
serve primarily as a structural layer to protect underlying organs and processes, stable
adherens junctions are needed to seal cells together into an aggregate. In this work we shall
focus on cellular networks where rearrangements have very low occurrence and thus can be
disregarded.

The extracellular matrix, and more specifically the basement membrane, is situated
underneath the epithelium. Epithelial cellular networks are connected to the extracellular
matrix [18], particularly to the basement membrane via focal adhesions, where integrins
serve as anchors [27]. The number of adhesions affects the dynamical characteristic of this
viscous interaction.

2.1.3 Additional mechanical characteristics—The overall elasticity of cells can be
attributed to a number of different components, including the cell boundary, the
cytoskeleton, and cell-cell connections. It can be verified experimentally that this elasticity
is nonlinear [16]. The elastic modulus [28] of a cell depends on the degree of externally
applied forces and of internal stress, as well as on the mechanical properties of its
environment [16]. Unlike in materials that display an elastic constant that is independent of
the applied stress (at least approximately, within a large stress regime) in networks of semi-
flexible polymers the elastic modulus increases under increasing applied stress. This
phenomenon is called stress stiffening: a typical nonlinear (quadratic) elasticity
characteristic of a cell is represented in Figure 3. The cell elasticity thus cannot be modeled
by simple Hookean springs. Furthermore, recent experiments have unveiled the prestress
characteristics (namely, presence of tension at equilibrium) of different cytoskeletal
components and of the cell as a whole [20], [25], [29]. Evidence (both at the cellular [15],

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2013 January 30.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Abate et al.

Page 5

[29] and cytoskeletal level [19], [25]) has shown a linear relation between pre-stress and the
stiffness coefficient. Following the analogy with spring elements exerting forces
proportional to stiffness and strain, this results in a quadratic elasticity characteristic.
Furthermore, by severing individual actin filaments and microtubules and analyzing the
dynamical response of the cell, it was shown that the dynamical characteristics of
cytoskeletal components are viscoelastic. These responses can be encompassed by
leveraging the Voigt element [30], which employs a spring and a damper in parallel (see
also Sec. 3.4 for the mathematical details and Sec. 4.1 for alternatives or extensions).

The spatial organization of cytoskeletal components creates cellular structures which are
inherently anisotropic. For instance, microtubules often determine the direction of
elongation of a cell [17]. A feature of stretched cells is the alignment of their cell
boundaries. Hence, the circumferential actin filaments that organize along the cell
membrane, tend to sustain and propagate most of the load in the network. This property of
the cell boundaries, in addition to the discussed nonlinear elasticity behavior, contribute to
the cell stability.

3 Modeling Framework

Section 3.1 distills the details on cellular mechanics discussed in the previous section into a
few essential modeling criteria for single-layer epithelial cellular networks. Among the
many cellular modeling alternatives in the literature [2], Section 3.2 motivates the modeling
choices by comparison against one alternative known modeling framework. Section 3.3
describes the underlying structure of the model. This leads to the formal introduction of the
dynamical modeling framework in Section 3.4.

3.1 Modeling principles

We synthesize the biological knowledge presented in Section 2 into the following key
principles, which inspire the development of a model for epithelial cellular networks:

1. The cellular architecture is discrete:

Single epithelial cells behave mechanistically as discrete entities composed of
different interconnected cytoskeletal constituents, and are able to sustain both
tensional and compressional loads. They do not behave as mechanical (viscous or
viscoelastic) continua. The discrete nature of the actin network and of intermediate
filaments should be incorporated in the model. A large proportion of the actin
architecture is organized over a two-dimensional surface, governing most of the
observed cell dynamics [31], [32].

2. Anisotropy depends both on cell geometry and on network topology:

Single cells have highly anisotropic mechanical structures, determined by their
physical characteristics as well as by their geometry. Along with local anisotropy,
the network topology is often necessary to explain the existence of global
properties or certain global dynamics, such as the alignment of patches of cells or
the propagation of forces through the cellular network. Taking into account both
single cell geometry and global topology of the epithelial network is therefore
necessary to study anisotropy and to explain properties at the network level.

3. Nonlinear and temporal mechanical characteristics of cell appear due to different
structural components:

Cell components display characteristics of nonlinear elasticity, which thus emerges
at the cellular level. The cytoskeletal prestress contributes to the nonlinearity in cell
deformation [19], [20] and should be integrated with ideas from the tensegrity
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model [24]. Relatively simple nonlinear elasticity characteristics (hamely, quadratic
relations) have been observed at a cellular level as well as over a larger tissue level
[16], [25], [29]. Furthermore, more complex properties (hysteresis, memory) can
play a role in specific instances, thus the model should be extensible to
accommodate them.

4. Modeling volume preservation can be complex:

Volume preservation is a feature of epithelial cells deforming in a network.
However, since there is no clear relation between the stress in the surface directions
(planar dimension) and the thickness (height) of the cellular network [26], volume
preservation of cellular components should be imposed under controlled conditions
and over specific spatial models.

3.2 Comparison between FEM and DEM models

Finite and discrete element methods (FEM and DEM) are numerical techniques developed
to compute approximate solutions of partial differential equations (PDE) and of integral
equations [30], [33]. These methods are in particular used for solving a set of nonlinear PDE
over time-varying domains whenever the desired precision varies over the entire domain, or
in case the solution lacks smoothness. The common feature of these two techniques is the
application of a mesh discretization of a continuous domain into a set of discrete sub-
domains, called elements. We draw a qualitative comparison between FEM and DEM
techniques. This comparison is attuned to the modeling principles explained above and, with
focus on the problem under study, is intended to motivate the choice of DEM as the basis of
the model.

FEM represent continuous objects by meshing them into volumetric elements. Within each
of these elements the mechanical properties are defined as constant or continuous functions.
When spatial properties such as incompressibility, osmaotic pressure, or density are
important, then using these elements is indispensable. The FEM approach assumes that
strain and stress vary continuously over the introduced volumetric elements, which is a
delicate assumption when modeling systems endowed with a discrete mechanical structure.

DEM on the other hand consider a nodal mesh of a given object, in which nodes are
associated to point masses and connected via discrete elements (discrete elements can be
specific mechanical components). Internal forces can be exerted in any direction between
nodes. The DEM approach is useful when the presence and organization of distinct elements
resembles the physical structure of the system.

Hybrid combinations with both element types are also possible [22], for instance on
structures consisting of beams (modeled with volumetric finite elements) and rods (modeled
with discrete elements).

The four criteria derived in Section 3.1 are used to compare the two modeling methods in
Table 1. For each of the criteria, the table includes a simple assessment (positive vs.
negative sign) of the two modeling frameworks. The DEM approach is selected as the basis
of the model that will be developed in Section 3 for the following reasons. The DEM
method is suited to easily represent the discrete tensegrity structure of cellular mechanics.
The use of DEM also enables the study of anisotropy due to cellular geometry and structural
organization (network topology). Cellular volume preservation is an elusive task (though
FEM techniques may enable encompassing it), and therefore is not considered in the early
stage of modeling framework development. The DEM has shown interesting results in other
modeling studies, where nonlinear mechanical characteristics were incorporated. These
studies showed qualitative resemblance of tissue deformation [34], [35], [36] and displayed
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stability properties over high-dimensional models [37]. Time-dependent properties
(hysteresis, memory effects) can be incorporated, albeit at increased computational costs. In
conclusion, DEM promises to encompass the features of interest for the problem at hand.

3.3 Graphical representation of underlying cellular structure

Consider a general graph-theoretical structure. This structure will be generated from
experimental data, as discussed in Section 5.1. The graph consists of three different features:
vertices, edges, and faces. Vertices are contained in a set v of cardinality A, which stores the
index 7€ {1, 2, ..., NV} of each vertex v;. In Figure 4 vertices are indicated by dots and their
indices are denoted by the adjacent numbers. An edge (circled numbers in Figure 4) ¢; ;=
{vi vj } is defined as a pair of adjacent vertices v;and v; where j# 7and / j€ {1, 2, ..., N}.
Edges are stored as pairs in a Af x 2 set €, where AF is the cardinality of set ¢. The edge
index K€ {1, 2, ..., A\f} is defined by the row number in . The graph = ( v, 9) describes
the full topology of a network. Consider the &/ x A incidence matrix A of a graph. Its
entries are formulated as

—1, ifv;isthe second component of Kt edge

+1, ifv; is the first component of k™ edge
hi=
0, otherwise.

As an example, consider a small graph 5" consisting of three vertices and two edges, as
depicted in Figure 4. The incidence matrix follows:

1 0
- 1.
0 -1

The N/x N Laplacian matrix L describes which vertices are adjacent to each other and is
calculated using the incidence matrix [38], as given by L = HH'. For s this yields

S 1 -1 0
S I
0 -1 0 -1 1

More specifically, the Laplacian L = LT indicates whether a vertex v;is connected to
another vertex v; (/= /;;==1) or not (/;= /;;= 0). The diagonal represents the degree #(v))
= /;;, which is the number of edges that are adjacent to vertex v;.

H=

The third important feature in the network is represented by its cell faces. In a cellular
network a face frepresents (the apical side of) a cell and is defined as the set of its vertices.
The degree of a face fis denoted by #*(#) and denotes the number of vertices (or edges) it
consists of, e.g. #'(#) = 4. Since in this project the data is delivered as graphs of vertices and
edges (9 =( v, &)), an algorithm has been implemented in order to retrieve the information
of the faces.

3.4 Dynamical Model: the Spring-Damper element

Assume that the underlying cellular geometry (that is, the underlying network topology) is
known. A mesh is overlaid to the cell junctions, that is to the points where cell boundaries
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intersect (the magenta dots in Figure 5). A model is created as a two-dimensional, tiled
surface and is represented using the graph theoretical network notation given in Subsection
3.3. Within this data structure three different modeling elements (discussed below) are
discussed and associated to different structural features in epithelial cellular networks.

First, a magenta dot in Figure 5 represents a point mass element /;associated to vertex v;, 7
€ {1, 2, ..., N}. This models the inertia of the network via a constant mass value. However,
let us importantly remark that the modeling approach is not intended to imply that inertial
forces are reflecting the underlying biology: the actual effect of the mass in the model
dynamics can be eliminated by simple rescaling (as discussed later, we have in practice used
it to normalize the simulations time span). The second law of Newton is applied to each
point mass element at v;by considering the global contribution all the forces F;acting upon
the point:

mi?i(f)=273i(7, 1),

where j’i(;) is the second time derivative of the position x; of point mass /7;, and X denotes a
vector collecting all the points x;. We will shortly express explicitly the force contribution in
the equation above. The point masses are placed at vertices, where different cell boundaries
come together. It should be noted that in reality cell junctions are not fixed, but they may
rearrange with respect to the adjacent cell boundaries: the present modeling framework
neglects these rearrangements. The implications of this assumption are further elaborated in
Section 4.2.

The second element models the circumferential actin belts, which organize along cell
boundaries and connect adjacent cell vertices. Since these belts propagate their elastic
energy to adjacent components through these vertices, a mechanistic equivalent will be used
in the model. The mechanical behavior of actin belts is viscoelastic and modeled by the
presence of spring-damper elements (Voigt elements) between two adjacent cell vertices, as
depicted in Figure 5 [37], [34]. Section 4.1 discusses possible alternatives to the Voigt
elements. In the following, these modules are called boundary elements. A boundary
element encompasses the belts of two adjacent cells, since these two cells are connected
through adherens junctions. Consider a point mass element /m; connected to three other point
mass elements /17;, j € -+ (v;), where -+ (v;) denotes the set of vertices adjacent to vertex v;,
as depicted in Figure 6. The point masses are connected through spring-damper elements,
characterized respectively by stiffness coefficients &;;and damping coefficients v; ;. The
mathematical equation for point mass element /7;connected to the point masses /77;via a
spring-damper element, is given by:

_>clama —sdamping d X )C
Xin=F,  CO+F;, ()= {(k (Ui j=di ) +vi ) L= }
;;u T ) R

dl; ;
where /;jis the length of boundary element ¢;;, —— dt is its time derivative, djis the resting
- —
xj— X
length related to the spring at boundary element e;;, and |[% ;—%,|| is the normalized vector

accounting for orientation and direction of the element ¢; ;.
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As a third modeling element, the cytoskeleton (consisting of intermediate filaments and
microtubules, see Figure 1) is modeled similarly to the circumferential actin belts using
spring-damper elements, which in the following will be denoted as intermediate elements.
With reference to the nodal characteristic of each single cell, elements are placed between
all non-adjacent mass elements within a cell, as depicted in green on Figure 5. The
collection of intermediate elements represent a discrete abstraction of the cytoskeleton.
Section 4.2 explains the potential as well as the limitations of this approach. The
mathematical equations for the elements are identical to those of the external elements, that
is

—int.elastic —int.damping dli,j ?j_?i
F; (X)+F; )= Z ki j (li,j—di,j)+Vi,j7 ,

JeN I (1) ”71_731'”

where .+ () denotes the set of vertices laying within a face to which vertex v;belongs, but
which are not directly adjacent to v;.

As anticipated in Section 2.1.3, the model considers nonlinear elasticity in cellular
mechanics. The relationship between applied prestress and stiffness has a linear
characteristic, both on the cell [29] and on the cytoskeletal component level [25]. To
illustrate this relation, consider a spring, as depicted in Figure 7. The classical constitutive
equation given by the Hooke law for the magnitude of the elastic force exerted by a spring is

FC]aStiC (Z):k(l_d), (1)

where k denotes the stiffness coefficient, /is the current length and d'is the resting length of

the spring. Prestress is defined as the fraction of the deviation from the resting length, which
_(I=d) . i . . :

is ——. Now consider an affine relation between stiffness and applied prestress, as observed
in experiments [29]. This yields a coefficient

k() = k

! —(l:ld) +£°, (@

where A2 is the nominal (linear) stiffness coefficient at resting length and A* accounts for the
stiffness due to applied prestress. Substituting the affine relation in (2) into equation (1) for
the elastic force results in a quadratic (and thus nonlinear) elastic force-deformation (stress-
strain) relation;

171_.7\2
[pelastic (O=k(l) (I-d)= % %+k0(l—d).

The stiffness coefficients &; ;of the spring-damper elements in the model are characterized

according to this nonlinear relation. This means that a pair of parameters ( kﬁf,-/z, k},,-) is
introduced for each spring-damper element. Section 4.1 discusses possible extensions of the
expressions considered in (1)—(2).

In addition to the relations developed for the three main modeling elements, the framework
assumes that the connections between cells and the extracellular matrix are viscous. A
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.. —friction _>fuct10n
friction force F, is added, which acts on each point mass element m;. F . is

1

inversely proportional to the velocity 2, of point mass ;,

—friction

F; (?i)z_/lijc)b

where A;is the positive friction coefficient related to point mass ;.

All the described components can be mathematically encompassed within a system of
second-order ordinary differential equations (ODE). Formally, consider a point mass /m; at
vertex v; representing 6 state variables, i.e. 3 position variables x;and 3 velocity variables

;- The dynamical ODE for /m;is presented in (3) on page 8, where &; () and v; ;denote
the stiffness and damping coefficients of an element between masses /m;and /m; /; jis the
distance between the two masses; -+ (v;) denotes the adjacent vertices of v;, and .+ (V)
denotes the non-adjacent vertices within all the neighboring faces of v;. The stiffness and
damping forces can only act in the direction of the element between the two masses, which

xj— X _)ex ¥
is H}’ = xl| The parameter A;denotes the friction coefficient at mass m;, whereas Z
denotes the sum of all possible external, time-dependent forces p acting on mass m;. (In

Section 5.2 we shall consider a few examples for external forces and show that they also
enable the embedding of spatial constraints in the model.)

_)elastlc _) damping _>1nt elastic _>1nt damping _>fr1ct10n

Xi0)=F (R)+F (R)+F (R)+F (_> IHE, (Rint)
= X {(k,,a,])(l, ,-—d,,)+vl,‘”“) |ﬁ* } IR +ZF !

JEN (Uit (1)

©)

The model in (3) is nonlinear, due to the presence of the lengths /;;and their time
derivatives, and because of the varying stiffness coefficients &;;(/;;). A matrix formulation
can be derived using the Laplacian L defined above. First introduce a matrix & based on (3),
which structure is related to that of L: notice that ||)-(;-— Xi| = /;j, and define the non-diagonal
entries (i j) of  as

dl 1
Sijz_(ki,j(li,j)(li,] d; j)+vi ”) ——
.\'j—.\',’

i, Vt‘dlif
== (ko e+ 2 %),

L]

and similarly the diagonal entries as

l,’ﬁj—d,‘,j V,',jdl,',j

JEN (UA B () b e

Subsequently, £ can be exploited to rewrite the dynamical equations in (3) for the whole
network of point masses in matrix notation as follows:
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(= o ! } T+ 0 (4)
— = -1 -1 -1 €ex, ’
;).g M='S(k,l,t) -M—'A M Z#F H(X, 1)

where Mis a 3N x 3N diagonal matrix composed of the masses /m;, and A isa 3N x 3N
diagonal matrix with the friction coefficients A, € is time-dependent and contains all the
nonlinearities of the equations. The values of &;;(-), /;; and dl; /dfneed to be updated in
time for all spring-damper elements: the Laplacian L can be used to assign the updated
variables to the corresponding entries in £. Using smart vectorial implementations in
MATLAB, the simulation algorithm can integrate the dynamics in (4) of a mass spring-
damper network with dimensions in the order of hundreds of vertices in a computationally
rapid way. The simulation can also benefit from techniques developed in the computer
graphics community, for the development of simulators of soft-body dynamics [39]. We
shall further discuss computational issues of the model in Section 5.2.

4 Discussion on the Model

The presented modeling framework incorporates both biological insight and engineering
principles. Based on this modeling framework, the dynamical equations can be extended by
introducing terms that account for new knowledge gained from both experiments and
simulations. On the other hand, the choices made on the model architecture also pose
limitations over its general application. We discuss next both potential and the limitations of
the model.

4.1 Potential: model extensions and applications

The dynamical model allows to embed the effect of general, time-varying, non-linear,
external forces. With reference to Figure 3 and the related discussion on nonlinearity of
cellular elasticity, it is possible to include hysteresis and memory effects in the stress/strain
characteristic by direct modification of Equation (2): the first feature can be useful to
prevent dynamical high-frequency oscillations that are usually not observed experimentally,
whereas the second can lead to the modeling of permanent cellular deformations. However,
this can lead to higher computational costs. The choice of viscoelastic Voigt modules as
interconnections between cellular junctions has been motivated by literature evidence and
model testing, but can be as well substituted by Maxwell elements or — at the expense of an
increase in complexity — by standard-linear or generalized-Maxwell elements [30]. The
model also allows for the introduction of physical and spatial constraints, as will be
discussed in the case study of Section 5.

The presence of an underlying dynamical model allows generating simulation outputs that
can be matched to time-lapse experiments. This may help to explain mechanical properties
of the network, for instance by identifying its stiffness parameters or friction coefficients.
There are a number of advanced parameter identification techniques that could be used with
this goal [40], [41], [42]. The model can furthermore help quantitatively studying certain
morphogenetic effects such as germband retraction, groove formation, or dorsal closure. At
the cell level, the study of elastic properties via laser ablation experiments can also represent
an interesting potential to test the model on, where generated data would be matched to the
model simulations.

4.2 Limitations

The cytoskeleton, scattered throughout the whole cell (cf. Subsection 2.1.1), influences most
of the mechanical behavior of cells. Besides, other factors contribute to the internal
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mechanics of cells, such as osmotic pressure, the (apical-basal) height of the cell, the
presence of microtubules. The internal spring-damper elements represent a lumped, two-
dimensional abstraction of the cytoskeleton. This representation is not able to model the
highly scattered cytoskeleton to its full extent, neither can it distinguish between different
contributors to internal mechanics (e.g., microtubules vs. intermediate filaments).

The model describes a two-dimensional surface structure. It neglects the depth of the cell
and only considers the mechanics and dynamics at the surface level. This assumption is
meaningful since there is limited insight in the three dimensional deformation of epithelial
structures, and because it represents an abstraction that makes the model computable over
large networks of cells. Hence, this framework can help explaining behaviors of the surface-
level properties of an epithelium, even with regards to its spatial dynamics (when for
example used for full embryo studies), rather than giving insight on the volumetric
deformations and dynamics (including volume preservation) of single epithelial cells or
small clusters of cells.

The model assumes that cell junctions maintain their fixed configuration. In other words,
adherens junction rearrangements are neglected. This means the framework cannot model
cell division, cell death, or cell matility. Depending on the morphogenetic events under
study (as it is the instance in the case study of Section 5), cell rearrangement may not play a
significant role. It should be stressed that the modeling framework has the potential to
incorporate these characteristics, albeit with a non-trivial extension of the underlying
graphical structure and with an expected increase in computations (required to update the
data structure and to integrate the dynamics over time). This extension could enable the
study of higher-level phenotypes such as cell motility, cell proliferation and apical
constriction, and to understand their relations to the dynamics and mechanics of epithelial
cellular networks.

5 Case Study: from Experimental Data to Model and to Simulations

The dorsal epidermis of the D. melanogaster embryo during dorsal closure provides a solid
basis for a case study. Firstly, at these stages, cells of different shapes get stretched along
their dorsoventral axis. Secondly, at each segment boundary a specific group of cells, called
the groove (as we will discuss later, in our data this corresponds to the central vertical
“column” of cells in Figure 8(b)), cells get organized in order to form a single column of
rectangular cells [6]. Thirdly, this row of cells deepens in the tissue in order to shape the
segmental grooves [3], [5], [8]. Altogether these stereotypical features in a developing
embryo provide a good comparison benchmark.

We test the presented dynamical model on a cellular network extracted from experimental
data covering dorsal closure and, less conspicuously, germband retraction. We build a
dynamical model first by extracting a cellular network from data (Sec. 5.1), then by
associating dynamics to the elements of the network (Sec. 5.2). We then perform
simulations by exciting the model with external forces and introducing physical constraints
(Sec. 5.2), to produce simulations resembling dorsal closure. While the goal of this
simulation is solely to provide an interesting computational validation for the model, rather
than to present new biological knowledge, it also suggests that the use of this model can lead
to qualitative and quantitative conclusions on the mechanical properties of the epithelium of
the embryo by comparing the simulation outcomes to the experimental data (Sec. 5.3).

5.1 From Experiments to Model

We consider a planar confocal microscopy image of a rectangular section of the lateral
epithelium before dorsal closure occurs, as in Figure 8(a). An image processing software
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[43], developed in-house and implemented in MATLAB, is used to segment a rectangular
section of the frame into a cellular network, namely a graph. The software employs a
randomized search algorithm that scans the entire image and originates the graph. The
output of the segmentation algorithm results in the thin red cellular network, depicted in
Figure 8(b). The cellular sides of the network are subsequently straightened (see overlaid
blue network) to obtain a graph. This graph contains the relevant information on boundaries
(edges) and vertices of the patch of cells under study. The graph is represented and stored
via the data structure that has been detailed in Section 3.3 (recall that the data structure
accounts for the cell vertices, the cell boundaries (edges), and the cell areas (faces)).

Figure 9 gives a pictorial representation of an embryo, with the position of the segment of
the epithelium under study. The two dimensional cellular network that has been extracted
from the data is morphed to assume a three dimensional embryo-like shape. The obtained
three dimensional network matches its two-dimensional projection. The morphing procedure
consists of three steps, as detailed in Figure 10. First, based on the microscope settings (e.g.,
its orientation w.r.t the embryo), the processed network is calibrated (rotated and translated)
with respect to a cylindrical body resembling the embryo. Subsequently, the network is
stretched out and finally, it is folded three dimensionally to adapt to the model of the
epithelium, as indicated in blue color in Figure 10. Based on our experimental data, the
radius of the embryo has been set to be /204 = 100um.

5.2 Adding Dynamics to the Model

Given a cellular network extracted from data, we overlay the spring-damper elements on it.
The dynamics in equation (3) are thus associated to each vertex of the stored cellular
network and allow for the inclusion of external forces. The model in equation (3) depends
on a set of parameters, which characterize spring and damper elements (both boundary and
internal ones, both for stiffness and resting prestress), friction in the model, as well as
external forces and constraints (the latter will be discussed shortly). These parameters need
to be instantiated according to the data and to the goal of the simulation. In this study, their
value is selected from a set of simulation tests, each of which is driven by a specific external
force. The goal of these tests is, given a specific cellular network and a set of forces, to
produce outputs that are qualitatively acceptable, namely that do not present unstable,
unrealistic, on non-physical dynamics. Notice from Equation (3) that there is a linear
relationship between the time horizon of a simulation and the value of the mass. We have
thus decided to rescale both in order to normalize the first to span the unit interval.

One important set of forces that acts on epidermal cells comes from the developing central
nervous system (CNS). The ventral epithelium closely wraps around the CNS, thus the
epithelium experiences the CNS as a physical constraint. While the precise mechanical
characteristics of the CNS have not been investigated, it is observed that folds rarely appear
in the epidermis juxtaposed to the CNS. Only strong grooves, generated in genetic over-
expression experiments, partially pinch into the CNS. This observation suggests that in
general the CNS is able to resist pressure exerted by the overlaying epidermis. In our model
the CNS is abstracted as two adjacent and parallel cylinders, as in Figure 11. The radius of
each cylinder of the CNS, RCNS is estimated from cross section experiments to be one fifth
of the radius of the embryo /229 Ideally the CNS only acts on mass elements that are in
contact with it. However, modeling the CNS as a hard physical constraint may be both
biologically unrealistic (organs are not infinitely rigid) and practically undesired (it may lead
to stiff dynamics). Inspired by an approach developed in the computer graphics community
for the development of simulators of soft-body dynamics [39], the interaction between
embryo and CNS is implemented as an external force acting on the epithelium along a
direction that is normal to the CNS cylinder. Let us denote the distance vector from the axis
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of the CNS to a vertex /by 7; Our implementation employs a polynomial formulation that
depends on a parameter v € N:

e
15| (e | gy o <2

i

0 , otherwise.

The interaction of the epithelium with the CNS can be tuned and stiff dynamics can be
avoided.

The ventral vertices of the cellular network ideally would lie under the ventral line of the
embryo, as in Figure 9. Unfortunately, a limited section of the network close to the ventral
line is not included in the model from the data, due to the limited range of the microscope —
see Figure 11. Thanks to the limited dynamics of the ventral cells this drawback is not too
severe: assuming symmetry between two vertical halves of the embryo and because of their
adjacency to the ventral line, the ventral vertices are constrained to move exclusively along
the ventral line, that is in x-direction. This means that the dynamics in the )~ and zdirection
are set to zero.

How to prevent the global cellular network from collapsing over itself? The inner body of
the embryo can be imagined as a fluid mass exerting a pressure force on the ectoderm,
whenever there is a pressure difference between the interior and the exterior of the embryo.
This phenomenon can be modeled using the Laplace-Young law [44]. Assume that the
embryo is a cylindrical vessel, as depicted in Figure 12. The larger the cylindrical radius
AP the larger the boundary tension 7 (dashed red arrows in Figure 12) required to
withstand a given pressure difference A p (solid cyan arrows in Figure 12) over the
boundary. This property can be derived from the Laplace-Young equation, which relates the

T
pressure difference to the shape of the surface: AP=M. This effect is implemented over
the whole cellular network, assuming a constant pressure difference Ap.

Dorsal closure is the preponderant morphogenetic movement showing in the experimental
data for the case study, and is driven by the leading edge cells, namely the row of cells lying
most dorsally within the epithelium. The leading edge is pulled locally, and the
corresponding cells move over the embryo surface up toward the dorsal line, while
propagating the pull over the rest of the epithelium. We assume to have knowledge only of
the final position of the leading edge vertices (aligned along the dorsal line). We simulate
DC forces by imposing a «* continuous trajectory (that is, a trajectory represented with a
twice-continuous function of time) on all leading edge vertices, between their initial and
final configuration. The trajectory is thus only imposed on the dynamics in the )~ and =
directions, the x-direction being left undisturbed. A «* trajectory provides complete
flexibility in order to obtain smooth motion and to eliminate jerk from the mechanical
components [45]. The input trajectory, along with velocity and acceleration profiles, are
depicted in Figure 13.

Simulations are run in MATLAB, on a laptop with a Pentium 2.66 GHz Intel Core 2 Duo
processor and 4 GB of memory at 1067 MHz DDR3. The Runge-Kutta 4,5 method [46] is
used to numerically integrate the dynamics in (4). The cellular network is made up of 253
vertices and thus the dynamical model has 1518 ODEs. The average integration time for a
simulation taks less than three minutes. The total time spent on the post-processing of the
data and the graphical analysis amounts to about two minutes.
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The outputs of the integration procedure, namely the position and the velocities of all the
vertices of the network in time, are saved as Visualization ToolKit (VTK) files and exported
to the ParaView software environment [47]. Paraview is an open-source software that
imports the generated VTK files and compiles them allowing for spatial computer graphics
and visualization.

5.3 Simulations

We select a stiffness coefficient kg for the central vertical column of cells in Figure 8(b) that
is twice as high as that of the remaining cells. These cells display an accumulation of
cytoskeletal proteins compared to their non-groove neighbors [6]. This is the case for
instance for Enabled, which is implicated in the organization of actin filaments [48], as well
as the beta-catenin Armadillo, which links the adherens junctions to the cytoskeleton [49].
Higher stiffness of these specific cells is related to the emergence of grooves, a phenomenon
we are not going to further focus on.

We expect the cells to stretch vertically and show alignment, particularly around the mid
column of Figure 8(b). We are thus interested in quantitatively assessing the quality of the
simulations with respect

2 to the alignment of cells, and
3 to their elongation.

This outcome may indicate that the accumulation of cytoskeletal components in the groove
cells is consistent with a different behavior of these cells at the mechanical level and may be
responsible for their rectangular shape. This possibility will need to be addressed with
genetic tools /in vivo. Therefore, this contribution has no explicit goal to shed new light over
the biological data under consideration: we are instead interested to qualitatively show that
simulations of the model, which has been initialized to fit the data, can reproduce the
behavior observed in experiments. This indicates the possible general use of the proposed
modeling framework in similar studies.

5.3.1 Qualitative analysis of the simulation scenarios—Figure 14 displays the
rendered outputs of a single simulation. They are to be compared with the image in Figure
15(a), representing the network of cells in Figure 8(a) at a later stage, after dorsal closure
has ensued.

Notice that the indenting central column approaches the CNS cylinder and interacts with it,
which calls for the use of the corresponding external forces discussed earlier. The dorsal and
lateral view clearly indicate that cell boundaries line up along columns in dorsoventral
direction. In particular, the central column lines up in an almost perfect ladder configuration.
It is also quite clear that cells stretch in the vertical direction. A limitation of the simulations
is visible on the leading edge which, unlike in the experimental image, is nicely aligned: this
artificial effect is due to the imposed simulation dynamics (input trajectory) over the leading
edge and can be possibly eliminated by feeding to the simulation a more realistic trajectory
for those specific cells.

5.3.2 Quantitative analysis of the simulation scenarios—We now consider the
processed cellular network in Figure 15(b), which is extracted from the experimental data in
Figure 15(a). It clearly relates to the network in Figure 8(b), except for a few extra cells that
have been caught by the microscope and appear close to the ventral and lateral boundaries.
We exclude these extra cells from the statistics that are going to be elaborated below. No
noticeable junction rearrangement is observed in the data.
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As discussed earlier, we are interested in quantitatively comparing alignment and elongation
of the cells from the simulated network with those of the cells from the experimental data.
We introduce the following metrics, for each cell:

1. theratio x= x;/x;between the two axes of the cell, where x; denotes the longer
axis and x;the shorter one. This quantity is a number greater than one that denotes
the elongation of the cell;

2. the angle of orientation of the principal (longer) axis of the cell. This is a quantity a
€ [-180, 180] degrees, computed from the vertical line, namely a = 0 along the
vertical axis and a growing clockwise.

For both xand a we compute mean /mand the standard deviation o, over the whole cohort
of cells. The value of o is particularly important for the orientation angle a, which is a
quantity that spans [-180, 180].

Such metrics can be easily computed over the cellular networks present in Figures 8(b) and
15(b), which are extracted from the experimental data. Furthermore, we compute these
metrics on the two-dimensional network that is obtained by projecting the lateral-view
output of the simulation (see Figure 14(c)): this network is reported in Figure 16. (Notice
that this two dimensional projection inevitably suffers from a few cells crossing each other:
we shall eliminate these cells from the statistics developed below.)

We set up two statistical comparisons. The first is based on the whole network (see Table 2,
rows denoted by “W”), whereas the second is based on the group of cells adjacent to the
central vertical column (see Table 2, rows denoted by “C”). For consistency, we selected the
cells in this region by matching the experimental outcomes with the simulations. We
discussed above how we expect a more ordinate alignment of cells within this region.

The first two rows of Table 2 display statistics based on the experimental data at the initial
time, as per Fig. 8(b), and serve as reference. (Notice in particular that the statistics on the
orientation display a high variance, as expected.) The second pair of rows focus on statistics
at the final time, for the whole network. They compare the experimental data with the
outcomes of the simulations. Similarly, the last two rows draw statistics at the final time, for
the cells belonging to the central vertical region. Notice how the simulation outputs are
consistent with the observed experimental data, particularly when the statistics are focused
on the central region of the network. As expected, we observe a general increase in
elongation of the cells (cfr. m(x) values, for similar values of variance), as well as an
alignment toward the vertical axis especially in the cells belonging to the central region (cfr.
small values of m(a) and decreasing values of o(a) for rows denoted with C).

Let us conclude by adding that of course, the selection of more complex metrics is possible
(in order to enable a comparison of strain maps, for example), as well as the extension of the
correspondence over the whole set of images taken from the time-lapse movie (this would
account for detailed matching of the motion).

6 Conclusions

The main goal of this work has been that of developing and implementing an adaptable and
scalable modeling framework for single-layered epithelial cellular structures. The modeling
architecture has been motivated by a set of criteria distilled from biological knowledge on
cellular mechanics, and grounded on comparisons with other modeling options from the
literature. After discussing the data structure underlying the implementation of the model,
the dynamical model has been the main focus of the exposition.
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As a case study, the work has considered the process of early dorsal closure on the embryo
of Drosophila melanogaster. The work leveraged developed software to extract the cellular
geometry from a two-dimensional microscopy image, which has enabled realistic
simulations that have been compared to the experimental data.

While this work has no explicit goal of biological relevance over the considered case study,
we expect that the outcomes of the simulations can be meaningful to derive conclusions on
the elasticity and stiffness properties of the epithelium, as well as on the force distributions
and profiles playing a role in early dorsal closure. More generally, the proposed modeling
framework promises to be a general platform to investigate structure and dynamics of
single-layered epithelial cellular networks in a number of diverse applications.
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Refer to Web version on PubMed Central for supplementary material.
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cell membrane

circumferential actin belts

(a) Cell membrane (thin, black) and circumferen-
tial actin belts along the cell boundaries (thick,
blue).

adherens junctions
(E-cadherin/integrin connections)

intermediate filaments

microtubules

(b) Intermediate cytoskeletal components (fila-
ments and microtubules) and cell-cell connections
(adherens junctions).

Fig. 1.
Pictorial top-view of a single cell in an epithelial network.

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2013 January 30.

Page 22



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuei\ Joyiny Vd-HIN

Abate et al.

Page 23

Fig. 2.

Two-dimensional pictorial top-view of two adjacent epithelial cells: actin accumulation
(blue) along cell boundaries (black outer lines). Adherens junctions (green) connect different
circumferential actin bundles between the cytoskeleta of adjacent cells along their
boundaries.
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quadratic

Strain

Fig. 3.
Nonlinearity in cell elasticity (stress-stiffening).
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Fig. 4.
A small graph s". Loose numbers denote vertices, whereas circled numbers denote edges.

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2013 January 30.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuei\ Joyiny Vd-HIN

Abate et al.

Page 26

Fig. 5.

A spring-damper model of a single cell. Discrete points (large magenta dots) are adapted to
the actual cell shape extracted from experiments (see Section 5.1). Black lines denote cell
boundaries. Blue spring-damper elements are associated to boundaries, whereas green ones
to intermediate pairs of non-adjacent points.
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Fig. 6.
A single point mass element /77;connected to three point mass elements (all denoted as /77;)
through spring-damper elements.
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Fig. 7.
One-dimensional spring model used to explain the applied prestress.
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(a) Confocal microscopy image. The red polygon indicates the subnet-
work of interest.

(b) A processed version of the network. The thin red graph
is the raw processed network, whereas the straight thick blue
lines constitute the graph to be used in the simulations.

Fig. 8.
Isolated cellular network at starting time, used for model building.
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dorsal

7

amnioserosa

anterior
(head)

epithelium

ventral

Fig. 9.

Pictorial model of the embryo, depicting a segment of the epithelium (blue). The dorsal
closure forces acting on the epithelium over the amnioserosa (pink region) are indicated by
the blue arrows.
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----1

Fig. 10.

Page 31

= embryo

3 === Calibrated 2D projection

=== 2D back projection

=== 3D model, folded on cylinder

Top: A pictorial longitudinal view of the embryo with indication of calibration, back
projection, and folding steps, which together yield the folded, three-dimensional model of
the epithelium. Bottom: A three-dimensional view of the morphing procedure.
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Fig. 11.

Three-dimensional model of the epithelium of the embryo (symmetric representation). The
green cylinders denote the central nervous system. Notice that part of the ventral epithelium
has not been captured by the microscope and hence has not been modeled.
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Fig. 12.
The Laplace-Young Law relates the pressure difference Ap over a surface to the surface
tension 7.
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C5 displacement profi le

Fig. 13.
«* trajectory imposed on the leading edge vertices. Top down displacement profile g-E(2),
velocity profile “-E(#, and acceleration profile &-5(#. The time axis has been normalized.
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(a) Dorsal view (b) 3D view
(c) Lateral view (d) Longitudinal view
Fig. 14.
Three-dimensional simulation outcomes. The cartesian axes are x (red), y (yellow), and z
(green).
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(a) Confocal microscopy image at final time. The red polygon indicates
the subnetwork of interest.

(b) A processed version of the network.

Fig. 15.
Experimental cellular network at final time, used as a benchmark for the simulation
outcomes.
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Fig. 16.
Two dimensional projection of the lateral-view simulation output in Figure 14(c).
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TABLE 1

Comparison of FEM and DEM modeling frameworks.

1) Cellular architecture is discrete

FEM

I+

Representation of discrete tensegrity structure unclear +

+  Can be combined with DEM as a hybrid model -

DEM
Can represent discrete tensegrity structure

To keep computations tractable, number of components per cell is
limited to a lumped version of the real cell layout

2) Anisotropy also depends on cell geometry and network topology

FEM DEM
+  Finite elements can be adapted to cellular geometry + Discrete elements can be adapted to cellular geometry
+ Incorporation of anisotropy of actin accumulation bundles +  Anisotropy of actin accumulation bundles can easily be incorporated
to be understood
- Computational issues related to modeling large scale +  Can scale to model large cellular networks and thus encompass their
cellular networks topological features
3) Nonlinear and temporal mechanical characteristics
FEM DEM
+ Can be incorporated in finite elements + Can be incorporated in discrete elements
- May lead to heavy computations, even for average-sized + Nonlinear elasticity qualitatively resembles tissue deformation
cellular network
+  Nonlinear elasticity contributes to model stability, prevents collapse
- Temporal characteristics can be computationally demanding
4) Volume preservation
FEM DEM
+  Can be imposed through volumetric properties +  Its effect can be approximated but not formally embedded

+ May result in artifacts and computational issues (stiffness), -
due to limited knowledge on properties of cell height

Approximation likely related to introduction of dynamical artifacts,
requires evaluation of resulting mechanical properties
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Metrics on cells - x denotes the elongation of the cell, whereas a the angle of orientation of the cell; m
represents the mean value and o the standard deviation; W indicates statistics over the whole network,
whereas C over the cells adjacent to the central vertical column.

TABLE 2

m(x) | o(x) | ma) | ola)
Initial exp. data, Fig. 8(b), W | 2.48 | 1.93 | -23.68 | 48.66
Initial exp. data, Fig. 8(b), C 229 | 1.18 | -33.63 | 27.78
Final exp. data, Fig. 15(b), W | 3.40 | 1.71 | -11.01 | 25.48
Simulation data, Fig. 16, W 4.09 | 4.36 -4.55 32.05
Final exp. data, Fig. 15(b), C 404 | 131 | -6.15 9.01
Simulation data, Fig. 16, C 444 | 2.37 -8.63 16.45
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