
A simple fixed parameter tractable algorithm for
computing the hybridization number of two (not necessarily

binary) trees

Teresa Piovesan, Steven Kelk

Department of Knowledge Engineering (DKE), Maastricht University,
P.O. Box 616, 6200 MD Maastricht, The Netherlands??

Abstract. Here we present a new fixed parameter tractable algorithm to compute the
hybridization number r of two rooted, not necessarily binary phylogenetic trees on taxon set
X in time (6rr!) ·poly(n), where n = |X |. The novelty of this approach is its use of terminals,
which are maximal elements of a natural partial order on X , and several insights from the
softwired clusters literature. This yields a surprisingly simple and practical bounded-search
algorithm and offers an alternative perspective on the underlying combinatorial structure
of the hybridization number problem.

1 Introduction

The rooted phylogenetic tree (henceforth, tree) is the traditional model for modelling the evolution
of a set of species (or, more generally, taxa) X (see e.g. [9,10,23]). A rooted phylogenetic network
(henceforth, network) is a generalisation from trees to directed acyclic graphs which allows retic-
ulate evolutionary phenomena such as hybridization, recombination and horizontal gene transfer
to be incorporated (see Figure 1). For detailed background information on networks we refer the
reader to [12,13,14,25,21,22].

a b c d e f g h i j k l

Fig. 1. An example of a (binary) rooted phylogenetic network on X = {a, . . . , l}. This network
has five reticulation nodes.

One use of networks, motivated in particular by the need to merge a set of discordant gene
trees into a species network [21], is the following. Given a set of trees T , where each tree T ∈ T
has the same set of taxa X , construct a “most parsimonious” network which displays all the
trees in T . If we define “most parsimonious” to mean: has as few reticulation nodes (i.e. nodes
with indegree two or higher) as possible, we obtain the hybridization number problem [2,3]. There
has been extensive research into perhaps the simplest possible variant of this problem; this is

?? Corresponding author is Steven Kelk, steven.kelk@maastrichtuniversity.nl.

ar
X

iv
:1

20
7.

60
90

v1
 [

q-
bi

o.
Q

M
]

 2
5

Ju
l 2

01
2

when T contains two binary (i.e. fully resolved) trees. Unfortunately, even this stylized version
of the problem is computationally difficult; it is NP-hard and in a theoretical sense difficult to
approximate well [5,18]. On the other hand, there has been considerable progress in developing fixed
parameter tractable (FPT) algorithms for the problem. Essentially, these are algorithms which can
determine whether the hybridization number of two trees is at most r in time f(r) ·poly(n), where
n = |X | and f(r) is a function that does not depend on n (see [8] for an introduction to fixed
parameter tractability). The idea of such algorithms is that, by decoupling n and r, the running
time of the algorithm tends to grow more slowly than algorithms with a running time of the form
O(nf(r)). The first such algorithms were described in [4,7] and the current theoretical state-of-the
art is an algorithm with running time (3.18r) · poly(n) [27]. There are also a number of very fast
software packages in existence that are wholly or partially based on insights from fixed parameter
tractability [1,6].

However, what if T contains more than two trees and/or contains trees that are not fully
resolved? Algorithms to compute the hybridization number of such T are necessary, because this
more accurately reflects the type of trees that emerge in applied phylogenetics [20]. In this article
we are interested in the situation when T contains two not necessarily fully resolved trees on X .
(We henceforth refer to such trees as nonbinary, noting that this classification includes binary
trees as a special case). Given that this problem is a generalisation of the binary case, it inherits
all the negative results from that case, but not necessarily the positive results. Indeed, there are
far fewer positive results for nonbinary. A number of non-trivial technicalities arise because in the
nonbinary case we only require that the network displays some refinement of each tree i.e. the
image of the tree contained in the network can be more resolved than the original tree [19]. This is
a natural and desirable definition given that biologists often use nodes with outdegree 3 or higher
in trees to denote uncertainty, rather than a hard topological constraint.

Recently there have been two non-FPT algorithms implemented (both of which are available
in the package Dendroscope [15]) to solve the nonbinary problem in polynomial time when
the hybridization number is bounded [11,26]. The nonbinary problem is, furthermore, FPT. This
was established in [19] using kernelization. Unfortunately, mainly due to the very idiosyncratic
behaviour of common chains in the nonbinary case, the analysis given in [19] is rather long and
complex, and the (weighted) kernel they describe is also rather large, containing at most (89r)
taxa; the size of the unweighted kernel is quadratic in r. As far as we are aware the algorithm in
[19] has not been implemented.

In this article we present an alternative FPT algorithm for nonbinary that is based on bounded-
search rather than kernelization, with running time (6rr!) · poly(n). The resulting algorithm is
extremely simple and amenable to implementation (it manages to completely avoid the concept
of chains) and the analysis of correctness is comparatively straightforward. The algorithm builds
heavily on a number of basic results from the softwired cluster literature [12,13], in particular [17].
This literature concerns a slightly different methodology for constructing phylogenetic networks,
but as observed in [25,17] the optima of the models synchronise in the case of two input trees,
allowing results and concepts from one methodology to be used in the other.

The simplicity of our new algorithm stems from a careful examination of a natural partial order
(and its maximal elements, which we call terminals) on X , which turns out to be closely linked
to hybridization number. This partial order appeared earlier in [16] and [17] but was used in a
slightly different way. Via the observations in [17] the earlier (and more general) results in [16] also
imply an FPT algorithm via softwired clusters for the nonbinary case, but with an astronomical
running time. The added value of the present article is that, by making heavy use of the fact that
there only two trees in the input, we are able to obtain a significantly simplified and optimized
algorithm that can actually be used in practice.

For completeness we have implemented a prototype version of the algorithm, available upon
request. However, perhaps the best use of the algorithm is to integrate it into existing, well-
supported non-FPT algorithms for the nonbinary problem (such as the 2012 release of Cass
[24,26]) to bound their search space and to thus upgrade their status to FPT.

2 Preliminaries

2.1 Trees, networks and clusters

a

b
c

d

e

f

a
b c

d e

f

(a) (b)

a

b
c

d

e

f

(c)

a

b c
d

e

f

(d)

N

Fig. 2. In (b) we see that N displays the tree in (a), and in (c) we see that N displays a binary
refinement of the tree in (d). The dotted edges denote the reticulation edges that should be deleted
to obtain the required tree.

Consider a set X of taxa. A rooted phylogenetic network (on X), henceforth network, is a
directed acyclic graph with a single node with indegree zero (the root), no nodes with both in-
degree and outdegree equal to 1, and leaves bijectively labeled by X . The indegree of a node v
is denoted δ−(v) and v is called a reticulation if δ−(v) ≥ 2, otherwise it is called a tree node.
An edge (u, v) is called a reticulation edge if its target node v is a reticulation. When count-
ing reticulations in a network, we count reticulations with more than two incoming edges more
than once because, biologically, these reticulations represent several reticulate evolutionary events.
Therefore, we formally define the reticulation number of a network N = (V,E) as

r(N) =
∑

v∈V :δ−(v)>0

(δ−(v)− 1) = |E| − |V |+ 1 .

A rooted phylogenetic tree on X , henceforth tree, is simply a network that has reticulation
number zero. We say that a network N on X displays a tree T if T can be obtained from N by
performing a series of node and edge deletions and eventually by suppressing nodes with both
indegree and outdegree equal to 1 (see Figure 2). We assume without loss of generality that each
reticulation has outdegree at least one. Consequently, each leaf has indegree one. We say that a
network is binary if every reticulation node has indegree 2 and outdegree 1 and every tree node
that is not a leaf has outdegree 2.

Proper subsets of X are called clusters, and a cluster C is a singleton if |C| = 1. We say that
an edge (u, v) of a tree represents a cluster C ⊂ X if C is the set of taxa descendants of v. A
tree T represents a cluster C if it contains an edge that represents C. For example, the tree in
Figure 2(a) represents {c, d, e} but not {d, e, f}. We say that N represents C “in the softwired
sense” if N displays some tree T on X such that T represents C. In this article we only consider
the softwired notion of cluster representation and henceforth assume this implicitly. A network
represents a set of clusters C if it represents every cluster in C (and possibly more). For a set C
of clusters on X we define r(C) as min{r(N)|N represents C}, we refer to this as the reticulation
number of C. We say that two clusters C1, C2 ⊂ X are compatible if either C1∩C2 = ∅ or C1 ⊆ C2

or C2 ⊆ C1, and incompatible otherwise. A set of clusters C is compatible if all clusters in C are
mutually compatible.

2.2 The equivalence of (maximal) common pendant subtrees and (maximal)
ST-sets

Let T be a tree on X . We write Cl(T) to denote the set of clusters represented by edges of T , and
for a set of trees T on X we write Cl(T) = ∪T∈T Cl(T). We say that a (binary) tree T ′ on X is a
(binary) refinement of T if Cl(T) ⊆ Cl(T ′) (see Figure 2). We say two trees T1 and T2 on X have
a common refinement if there exists a tree T ′ on X such that Cl(T1) ∪ Cl(T2) ⊆ Cl(T ′), where
the last condition is equivalent to saying that the set of clusters Cl(T1) ∪ Cl(T2) is compatible.
We say that a tree T ∗ on X ∗ ⊆ X is a pendant subtree of T if there is a refinement T ′ of T
such that X ∗ ∈ Cl(T ′). Note that this definition does not depend on the topology of T ∗ so we
can equivalently say that X ∗ is a pendant subtree of T . A pendant subtree X ∗ is non-trivial if
|X ∗| > 1. Given two trees T1, T2 on X we say that X ∗ ⊆ X is a common pendant subtree if X ∗ is
a pendant subtree of both T1 and T2 and T1|X ∗ and T2|X ∗ have a common refinement. (As usual
T |X ′ for X ′ ⊆ X refers to the tree obtained by suppressing nodes with indegree and outdegree
equal to 1 in the minimal subtree of T that connects all elements of X ′). Note that our definition
of common pendant subtree is consistent with [19], which we follow.

Given a set S ⊆ X of taxa, we use C \S to denote the result of removing all elements of S from
each cluster in C and we use C|S to denote C \ (X \ S) (the restriction of C to S). Following [17],
we say that a set S ⊆ X is an ST-set with respect to C, if S is compatible with all clusters in C
and any two clusters C1, C2 ∈ C|S are compatible. An ST-set S is maximal if there is no ST-set T
with S ⊂ T . The maximal ST-sets are unique, partition X and can be computed in polynomial
time [17].

a
b c

d e

f

(a)

g a

b c

d

e

f

g

(b)

a
bc

def

(c)

g a

def

g bc

(d)

Fig. 3. The two trees shown in (a) and (b) have maximal ST-sets (i.e. maximal common pendant
subtrees) {a}, {b, c}, {d, e, f}, {g}, shown in colour. In (c) and (d) we show the result of collapsing
the maximal ST-sets in (a) and (b) (respectively) into single taxa.

In [17, Lemma 6] it is proven that, if C = Cl(T1) ∪ Cl(T2), and X ∗ is an ST-set of C, then
for each i ∈ {1, 2}, there exists a node vi of Ti such that X ∗ is exactly equal to the union of
the clusters represented by some (not necessarily strict) subset of the edges outgoing from vi.
From this it follows that X ∗ is a (maximal) ST-set of Cl(T1) ∪ Cl(T2) if and only if X ∗ is a
(maximal) common pendant subtree of T1 and T2. We will make heavy use of this equivalence and
use the concepts interchangeably. In particular, all the maximal ST-sets of C = Cl(T1)∪Cl(T2) are
singletons (in which case we say C is ST-collapsed [17]) if and only if T1 and T2 have no non-trivial
common pendant subtrees. A related operation is to create an ST-collapsed set of clusters by
collapsing all maximal ST-sets into single taxa as shown in Figure 3. Collapsing maximal ST-sets
does not change the reticulation number of the set of clusters (because there always exists an
optimal network in which the maximal ST-sets are “pendant” [17, Corollary 11]).

2.3 The special case of (clusters obtained from) two trees

Given two trees T = {T1, T2} on X , we (again following [19]) define h(T) (the hybridization number
of T) as the smallest value of r(N) ranging over all networks N on X such that N displays a binary
refinement of T1 and a binary refinement of T2. In [17, Observation 9] we note that the emphasis
on binary refinements does not sacrifice generality. Furthermore, from [25, Lemma 2] we may
assume without loss of generality that in the definition of h(T), N can be restricted to being
binary. Observe that, if T is an arbitrary set of trees on X , r(Cl(T)) ≤ h(T). This holds because
if a network displays a (refinement of a) tree T then it certainly also represents all the clusters in
Cl(T). For |T | > 2 this inequality can be strict [25]. However, in [17, Lemma 12] it is proven that
if T = {T1, T2} are two trees on X , and C = Cl(T), then r(C) = h(T). Unfortunately, even in this
special case, if N represents all clusters in C it does not necessarily display (binary refinements
of) T1 and T2 [25]. Fortunately a polynomial-time, reticulation-number preserving transformation
is possible, which we describe later in Section 3.

3 The structure of optimal solutions

We begin with some simple results which formalize the idea that, when T contains exactly two
trees, the problem has “optimal substructure” i.e. optimal solutions can be constructed from
arbitrary optimal solutions for well-chosen subproblems. We begin with a focus on clusters, but
then explicitly link this to trees in Lemma 2 and Corollary 1.

Observation 1. Let C = Cl(T) be a set of clusters on X , where T = {T1, T2} is a set of two
trees on X with no non-trivial common pendant subtrees, and r(C) ≥ 1. Then there exists x ∈ X
such that r(C \ {x}) < r(C).

Proof. Consider without loss of generality a binary network N which represents C, where r(N) =
r(C). By acyclicity N contains at least one Subtree Below a Reticulation (SBR) [17], i.e. a node
u with indegree-1 whose parent is a reticulation, and such that no reticulation can be reached by
a directed path from u. Let X ′ be the set of taxa reachable from u by directed paths. X ′ is an
ST-set, so |X ′| = 1 (because C is ST-collapsed). Let x be the single taxon in X ′. Deleting x and
its reticulation parent from N (and tidying up the resulting network in the usual fashion1) creates
a network N ′ on X \ {x} with r(N ′) < r(N) that represents C \ {x}.

Lemma 1. Let C = Cl(T) be a set of clusters on X , where T = {T1, T2} is a set of two trees on
X with no non-trivial common pendant subtrees, and r(C) ≥ 1. Then for each x ∈ X it holds that
r(C)− 1 ≤ r(C \ {x}) ≤ r(C).

Proof. The second ≤ is immediate because removing a taxon from a cluster set cannot raise the
reticulation number of the cluster set. The first ≤ holds because in [17, Lemma 10] it is shown
how, given any network N ′ on X \ {x} that represents C \ {x}, we can extend N ′ to obtain a
network N on X that represents C such that r(N) ≤ r(N ′) + 1.

We recall the following definition from [17]. For a set of clusters C on X , we call (S1, S2, ..., Sp)
(p ≥ 0) an ST-set tree sequence of length p if S1 is a ST-set of C, S2 is a ST-set of C \ S1, S3 is a
ST-set of C \ S1 \ S2 (and so on) and if all the clusters in C \ S1 \ . . . \ Sp are mutually compatible
i.e. can be represented by a tree. If C = Cl(T) where T = {T1, T2} are two trees on X , then
r(C) is exactly equal to the minimum length of an ST-set tree sequence for C [17, Corollary 9].
Essentially, the ST-set tree sequence describes an order in which common pendant subtrees can
be iteratively pruned from T1 and T2 to obtain a common tree T . As an example, the two trees
in Figure 3(a) and (b) have a minimum-length ST-set tree sequence ({b, c}, {d, e, f}), and the

1 Specifically, for as long as necessary applying the following tidying-up operations until they are no longer
needed: deleting any node with outdegree zero that is not labelled by an element of X ; suppressing all
nodes with indegree and outdegree both equal to 1; replacing multi-edges with single edges; deleting
nodes with indegree-0 and outdegree-1 [17].

hybridization number of these two trees is indeed 2.

Observation 1 and Lemma 1 show that, in an ST-collapsed cluster set, there always exists at
least one taxon x such that r(C \ {x}) = r(C) − 1, and that this is the best possible decrease in
reticulation number. If we somehow locate such an x (it does not matter which one), construct
C \ {x}, compute its maximal ST-sets, collapse them, and then repeat this until we obtain a
compatible set of clusters, we are actually constructing a minimum-length ST-set tree sequence
(S1, . . . , Sr(C)) of C. (Note that the actual Si can easily be obtained by reversing any collapsing
operations). Such a sequence not only tells us r(C), it also instructs us how to construct in polyno-
mial time a network N which represents all the clusters in C such that r(C) = r(N) [17, Theorem
3]. Less obviously, it also tells us how to construct a network N with r(N) = r(C) = h(T) which
displays the two trees that C came from:

Lemma 2. Let C = Cl(T) be a set of clusters on X , where T = {T1, T2} is a set of two trees on
X . Let (S1, . . . , Sp) be an ST-set tree sequence of C. Then in polynomial time we can construct a
network N that displays binary refinements of T1 and T2 such that r(N) = p.

Proof. (Figure 4 shows a slightly stylized example of the following). Let X0 = X and let Xi =
Xi−1 \ Si, for 1 ≤ i ≤ p. Define Ci = C|Xi, for 0 ≤ i ≤ p. By assumption, the clusters in Cp
can be represented by a tree. This is equivalent to saying that T1|Xp and T2|Xp have a common
refinement. We construct in polynomial time an arbitrary binary tree T on Xp that displays these
clusters; T will also be a common binary refinement of T1|Xp and T2|Xp. Let T = Np. We now
show how to construct a network Ni−1 that displays binary refinements of T1|Xi−1 and T2|Xi−1,
given an arbitrary network Ni that displays binary refinements of T1|Xi and T2|Xi, for 1 ≤ i ≤ p.
By definition, Si is an ST-set of Ci−1. Si thus corresponds to a common pendant subtree of T1|Xi−1
and T2|Xi−1, and indeed T1|Xi and T2|Xi are exactly the trees obtained by pruning Si from T1|Xi−1
and T2|Xi−1. So, reversing this pruning means that T1|Xi−1 and T2|Xi−1 can be obtained from
T1|Xi and T2|Xi (respectively) by re-grafting Si at a particular vertex or edge. Specifically, let T ∗

be an arbitrary binary tree that represents Ci−1|Si, this will also be a common binary refinement
of the common pendant subtree Si. Now, Ni−1 can be obtained from Ni by extending the images
of T1|Xi and T2|Xi inside Ni as follows: we introduce T ∗ below a new reticulation and attach
this reticulation at (or, if necessary, slightly above) the two aforementioned re-grafting points.
There are some small technicalities (such as the need for a “dummy root” [17]) but we omit these
details.

ag

ag

d e

f

a
g

d e

f

b c

(a)

(b) (c)

Fig. 4. A demonstration of the construction described in Lemma 2. The trees in Figure 3(a)
and (b) have a minimum-length ST-set tree sequence ({b, c}, {d, e, f}) and here we show how to
construct a network N with r(N) = 2 that displays binary refinements of both these trees, by
re-introducing the elements of the ST-set tree sequence in reverse order.

Corollary 1. Let C = Cl(T) be a set of clusters on X , where T = {T1, T2} is a set of two trees
on X . Let N be a network on X that represents all the clusters in C. Then in polynomial time we
can construct a network N ′ that displays binary refinements of T1 and T2 such that r(N ′) ≤ r(N).

Proof. If N is a tree we can simply take a binary refinement of N and we are done. Otherwise,
N contains at least one SBR. The taxa in an SBR form an ST-set. So if we identify an SBR of N
(which can easily be done in polynomial time), remove it (and tidy up in the usual fashion), and
repeat this until we obtain a tree, we obtain an ST-set tree sequence of length at most r(N). (It
will be less than r(N) if removing some SBR causes more than one reticulation to disappear from
the network when tidying up). This dismantling of N is described in more detail in [17, Lemma
7]. We can then apply Lemma 2 to construct the network.

Lemma 2 and Corollary 1 allow us for the remainder of the article to focus only on clusters.

4 Terminals

As we have seen, computing r(C) (and an accompanying optimal network) essentially boils down
to repeatedly identifying some taxon x such that r(C \ {x}) = r(C)− 1. The key to attaining fixed
parameter tractability is to construct a “small” X ′ ⊆ X which is guaranteed to contain at least
one such taxon x. This brings us to the following concept.

Given a cluster set C and x, y ∈ X , we write x →C y if and only if every non-singleton clus-
ter in C containing x, also contains y2. We say that a taxon x ∈ X is a terminal if there does not
exist x′ ∈ X such that x 6= x′ and x→C x′.

Observation 2. Let C be an ST-collapsed set of clusters on X such that r(C) ≥ 1. Then the
relation →C is a partial order on X , the terminals are the maximal elements of the partial order
and each non-singleton cluster of C contains at least one terminal.

Proof. The relation→C is clearly reflexive and transitive. To see that it is anti-symmetric, suppose
there exist two elements x 6= y ∈ X such that x→Cy and y→Cx. Then we have that, for every
non-singleton cluster C ∈ C, C∩{x, y} is either equal to ∅ or {x, y} i.e. C is compatible with {x, y}.
Furthermore, the only clusters that can possibly be in C|{x, y} are {x}, {y} and {x, y} and these
are all mutually compatible. So {x, y} is an ST-set, contradicting the fact that C is ST-collapsed.
Hence →C is a partial order. The fact that the terminals are the maximal elements of the partial
order then follows immediately from their definition. Finally, observe that a non-singleton cluster
C must contain at least one terminal, because if it does not then the relation →C induces a cycle
on some subset of C, contradicting the aforementioned anti-symmetry property.

Let T be a phylogenetic tree on X . For a vertex u of T we define X (u) ⊆ X to be the set of
all taxa that can be reached from u by directed paths. For a taxon x ∈ X we define WT (x), the
witness set for x in T , as X (u) \ {x}, where u is the parent of x. A critical property of WT (x) is
that, for any non-singleton cluster C ∈ Cl(T) that contains x, WT (x) ⊆ C [17].

Observation 3. Let C = Cl(T) be a set of clusters on X , where T = {T1, T2} is a set of two
trees on X with no non-trivial common pendant subtrees, and r(C) ≥ 1. Then for any x ∈ X the
following statements are equivalent: (1) x is a terminal of C; (2) there exist incompatible clusters
C1, C2 ∈ C such that C1 ∩ C2 = {x}; (3) WT1(x) ∩WT2(x) = ∅.

Proof. We first prove that (2) implies (1). For x′ 6∈ C1∪C2 it holds that x 6→Cx′, because x ∈ C1 but
x′ 6∈ C1. For x′ ∈ C1 \ C2 it cannot hold that x→Cx′, because x ∈ C2 but x′ 6∈ C2, and this holds
symmetrically for x′ ∈ C2 \C1. Hence x is a terminal. We now show that (1) implies (3). Suppose
(3) does not hold. Then there exists some taxon x′ ∈ WT1(x) ∩WT2(x). So every non-singleton
cluster in C that contains x also contains x′, irrespective of whether the cluster came from T1 or

2 Note that, if a taxon x appears in only one cluster, {x}, then (vacuously) x→Cy for all y 6= x.

T2. But then x→Cx′, so (1) does not hold. Hence (1) implies (3). Finally, we show that (3) implies
(2). Note that (3) implies that in both T1 and T2 the parent of x is not the root. If this was not
so, then (wlog) WT1(x) = X \ {x}, and combining this with the fact that WT1(x),WT2(x) 6= ∅
would contradict (3). Hence WT1(x) ∪ {x} ∈ Cl(T1) and WT2(x) ∪ {x} ∈ Cl(T2), from which (2)
follows.

For two nodes u 6= v in a network we define a tree path from u to v as a directed path that
starts at u and ends at v such that all interior nodes of the path are tree nodes. This definition
includes the possibility that u and/or v are reticulation nodes, this will be clear from the specific
context. Observe that if x 6= y are taxa in a network N that represents a set of clusters C and
there is a tree path from the parent of x to y, then x→Cy. The set of nodes reachable by a tree
path from u is the set of all v 6= u such that there is a tree path from u to v.

Lemma 3. Let C be an ST-collapsed set of clusters on X such that r(C) ≥ 1. Then C has at most
3 · r(C) terminals.

Proof. Let N be a network on X such that N represents C and r(N) = r(C). Without loss of
generality we can assume N is binary. For each x ∈ X , exactly one of the following conditions
holds: (1) the parent of x in N is a reticulation; (2) the parent of x in N is not a reticulation
but there is a directed path from the parent of x in N to a reticulation. To see this observe
that if neither condition holds then N contains an edge (u, v) such that at least two taxa, but
no reticulations, are reachable by directed paths from v. But then C contains a non-singleton
ST-set, contradiction. Let R(N) be the reticulation nodes in N . Let Ω(C) ⊆ X denote the set of
terminals of C. We describe a function F : Ω(C)→ R(N) such that each reticulation is mapped to
at most 3 times, from which the result follows. For each terminal x for which condition (1) holds,
F (x) = p(x), where p(x) is the parent of x. For each terminal x for which condition (2) holds,
choose a reticulation r such that there is a tree path from p(x) to r, and set F (x) = r. Note that
there cannot ever be a tree path from p(x) to y if x 6= y are both terminals, because this would
mean x→Cy. Now, it follows that a reticulation can be mapped to (in F) in at most 3 ways: from
a terminal immediately below it and from one terminal per incoming edge.

Corollary 2. Let C be an ST-collapsed set of clusters on X such that r(C) ≥ 1. Any subset of
terminals with cardinality 2 ·r(C)+1 or higher, contains at least one taxon x such that r(C \{x}) <
r(C).

Proof. From the proof of Lemma 3 we observe that in any subset of 2 · r(C) + 1 terminals, there
exists at least one taxon x for which condition (1) holds. Hence x is an SBR and (as argued in
Observation 1) r(C \ {x}) < r(C).

5 Main result

For a reticulation r in a network N , let X t(r) be the set of all taxa that can be reached by tree
paths from r. For example, if we label the reticulations in the network in Figure 2 r1, r2, r3, from
left to right, X t(r1) = {b},X t(r2) = {c} and X t(r3) = {e}. The following lemma shows that an
optimal network cannot contain a reticulation r such that X t(r) = ∅.

Lemma 4. Let C = Cl(T) be a set of clusters on X , where T = {T1, T2} is a set of two trees
on X with no non-trivial common pendant subtrees, and r(C) ≥ 1. Let N be a network on X that
represents C and let r be a reticulation of N such that X t(r) = ∅. Then r(C) < r(N).

Proof. Let Rt(r) be the set of reticulations in N reachable by tree paths from r. Now, consider
the technique described in the proof of Corollary 1 for dismantling N by removing one SBR at a
time. All reticulations in Rt(r) will be pruned away at an iteration that is earlier than or equal to
the iteration in which r is pruned away. Moreover, due to the fact that Xt(r) = ∅ - that is, there
are no taxa “sandwiched” between r and Rt(r) - there definitely exists r′ ∈ Rt(r) such that r′ and

r both vanish in the same iteration. But this means that the technique produces an ST-set tree
sequence of length strictly less than r(N), which (by Lemma 2, or [17, Theorem 3]) implies the
existence of a network N ′ that represents C such that r(N ′) < r(N).

Corollary 3. Let C = Cl(T) be a set of clusters on X , where T = {T1, T2} is a set of two trees
on X with no non-trivial common pendant subtrees, and r(C) ≥ 1. Let N be a network on X that
represents C such that r(N) = r(C) and let r be a reticulation of N such that X t(r) = {x} for
some x ∈ X . Then r(C \ {x}) = r(C)− 1.

Proof. If x is an SBR the result is immediate. Otherwise, if x is deleted from N , then a network N ′

is obtained such that N ′ represents C \{x} and, in N ′, X t(r) = ∅. By Lemma 4 r(C \{x}) < r(N ′).
The result follows because r(N ′) = r(N) = r(C).

For a network N , we say that a switching of N is obtained by, for each reticulation node,
deleting all but one of its incoming edges. The red subtrees in Figure 2 are switchings. A network
N on X displays a tree T on X if and only if there is a switching TN of N such that T can be
obtained from TN by suppressing nodes with indegree and outdegree equal to one (and if necessary
deleting nodes with indegree 0 and outdegree 1). Hence, each switching is the “image” in N of some
tree displayed by N . Indeed, the following definitions are entirely consistent with the definition
of cluster representation given in Section 2. Given a network N and a switching TN of N , we say
that an edge (u, v) of N represents a cluster C w.r.t. TN if (u, v) is an edge of TN and C is the set
of taxa descendants of v in TN . It is natural to define that an edge (u, v) of N represents a cluster
C if there exists some switching TN of N such that (u, v) represents C w.r.t TN .

We say that a cluster C ∈ C is minimal if it is a non-singleton cluster such that there does not
exist a non-singleton cluster C ′ ∈ C with C ′ ⊂ C.

Lemma 5. Let C = Cl(T) be a set of clusters on X , where T = {T1, T2} is a set of two trees
on X with no non-trivial common pendant subtrees, and r(C) ≥ 1. There exists a minimal cluster
C ∈ C such that, for at least |C| − 1 of the taxa x in C, r(C \ {x}) = r(C)− 1.

Proof. Let N be a binary network that represents C such that r(C) = r(N). Let e = (u, v) be an
edge of N that represents some non-singleton cluster of C such that there does not exist another
edge e′ = (u′, v′) reachable from e with this property (where reachable here means: there is a
directed path from v to u′). Hence e is a “lowest” edge that represents a non-singleton cluster.
Let C ∈ C be a non-singleton cluster represented by e. We will prove that at least |C| − 1 taxa x
in C have the property r(C \ {x}) = r(C)− 1. Observe that this property will then automatically
also hold for all non-singleton clusters C ′ ⊂ C, in particular minimal C ′, from which the claim
will follow.

By definition e = (u, v) is an edge of some switching TN of N such that C is equal to the set of
taxa descendants of v in TN . Fix any such TN . Observe firstly that if there is a directed path in TN
from v to some reticulation r, then X t(r) ⊆ C. The next statement is critical. Suppose there is a
tree node v′ which is reachable in TN by a directed path from v. Suppose furthermore that, in TN ,
the set of all taxa X ′ reachable from v′ by tree paths (in TN) has cardinality exactly 2. We show
that this situation cannot actually happen. To see this, let {y, z} be the taxa in X ′. By assumption
{y, z} is not an ST-set, because C is ST-collapsed. Hence there must exist a non-singleton cluster
C∗ ∈ C such that without loss of generality C∗ ∩ {y, z} = {y}. Now, C∗ must be represented by
some edge e′ = (u′, v′) of N . Moreover, e′ must lie somewhere on the tree path from v′ to y in
TN . However, u′ is then reachable by a directed path from v, contradicting our claim that e was
“lowest”. So such an X ′ does not exist. Now, suppose that r is a reticulation in TN such that (1) r
can be reached in TN by a directed path from v, (2) two or more taxa can be reached in TN from
r by tree paths. Due to the fact that N is binary, there must exist a tree node v′ reachable in TN
by a tree path from r, such that {x, y} are the only two taxa reachable from v′ by tree paths in
TN . We have already concluded, however, that this is not possible. Hence we can infer that, if r
is a reticulation in TN such that r can be reached by a directed path from v, |X t(r)| = 1. This,

in turn, means that with one possible exception (because there can be at most one taxon in C
reachable in TN from v by a tree path) each taxon x ∈ C is such that X t(r) = {x} for some r i.e. x
is either an SBR or is the unique taxon “sandwiched” between several reticulations. By Corollary
3 we are done.

An immediate consequence of Lemma 5 is that if we could identify the minimal cluster C, it
would be sufficient to restrict our attention to an arbitrary size-2 subset of it: we could still be
sure that at least one of the the taxa x is such that r(C \ {x}) = r(C)− 1. This is the motivation
behind the following theorem.

Theorem 1. Let C = Cl(T) be a set of clusters on X , where T = {T1, T2} is a set of two trees on
X with no non-trivial common pendant subtrees, and r(C) ≥ 1. Let X ′ ⊆ X be the set constructed
as follows. If there are strictly more than 2 · r(C) terminals in C, let X ′ be an arbitrary subset
of the terminals of cardinality 2 · r(C) + 1. Otherwise, for each minimal cluster C ∈ C, put two
arbitrary taxa from C in X ′, of which at least one is a terminal. Then |X ′| ≤ 6 · r(C) and there
exists x ∈ X ′ such that r(C \ {x}) = r(C)− 1.

Proof. The first way of constructing X ′ is correct by Corollary 2. Let us then assume that there
are at most 2 · r(C) terminals. Recall that each (minimal) cluster contains at least one terminal,
by Observation 2. A terminal can appear in at most one minimal cluster from T1, and at most one
minimal cluster from T2. Consider the following mapping from X ′ to itself. Map each terminal to
itself. For each non-terminal y ∈ X ′, map y (arbitrarily) to a terminal x ∈ X ′ such that x and y
are both in some minimal cluster of C. In this mapping, a terminal can be mapped onto at most
3 times (i.e. from itself and at most two non-terminals). Hence |X ′| ≤ 6 · r(C).

6 The algorithm

We describe the algorithm non-deterministically to keep the exposition as clear as possible.

Input: Two trees T = {T1, T2} on the same set of taxa X .
Output: A network N that displays binary refinements of T1 and T2 such that r(N) = h(T).

Algorithm 1

1: set C := Cl(T)
2: guess r = h(T) = r(C)
3: for i := r downto 1 do
4: collapse all maximal ST-sets (i.e. maximal common pendant subtrees) in C to obtain a set of clusters

C′
5: if C′ contains more than 2i terminals then
6: set X ′ to be an arbitrary size 2i + 1 subset of the terminals
7: else
8: construct X ′ by taking two taxa from each minimal cluster of C′, such that at least one of each

pair is a terminal
9: end if

10: guess an element x ∈ X ′ such that r(C′ \ {x}) = r(C′)− 1 and record that xr−i+1 := x
11: set C := C′ \ {x}
12: end for
13: convert the sequence (x1, . . . , xr) into the ST-set tree sequence S = (S1, . . . , Sr) of C by decollapsing

taxa
14: use S to construct a binary network N with r(N) = h(T) that displays binary refinements of T1 and

T2 (see Lemma 2).

The correctness of the algorithm is primarily a consequence of Lemma 5 and Corollary 2. If we let

r = r(C), the running time is at most (6rr!) · r · poly(n) where n = |X |. The single r term comes
from line 2. The (6rr!) term is a consequence of Theorem 1; |X ′| never rises above 6r, and each
iteration of the main loop is assumed to reduce the reticulation number by 1, giving a running
time of at most (6r)(6(r − 1))(6(r − 2)) . . . = 6rr!. The poly(n) term includes operations such
as computing terminals, locating minimal clusters and collapsing maximal ST-sets; the first two
operations are clearly polynomial-time because C(T) ≤ 4(n− 1) (which follows from the fact that
a tree on n taxa contains at most 2(n − 1) edges). In fact, the most time-consuming operation
inside the poly(n) term is collapsing maximal ST-sets (i.e. maximal common pendant subtrees).
In [17, Lemma 5] a naive O(n4) algorithm is given for this although with intelligent use of data
structures and exploiting the fact that C comes from two trees O(n2) is certainly possible without
too much effort. Finally, we note that the single r term can be absorbed, if necessary, into the
poly(n) term to give (6rr!) · poly(n), because (trivially) r ≤ n.

7 Acknowledgements

We gratefully acknowledge Jean Derks and Nela Lekic for their helpful comments concerning an
earlier version of this article. We also thank Simone Linz and Leo van Iersel for useful discussions.

References

1. B. Albrecht, C. Scornavacca, A. Cenci, and D.H. Huson. Fast computation of minimum hybridization
networks. Bioinformatics, 28(2):191–197, 2012.

2. M. Baroni, S. Grünewald, V. Moulton, and C. Semple. Bounding the number of hybridisation events
for a consistent evolutionary history. Journal of Mathematical Biology, 51:171–182, 2005.

3. M. Baroni, C. Semple, and M. Steel. A framework for representing reticulate evolution. Annals of
Combinatorics, 8:391–408, 2004.

4. M. Bordewich, S. Linz, K. St. John, and C. Semple. A reduction algorithm for computing the hy-
bridization number of two trees. Evolutionary Bioinformatics, 3:86–98, 2007.

5. M. Bordewich and C. Semple. Computing the minimum number of hybridization events for a consistent
evolutionary history. Discrete Applied Mathematics, 155(8):914–928, 2007.

6. Z-Z. Chen and L. Wang. Hybridnet: a tool for constructing hybridization networks. Bioinformatics,
26(22):2912–2913, 2010.

7. J. Collins, S. Linz, and C. Semple. Quantifying hybridization in realistic time. Journal of Computa-
tional Biology, 18:1305–1318, 2011.

8. J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
9. O. Gascuel, editor. Mathematics of Evolution and Phylogeny. Oxford University Press, Inc., 2005.

10. O. Gascuel and M. Steel, editors. Reconstructing Evolution: New Mathematical and Computational
Advances. Oxford University Press, USA, 2007.

11. D. H. Huson and S. Linz. Computing minimum hybridization networks from real phylogenetic trees.
Submitted, 2012.

12. D. H. Huson, R. Rupp, V. Berry, P. Gambette, and C. Paul. Computing galled networks from real
data. Bioinformatics, 25(12):i85–i93, 2009.

13. D. H. Huson, R. Rupp, and C. Scornavacca. Phylogenetic Networks: Concepts, Algorithms and Appli-
cations. Cambridge University Press, 2010.

14. D. H. Huson and C Scornavacca. A survey of combinatorial methods for phylogenetic networks.
Genome Biology and Evolution, 3:23–35, 2011.

15. D.H. Huson and C. Scornavacca. Dendroscope 3 - a program for computing and drawing rooted
phylogenetic trees and networks. In preparation. Software available from: www.dendroscope.org,
2011.

16. S. M. Kelk and C. Scornavacca. Constructing minimal phylogenetic networks from softwired clusters is
fixed parameter tractable, 2011. Submitted, preprint available at http://arxiv.org/abs/1108.3653.

17. S. M. Kelk, C. Scornavacca, and L. J. J. van Iersel. On the elusiveness of clusters. IEEE/ACM Trans.
Comput. Biology Bioinform., 9(2):517–534, 2012.

18. S. M. Kelk, L. J. J. van Iersel, S. Linz, N. Lekic, C. Scornavacca, and L. Stougie. Cycle killer... qu’est-ce
que c’est? on the comparative approximability of hybridization number and directed feedback vertex
set. Submitted, 2012.

http://arxiv.org/abs/1108.3653

19. S. Linz and C. Semple. Hybridization in non-binary trees. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 6(1):30–45, 2009.

20. D. A. Morrison. An introduction to phylogenetic networks. RJR Productions, 2011. Available from
http://www.rjr-productions.org/Networks/.

21. L. Nakhleh. The Problem Solving Handbook for Computational Biology and Bioinformatics, chapter
Evolutionary phylogenetic networks: models and issues. Springer, 2009.

22. C. Semple. Reconstructing Evolution - New Mathematical and Computational Advances, chapter Hy-
bridization Networks. Oxford University Press, 2007.

23. C. Semple and M. Steel. Phylogenetics. Oxford University Press, 2003.
24. L. J. J. van Iersel. New version of phylogenetic network software, 2012. Webpage, accessed 25th July

2012: http://phylonetworks.blogspot.nl/2012/06/new-version-of-phylogenetic-networks.

html.
25. L. J. J. van Iersel and S. M. Kelk. When two trees go to war. Journal of Theoretical Biology,

269(1):245–255, 2011.
26. L. J. J. van Iersel, S. M. Kelk, R. Rupp, and D. H. Huson. Phylogenetic networks do not need to be

complex: Using fewer reticulations to represent conflicting clusters. Bioinformatics, 26:i124–i131, 2010.
Special issue: Proceedings of Intelligent Systems for Molecular Biology 2010 (ISMB2010), 10th-13th
September 2010, Boston USA.

27. C. Whidden, R. G. Beiko, and N. Zeh. Fixed-parameter and approximation algorithms for maximum
agreement forests. Submitted, preliminary version arXiv:1108.2664v1 [q-bio.PE].

http://www.rjr-productions.org/Networks/
http://phylonetworks.blogspot.nl/2012/06/new-version-of-phylogenetic-networks.html
http://phylonetworks.blogspot.nl/2012/06/new-version-of-phylogenetic-networks.html

	A simple fixed parameter tractable algorithm for computing the hybridization number of two (not necessarily binary) trees
	Teresa Piovesan, Steven Kelk

