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Abstract

In this paper, we study the problem of finding a periodic attractor of a Boolean network (BN),
which arises in computational systems biology and is known to be NP-hard. Since a general case is
quite hard to solve, we consider special but biologically important subclasses of BNs. For finding
an attractor of period 2 of a BN consisting of n OR functions of positive literals, we present a
polynomial time algorithm. For finding an attractor of period 2 of a BN consisting of n AND/OR
functions of literals, we present an O(1.985n) time algorithm. For finding an attractor of a fixed
period of a BN consisting of n nested canalyzing functions and having constant treewidth w, we
present an O(n2p(w+1)poly(n)) time algorithm.
Keywords: Boolean network, periodic attractor, SAT, nested canalyzing function, treewidth.

1 Introduction

The Boolean network (BN) is known as a discrete mathematical model of gene regulatory networks.
In a BN, the value of a node at a given time instant is determined according to a regulation rule that
is a Boolean function of the values of the predecessors of the node at the previous time instant. The
values of nodes are updated synchronously, and the (global) state of a network at a given time instant
is the vector of its node values. An important characteristic of any BN is the existence of an attractor,
which is classified into two types: a singleton attractor corresponding to a stable state, and a periodic
attractor corresponding to a sequence of states that repeats periodically.

Since a correspondence between different steady states and different types of cells was pointed
out [20], the analysis of steady states in biological networks has been an important research topic
in bioinformatics and computational biology. Several heuristic algorithms have been proposed for
the detection and/or enumeration of singleton and/or periodic attractors [8, 9, 13, 16, 23, 26], and
extensive studies have been done on the distribution of the numbers and lengths of attractors [10, 25]
in random BNs. From an algorithmic viewpoint, it is known that the problem of finding an attractor
of the shortest period is NP-hard [1] even for BNs with maximum indegree 2 consisting of AND/OR
of literals [27].

Due to this hardness and the fact that there exist 2n global states for a BN with n nodes, previous
studies focused on the development of o(2n) time algorithms. Although some of the above mentioned
heuristic algorithms may work efficiently in practice, there is no proof that any of them works in o(2n)
time in the worst case. In order to achieve such improved times some restrictions have to be imposed
on the permitted types of Boolean functions because there are 22n

different Boolean functions with n
inputs and thus 2n bits are required just to specify a particular Boolean function. For example, it is
known that detection of a singleton attractor for BNs with maximum indegree K can be transformed
into (K + 1)-SAT (Boolean satisfiability problem in which each clause consists of at most K + 1
literals) [27]. For AND/OR BNs, in which each Boolean function is restricted to either a conjunction
or a disjunction of literals, a succession of algorithms for the detection of a singleton attractor were
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developed with the currently best algorithm working inO(1.587n) time [24, 27, 28]. Recently, Akutsu et
al. developed an O(1.799n) time algorithm for BNs consisting of nested canalyzing functions [2], which
are considered to cover most biologically important Boolean functions [15]. Aracena et al. developed
a polynomial time algorithm for detection of a singleton attractor in a strongly connected BN without
negative cycles [4], and Goles and Salinas developed an algorithm for detection of a singleton attractor
in a general BN without negative cycles [14], which was further simplified in [3]. On the contrary, Just
proved that detection of 2-periodic attractor is NP-hard for BNs without negative cycles [19]. Zhang
et al. [30] developed recursive algorithms for the detection of singleton and periodic attractors of BNs
with bounded indegree, and analyzed their average case time complexities for randomly generated
BNs. Detection of a singleton attractor has also been studied in the context of discrete dynamical
systems [5, 21]. However, to our knowledge there are no algorithms for the detection of a periodic
attractor, even for AND/OR BNs, that have been proven to work in o(2n) time.

In this paper, we focus on the theoretical aspect of finding a periodic attractor of a given BN and
present the following three algorithms:

(1) a polynomial time algorithm for finding a 2-periodic attractor of a BN whose regulation rules
are OR-functions of non-negated variables,

(2) an O(1.985n) time algorithm for finding a 2-periodic attractor of an AND/OR BN,

(3) an O(n2p(w+1)poly(n)) time algorithm for finding a p-periodic attractor of a BN having bounded
treewidth w and consisting of nested canalyzing functions, where p and w are constants.

All of these three algorithms are based on the same strategy: transform the problem of finding a
p-periodic attractor of the given BN with n nodes into the problem of finding a singleton attractor
of a BN with pn nodes (with some constraint). However, simply applying existing algorithms for the
detection of a singleton attractor of the transformed network does not lead to an o(2n) time algorithm.
For example, the current best algorithm for detecting a singleton attractor of an AND/OR BN requires
O(1.587n) time, and thus using it on the transformed network for finding a 2-periodic attractor yields
an O(1.5872n) = O(2.519n) time algorithm, which is much worse than O(2n). Therefore, in these
algorithms, we make use of the special properties of the transformed networks.

2 Preliminaries

A BN N(V, F ) consists of a set V of n nodes and a corresponding set F = {fv : v ∈ V } of n non-
constant Boolean functions. Let v(t) ∈ {0, 1} represent the value of a node v at time t, and denote
by v(t) = 〈v(t) : v ∈ V 〉 the state of the network at time t. The values of all nodes are updated
simultaneously according to the corresponding Boolean functions, v(t + 1) = fv(v(t)). A directed
graph G = (V,E) can be associated with the network, with a directed edge (u, v) ∈ E if and only if
fv depends on u. Edges may be self-loops because many biological networks contain self-loops. The
initial assignment of values v(1) = 〈v(1) : v ∈ V 〉 uniquely determines the state of the network at all
t > 1. The dynamics of a BN is well represented by a state transition diagram, which is a directed
graph defined by a set of nodes corresponding to 2n possible states of the network and a set of edges
corresponding to the transitions from v(t) to v(t + 1). An initial state is called a periodic attractor
with period p if v(1) = v(p+ 1) and v(1) 6= v(q) holds for all 1 < q < p+ 1. An attractor with period
p = 1 is called a singleton attractor.

Example 1 A BN with regulation rules v1(t + 1) = v2(t), v2(t + 1) = v1(t) ∧ v3(t) and v3(t + 1) =
v1(t) ∧ v2(t) is shown in Fig. 1 (A) and its state transition diagram is shown in Fig. 1 (B). This
network has two singleton attractors, 〈0, 0, 0〉 and 〈1, 1, 0〉, and one attractor of period 2, 〈0, 1, 1〉 (or,
equivalently 〈1, 0, 0〉).
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v 2 v 3

v1(t+1) = v2(t)

v3(t+1) = v1(t) v2(t)

v3(t)v2(t+1) = v1(t)

v 1 0 1 0

0 1 1

1 0 0

1 1 1

1 1 0

(A) Boolean Network (B) State Transition Diagram

0 0 0

0 0 1

1 0 1

Figure 1: Example of a Boolean network and its state transition diagram.

The periodic attractor detection problem is defined as follows.

Problem 1 (Detection of Periodic Attractor)
Given a BN and a period p, decide whether or not there exists an attractor of period p, and output
one if it exists.

As mentioned in Section 1, we consider some subclasses of BNs. The various classes will all be
special cases of the class of sign-definite Boolean functions, which is characterized by the fact that
when a function in the class is written in disjunctive normal form each variable occurs either only
non-negated or only negated, if it appears at all.

If all regulation rules are sign-definite, then each edge (u, v) can be assigned a positive or negative
sign σ(u, v), depending on whether u appears non-negated or negated, respectively, in the disjunctive
normal form of fv. Upon doing so the associated graph becomes a signed graph (G, σ).

One subclass of BNs comprises the AND/OR BNs, defined as BNs in which every fv is either an
AND or an OR of literals. Seemingly even more restricted are OR BNs, defined as BNs in which each
regulation rule is an OR of literals. It is known however that each AND/OR BN can be transformed
into an OR BN of the same size in polynomial time when considering attractors [24].

Another subclass of BNs we consider is characterized by regulation rules that are nested canalyzing
[20], nc-functions for short, which are biologically of interest [15].

We use the following fact as the definition of a nested canalyzing function.

Fact 1 ([18]) A Boolean function is nested canalyzing over 〈v1, ..., vk〉, if and only if it can be repre-
sented as

fv = ℓ1 ∨ · · · ∨ ℓk1−1 ∨ (ℓk1
∧ · · · ∧ ℓk2−1 ∧ (ℓk2

∨ · · · ∨ ℓk3−1 ∨ (· · ·))),

where ℓi is either vj or v̄j, and 1 ≤ k1 < k2 < · · ·.

We call BNs consisting of nc-functions nc-BN s. From this definition, one can see that any AND/OR
BN is also an nc-BN. Following the discussion in [2], we assume without loss of generality that each
variable appears at most once in any nc-function. In this paper we assume that nc-functions are given
in the above form, because if the representation is not hierarchical (e.g. if it is in conjunctive normal
form or in the form of a truth table) the representation may itself take space that is exponential in
the number of nodes. Moreover, the algorithm for obtaining the hierarchical representation of an
nc-function from its truth table takes an exponential number of table lookups [22].

As mentioned in Section 1, the first step of all algorithms in this paper is to transform a periodic
attractor detection problem into a singleton attractor detection problem. Here, we describe the method
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of transformation. From a given BN N(V, F ) with n nodes, we construct a p-multiplied network
Np(V p, F p) by

V p = {v(1), v(2), · · · , v(p) | v ∈ V },
F p = {fv(1)(v1(p), . . . , vk(p)), fv(2)(v1(1), . . . , vk(1)), · · · , fv(p)(v1(p− 1), . . . , vk(p− 1))

| fv(v1, . . . , vk) ∈ F and fv(t) = fv},

where each v(t) is regarded as a node. Finding a p-periodic attractor of N is then equivalent to finding
a singleton attractor of Np(V p, F p) (with pn nodes) under the constraint that for all 1 < q < p + 1,
v(1) 6= v(q) holds for some v. Since we only need to examine O(n(p−1)) cases of constraints, we have

Proposition 2 The p-periodic attractor detection problem can be solved in O((1 + δ)pn) time if the
singleton attractor detection problem can be solved in O((1 + δ′)n) time for any δ′ < δ, where p, δ,
and δ′ are constants.

When discussing the detection of a singleton attractor, we will write v = 1 to denote an assignment
of 1 to v.

3 Finding a 2-Periodic Attractor of a Positive OR-BN

Note that an OR-network whose signed graph contains only negative edges always has a trivial 2-
periodic attractor, namely one in which all nodes have the value 0 at time 0 and the value 1 at time
1 (or vice versa). In this section we observe that the problem of finding a 2-periodic attractor is
also easy for a network whose signed graph has only positive edges, a positive OR-network. In [3]
we proved that for a general positive sign-definite network a sufficient condition for the existence of
a 2-periodic attractor is that its associated graph G contains a source strongly connected component
that is bipartite and of size 2 at least, while a necessary condition is the existence of a cycle of even
length. For positive OR-networks, however, there is a condition that is both necessary and sufficient.

Theorem 3 A positive OR-network has a 2-periodic attractor if and only if its associated graph G
contains a strongly connected component that is bipartite and of size 2 at least. It takes therefore
polynomial time to determine whether a positive OR-network has a 2-periodic attractor, and if so to
construct one.

We outline first how the necessity of the condition can be deduced from [17]. The following Lemma
paraphrases the relevant parts of their Lemma 2.11.

Lemma 4 Call the greatest common divisor of the lengths of all cycles of the non-singleton strongly
connected component C of G the period of C. Denote by p(G) the least common denominator of the
periods of the non-singleton strongly connected components of G. Then the period of any attractor of
the network divides p(G).

According to the Lemma, if the network has a 2-periodic attractor then p(G) is even. Thus the
period of at least one non-singleton strongly connected component C is even, meaning that all its
cycles have even length. As is well-known, this implies that C is bipartite.

We show next that the necessary condition of Theorem 3 is also sufficient to ensure the existence of
a 2-periodic attractor. To this end we first detail an algorithm for constructing a 2-periodic attractor,
given that the condition holds, and then argue its correctness. Our construction is similar to the more
general construction encapsulated in Definition 5.4 of [17] of what they call a J-regular attractor for
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some maximal antichain J of strongly connected components. The difference is that we have to deal
with the case that J is not necessarily maximal and consists of a single (bipartite) component.

Algorithm PosOR2p
precondition: G contains a strongly connected component that is of size 2 at least and bipartite, with
parts X and Y .

1. Build the network N2.

2. Pick a node s ∈ X (with copies s(1), s(2) ∈ V 2).

3. Assign the value 0 to s(1) and to all its immediate and distant predecessors in G2.

4. Assign the value 1 to s(2) and to all its immediate and distant successors in G2.

5. Assign the value 0 any node of G2 that does not have a value yet although all of its predecessors
have the value 0.

6. Assign all the remaining nodes of G2 the value 1, completing the singleton attractor of N2.

7. Convert the singleton attractor of N2 into a 2-periodic attractor of N .

Note that STEP 3 assigns 0 to x(1) for each x ∈ X, and to y(2) for each y ∈ Y , and STEP 4
assigns 1 to x(2) for each x ∈ X, and to y(1) for each y ∈ Y .

The following lemma completes the proof of Theorem 3.

Lemma 5 If the graph G associated with a positive OR-network contains a strongly connected compo-
nent that is bipartite and of size 2 at least, then Algorithm PosOR2p constructs a 2-periodic attractor
of N .

(Proof) We prove first of all that the values assigned in steps 3 and 4 of the algorithm are consistent.
Suppose to the contrary that there is a node v ∈ V 2 that is assigned both the value 0 and the value
1. That means there is a path from s(1) to v, and a path from v to s(0), and hence there is a path
from s(1) to s(0). Such a path corresponds to a cycle in G that is of odd length, and in which s
participates. Thus the strongly connected component of s contains an odd-length cycle, contrary to
the precondition of the algorithm.

We prove next that the values assigned in these two steps can form the core of a singleton attractor
of N2, because for each node v ∈ V 2 whose value is assigned, that value equals the OR-value of its
predecessors. This fact is trivially true for the case of a node whose assigned value is 0, and in
particular for s(1), since the algorithm assigns the value 0 to all its predecessors. Consider next s(2).
The choice of s as a node from a bipartite connected component ensures that it is on an even-length
cycle, say s, v2, . . . , v2ℓ, so that STEP 4 of the algorithm assigns 1 to v2(1), v3(2), . . . , v2ℓ(1). Since
v2ℓ(1) is a predecessor of s(2) in G2, the value 1 assigned to s(2) indeed equals the OR-value of its
predecessors. Any other node of G2 to which the algorithm assigns the value 1 in STEP 4 has a
predecessor with value 1 because there is a path to it from s(2).

After execution of STEP 5 any node that does not have a value assigned yet must have a predecessor
that does not have a value assigned either (or else it would have been assigned 0 in STEP 4). Thus
assigning the value 1 to all these nodes indeed completes the construction of a singleton attractor. ✷
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4 Finding a 2-Periodic Attractor of an AND/OR BN

In this section, we present an O(1.985n) time algorithm for the detection of a 2-periodic attractor in
an AND/OR BN.1 From the discussions in Section 2, we focus on the singleton attractor detection of
an OR BN N2(V 2, F 2) with 2n nodes and denote its associated signed graph by (G2, σ). It is easily
seen that G2 is a bipartite graph without self-loops (even if G did have self-loops). Let V 2

1 and V 2
2 be

the sets of nodes corresponding to t = 1 and t = 2 respectively, which give a bipartition of V 2.
The basic strategy for finding a singleton attractor in N2(V 2, F 2) is similar to that in [24] although

the details are very different and novel ideas are introduced here. Let U(v) denote the number of
unassigned neighboring nodes of v. The following is a high-level description of the algorithm, where
K is a parameter to be determined later.

Algorithm AND-OR2p

1. Construct N2(V 2, F 2). Let all nodes be unassigned.

2. Recursively examine 0-1 assignments on unassigned nodes v with U(v) ≥ 3 until there does not
exist such a node or the number of assigned nodes is more than K.

3. Let A be the set of assigned nodes. Let A1 = A ∩ V 2
1 and A2 = A ∩ V 2

2 .
Without loss of generality assume that |A1| ≥ |A2|.

4. If |A| > K, then examine all possible assignments on V1 −A1.

5. Otherwise, recursively examine assignments on paths and cycles and then solve SAT.

In this algorithm, we propagate the assignment whenever a new assignment (to a node) is given,
where ‘propagate’ means that we assign Boolean values to a set of nodes to which an assignment is
uniquely determined from the current partial assignment (see [2, 24] for the details of propagation).

Hereafter, we explain the details of each step. Since STEP 1 is trivial, we begin with STEP 2. For
example, consider a node v shown in Fig. 2. If we assign 0 to v, in order to have a singleton attractor,
assignments on all three neighboring nodes are uniquely determined and two additional constraints
must be satisfied. If we assign 1 to v, no additional assignment is given but one additional constraint
must be satisfied. As seen from Fig. 2, these constraints are given as clauses. The algorithm keeps all
generated clauses until the final stage of STEP 5, at which Yamamoto’s SAT algorithm [29] is applied
to solve all constraints simultaneously (per final recursive step).

v=0

v=1

-
-

-

u

v

w

z
w1 w2

-
-

-

u

v

w

z

u1

u2

-
+

w1

w2

-
-

0

1

1

1

-
-

-

u

v

w

z

1 u w

u1 u2

Figure 2: Elimination of an unassigned node with three unassigned neighbors.

If we consider all cases on U(v) ≥ 3, we can see that either one of the following holds:

1It should be noted that polynomial factors are hidden in O(an) notation in this paper because the precise value of
a is slightly smaller than a.
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• At least four nodes are assigned in one case and at least one node is assigned in the other case,

• At least three nodes are assigned in one case and at least two nodes are assigned in the other
case.

We can also see that the number of additional constraints is at most k if k nodes are newly assigned.
Let h(k) denote the maximum number of cases generated by recursive execution of STEP 2 under

a condition that at most k nodes are assigned (per case). Then, we have

h(k) ≤ max

{

h(k − 1) + h(k − 4),
h(k − 2) + h(k − 3).

By solving the following equations

x4 = x3 + 1,

x3 = x+ 1,

and taking the larger solution, we have h(k) = O(1.381k). Since the number of assigned nodes per
recursion is bounded by K, we have

Proposition 6 The number of times that STEP 4 (resp. STEP 5) is executed is O(1.381K).

Analysis of STEP 4 is straight-forward. If STEP 4 is executed, we can see from the bipartiteness of
N2(V 2, F 2) that detection of 2-periodic attractor can be done correctly (under the partial assignment
given by STEP 2) in O(2n−(K/2) · poly(n)) time per case.

Proposition 7 STEP 4 works in O(2n−(K/2) · poly(n)) time per execution.

STEP 5 is a rather complicated part of the algorithm. The following proposition is straight-forward
because STEP 2 recursively assigns any node having at least three non-assigned neighbors.2

Proposition 8 After STEP 2, the graph induced by non-assigned nodes is a set of paths and cycles
(with bidirectional edges) in which every node has indegree greater than 0.

Based on this proposition, we eliminate paths and cycles. We present a procedure for elimination
as a part of the proof of the following lemma.

Lemma 9 STEP 5 works in O(1.3382n) time per execution.

(Proof) First, we explain the basic elimination strategy for handling bidirectional edges, where elimi-
nation means assigning values to nodes and generating constraints (i.e., clauses). Suppose that there
is a bidirectional edge (u, v) whose signs are (+,+) and there is a unidirectional edge from w to v as
shown in Fig. 3 (a1). In this case, it is enough to examine u = v = 0 and u = v = 1 because other
assignments do not lead to a singleton attractor. Furthermore, w is uniquely determined when u = 0.
Other types of edges between v and w can be handled similarly. Suppose that (u, v) is (-,+) as shown
in Fig. 3 (a2). Then, v = 1 must hold because otherwise u becomes 1 which makes v = 1. In addition,
one constraint (i.e., one clause) is generated. For example, suppose that (w, v) is (+,+). Then, in
order to satisfy v = 1, u = 1 or w = 1 must hold. Therefore, a clause u ∨w is generated. Let f(k) be
the exponential factor of the time complexity for k nodes. The time complexities for k nodes in the
above two cases are as shown in Table 1. Here the factor of 1.234 in Table 1 stems from the fact that
SAT with k clauses can be solved in O(1.234k) time [29]. Furthermore, if a cycle contains an edge of
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(a1)

+

-

1

(a2)
+

+

u v w
0 0

1
-

1

u v v
..........

w u w

Figure 3: Types of basic elimination. Each bidirectional edge is represented by two directed edges. ‘-’
in (a1) means that the value of w is uniquely determined.

Table 1: Complexity for (+,+) and (+,-) bidirectional edges.

type of path #ASS #MAXCL complexity

(a1) 2 0 f(k − 2) + f(k − 3)
(a2) 1 1 1.234 · f(k − 1)

#ASS and #MAXCL denote the number of assignments and the maximum number of added clauses.

type (+,+) or a (+,-), the cycle will be decomposed into a path. Hereafter, we can assume that all
bidirectional edges in chains or cycles of lengths 3 at least are of the type (-,-).

A path of length 1 necessarily has a bidirectional edge, since all nodes have at least one in-edge,
see Fig. 4 (b1). Such a path is consistent with a singleton attractor only if the signs of (u, v) and
(v, u) are equal. If the signs are + then u = v, and if the signs are - then u = v. In both cases u can
be eliminated, substituting v or v respectively for u, and v becomes a free variable.

(b1) (b2) (b3)

(b4)

u v vu w vu w z

vuz w

Figure 4: Types of fragments in paths.

Next, we consider elimination of paths of length 2 at least consisting of bidirectional edges. The
other types of paths can be handled within the same complexity. We consider paths given in Fig. 4
and the resulting complexity is summarized in Table 2. For example, consider case (b4) with all edges
of type (-,-). If v = 0 is assigned, we have u = w = 1 and z = 0 and thus 4 nodes are eliminated.
Otherwise a clause of u ∨ w is added and the value of z is uniquely determined from the value of u
(i.e., z = u), which means that three nodes are eliminated and one clause is added. Consequently f(k)

2We will say that in the network there is a bidirectional edge between u and v if both edges (u, v) and (v, u) are
present, regardless of the signs of these two edges.
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must satisfy

f(k) ≤ max



















f(k − 2),
2 · f(k − 3),
2 · f(k − 4),
1.234 · f(k − 3) + f(k − 4),

from which f(k) = O(1.266k) follows. Therefore, the time complexity of eliminating paths with a
total of k nodes is O(1.266k).

Table 2: Complexity of elimination of paths.

type of path #ASS #MAXCL complexity

(b1) 0 0 f(k − 2)
(b2) 2 0 2 · f(k − 3)
(b3) 2 0 2 · f(k − 4)
(b4) 2 1 1.234 · f(k − 3)

+ f(k − 4)

Next, we consider elimination of cycles, where we need to consider two cases: all edges are bidi-
rectional, and some edges are unidirectional. We begin with the former case. Since the given network
is bipartite and any of our assignment strategies does not change the length of cycles, no cycle is of
odd length. If there is a cycle of length of 4 or 6, there are 2 or 5 patterns of assignments as shown
in Fig. 5 (c1) or (c2) respectively. If there is a cycle of length longer than or equal to 8, we transform
the cycle into a path by selecting a set of consecutive nodes as shown in Fig. 5 (c3). The complexity
is summarized in Table 3. For the latter case, it is enough to consider the fragment types shown in
Fig. 63 since there is no node with indegree 0. The complexity of elimination is then as shown in
Table 4. By letting f(k) be at most the maximum of (a1)-(a2), (b1)-(b4), (c1)-(c3) and (d1)-(d2), we
have f(k) = O(1.338k).

-

-

w
z

1 0 01
1 100

(c1)

-

-
u

v

(c3)

-

-

-
-

-

-
1 0 01
1 101

(c2)

-

-

-

-

-

-

-

-

-

-

0 1
1 0

0 011 1 0
1 010 1 1
0 111 0 1

-

-

-

-
1 0 1

1 0 1 0 1
0 1 1 0 1
1 0 1 1 0

-

-

-

-

-

-

..... .....

1
1

-

-

Figure 5: Elimination strategies for cycles consisting of bidirectional edges.

3Cases containing positive unidirectional edges can be handled in a similar way.
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(d1) (d2)
-

-

v wu
-

u v w
1
0 11

0

--
u v w

u v w
0 1

0 11

Figure 6: Types of fragments in cycles containing unidirectional edges.

Table 3: Complexity of elimination of cycles consisting of bidirectional edges.

type of fragment #ASS #MAXCL complexity

(c1) 2 0 2 · f(k − 4)
(c2) 5 0 5 · f(k − 6)
(c3) 4 0 f(k − 3) + f(k − 5)

+2 · f(k − 6)

Suppose that STEP 5 is executed after k nodes are assigned in STEP 2. Then STEP 5 handles at
most 2n− k nodes. We also need to combine at most k clauses generated in STEP 2 with the clauses
generated in STEP 5 for solving SAT. Therefore, the time complexity per execution of STEP 5 is

O(1.234k · 1.3382n−k) ≤ O(1.3382n).

✷

Here we analyze the total time complexity. Since the number of times that each of STEP 4 and

STEP 5 is executed is O(1.381K), the total time complexity is O(1.381K)·
[

O(2n−(K/2)) +O(1.3382n)
]

.

By letting 2n−(K/2) = 1.3382n, we have K = 0.3196n and thus the total time complexity is O(1.985n).4

Theorem 10 The problem of detection of a 2-periodic attractor of an AND/OR BN can be solved in
O(1.985n) time.

5 Finding a Periodic Attractor of an nc-BN with Bounded Treewidth

In this section, we consider detection of a periodic attractor of an nc-BN whose treewidth is bounded
by a constant w. It is known that many NP-hard graph problems can be solved in polynomial time
using dynamic programming if the treewidth of the graph is bounded by a constant [11]. It is to be
noted that Tamaki developed a practically efficient algorithm for enumerating all attractors of a BN
by using the directed path decomposition [26]. Though the path decomposition has some similarity
with the treewidth, he did not analyze the time complexity, and our approach is considerably different
from his approach.

To define treewidth we need the notion of tree decomposition [11]. To simplify notations we assume
that the nodes have been numbered 1 . . . n, V = {1, . . . , n}, although in the examples we continue to
label the nodes alphabetically for greater clarity. A tree decomposition of a graph G = (V,E) is a pair
〈T (VT , ET ), (Bt)t∈VT

〉, where T (VT , ET ) is a rooted tree and (Bt)t∈VT
is a family of subsets of V such

that (see also Fig. 7)

4This result remains valid even if there exist c · log n nodes with non AND/OR functions, where c is any constant.
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Table 4: Complexity of elimination of cycles containing unidirectional edges.

type of fragment #ASS #MAXCL complexity

(d1) 2 0 f(k − 2) + f(k − 3)
(d2) 2 0 f(k − 2) + f(k − 3)

G(V,E) T(    ,    )VT ETa
a, b, c

b c

d e

f

g

h

At

Btb, c, g

b, f, g c, e, g
Ct

Ft

b, d, f f, g, h
Dt Et

Figure 7: Example of tree decomposition with treewidth 2.

• for every i ∈ V , B−1(i) = {t ∈ VT |i ∈ Bt} is nonempty and connected in T , and

• for every edge {i1, i2} ∈ E, there exists t ∈ VT such that i1, i2 ∈ Bt.

The width of the decomposition is defined as maxt∈VT
(|Bt| − 1) and the treewidth of G is the

minimum of the widths among all the tree decompositions of G. Graphs with treewidth at most k are
also known as partial k-trees [11]. It is known that any graph of treewidth k has a separator of size
O(k), and conversely any n-vertex graph with separator of size k has treewidth O(k log n) [6].

It is known that planar graphs have O(
√
n) treewidth [6]. Tamura and Akutsu developed an

2O((log n)
√

n) time algorithm for singleton attractor detection of a planar AND/OR BN [28]. We show
first how their approach can be extended to the detection of a singleton attractor in an nc-BN with
bounded treewidth w, and then show how to modify the algorithm so that it can detect an attractor
of periodicity exactly p.

The extension is based on a simple but important observation on nc-functions. We explain it using
an example. Let the nc-function associated with node 4 be f4 = x1∨(x2∧x3∧(x4∨x5∨(x6∧(x7∨x8)))).
In order to satisfy f = 1, we need not consider 28 assignments. Instead, it is enough to consider the
following partial assignments, where ‘*’ means “don’t care”.

x1 x2 x3 x4 x5 x6 x7 x8

1 * * * * * * *
0 1 0 1 * * * *
0 1 0 0 1 * * *
0 1 0 0 0 1 0 *
0 1 0 0 0 1 1 1

Similarly, in order to satisfy f = 0, it is enough to consider 4 partial assignments. Observe that a
singleton attractor satisfies the equation f4(x) = x4, and that among the partial assignments satisfying
f4(x) = 1 only the first two satisfy this equation.

To describe this result in general let us formally define a partial assignment.

11



Definition 11 A partial assignment is any non-empty set φ = b1 × · · · × bn such that bi ⊆ {0, 1}. A
complete assignment is a partial assignment φ in which bi is a singleton for all i. It will be convenient
to denote br, the r-th component of φ, also by (φ)r.

Note that the intersection of two partial assignments φ, ψ is a partial assignment itself, unless
it is empty in which case we say that the partial assignments are disjoint ; note also that the two
assignments are disjoint, φ ∩ ψ = ∅, if and only if there is a component r ∈ {1, . . . , n} such that
(φ)r ∩ (ψ)r = ∅.
Definition 12 The partial assignment φ is a local fixed point at node i, with associated nc-function
fi, if the set (φ)i is a singleton and fi(φ) = (φ)i.

In these terms, a singleton attractor is a complete assignment that is a local fixed point at each of the
nodes.

Proposition 13 Let fi be an nc-function with m inputs, associated with node i. Then the set of all
complete assignments that are local fixed points at node i can be partitioned into m+1 ≤ n+1 disjoint
partial assignments each of which is a local fixed point at node i.

(Proof) The proof is by induction on m. For the base case, m = 1, recall that we assume that each
function has at least one input. Hence in this case fi is of the form xk or xk. If, for example, fi = xk

then the complete assignments that are a local fixed point at node i can be partitioned into those that
have the value 0 at xi and the value 0 at xk, and those that have the value 1 at xi and the value 1 at
xk, for a total of 2 partial assignments.

For the induction step we assume without loss of generality that the variable that appears first in
fi is x1, i.e. fi has one of the forms x1 ∨ g, x1 ∧ g, x1 ∨ g, or x1 ∧ g, where g is a nc-function with
inputs x2, . . . , xm. We only consider the case fi = x1 ∨ g. Then in a complete assignment that is a
local fixed point at node i either x1 = 1 (and the assignment has the value 1 at i) or x1 = 0 and the
assignment to the variables other than x1 forms a local fixed point at node i of the function g.

Since the number of partial assignments of x2, . . . , xm needed to cover all assignments to g is m, by
the induction hypothesis, it follows that the the number of partial assignments of x1, . . . , xm needed
to cover all assignments to f is m+ 1. ✷

Notation: We will denote the partial assignments appearing in the statement of this proposition by
φ1

i , . . . , φ
mi+1

i .

5.1 Finding a singleton attractor

The first step of the algorithm for finding a singleton attractor is to construct

A0
t = {

⋂

i∈Bt

φji

i |
⋂

i∈Bt

φji

i 6= ∅}.

It follows immediately from Proposition 13 that this set can be characterized as follows.

Lemma 14 A0
t is a partition of the set of assignments that are local fixed points at all nodes in Bt:

if α 6= α′ ∈ A0
t then both are local fixed points at all nodes in Bt and α ∩ α′ = ∅; and if β is a local

fixed point at all nodes in Bt then there is an α ∈ A0
t such that β ⊆ α.

Clearly the size of A0
t is at most (m+ 1)|Bt|. We will denote its elements by αj

t , j = 1, . . ..
To ease the description of the next step we introduce two definitions.

Definition 15 Two partial assignments φ and ψ are said to be compatible if φ ∩ ψ 6= ∅. A partial
assignment ρ is a refinement of α ∈ A0

t if ρ ⊆ α and ρ is a local fixed point at all nodes in Bs for all
s in the subtree rooted at t.

12



The next step computes for each node a set of disjoint partial assignments, At, each of which
is a local fixed point at all nodes in Bt and has at least one refinement with respect to T , and
which together cover all such local fixed points. As we will see this can be achieved, using dynamic
programming, by checking for each partial assignment in A0

t that it is compatible with at least one
partial assignment in Atj , for all children tj of t, and removing it if it does not pass this test. For a
leaf At = A0

t , of course.

a,b,c

c,e b,c,d

-
-

-
-

a

b

d

c

e

(A) (B) At

Ct Bt

Figure 8: (A) BN and (B) tree decomposition used in Example 16.

Example 16 Consider a BN defined by

fa = c, fb = a ∨ d, fc = b ∨ e, fd = c, fe = c.

One possible tree decomposition is shown in Figure 8. Possible partitions of partial assignments that
are local fixed points, for each node, are:

φ1
a = 〈{1}, {0, 1}, {1}, {0, 1}, {0, 1}〉,
φ2

a = 〈{0}, {0, 1}, {0}, {0, 1}, {0, 1}〉,
φ1

b = 〈{0}, {0}, {0, 1}, {0}, {0, 1}〉,
φ2

b = 〈{0}, {1}, {0, 1}, {1}, {0, 1}〉,
φ3

b = 〈{1}, {1}, {0, 1}, {0, 1}, {0, 1}〉,
φ1

c = 〈{0, 1}, {0}, {1}, {0, 1}, {0, 1}〉,
φ2

c = 〈{0, 1}, {1}, {1}, {0, 1}, {0}〉,
φ3

c = 〈{0, 1}, {1}, {0}, {0, 1}, {1}〉
φ1

d = 〈{0, 1}, {0, 1}, {1}, {0}, {0, 1}〉,
φ2

d = 〈{0, 1}, {0, 1}, {0}, {1}, {0, 1}〉,
φ1

e = 〈{0, 1}, {0, 1}, {1}, {0, 1}, {0}〉,
φ2

e = 〈{0, 1}, {0, 1}, {0}, {0, 1}, {1}〉.
These result in the following A0

tA
= {αi

tA
, i = 1, 2}, A0

tB
= {αi

tB
, i = 1, 2, 3, 4} A0

tC
= {αi

tC
, i = 1, 2},

with

α1
tA

= 〈{1}, {1}, {1}, {0, 1}, {0}〉,
α2

tA
= 〈{0}, {1}, {0}, {1}, {1}〉,

α1
tB

= 〈{1}, {1}, {1}, {0}, {0}〉,
α2

tB
= 〈{0}, {1}, {0}, {1}, {1}〉,

α3
tB

= 〈{1}, {1}, {0}, {1}, {1}〉,
α4

tB
= 〈{0}, {0}, {1}, {0}, {0, 1}〉,

α1
tC

= 〈{0, 1}, {0, 1}, {1}, {0, 1}, {0}〉,
α2

tC
= 〈{0, 1}, {1}, {0}, {0, 1}, {1}〉.
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α1
tA

is compatible only with α1
tB

and α1
tC

, and α2
tA

is compatible only with α2
tB

and α2
tC

. α1
tB

happens
to also be a refinement of α1

tA
.

The following high-level code summarizes the computation of At and the detection of a singleton
attractor.

Algorithm KtreeAtt

1. Compute a tree decomposition T (VT , ET ) of G(V,E).

2. For each node t ∈ VT , compute a set of assignments A0
t by

A0
t = {

⋂

i∈Bt

φji

i |
⋂

i∈Bt

φji

i 6= ∅}.

3. Execute STEP 4 in a bottom-up manner by using dynamic programming; begin by setting
At = A0

t for each leaf node t.

4. For each non-leaf node t ∈ VT , compute At by

At = {αj
t ∈ A0

t |(∀ti ∈ {t1, . . . , td}∃αk
ti ∈ Ati)(α

j
t ∩ αk

ti 6= ∅)},

where t1, t2, . . . , td are the children of t.

5. If Aroot 6= ∅ for the root of T , then output a singleton attractor by using a traceback procedure
starting from any αroot ∈ Aroot; else return false.

When it is found in step 4 that αj
t ∈ At because αj

t ∩ αji
ti 6= ∅, i = 1, . . . , d, then a refinement, ρj

t ,

associated with αj
t can be computed as ρj

t = αj
t ∩ ( ∩d

i=1 ρ
ji
ti ), where ρji

ti is the refinement associated

with αji
ti . Thus the traceback of step 5 in fact computes a refinement ρroot associated with αroot.

Theorem 17 Algorithm KtreeAtt outputs a singleton attractor of an nc-BN with bounded treewidth
w in O(n2(w+1)poly(n)) time if and only if the network possesses one.

(Proof) First we prove the correctness. For the ‘if’ part, it suffices to observe that any singleton
attractor is a refinement of some partial assignment in A0

t , for all t, and since it is clearly compatible
with an assignment in every child of t it will also appear in all At.

The correctness of the ‘only if’ part follows from Proposition 13 and the facts that αk
ti and αl

th
are

compatible if αj
t is compatible with both αk

ti and αl
th

, and there is no edge in the network between a
node in Bti ∩ (V −Bt) and a node in Bt′ ∩ (V −Bt) where t′ is any ancestor of t in T or any node in
a subtree of T rooted at ti′ , i

′ 6= i. Therefore, we analyze the time complexity below.
Since there exist at most n+1 partial assignments per node and each Bt consists of at most w+1

nodes, we need to check O((n + 1)w+1) = O(nw+1) combinations of partial assignments per t ∈ VT .
Since the intersection of two partial assignments can be computed in O(n) time, the consistency of each
combination, which also constitutes a partial assignment (i.e.,

⋂

i∈Bt
φji

i ), can be checked in O(wn)
time, which is a polynomial of n. Therefore, for each leaf t ∈ VT , it takes O(nw+1poly(n)) time to
construct A0

t .
For each non-leaf node t ∈ VT , we examine the compatibility for O(nw+1 × nw+1 × h) pairs of

partial assignments, where h is the number of children of t. Since the compatibility between two partial
assignments can be checked in O(wn) time and the total number of children is O(n), O(n2(w+1)poly(n))
time is required to construct Ats for all non-leaf nodes.

For the traceback procedure, it is enough to keep one αj
ti compatible with αt for each i = 1, . . . , d.

Thus the traceback can be done in O(poly(n)) time for constant w by a depth-first search starting
from the root.
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Since it is known that tree decomposition of a graph with n nodes can be computed in linear time
for fixed w [11], the total time complexity of singleton attractor detection is O(n2(w+1)poly(n)). ✷

Before showing how this approach can be extended to finding a p-periodic attractor we outline how
the problem of finding a singleton attractor of a network with bounded treewidth can be solved by
reduction to a certain Constraint Satisfaction problem with bounded treewidth, which is known to be
solvable in time that is polynomial in the size of the problem. We find this approach of interest, even
though we have been unable to find a similar reduction for the problem of constructing a p-periodic
attractor.

5.2 Reduction to a CSP

Recall the characterization of a singleton attractor as an assignment α that is a local fixed point at
each of the nodes of the network,

fi(α) = (α)i, for all i. (1)

Recall also that the set of all complete assignments that are local fixed points at node i can be
partitioned into at most m + 1 disjoint partial assignments φ1

i , φ
2
i , . . . each of which is a local fixed

point at node i. Note that in each of these partial assignments the i-th component is a singleton.
The basis of the reduction is the following alternative characterization of a singleton attractor.

Theorem 18 An nc-network with underlying graph G = (V,E) has a singleton attractor if and only
if for each node i there is an index ji such that the partial assignments φji

i , i = 1, . . . ,mi + 1, satisfy

φji

i ∩ φjℓ

ℓ 6= ∅, for all {i, ℓ} ∈ E. (2)

(Proof) If the network has a singleton attractor φ then it is a local fixed point at each of the nodes,
and in particular there exists for each i a ji such that φ ⊆ φji

i . Clearly equation (2) is satisfied by
these partial assignments.

The first step in proving the converse is to establish that equation (2) holds if and only if

φji

i ∩ φjℓ

ℓ 6= ∅, for all 1 ≤ i ≤ ℓ ≤ n. (3)

Suppose to the contrary that φji

i ∩φjℓ

ℓ = ∅ for some {i, ℓ} /∈ E. This means that the two partial assign-
ments are disjoint in at least one component; for ease of notation assume this is the first component.
Thus |(φji

i )1| = |(φjℓ

ℓ )1| = 1, say (φji

i )1 = {0}, (φjℓ

ℓ )1 = {1}. It follows that x1 appears in fi as well as

in fℓ, i.e. {1, i} ∈ E and {1, ℓ} ∈ E. Therefore, by assumption, φj1
1 ∩ φji

i 6= ∅ and φj1
1 ∩ φjℓ

ℓ 6= ∅, and in

particular (φj1
1 )1 ∩{1} 6= ∅ and (φj1

1 )1 ∩{0} 6= ∅, which is possible only if (φj1
1 )1 = {0, 1} contradicting

the requirement that (φj1
1 )1 be a singleton.

To complete the proof of the theorem we now prove that if there are indices ji such that equation
(3) holds then the partial assignment ∩n

i=1φ
ji

i is not empty, and hence is a singleton attractor. Suppose

to the contrary that ∩n
i=1φ

ji

i = ∅, and let k be the largest index such that ψ = ∩k−1
i=1 φ

ji

i 6= ∅. Since

ψ ∩ φjk

k = ∅. there exists a component r such that (ψ)r ∩ (φjk

k )r = ∅. This means that (ψ)r and (φjk

k )r

are singletons, and therefore (φjℓ

ℓ )r = (ψ)r for some ℓ. Thus (φjℓ

ℓ )r ∩ (φjk

k )r = ∅, contradicting the
assumption that equation (3) holds. ✷

A constraint satisfaction problem (CSP) consists of triples (Z,D, C), where Z = {z1, . . . , zn} is a
set of variables, a corresponding set of domains D = {D1, . . . , Dn} in which Di constitutes the set of
possible values of variable Zi, and C is a set of constraints {C1, . . . , Cm} each of which is a restriction
on the possible values in the domain of some subset of the variables. The constraint graph Γ(Z, C) of a
CSP (Z,D, C) consists of the node set {z1, . . . , zn} and the edge set {{zi, zj} | zi, zj occur in the same
constraint C ∈ C}}.
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Theorem 19 (Freuder 1990 [12]) Detection of a satisfying assignment of a CSP (Z,D, C) can be
found in time O((#D)w+1poly(|Z|+|D|+|C|)), where w is the treewidth of the constraint graph Γ(X, C)
(given in an appropriate tree decomposition).

Theorem 20 Detection of a singleton attractor of an nc-BN with bounded treewidth w can be con-
verted into a constraint satisfaction problem that is solvable in O(n2(w+1)poly(n)) time.

(Proof) We use Theorem 18 to convert the problem of detecting a singleton attractor of a nc-BN N
with underlying graph G = (V,E) into a CSP.

Define CSP(N) = (Z,D, C) to be the constraint satisfaction problem in which the domain of
zi is the Cartesian product Di = {i} × {φ1

i , . . . , φ
mi
i }, and the set of constraints C is indexed by

(u, v), u ≤ v and {u, v} ∈ E. An assignment zi = (i, φji

i ), i = 1, . . . , n, satisfies C(u,v) if φju
u ∩ φjv

v 6= ∅.
The CSP so constructed contains n variables and m = |E| constraints. By Proposition 13, D

contains at most
∑

i∈V (mi + 1) = O(m) elements each of which has length n, i.e., #D = O(n2) and
|D| = O(n3), and the size of the set of constraint relations can be bounded by

c · ∑{i,j}∈E(4 +mi +mj) · n2 ≤ O(n2m2),

for some constant c > 0. All in all, this easily implies that the size of CSP(N) is polynomial in n.
Hence, CSP(N) is computable in time polynomial in the number of nodes.

Theorem 18 ensures that CSP(N) has a satisfying assignment if and only if N has a singleton
attractor. Moreover, the constraint graph of CSP(N) is isomorphic to the graph G underlying N , and
so has treewidth w. Applying Freuder’s Theorem 19 yields an O(n2(w+1) poly(n)) algorithm. ✷

5.3 Finding a p-periodic attractor

The basic idea for the extension of our approach to the construction of p-periodic attractors, is
to compute a singleton attractor of Np(V p, F p) using KtreeAtt. For the tree decomposition of
Np(V p, F p), we use the natural extension of the decomposition for N(V, F ).

Proposition 21 If the graph G associated with N(V, F ) has treewidth w, then the graph Gp associated
with Np(V p, F p) has a decomposition whose treewidth is less than p(w + 1), and is such that for each
v ∈ V all v(1), · · · , v(p) are included in the same bag.

(Proof) Consider a tree decomposition of G, 〈T (VT , ET ), (Bt)t∈VT
〉. For each Bt = {i1, . . . , ik} where

k ≤ w + 1, we define Bp
t for Gp by

Bp
t = {i1(q), . . . , ik(q) | q = 1, . . . , p}.

It is straight-forward to see that the Bp
t s give a tree decomposition of Gp. Since the maximum size of

Bp
t is at most p(w + 1), the proposition holds. ✷

It seems that the above bound is nearly tight up to a constant factor in the worst case. Suppose
that N(V, F ) is a linear chain with n nodes, where each edge is bidirectional. Then, the treewidth of
N(V, F ) is 1. On the other hand, the size of the separator of Nn(V n, Fn) is Θ(n) where p = n since
the structure of Nn(V n, Fn) is similar to that of a grid of size n × n. Therefore, the treewidth of
Nn(V n, Fn) is Ω(n). We can extend this discussion for larger w by replacing a linear chain with an
n × n grid-like BN N(V, F ). Then, N(V, F ) has treewidth w = Θ(n) and Nn(V n, Fn) has treewidth
Θ(n2) = Θ(wp) where p = n.

It is straightforward to convert a singleton attractor of Np(V p, F p) into an attractor of N(V, F ).
However, if no further steps are taken, all we can say about its period is that it divides p. The main
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task of this section is, therefore, to show how to modify the algorithm so as to ensure that an attractor
is constructed whose period is exactly p.

It is not difficult to verify that Algorithm KtreeAtt can be modified so as to generate all possible
singleton attractors, and to check the precise periodicity of each. This is not a feasible option, at least
in principle, because the generation itself may take too long. Indeed, it yields much more information
than is needed if all we want is one attractor of period exactly p. To ensure the latter it suffices to
know that for each i, 2 ≤ i ≤ p, there is some node v in the network such that its values in the
attractor satisfy v(i) 6= v(1). However, in order to be able to deduce this for an assignment in the
root node, we have to allow for all patterns of periodicity at other nodes of the tree decomposition.
These are the ideas behind the construction that we describe now.

Definition 22 The partial assignment α ∈ At is consistent with the 0-1 vector T [2 . . . p] if there is a
refinement ρ of α such that for all 2 ≤ i ≤ p

T [i] = 1 ⇐⇒ there is a v ∈ ∪t′Bt′ such that (ρ)v(1) 6= (ρ)v(i),

where t′ ranges over t and its descendants.

In this terminology we are looking for an attractor that is consistent with the vector T whose values
are T [i] = 1, i = 2, . . . , p. Denote this vector T1.

A given partial assignment α ∈ At may, of course, be consistent with several of the 2p−1 possible
vectors T . We index these vectors as Tℓ. Our modification of the algorithm adjoins to each α ∈ At

a 0-1 vector of length 2p−1, a consistency vector Cα, the ℓ-th entry of which indicates whether α is
consistent with Tℓ.

Definition 23 The semantics of the vector Cα is

Cα[ℓ] = 1 ⇐⇒ Tℓ is consistent with α .

Thus the task of the algorithm is to search for an α ∈ Aroot such that Cα[1] = 1, meaning that there
is at least one refinement of α that does not have a period smaller than p.

Definition 24 Given a partial assignment α denote by C0
α the consistency vector defined as follows:

C0
α[i] = 0 except that C0

α[ℓ] = 1 where ℓ is the index of the one 0-1 vector with which α is consistent,
i.e. the Tℓ with the property that

Tℓ[i] = 1 ⇐⇒ |(α)v(1)| = |(α)v(i)| = 1 and (α)v(1) 6= (α)v(i) for some v ∈ Bt

Note that if α ∈ A0
t is a local fixed point at v(1) then it is also a local fixed point at v(i) because, by

Proposition 21, for each v ∈ V all v(1), · · · , v(p) are included in the same bag.
For 0-1 vectors T , T ′ and T ′′, we write T = T ′ ∨ T ′′ if

T [i] = 1 ⇐⇒ T ′[i] = 1 or T ′′[i] = 1.

Finally, to compute Cα, α ∈ At using dynamic programming from the leaves up, it will be conve-
nient to introduce the binary operator ⊗, as follows.

Definition 25 Given consistency vectors Cα and Cβ the consistency vector Cα ⊗ Cβ has values

(Cα ⊗ Cβ)[ℓ] = 1 ⇐⇒ (∃j)(∃k)(Tℓ = Tj ∨ Tk and Cα[j] = Cβ[k] = 1).

It is not difficult to verify that this operator is commutative and associative; thus it will not be
necessary to indicate the order of computation for expressions such as Cα ⊗ Cβ ⊗ Cγ .

Computing Cα
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1. For each node t ∈ VT and each α ∈ At, compute C0
α.

2. Execute STEP 3 in a bottom-up manner by using dynamic programming; begin by setting, for
each leaf node t, Cα = C0

α for all α ∈ At.

3. For each non-leaf node t, with children t1, . . . , td, and for each α ∈ At, do

(a) for each ti set Dα,ti =
∨

β∈Ati
(α) Cβ , where Ati(α) = {β ∈ Ati : β ∩ α 6= ∅}.

(b) Cα = C0
α ⊗ Dα,t1 ⊗ · · · ⊗ Dα,td .

In explanation of step 2 recall that for a leaf node t each α ∈ At is in fact its own refinement.
As explained previously, there exists a p-periodic attractor if and only if there is an α ∈ Aroot such

that Cα[1] = 1. Furthermore, if it exists a p-periodic attractor can be constructed by using a standard
traceback technique. We denote the resulting algorithm by KtreePAtt.

Theorem 26 Detection of a p-periodic attractor of an nc-BN with bounded treewidth w can be done
in O(n2p(w+1)poly(n)) time for any constants p and w.

(Proof) Since it is straight-forward to see the correctness of KtreePAtt, we only analyze the time
complexity.

From Proposition 21, the treewidth of Np(V p, Ep) is less than p(w + 1), so that the size of At is
O(np(w+1)). As in the proof of Theorem 17, for each non-leaf node t ∈ VT , we examine the compatibility
for O(np(w+1) × np(w+1) × d) pairs of partial assignments. Therefore, the total computation time for
constructing Ar is O(n2p(w+1)poly(n)).

As long as p is a constant the size of the additional information Cα that the algorithm adjoins is
constant, and the time taken by Computing Cα is polynomial. ✷

It is to be noted that if the maximum indegree is bounded by a constant d, the number of possible
partial assignment per Bt is bounded by (d+2)p(w+1). Therefore, KtreePAtt gives a fixed parameter
algorithm when p, w and d are parameters. Furthermore, in such a case, even for a general Boolean
function with at most d inputs, it is enough to consider 2d partial assignments (instead of m+1 partial
assignments). Therefore, KtreePAtt also gives a fixed parameter algorithm for a BN with general
Boolean functions when p, w and d are parameters.

6 Conclusion

We have presented a polynomial time algorithm for the detection of a 2-periodic attractor of a positive
OR BN, an O(1.985n) time algorithm for the detection of a 2-periodic attractor of an AND/OR BN,
and an O(n2p(w+1)poly(n)) time algorithm for the detection of a p-periodic attractor of an nc-BN
having bounded treewidth w. The first result suggests that detection of 2-periodic attractor is easy
for networks whose structure is severely restricted. The second result, though not practically useful,
is the first to establish that it is possible to develop an O((2 − δ)n) time algorithm for a relatively
general class of BNs. The third result suggests that for certain kinds of biological networks it might
be possible to efficiently detect an attractor with a short period because it is reported that metabolic
networks (which can be modeled as an AND/OR BN) have small treewidth [7].

Although these algorithms provably work in o(2n) time, they may not work faster than heuris-
tic algorithms in practice. The main purpose of this paper is to show the very existence of o(2n)
time algorithms, for well-defined classes of BNs, and thereby to stimulate further improvements and
developments.

Particularly interesting open problems are the development of O((2 − δ)n) time algorithms for
the detection of 2-periodic attractors in an nc-BN, and for the detection of 3-periodic attractors in
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an AND/OR BN. It is also left as an open problem to develop a fixed parameter algorithm for the
detection of p-periodic attractors in an nc-BN with bounded treewidth.
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