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“Pull moves” for rectangular lattice polymer
models are not fully reversible

Dániel Györffy, Péter Závodszky and András Szilágyi

Abstract—“Pull moves” is a popular move set for lattice polymer model simulations. We show that the proof given for its reversibility
earlier is flawed, and some moves are irreversible, which leads to biases in the parameters estimated from the simulations. We show
how to make the move set fully reversible.

Index Terms—pull moves, lattice model, HP model

✦

1 INTRODUCTION

Lattice polymer models have long been used for theoret-
ical studies of various aspects of polymer behavior [1],
[2]. In the HP lattice model of proteins [3], a chain is rep-
resented as a self-avoiding walk on a rectangular (square
or cubic) lattice and the sequence space is reduced to two
types of beads: a hydrophilic one (denoted as P) and a
hydrophobic one (denoted as H). Analyses carried out
on HP lattice protein models provided the foundations
of the modern theory of protein folding [4].

For short polymers, exhaustive enumeration can be
carried out, but for longer chains, excessive computa-
tional requirements permit only sampling the conforma-
tional space. Several efficient sampling methods have
been developed such as the Metropolis–Hastings Monte
Carlo method [5], equi-energy sampling [6] and Wang–
Landau sampling [7], [8]. The main goal of the sampling
may be finding the conformation with the lowest energy,
generating a canonical ensemble of conformations, or
estimating various parameters such as the density of
states, free energies, thermodynamic averages, etc.

All of these sampling methods require a mutation
step. For rectangular lattice models, several move sets
have been developed to serve as a mutation operator.
In pivot moves [9], [10], one of the beads serves as a
pivot point and a symmetry operation is carried out.
Pivot moves are ergodic but due to the significant change
in conformation, the acceptance rate is very low for
compact conformations [10], [11]. In the class of k-bead
moves, a predefined number (k) of contiguous beads are
relocated [2], but these moves are not ergodic for longer
chains [12]. A fundamentally different method is bond-
rebridging [13], which provides a high acceptance rate
at the cost of not being ergodic [11], [14].

Lesh and coworkers introduced a new local move set,
called pull moves [15], and provided proof that the move
set is ergodic and reversible. There are two types of
pull moves. In one type, a four-bead loop is formed
and the chain is pulled until the end is reached or
an existing loop is straightened. To ensure reversibility,

(a) (b)
(c)

Fig. 1. An example for an irreversible pull move. Con-
formation (a) is a chain with a straight end. A particular
end move results in a hook at the end of the chain,
conformation (b). But a reverse move is not possible
because pulling the chain in the other direction results
in a chain with a bent end (c) instead of a straight end.
Excluding the move from (a) to (b) will not affect ergodicity
because it remains possible to get from (a) to (b) by two
moves, through (c). Note that the figure only shows an
example; all end moves that result in a hooked end are
irreversible.

another move type was introduced where one end of
the chain is pulled until a loop is eliminated [6], [15].
“Pull moves” has become a popular and commonly used
move set for lattice polymer simulations. It has been
used in replica exchange Monte Carlo simulations [16]
and applications of equi-energy [6] and Wang–Landau
sampling [8], [11], [14], [17] and tabu search [15], [18].
It has been adapted for triangular and hexagonal lattice
polymers [19], [20].

2 RESULTS

Applications of pull moves have been implemented
assuming that the move set is reversible (i.e. that the
reverse of each valid move from state A to state B is



also a valid move from B to A), based on the proof of
reversibility given by Lesh et al. [15]. However, exam-
ining the proof, we noticed that it contains a flaw as it
overlooks the fact that one type of end move is actually
not reversible. (The irreversibility does not affect pull
moves on triangular and hexagonal lattices.)

Here, we provide a proof that one type of end pull
moves is irreversible. Let us number the beads of the
chain from 1 to n. The irreversibility affects those end
moves that result in a hook at the end of the chain as
shown in Figure 1(b). By this move, both beads 1 and 2
move to a new location such that bead 1 will be adjacent
to the old location of bead 2. According to the rules of
pull moves described in Lesh et al. [15], this move can be
reversed by pulling the chain in the other direction until
a valid conformation is reached. However, when we try
to perform this reverse move, bead 2 will return to its
original position, but because this position is adjacent to
the new location of bead 1, the chain will be in a valid
conformation without moving bead 1. Thus, bead 1 is
not returned to its original position. The same reasoning
applies to beads n and n−1. Figure 1 shows one example
of the irreversibility where, starting from a chain with a
straight end, one move results in a hook at the end of the
chain, but the supposed reverse move produces a chain
with a bent end.

For a 2D chain with length L, the maximum number of
possible internal and end pull moves is 4(L− 2) and 18,
respectively; for 3D chains, the corresponding numbers
are 8(L−2) and 25. Four of the 18 end pull moves in 2D,
and 8 of the 25 end pull moves in 3D are irreversible. We
calculated that 15 % of edges in the transition graph of
a 2D 10-bead chain represent an irreversible transition.

Monte Carlo sampling schemes, including Wang–
Landau sampling, rely on the principle of detailed
balance which requires microscopic reversibility. When
microscopic reversibility is violated, cycles of microstates
will arise, and statistical weights derived from the sim-
ulations will be incorrect.

Fortunately, the irreversibility can easily be fixed by
simply excluding the irreversible moves, i.e. those moves
that produce a hook at the end of the chain like that de-
picted in Figure 1. This new, reduced move set preserves
ergodicity; this is easily seen in Figure 1 as direct moves
from (a) to (c) and (c) to (a) are both allowed.

If the sampling algorithms are implemented without
simplifications, the irreversible moves will never be ac-
cepted, leading only to a waste of CPU time. However,
implementations often use the assumption of reversibil-
ity to introduce simplifications, leading to irreversible
moves being accepted, and thus, a bias in the sampling.

In Monte Carlo samplings, such as e.g. Wang–Landau
sampling, the transition probability is proportional to the
rates of the a priori probabilities of the transition from
one state to the other and vice versa:

p (A → B) ∝
pap (B → A)

pap (A → B)
. (1)

The a priori probability of a transition is

pap (A → B) =
n (A → B)

n (A)
(2)

where n (A → B) is the number of transitions from the
state A to state B and n (A) is the number of transitions
originating from A. If a move is irreversible such that
n(B → A) = 0 (as is the case for the irreversible end
moves), then p(A → B) will be zero and this move
will never be accepted during the simulation. Thus, CPU
time will be wasted but the sampling will be correct.

However, when implementing the sampling algo-
rithm, a simplified expression for p(A → B) may be
used instead of Equation (1). If the move set is assumed
reversible then

n (A → B) = n (B → A) , (3)

and we can simplify Equation (1) so that

p (A → B) ∝
n (A)

n (B)
. (4)

With an irreversible move set, Equation (3) is not valid
and Equation (4) yields nonzero probabilities even for
irreversible moves. This leads to accepting irreversible
moves and, consequently, incorrect sampling.

Fig. 2. Logarithm of the normalized density of states
(gnorm (E)) for the 2D 20mer HPHPPHHPHPPHPHH-
PPHPH, also investigated in [21], from Wang–Landau
simulations (50 runs averaged) with reversible and irre-
versible pull moves, and from exhaustive enumeration.
Wang–Landau sampling was stopped when the logarithm
of the modification factor fell below 10−8. The flatness
criterion was chosen to be p = 0.8

To investigate the effect of neglecting the irreversibil-
ity, we estimated the density of states of a 2D 20mer
by Wang–Landau simulations [7] using both the original
(irreversible) and the fixed (reversible) move set (apply-
ing the simplification in Equation (4)), and compared
them with the exact values obtained by exhaustive enu-
meration (Figure 2). As the figure shows, by using the
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irreversible moves, the density of states is significantly
underestimated for most energy levels, especially for
the lowest ones. We obtained similar but less marked
differences for a 2D 64mer, a 3D 103mer, and a 18mer
homopolymer also investigated previously [17], [21],
[22].

3 DISCUSSION

We have shown that some end pull moves are irre-
versible, and ignoring the irreversibility may lead to
inaccurate sampling. Whether and to what extent this
irreversibility affected the results of earlier studies is an
open question. Although we cannot rule out the possibil-
ity that some authors recognized the irreversibility and
excluded the irreversible moves, all papers we examined
state that pull moves are reversible and we found no
mention of excluding any moves. Even if irreversible
moves were not explicitly excluded in a study, this
may not have had a noticeable effect on the results for
several reasons: (i) the study only used pull moves for
finding the ground state, so the irreversibility did not
affect it [15], [16], [18]; (ii) the authors may have used
the full formula (Equation (1)) to calculate transition
probabilities, thus the irreversible moves were tried but
always rejected; (iii) the study was done on long chains
where end moves represent only a small fraction of all
moves, thus their irreversibility only had a small effect.

In many cases, studies do not provide enough details
on the implementation of the used algorithm and their
results to allow us an assessment of whether and how ir-
reversibility may have affected the results. A few studies
[6], [8], [22] provide an accuracy analysis, comparing the
density of states obtained from the simulations with that
from exact enumeration [6], [8], and they only find small
differences from the exact values. However, they do not
state whether they used the full formula (Equation (1))
or its simplified form (Equation (4)); only the simplified
form leads to inaccuracies. On the other hand, studies
that explicitly state that they used the simplified formula
(Equation (4)) [14], [17] do not provide an accuracy
analysis (e.g. because of working with long chains where
enumeration is not possible), so it is impossible to judge
the accuracy of their results. An exception is the study of
Swetnam and Allen [22], which both calculates accuracy
and states that the simplified formula (Equation (4))
was used. However, their calculations are for a 18mer
homopolymer where, according to our own calculations,
the difference caused by the irreversibility is small. Be-
sides, they use various algorithms with varying results,
and we are unable to directly compare their results with
ours. Thus, we cannot determine with certainty whether
potential irreversibility affected their results.

There is a publicly available software package, Lat-
Pack [23], that implements pull moves. We tested the
program and found that it fails to exclude the irreversible
end pull moves.

4 CONCLUSION

As our demonstrations indicate, accurate calculations in
the future should be based on simulations using the fixed
version of pull moves as described in the present article.
The simple recipe is that all end pull moves that result
in a hook at the end of the chain should be excluded.
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