1432

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL.9, NO.5, SEPTEMBER/OCTOBER 2012

Hierarchical Motif Vectors for Prediction of
Functional Sites in Amino Acid Sequences
Using Quasi-Supervised Learning

Bilge Karacali

Abstract—We propose hierarchical motif vectors to represent local amino acid sequence configurations for predicting the functional
attributes of amino acid sites on a global scale in a quasi-supervised learning framework. The motif vectors are constructed via wavelet
decomposition on the variations of physico-chemical amino acid properties along the sequences. We then formulate a prediction
scheme for the functional attributes of amino acid sites in terms of the respective motif vectors using the quasi-supervised learning
algorithm that carries out predictions for all sites in consideration using only the experimentally verified sites. We have carried out
comparative performance evaluation of the proposed method on the prediction of N-glycosylation of 55,184 sites possessing the
consensus N-glycosylation sequon identified over 15,104 human proteins, out of which only 1,939 were experimentally verified N-
glycosylation sites. In the experiments, the proposed method achieved better predictive performance than the alternative strategies
from the literature. In addition, the predicted N-glycosylation sites showed good agreement with existing potential annotations, while
the novel predictions belonged to proteins known to be modified by glycosylation.

Index Terms—Functional attribute prediction, hierarchical motif vectors, protein sequence analysis, quasi-supervised learning.

1 INTRODUCTION

UNDERSTANDING structural and functional properties of
proteins from large amounts of quantitative data with
statistical reliability requires techniques from statistical
learning theory just as understanding any other phenomenon
bearing uncertainty [1]. In spite of this close association of
bioinformatics with statistical learning, a wide scale inclusion
of general-purpose learning algorithms into bioinformatics
and computational biology has been hampered due to a
critical shortcoming of the sequence data: while the sequence
data are digital and can be stored using alpha-numeric codes
in a computer environment, it is not numeric in and of itself.
As statistical learning algorithms model data instances, or
samples, as vectors in a vector space of observations,
sequence data cannot be readily subjected to the variety of
algorithms in store in the statistical learning literature.
Several studies have addressed this problem by calculat-
ing numeric features on the composition and the configura-
tion of nucleic acid or amino acid sequences for protein
classification. One strategy is to compute histograms of
nucleic acid bases or amino acid residues occupying a
succession of sites, as in amino acid and dipeptide composi-
tions [2], [3], [4]. The frequency of critical tripeptides,
tetrapeptides, and pentapeptides have also been considered
for protein characterization via n-gram analysis [5], [6], [7].
Several issues limit the efficacy of the frequency histograms in
protein understanding, however, such as the combinatorial

e The author is with the Department of Electrical and Electronics
Engineering, Izmir Institute of Technology, Giilbahge, 35430 Urla Izmir,
Turkey. E-mail: bilgekaracali@iyte.edu.tr.

Manuscript received 26 Aug. 2011; revised 14 Mar. 2012; accepted 27 Apr.
2012; published online 8 May 2012.

For information on obtaining reprints of this article, please send e-mail to:
tcbb@computer.org, and reference IEEECS Log Number TCBB-2011-08-0219.
Digital Object Identifier no. 10.1109/TCBB.2012.68.

1545-5963/12/$31.00 © 2012 IEEE

nature of the letter groups and their inability to characterize
long-range dependencies that are important especially in
secondary structure prediction [8], [9].

An alternate strategy toward the same end computes
scalar attributes for amino acid sequences by converting
them into numeric sequences using physico-chemical prop-
erties of amino acids [10], [11], [12]. While these attributes can
provide very rich descriptions of amino acid sequences, their
global nature introduces a risk of overlooking the presence of
critical subsequences, whose effects can be concealed,
dominated by the remaining parts of the amino acid
sequence. In addition, even when accurate predictions are
obtained, the molecular cues exploited by the predictors
remain obscure as the features are derived from complex
applied mathematics formulas.

Determination of amino acid subsequences that may bear
functional significance has been addressed in the literature
in terms of sequence motifs. A large number of computa-
tional algorithms have been used to trace the repeated amino
acid combinations within protein subgroups for sequence
motif discovery. Among the most notable of these algorithms
is the MEME method [13], [14] that searches for contiguous
blocks repeated across the amino acid sequences of a given
set of proteins using a probabilistic motif model and the
Expectation-Maximization algorithm [15]. The motifs dis-
covered by such methods are collected into public databases
such as MnM [16], ELM [17], Prosite [18], [19], [20], CDART
[21], RPSBLAST [22], and BLIMPS [23]. Several databases
keep and continuously update detailed records of protein
families identified through conserved amino acid patterns
such as InterPro [24], PFAM [25], SMART [26], [27], and
PROSITE [28].

Supervised classification methods can be employed for
functional site identification by defining distance measures
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between local amino acid patterns, such as sequence
identity [29]. These methods construct decision rules to
separate the patterns that possess a specific characteristic
from the others, using a collection of patterns for which the
correct decisions are already known [30]. In the prediction
of glycosylation sites, for instance, online protein databases
provide up-to-date lists of sites that are experimentally
verified to be glycosylated [31]. The data sets, however, do
not provide a complementary list of sites that are experi-
mentally verified to lack glycosylation.

One option, then, is to gather the sites in proteins that are
not modified by glycosylation, such as mouse interleukin-3
(P01586) [32], [33]. Another is to collect the nonglycosylated
sites in glycosylated proteins [29], [34]. The essential
problem in both cases is poor characterization of the sites
lacking glycosylation: the small number of sites collected in
this manner cannot be expected to adequately characterize
the actual nonglycosylated sites across large protein sets.
Finally, it is also possible to improvise true-negative data
sets from the sites that are not annotated to be modified by
glycosylation [35], albeit at an even higher risk of mis-
representation: these sites may in fact be positive glycosyla-
tion sites yet in line to be identified as such.

To complicate the matter further, the true positive data
sets are not exempt from errors either. Protein databases
continuously evolve with new findings that occasionally
alter the existing annotations. For instance, the site at
position 271 on alphal-antitrypsin (P01009), used pre-
viously as a true negative site for glycosylation [36], [37],
is now annotated to be a positive glycosylation site in the
UniProt Knowledgebase database. In another instance, 4F2
cell-surface antigen heavy chain (P08195) has glycosylation
annotations at six sites in the UniProt Knowledgebase
database release July 2010, revised down to 4 in release
January 2011. These examples illustrate that the molecular
biology data are inherently noisy and subject to change in
time, and statistical learning algorithms that require
absolute examples to train on are bound to suffer in
structural or functional prediction tasks.

In this paper, we propose a novel computational method
for predicting functional attributes of sites along amino acid
sequences on a global scale using only the sites that have been
experimentally verified to possess the functional attribute of
interest. To this end, we first compute hierarchical motif
vectors as novel descriptors of local amino acid configura-
tions that encode the short, mid, and long-range variations in
physico-chemical composition around each site along amino
acid sequences using the wavelet decomposition [38], [39].
We then carry out statistical learning over the motif vectors of
all sites under consideration for the specific functional
attribute using the quasi-supervised learning algorithm that
identifies the sites that are likely to possess the functional
attribute among all prospective sites based only on the motif
vectors of the experimentally verified sites [40]. In experi-
ments, the quasi-supervised learning algorithm identified the
likely N-glycosylation sites among all candidates possessing
the consensus sequon across all human proteins based on
their motif vectors, and achieved a higher predictive
performance than existing N-glycosylation prediction meth-
ods from the literature. This paper represents the first
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TABLE 1
Units Statistics of the Protein Sequence Data Used in the Study

Number of entries in the original dataset 524420
Number of human proteins 20252
Number of proteins with no unidentified sites 20187
(working set)

Total number of sites in the working set 11227834
Average sequence length per protein in the 556.1913

working set

The sequence data was downloaded from the Uniprot/Swiss-Prot
Knowledgebase, release January 2011.

application of the quasi-supervised learning strategy in the
field of computational biology and bioinformatics.

Details of motif vector construction from amino acid
sequences are provided in the next section along with a
brief summary of the quasi-supervised learning paradigm
as well as its application to N-glycosylation prediction. The
experiment results are shown in Section 3, followed by
concluding remarks in Section 4.

2 METHODS

In this section, we first describe the amino acid sequence data
used in this study and elaborate on the construction of
hierarchical motif vectors. Then, we briefly summarize the
quasi-supervised learning paradigm for pattern recognition
and its application to the recognition of N-glycosylation sites
using motif vectors. Finally, we elucidate the procedure we
have used to carry out the comparative performance
evaluation of the proposed functional prediction method
against possible alternatives from the existing literature.

2.1 Sequence Data

The sequence data of all known human proteins were
obtained from the UniProt/Swiss-Prot Knowledgebase
(http:/ /www.uniprot.org/), release of January 2011. The
data set was then parsed twice, first to extract the human
protein data, and a second time to load the data into the
Matlab mathematical analysis environment (The Math-
Works, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098,
USA) for subsequent processing. The statistics of the
resulting sequence data is summarized in Table 1.

2.2 Construction of Hierarchical Motif Vectors

The hierarchical motif vectors were computed from amino
acid sequences of human proteins using the physico-
chemical properties associated with each amino acid. These
properties were obtained from the publicly available
APDbase data set [41] (accessible at the web address
http:/ /www.rfdn.org/bioinfo/ APDbase/) providing a col-
lection of 243 properties from the literature for the 20
naturally occurring amino acids. The computation of the
hierarchical motif vectors relied on constructing numeric
property sequences from amino acid sequences by repla-
cing the amino acids in a sequence with a select physico-
chemical property, and subjecting it to a wavelet decom-
position. The wavelet decomposition effectively separated
the variations in the select property along the amino acid
sequence at varying ranges or scales.
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Fig. 1. Computation of the approximation and detail property sequences
via wavelet decomposition.
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Details of the wavelet decomposition can be found in the
vast literature on the topic (see [38] and the references
contained therein). Briefly, given a numeric sequence s(n) of
a select property along a given amino acid sequence, the
wavelet decomposition computes the coefficients a;; and
d; ; that satisfy the equality

J n; ny
s(n) = Z d; jbij(n) + Zai,.fl/)i,.l(”) (1)
=1 =1 i=1
for scales j=1,2,...,.J, where J denotes the maximum

scale of the decomposition, ¢ indexes the wavelet coeffi-
cients at the corresponding scale, and n denotes the site
position along the sequence. The functions ¢ and ¢
represent the so-called mother and father wavelets. The
mother wavelet, ¢, allows generating all the subsequent
wavelets ¢; ; by scaling and shifting along the sequence. The
father wavelet, ¢, accompanies the mother wavelet and
ensures that the slow varying components in the numeric
sequence discarded by the wavelets ¢; ; are preserved in the
representation. The coarsest approximation property se-
quence s%(n) given by

sy(n) = Z]:ai‘ﬂ/)m/(n) (2)

then represents the average value of the select property
along the sequence across a range of about 2’ sites, while

the detail property sequence s¢(n)

si(n) = Z: di i (n) (3)

represents the variations of the property along the sequence
across approximately 2/ sites wide neighborhoods (Fig. 1).
Note that in the multiscale organization of the approxima-
tion and detail property sequences, each level of decom-
position corresponds to a distinct level of a representation
hierarchy. In other words, the hierarchy in the representa-
tion in (1) draws directly from the wavelet decomposition
that separates the short, mid, and long-range variations
along the numeric property sequences.

The notion of a hierarchical motif vector rests on the
understanding that the vector

)= |} (4)

captures the configuration of the select property around site
n, and thus, is informative on the functional/structural
properties associated with the site n of the corresponding
amino acid sequence. The concatenation of all such vectors for
each of the 243 amino acid properties from the APDbase as
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Ws, (n)
ws, (1)

o= |, (5)

wszw (n)

then represents the most detailed description of the
physico-chemical organization around all sites across the
given amino acid sequence over a representation hierarchy,
hence the term hierarchical motif vectors. Similarly, the
approximations s{(n), s§(n),...,s%(n) can also be collected
into a column vector w?(n), combined with those of other
property sequences into an approximation motif vector
w’(n) providing an alternative perspective on the same
physico-chemical organization around the site n. To
distinguish between w(n) and w”(n), we termed the former
the decomposition motif vector and the latter the approximation
motif vector at site n.

Prior to the computation of the motif vectors, the amino
acid properties obtained from the APDbase were subjected
to a gamma normalization to have their values across the
20 amino acids cover the unit interval as uniformly as
possible, and thus, be comparable to each other in terms of
their respective dynamic ranges. The gamma normalization
entailed first scaling the observed property values p;,
D2, ..., D linearly so that

minp; = 1/21
2
and

maxp; = 20/21,
T

and then finding the coefficient v that minimizes the
functional

50 =53 (v -5) )

that assesses the discrepancy between the distribution of the
ordered property values p; taken to the power ~, {pzj) }, and
the uniform distribution within the unit interval. The
ordered property value p(; represents the ith smallest value
in the set {p;}. This normalization allows heavily one-sided
data distributions to effectively span their dynamic range.

2.3 Prediction of N-Glycosylation via
Quasi-Supervised Learning

The quasi-supervised learning paradigm addresses the
difficulties associated with obtaining ground-truth data
sets required for supervised learning in biomedical data
analysis tasks [40]. Briefly, for patterns {w;},i=1,2,..., P,
in one of two different collections Cj and C}, it computes
estimates for the posterior probabilities Pr{C | w;} and
Pr{C; | w;} that assess the relative likelihoods for a pattern
w; of belonging to Cy and C}, respectively. The framework is
especially powerful in cases where the collection Cj
represents patterns that all share a common property while
no knowledge is available on which patterns in C; also
share the same property. The algorithm can then identify
the C) patterns w that are likely to share the property in
consideration as those for which

Pr{Cy | w} = Pr{C} | w} = 0.5,
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while those that are exclusively specific to C; would be

Pr{C) |w} =1—-Pr{C; |w} <e¢,

characterized by
where € is a small number. Note that this makes quasi-

supervised learning fit the functional and/or structural site

prediction problem perfectly: motif vectors of the sites that
have been verified experimentally to possess a given

property, such as glycosylation, would be collected in Cp,
while the others in C; as a mixed bunch. The sites in C; with
motif vectors w for which the probability Pr{Cj | w;} is

discernibly higher than Pr{C} | w;} would then be predicted

to share the property of interest [40].

In order to evaluate the potential of motif vectors for
functional site prediction, we have addressed the problem
of predicting the glycosylation of all sites possessing the
consensus N-glycosylation sequon among amino acid
sequences of human proteins. The consensus sequon N-X-
S/T consists of an asparagine residue followed by any
amino acid X other than proline, and either a serine or a

threonine residue [42], [43]. A great majority of N-
glycosylation sites adhere to the consensus sequon, and

the exceptions are relatively scarce [44].
We have parsed the amino acid sequences of all human

Q
P 0D

Fig. 2. lllustration of a typical Pp-Pgy_p curve. The unknown fraction o of
glycosylated sites in C; causes the linear rise from the origin. The ideal
curve would attain the point (o, 1) and achieve an AUQ-C value of

the function 1(-) returns 1 if its argument holds true and 0

1-—a/2.
otherwise, and |Cy| and |C}| denote the number of vectors in
the respective collections. A good prediction performance
would be characterized by high detection rates Pp
accompanied with low quasi-detection rates Py_p. Note
that the quasi-detection rate Py_p is intrinsically related to
the rate Pp at which the N-glycosylation of the C; vectors
©)

proteins for which we computed the motif vectors and
identified the sites that possessed the consensus N-

glycosylation sequon. We then collected the motif vectors
of those that were experimentally validated for N-glycosy-
lation in a collection Cy, and the rest in C; along with the

ones annotated as probable or potential. Next, we have

carried out a modified version of the quasi-supervised
PQ, p=1-— PR.

learning algorithm to compute the probabilities Pr{C} | w} . .
and Pr{C; | w} for all motif vectors w. The modifications are rejected via
included technical considerations to prevent the large
discrepancy between the collection sizes from biasing the )
results, and are described in the Appendix, which can be Finally, we have also cc.)mpute'd the area under the
found on the Computer Society Digital Library at http:// Pp-Fy-p curve traced by letting F. increase gradually from
doi.ieeecomputersociety.org/10.1109/TCBB.2012.68. A Ma- 0to 1 as a third .performance measure, denoted by AUQ'C-
tlab implementation of the quasi-supervised learning A good separation between Co and C} would result in a
algorithm is distributed at the internet address http:// 1arge AUQ-C value, while poor separations WOl{ld produce
web.iyte.edu.tr/ ~bilgekaracali/Projects/QSL/. The sites of AUQ_'C values arognd 0.5. Note, howev'er, that since a good
C} vectors w for which Pr{C} | w} < P. were then predicted portion of the motif vectors in C; may in fact be associated
with true N-glycosylation sites, the AUQ-C measure is not
expected to attain a value of 1. Indeed, if a fraction « of the
sites in C) is glycosylated, the best AUQ-C measure would
reach 1— «a/2, representing an upper bound on the

as likely N-glycosylation sites, where P, represents a

decision threshold between 0 and 1.
We have used three measures to evaluate the separation

prediction performance (Fig. 2).
In addition to carrying out the quasi-supervised learning
algorithm separately for the decomposition and the
approximation motif vectors, we have also subjected the
motif vectors to feature selection prior to learning. First, we

between the known N-glycosylation vectors in Cj from
those in C) that are likely to be nonglycosylated. The first
measure, the probability of detection denoted by Pp,
computed the fraction of Cy vectors satisfying the condition
(7)

have computed utility scores u; via
Y |Col +1C1| =2 [pio — pi|
VUG = Doy + (1G] = 1),

for predicted glycosylation via
1
> 1(Pr{Cy |w} < P).

for all motif vector components indexed by i, in terms of the

Pp=——
‘CO| wel)

PQ*D/
1
Po-p =
|Cl‘ welC}

The second measure, termed the probability of quasi-detection,

> 1(Pr{Cy |w} < P.)

(8) sample means (o and p;);, and the sample variances 0?\0
and O’?ll across Cy and C,. The individual feature selection
strategy then chose the K features with the largest utility
scores. Second, we have computed a least squares affine fit

computed the fraction of C; vectors predicted to be N-
glycosylated like the Cj vectors. In the expressions above,
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to the log-likelihood ratio L(w) defined by

& W 4wy

(11)

Pr{C | w}

L(w) = log, Pr{Cy | w)

(12)
over the posterior probabilities provided by applying the
quasi-supervised learning algorithm on the full motif
vectors. The largest components of w?// in absolute value
then identified the features with the greatest contribution to
the log-likelihood ratio, through the affine feature selection.
Finally, we have computed the Fisher’s linear discriminant
vector wf

W = (S0 + 1) (ko — ),

where py and p; denote the means of the motif vectors,
respectively, in C; and C), and %, and X; are the
corresponding covariance matrices [30]. The plus sign in
the superscript denotes the pseudoinverse operation. Just as
before, the greater the component of the vector w'™ in
absolute value, the more significant the feature, and the
Fisher’s discriminant feature selection strategy then collected
the K top features.

(13)

2.4 Comparative Performance Evaluation

Carrying out a comparative performance evaluation of the
proposed method for predicting functional sites is proble-
matic for several reasons. The greatest difficulty is the lack of
samples experimentally verified to not possess the functional
attribute of interest. However, the prediction task addressed
here consists of samples that may potentially exhibit the
functional attribute accompanied only by samples that are
experimentally verified to do so. In the absence of samples
that can be wrong when predicted, the conventional
measures of precision rate and the recall rate used in
computational biology research to evaluate prediction
performance are meaningless. The only option then is to
derive measures of separation between the samples pre-
dicted to exhibit the functional attribute of interest and those
predicted otherwise among all samples lacking experimen-
tally verified functional annotation, as provided by the
measures Pp, Py_p or alternatively Pr, and AUQ-C.

Another difficulty stems from the novelty of the
functional site prediction problem without any information
of which samples lack the functional attribute. In the
specific instance of N-glycosylation prediction, all existing
methods improvise a collection of sites that presumably
lack glycosylation along with experimentally verified sites
into a training data set upon which they base their
predictions. Consequently, they are not applicable to the
data set analyzed by the proposed method. Conversely, as
the proposed method does not anticipate sites specified to
lack the functional attribute of interest, it would not receive
a fair comparison on the data sets used by the other
prediction algorithms.

The only remaining option, then, is to compare the
predictions produced by the proposed method against
those of the existing N-glycosylation prediction methods
on sites possessing the consensus N-glycosylation sequon.
We have considered the following methods to carry out
this comparison:

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL.9, NO.5, SEPTEMBER/OCTOBER 2012

1. NetNGlyc available publicly at the internet address

http:/ /www.cbs.dtu.dk/services/NetNGlyc/.

2. EnsembleGly available publicly at the internet

address http://turing.cs.iastate.edu/EnsembleGly/.

3. GPP available publicly at the internet address

http:/ /comp.chem.nottingham.ac.uk/glyco/.

Note that the working data set used here consists of
15,104 human proteins, amounting to a substantial compu-
tational load for these publicly available servers. In order to
test the predictions, we have therefore selected 100 proteins
randomly from the list of proteins that were not included in
the training of the prediction servers EnsembleGly and
GPP. The training data set of NetNGlyc server was not
available for download. We have then computed the Pp —
Py_p graphs for each set of predictions and computed the
respective AUQ-C measures for comparative performance
evaluation. In order to maintain comparability, we have
also reevaluated the predictions obtained by these sites
using the proposed method by limiting the computation of
the posterior probabilities to use the sites in the remaining
15,004 proteins only.

As a final performance evaluation of the proposed
method, we have also subjected the motif vector data
presented by the collections C, and C; to a support vector
machine classification presenting the collection C; of
undetermined sites to the classification algorithm as if they
were experimentally verified to lack glycosylation [45], [46].
For the nonlinearity, the Gaussian kernel given by

2
K(wi,w;) = exp (_ M) 7

202 (14)

was used where the optimal scale parameter o was
determined to minimize the number of support vectors
via line search. The computations were carried out using
the SVM"“"! software package available for download at the
internet address http:/ /svmlight.joachims.org/. As before,
the performance evaluation consisted of computing the
AUQ-C measures for the predictions.

3 RESsuLTS

The hierarchical motif vectors associated with the amino acid
sequences of the human proteins included in the study were
computed in the Matlab environment (Fig. 3). The wavelet
decomposition was carried out up to a maximal decomposi-
tion scale J = 7 using a Daubechies wavelet of order 4 [47].
Since the decomposition scale governs the amino acid
segment sizes over which the variations of the physico-
chemical properties are evaluated, the calculation of motif
vectors was restricted to those proteins with amino acid
sequences no shorter than 2/*! = 256aa within the working
set of human proteins, also excluding MUC16_HUMAN
(Q8WXI7) and TITIN_HUMAN (Q8WZ42) that possessed
amino acid sequences longer than 10,000 sites (22,152 and
34,350, respectively) in order to prevent the compositions of
these proteins from dominating the analysis. With these
exclusions, the number of human proteins included in the
analysis reduced to 15,104.

Parsing the amino acid sequences of these proteins
identified a total of 55,184 occurrences of the consensus
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Fig. 3. Wavelet decomposition of the normalized hydrophobicity scale
property sequence s(n) for ADA_HUMAN into detail sequences at
increasing scales s{(n),sd(n),...,sf(n), ending with the coarsest
approximation sequence s%(n), for n=1,2,...,363. Note that the
short-range variations are captured by the lower level detail sequences,
and the longer range variations by the higher level detail sequences.
This illustrates the hierarchy in the representation for the select property
via the wavelet decomposition.

N-glycosylation motif. Among these, 1,939 were experi-
mentally verified glycosylation sites in the UniProt
Knowledgebase data set excluding the potential and
probable glycosylation annotations. The motif vectors of
these sites constituted the C collection. The motif vectors
of the remaining 53,245 consensus sites were pooled into
the C; collection. The motif vector data were then linearly
normalized so that each feature exhibited unit standard
deviation across all motif vectors.

The quasi-supervised learning algorithm was carried out
on the motif vector data using the configurations described
in Section 2. The AUQ-C measures obtained for each
configuration revealed that the best separation of the motif
vectors associated with experimentally verified consensus
N-glycosylation sites in Cj and the unknown prospects in
C) is achieved using the Fisher’s discriminant features
selection on approximation motif vectors, at a value of
0.7708 using K = 150 features (Table 2). The corresponding
Pp-Py_p curve indicates that about 60 percent of the
consensus sites in C; can be rejected while maintaining
accurate prediction of 80 percent of the experimentally
verified N-glycosylation sites in C (Fig. 4).

The list of 100 proteins used in the comparative
performance evaluation experiments contained 368 sites
possessing the consensus N-glycosylation sequon, out of
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TABLE 2
AUQ-C Measures Associated with Different Predictor
Configurations
Decomposition motif vectors
no selection | K= 1944 0.6901
individual | affine Fisher’s disc.
K=5 0.6926 0.6999 0.7064
K=10 0.7056 0.7229 0.7285
feature K=20 0.7181 0.7387 0.7585
selection K =50 0.7372 0.7484 0.7637
K=100 | 0.7380 0.7420 0.7588
K=150 | 0.7427 0.7382 0.7579
K=170 | 0.7393 0.7365 0.7594
K=200 | 0.7347 0.7336 0.7561
K=500 | 0.7238 0.7262 0.7374
Approximation motif vectors
no selection | K= 1701 0.7297
individual | affine Fisher’s disc.
K=5 0.6926 0.7077 0.6971
K=10 0.7056 0.7205 0.7179
feature K=20 0.7193 0.7366 0.7564
selection K =50 0.7399 0.7593 0.7678
K=100 | 0.7419 0.7681 0.7642
=150 | 0.7374 0.7695 0.7708
K=170 | 0.7400 0.7690 0.7694
K=200 | 0.7384 0.7670 0.7693
K=500 | 0.7335 0.7526 0.7621
1 T T
09+
08+
0.7¢ : e - 1
06+
Q
a 05
04
03¢+
02} A ]
0.4 f
0

0O 01 02 03 04 05 06 07 08 09 1
PQ_D
Fig. 4. The Pp-Py_p curve associated with the best performing N-

glycosylation predictor configuration. The corresponding AUQ-C mea-
sure was 0.7708.

which only 19 were experimentally verified for glycosyla-
tion. For comparison purposes, AUQ-C measures were
computed on this limited data set from the predictions
provided by the NetNGlyc and the EnsembleGly servers as
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Fig. 5. The Pp-Py_p curves associated with the predictions by the
NetNGlyc and EnsembleGly servers along with the proposed method on
a limited data set of 100 proteins. The corresponding AUQ-C measures
were 0.5814, 0.6340, and 0.6918, respectively.

well as the proposed method, that were 0.5814, 0.6340, and
0.6918, respectively. In computing the predictions by the
proposed method, the quasi-supervised algorithm was
operated on the sites on the test proteins using those
corresponding to the remaining 15,004 proteins only.

The corresponding Pp-FPy_p curves in Fig. 5 indicate that
at the default thresholds for glycosylation scores, the
proposed method attained a much better separation of the
sites that are glycosylated from the undetermined sites,
correctly predicting 78.95 percent of the known glycosylation
sites while rejecting 52.44 percent among the 349 prospective
sites using P, = 0.5 as the prediction threshold. These rates
were 89.47 percent correct prediction at 28.65 percent
rejection for the NetNGlyc predictions and 100.00 percent
correct prediction at 2.58 percent rejection for the Ensem-
bleGly predictions. The GPP server provided predictions
only on 31 proteins out of the 100 submitted, containing
122 consensus N-glycosylation sites 19 of which were
experimentally validated. The GPP predictions did not
possess a predictive score and neither a Pp-FPy_p curve nor
an AUQ-C measure could be derived, but all 122 sites were
predicted to be glycosylated, amounting to 100.00 percent
correct prediction with 0.00 percent rejection.

In order to achieve a more general comparison of the
prediction performance achieved by the proposed method
and the predictions by the NetNGlyc and EnsembleGly
webservers, we have repeated the above experiment 10 more
times, each time selecting an independent set of 100 random
proteins. The GPP webserver was excluded from this analysis
as it did not allow computation of Pp-Py_p curves. Out of
these 10 experiments, the NetNGlyc and EnsembleGly
webservers produced predictions only for eight cases,
rejecting the remaining 2 due possibly to larger than allowed
sequence lengths. The average Pp-Py_p curves in Fig. 6 show
good agreement with those in Fig. 5: the Pp-Py_p curve of the
proposed method rises faster to the Pp = 1level and covers a
greater area than those obtained for the NetNGlyc and
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Fig. 6. The average Pp-Py_p curves associated with the predictions by
the NetNGlyc and EnsembleGly servers along with the proposed method
on a total of 10 randomized prediction experiments over 100 proteins
selected independently for each case.

EnsembleGly predictions. Note that the initial quick rise
observed in the Pp-Pgy_p curve of the EnsembleGly predic-
tions falls outside of the theoretically expected linear
behavior illustrated in Fig. 2, and can thus be attributed to
chance factors. The average AUQ-C measures also sustain
these observations, with the proposed method leading the
others at0.7125, with the NetNGlyc and EnsembleGly servers
trailing at 0.5979 and 0.6873, respectively. The EnsembleGly
predictions were obtained using an ensemble of support
vector machine classifiers. The averages for the NetNGlyc
and EnsembleGly predictions were calculated using only the
eight cases for which these webservers produced predictions,
while the averages for the proposed method were calculated
using predictions obtained for all 10 cases.

The comparative evaluation of the proposed method
against support vector classification could not be carried out
in an exhaustive manner for all motif vector configurations
summarized in Table 2 due to the colossal computational
expense associated with the algorithm that performs the
quadratic optimization in support vector machine training.
Instead, the predictive performance of the support vector
classification was assessed on the configuration that max-
imized the performance of the proposed method; using
150 features determined by the Fisher’s linear discriminant
feature selection method on the approximation motif
vectors, and via 10-fold cross validation. At each cross-
validation experiment, a true positive data set of 1,843 ex-
perimentally verified glycosylation sites was paired with
13,157 undetermined sites in a presumed true negative data
set, both selected randomly. Note that this amounts to a
collection of 15,000 points to be used for training, leaving the
remaining 40,184 sites including 96 experimentally verified
to be modified by glycosylation. The classifier construction
was carried out on this training set, and the resulting
classifier acted upon the sites that were not included in the
training set. In each case, a separate Pp-FPy_p curve was
computed, and the corresponding AUQ-C measures were
calculated for a final assessment. In the experiments, the
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TABLE 3
List of Top 15 Sites Most Likely to be Modified by N-Glycosylation

Pr{Co | ®} Protein name AC code  Position Existing annotation

0.8467 Methionyl-tRNA synthetase, cytoplasmic P56192 574

0.8294 Protein HEG homolog 1 Q9ULI3 1317

0.8287 5,6-dihydroxyindole-2-carboxylic acid oxidase P17643 385 N-linked (GIcNAc...) (Potential)
0.8281 Low-density lipoprotein receptor-related protein 2 P98164 3355 N-linked (GlcNAc...) (Potential)
0.8230 Phlorizin hydrolase P09848 1340

0.8221 Lysosomal thioesterase PPT2 QI9UMRS 206 N-linked (GIcNAc...) (Potential)
0.8217 Methionyl-tRNA synthetase, cytoplasmic P56192 531

0.8206 LIM domain-binding protein 1 Q86U70 65

0.8203 Interleukin-31 receptor subunit alpha Q8NI17 67 N-linked (GIcNAc...) (Potential)
0.8189 Extracellular sulfatase Sulf-1 Q8IWU6 148 N-linked (GIcNAc...) (Potential)
0.8176 Interleukin-13 receptor subunit alpha-2 Q14627 115 N-linked (GlcNAc...) (Potential)
0.8159 Anoctamin-2 QINQ90 856  N-linked (GIcNAc...) (Potential)
0.8159 PDZ domain-containing protein 8 Q8NEN9 99

0.8156 Mucin-2 Q02817 1154  N-linked (GIcNAc...) (Potential)
0.8128 Nucleotide pyrophosphatase P22413 578

The predictions show good agreement with existing potential annotations in the UniProt/Swiss-Prot Knowledgebase while identifying novel potential

N-glycosylation sites.

average AUQ-C measure was 0.7466, indicating that the
predictions by the quasi-supervised learning algorithm
provided higher rejection rates of the sites not verified for
glycosylation for the same rates of correctly predicting the
experimentally verified sites.

The superior performance of the proposed method
against the alternatives can be attributed to several factors.
First and foremost, the quasi-supervised strategy is attuned
by design to the nature of the recognition problem that
offers only the experimentally verified N-linked glycosyla-
tion sites along with sites that can potentially be also
glycosylated, but no sites that have been verified to lack N-
linked glycosylation. The alternative strategies are based on
supervised learning, and require a presumed data set for
negative N-linked glycosylation. As discussed previously,
in the absence of such data sets, an improvised negative
data set is to be formed from among the potential N-linked
glycosylation sites that may very well be glycosylated and
only waiting to be identified as such. Without reliable
positive and negative data sets, supervised learning algo-
rithms cannot produce reliable predictions.

In addition, note also that the proposed method forms
predictions based on all evidence available in the sequence
data. The alternative strategies, on the other hand, operate
on limited data sets aggravated further by the lack of a bona
fide negative data set. An additional limitation impeded the
application of a support vector machine classification
strategy to the motif vector data as it was not possible to
train such a classifier on all 55,184 motif vectors due to the
colossal computational expense involved in solving the
underlying quadratic optimization problem.

On a final performance evaluation, the list of top C) sites
most likely to be N-glycosylated in Table 3 showed good
agreement with the existing probable and potential glycosy-
lation annotations in the UniProt Knowledgebase data set.
The sites lacking any annotation are therefore identified as
novel N-glycosylation sites. At the present time, however,
there is no way of knowing whether these predictions are

indeed true as there are no published results on their
glycosylation status, and the true performance test of any
prediction method invariably has to come from experimental
validation. Yet, the existing literature does provide some
support for these findings. For instance, the phlorizin
hydrolase (P09848) is known to be modified by glycosylation,
and the consensus N-glycosylation motif at position 1,340
provides a likely candidate site [48], [49]. The case of the
cytoplasmic methionyl-tRNA synthetase (P56192) is intri-
guing, as there is evidence that the activity of its close
homologue in mice is altered in the presence of the N-
glycosylation inhibitor tunicamycin in HeLa cells [50].
Consequently, these sites provide prime candidates for
investigating the glycosylation of the corresponding proteins.

4 DiScUSSIONS AND CONCLUSION

In this paper, we have introduced the hierarchical motif
vectors for functional characterization of sites along amino
acid sequences. Following the initial use of the motif vector
approach to amino acid alignment [39], this represents the
first application of the hierarchical motif vectors to protein
characterization. As the motif vectors encode the variation
of physico-chemical properties at short, mid, and long
ranges along both directions in an amino acid sequence,
they capture the structural and functional characteristics at
and around their respective sites. Similarity of physico-
chemical configurations around sites then translates into the
similarity of the corresponding motif vectors. Furthermore,
the motif vector perspective of sequence analysis formulates
the problem of sequence characterization in a vector space
organization very much suited to quantitative evaluation
via statistical learning algorithms.

Another critical component of the proposed method for
site characterization is the quasi-supervised learning algo-
rithm that allowed a global evaluation of all 53,245 candidate
sites possessing the consensus N-glycosylation sequon
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identified across 15,104 human proteins against the backdrop
of only 1,939 experimentally verified sites, without requiring
any specification on negative glycosylation sites. This is a
substantial benefit of the proposed method as it eliminates all
the risks associated with limited or improvised true-negative
data sets that afflict the existing prediction methods based on
conventional supervised statistical learning algorithms.
While the best AUQ-C measure of prediction performance
in Table 2 stands noticeably lower than 1.0000 at 0.7708, it
should be pointed out that if 40 percent of the consensus sites
populating C is in fact glycosylated, the AUQ-C of the best
possible predictor would be bound from above by 0.8000.
Nevertheless, the smoothness of the Pp-Fy_p curve in Fig. 4
suggests a considerable overlap between the motif vector
distributions of the experimentally verified N-glycosylation
sites and the others, indicating that the motif vector
representation of local amino acid configurations can be
improved further for an even higher prediction performance.

As an additional benefit, the quasi-supervised learning
algorithm did not require cross-validation tests for perfor-
mance evaluation as the posterior probabilities Pr{Cj | w}
and Pr{C; | w} are computed for each motif vector w with
no regard to the collection to which it belongs [40]. This
saves substantial amounts of time in the analysis as well as
limiting the susceptibility of the technique to issues related
with data overfitting. The same, however, is not true for
conventional classification methods such as support vector
machines that require extensive cross-validation experi-
ments in order to derive a Pp-Pyp_p curve.

On a final note, it should be pointed out that the results
presented here demonstrate the prediction power of motif
vector representation coupled with the quasi-supervised
learning algorithm on large-scale N-glycosylation data at a
combined collection size of 55,184 vectors. On the other hand,
in order for this strategy to be applicable to arbitrary
structural or functional prediction tasks, the learning algo-
rithm has to be adapted to very large scales allowing joint
evaluation of all 11,227,834 sites in the working set of amino
acid sequences of human proteins and possibly more from
other species. While this is a daunting task even for the
simplest of the statistical learning methods, efforts are
currently under way to advance the technique to such an
analytical capacity.
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