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Protein Function Prediction using Multi-label
Ensemble Classification

Guoxian Yu, Huzefa Rangwala, Carlotta Domeniconi, Guoji Zhang, and Zhiwen Yu, Member, IEEE

Abstract—High-throughput experimental techniques produce several
kinds of heterogeneous proteomic and genomic datasets. To compu-
tationally annotate proteins, it is necessary and promising to integrate
these heterogeneous data sources. Some methods transform these
data sources into different kernels or feature representations. Next,
these kernels are linearly (or non-linearly) combined into a composite
kernel. The composite kernel is utilized to develop a predictive model
to infer the function of proteins. A protein can have multiple roles and
functions (or labels). Therefore, multi-label learning methods are also
adapted for protein function prediction.

We develop a transductive multi-label classifier (TMC) to predict
multiple functions of proteins using several unlabeled proteins. We
also propose a method called transductive multi-label ensemble
classifier (TMEC) for integrating the different data sources using an
ensemble approach. TMEC trains a graph-based multi-label classifier
on each single data source and then combines the predictions of the
individual classifiers. We use a directed bi-relational graph to capture
the relationships between pairs of proteins, between pairs of functions,
and between proteins and functions. We evaluate the effectiveness of
TMC and TMEC to predict the functions of proteins on three bench-
marks. We show that our approaches perform better than recently
proposed protein function prediction methods on composite and multi-
ple kernels. The code, datasets used in this paper and supplementary
file are available at https://sites.google.com/site/guoxian85/tmec!.

Index Terms—Multi-label Ensemble Classifiers, Directed Bi-relational
Graph, Protein Function Prediction

1 INTRODUCTION

ADVANCES in biotechnology have enabled high-
throughput experiments that generate high vol-
ume of genomic and proteomic data. Examples of
these data include protein-protein interaction (PPI)
networks, protein sequences, protein structure, gene
co-expression data, and genetic interaction networks.
Each data source provides a complementary view
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of the underlying mechanisms within a living cell.
Annotating the functions (i.e., biological process func-
tions in the Gene Ontology (GO) [1f], transcription
and protein synthesis) of proteins is a fundamental
task in the post-genomic era [2], [3]. However, it is
time consuming, expensive, and low productive to
manually annotate a protein using complex and large
heterogeneous data. Therefore, various computational
models have been proposed to automatically infer the
functions of proteins by integrating the available data
(31, [4].

Kernel based methods [5], [6] have been widely used
to design several bioinformatics related algorithms.
In these approaches, the pairwise similarity between
proteins is described by a kernel function K, which cap-
tures the underlying biological complexity associated
with the proteins. For each data source (i.e., protein
sequences, PPI networks), a unique kernel function is
defined, and each kernel function captures a different
notion of similarity. For example, the string kernel
[7] is often used to compute the similarity between
protein sequences, and the random walk kernel [2] is
utilized on protein-protein interaction (PPI) data. Both
the sequence and PPI datasets are transformed into
different kernels, each of which captures similarities
between protein pairs within different feature spaces
(or embeddings). Pavlidis et al. [§] and Noble et al. [4]
observed that the prediction accuracy can be boosted
by taking advantage of complimentary embeddings
across different kernels. Many approaches [5], [9],
[10] use a linear (or nonlinear) weighted combination
(optimal or ad hoc) of multiple kernels obtained from
the different sources. These kinds of methods can be
categorized as kernel integration methods. In addition,
supervised ensemble classifiers [8], [11] have also been
developed to combine the multiple data sources.

Often, only a few proteins are annotated, and a large
volume of proteins remains unlabeled within each
single data source. Transductive or semi-supervised
learning methods are able to make use of unlabeled
data to boost the learning results [12]. Therefore,
several semi-supervised [10], [13]], [14] approaches
have been proposed for protein function prediction.
Further, a protein often holds more than one function
and functions are correlated with each other. This
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fact should be taken into account in protein function
prediction. Several approaches [15]-[18] formulate the
protein function prediction problem within a multi-
label learning framework. Multi-label learning meth-
ods can make use of the dependencies between the
different function classes, and they often outperform
single-labeled prediction methods.

We propose a protein function prediction method
called Transductive Multi-label Classifier (TMC). TMC
is based on a directed bi-relational graph that models
the relationship between proteins and functions. To
integrate the heterogeneous sources of protein data,
we also develop an ensemble based classifier called
Transductive Multi-label Ensemble Classifier (TMEC). We
performed comprehensive experiments evaluating the
performance of TMC and TMEC on three protein
function prediction benchmarks (Yeast, Human and
Fly). Each benchmark includes several kinds of het-
erogeneous data sources (i.e., PPI networks, protein
sequences and gene co-expression data). For more
information on these benchmarks, one can refer to
prior work by Mostafavi et. al. [9] ﬂ Our results
show that the use of a directed bi-relational graph
achieves higher accuracy than the undirected one. Our
proposed TMC outperforms state-of-the-art protein
function prediction approaches; namely, two transduc-
tive multi-label classification approaches [15], [18], a
transductive classifier [9] and two multi-label multiple
kernel learning methods [19], [20]. In addition, the
proposed TMEC, which takes advantage of classifier
ensembles to make use of multiple heterogeneous data
sources, often performs better than TMC.

This work is an extension of our earlier paper by Yu
et al. [21]]. In particular, the additional contributions of
this paper are as follows.

1) We provide a thorough analysis of the issues due

to the use of an undirected bi-relational graph
[22] for network propagation. We advocate the
use of a directed bi-relational graph instead, and
discuss a toy example to illustrate the risk of
using an undirected bi-relational graph.

2) We test our proposed methods (TMC and TMEC)
on three public available protein function predic-
tion benchmarks (Yeast, Human, and Fly).

3) We apply different schemes to combine the indi-
vidual kernels from different data sources into
a composite kernel, and compare them against
TMEC to further show the advantage of classifier
integration to kernel integration in protein function
prediction.

The rest of the paper is organized as follows. Section
reviews related work on protein function prediction
using multi-label learning and data integration. In
Section [} we introduce the directed bi-relational graph
approach and the corresponding training procedure,
along with a toy example to illustrate the drawbacks

1. http:/ /morrislab.med.utoronto.ca/~sara/SW/

associated with the use of an undirected bi-relational
graph. We also describe our ensemble approach to
make use of multiple data sources. We describe the
experimental protocol, evaluation metrics, and data
sources in Section[d] In Section 5| we discuss the exper-
imental results. In Section [} we provide conclusions
along with directions for future work.

2 RELATED WORK

Various computational models have been proposed
to predict protein functions. These methods can be
categorized according to terms of methodology, input
data, and problem definition. Pandey et al. [3] gave a
comprehensive literature review on protein function
prediction. Here, we review only the work most related
to the scope of this paper.

2.1 Multi-label Learning in Protein Function Pre-
diction

Traditional function prediction methods take protein
sequences (or PPI) and functional annotations as input
to train one-versus-the-rest binary classification models
[2], [8]. These methods ignore the pairwise function
correlations. It is observed that a protein performs
multiple functions, and structured relationships are
prevalent within protein function annotation databases
(e.g., Gene Ontology [1E] is a directed acyclic graph,
Functional Catalogue (FunCat) [23]] E] is a tree graph).
As such, protein function prediction can be formulated
as a multi-label classification problem [24].
Multi-label learning is widely used in protein func-
tion prediction. Elisseeff et al. [25] added a ranking
loss function into the loss function of SVMs and
proposed a method called RankSVM. RankSVM does
not to make explicit use of the label correlations
[26], which can be important for deciding the label
membership [18], [26]. Chen et al. [26] incorporated
a label correlation (captured by a hypergraph) term
into the objective function of RankSVM. More specifi-
cally, in the hypergraph, each label corresponds to
a hyperedge, which connects all the proteins that
share the same label. Protein function databases like
Gene Ontology [1] and FunCat [23] represent protein
functions within a hierarchy (or a directed acyclic
graph), and several approaches incorporate the parent-
children relationship among proteins. Barutcuoglu et
al. [27], first train independent binary SVMs for each
of the GO function labels, and then integrates the
prediction by incorporating GO’s hierarchical structure
within a Bayes formulation. Valentini [28] used the
True Path Rule in FunCat to guide the integration of
predictions. Pandey et al. [17] used Lin’s measure [29]
to define the semantic similarity between the different

2. http:/ /www.geneontology.org /
3. http:/ /mips.helmholtz-muenchen.de/proj/funcatDB/
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GO labels and incorporated it within a weighted multi-
label k-Nearest Neighbors (kNN) classifier.

More recently, several semi-supervised multi-label
learning methods based on PPI networks were pro-
posed for protein function prediction [15], [16], [18].
MCSL [16] is based on a product graph with an
objective function similar to the local and global
consistency method [30]. MCSL adds another term
(function correlation) into the smoothness term (See
Eq. (6) in [16]) and results in a Kronecker matrix. For
N proteins with C functions, the resulting Kronecker
matrix is an (N x C) x (N x C') matrix. This augmented
matrix often can not be loaded in memory and it’s
computationally expensive. To address this problem,
Jiang [15] proposed a protein function prediction
approach called PfunBG, which is based on a bi-
relational graph [22] and label propagation [30]. The bi-
relational graph captures three types of relationships:
(i) protein-protein similarities, (ii) function-function
similarities, and (iii) protein-function associations, and
the association matrix of the bi-relational graph is
an (N + C) x (N 4 C) matrix. GRF [18] utilizes
Jaccard coefficients to measure the correlation between
functions and then incorporates this correlation into a
general semi-supervised learning framework based
on manifold regularization [31]. All the described
methods, MCSL, PfunBG and GREF, utilize pairwise
label correlations within a semi-supervised learning
framework, but are developed for protein function
prediction using a single data source (PPI) only.

2.2 Data Integration in Protein Function Predic-
tion
Several methods have been developed to integrate the
information from heterogeneous data sources (i.e., PPI,
protein sequences) to boost the function prediction
accuracy [4]. Lanckriet et al. [5] defined a kernel
on each data source and then utilized semi-definite
programming (SDP) to seek the optimal weights to
linearly combine these kernels. However, this method
is computationally expensive [10]. To overcome this
problem, Tsuda et al. [10] made use of the dual problem
and gradient descent to efficiently get the optimal
weights. Shin ef al. [13] sought the optimal weights
within an EM [32] framework by iteratively minimizing
prediction error and combining weights. Mostfavi et al.
[33] propose a heuristic approach derived from ridge
regression, to more efficiently determine these weights.
Finally, these obtained composite kernels are used in
SVMs or graph-based classifiers for binary protein
function annotation. These methods determine the set
of weights per function class, which not only result in
increased time complexity, but also ignore the inherent
correlation among function labels.

More recently, some approaches have leveraged
kernel integration and function correlation. Mostafavi
et al. [9] introduced a method called ‘Simultaneous

Weighting (SW)'. SW optimizes a set of weights for
a group of correlated functions, and then combines
these kernels into a composite kernel. Next, graph-
based semi-supervised classifiers are trained on this
composite kernel for each function. Tang et al. [19]
introduced a unified framework, in which selecting
a specific composite kernel for each function and
for all the functions are two extreme cases. In our
experiments, we consider this approach for compari-
son, and call it MKL-Sum [19]]. MKL-Sum first learns
linear combination coefficients with respect to all the
functions and then applies SVMs on the composite
kernel. Bucak et al. [20] utilized stochastic approxima-
tion to speedup multi-label multiple kernel learning,
and proposed a method called MKL-SA. Cesa-Bianchi
et al. [34] integrated binary classifiers hierarchical
ensembles, cost sensitive methods, and data fusion for
gene function prediction. However, despite various
optimization techniques, Tsuda et al. [10], Lewis [6]
and Gonen et al. [35] observed that a composite
kernel combined with optimized weights has similar
performance to a composite kernel combined with
equal weights, i.e., without optimization.

In this work, different from traditional kernel inte-
gration methods [5], [9], [19], we propose a classifier
integration method called TMEC. TMEC first trains
a transductive multi-label classifier (TMC) on each
of the kernels representing a data source, and then
integrates the predictions using majority voting. Our
experimental results on three public available protein
function prediction benchmarks show that TMEC
outperforms classifiers trained on the composite ker-
nels. In addition, we observe that TMEC outperforms
the TMC trained on the composite kernel and the
individual kernels derived from different data sources.
This observation confirms that the ensemble approach
is effective, and the transductive multi-label classifiers
trained on individual kernels are complementary to
each other.

3 PROBLEM FORMULATION

We are given R different kinds of features that describe
the same set of NV proteins with C' functions. Each kind
of features provide a unique representation for proteins
(e.g. vectors, trees, or networks). We assume the first
[ proteins are already annotated and the remaining u
proteins are not annotated (I +w« = N). The R different
representations of these proteins are transformed into
R kernels [K,|E | (K, € RV*Y), one kernel per source.
K, (i,j) > 0 describes the kernel induced pairwise
similarity between proteins ¢ and j in the r-th data
source. Our objective is to first train a TMC on a
directed bi-relational graph adapted from the kernel
K,., and then combine these classifiers into an ensemble
classifier (TMEC). Finally, we use TMEC to annotate
these u proteins. In this section, we first review the bi-
relational graph approach, analyze the related issues
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for network propagation, and give a toy example to
illustrate this problem.

3.1 Transductive Multi-label Classification on a
Directed Bi-relational Graph

Graph based transductive or semi-supervised learning
methods can be extended to multi-label learning by
incorporating a label correlation term into its objective
function [16], [18], [36]. Wang et al. [22] introduced an
undirected bi-relational graph for image classification
and applied a random walk based propagation with
restart [37]]. This graph includes both images and labels
as nodes. For consistency, hereinafter, we use proteins
instead of images and functions instead of labels. A bi-
relational graph is composed of three kinds of edges:
between proteins, between functions, and between
proteins and functions. For the latter, if protein ¢ has
function ¢, an edge is set between them.

The inter-function similarity leads to improved
prediction accuracy [17], [18] and can be defined
in various ways [15], [17], [18]. Here we define the
similarity between functions m and n as follows:

£rf,

S ) = ]
where f,, € RY(1 < m < O) is the m-th function
vector on all proteins: if protein ¢ has function m, then
£, (i) = 1, otherwise f,,,(i) = 0.

A random walk on a graph is often described by
a propagation matrix. For a random walk on a bi-
relational graph, the propagation matrix W is defined

* BWpp (1-5)Wpr
(1-8)Wpp BWrr

where Wpp € RY*N and Werp € RE*C are the
propagation matrices of the intra-subgraphs of pro-
teins and functions, respectively. Wppr € RY*C and
Wep € ROV are the inter-subgraph propagation ma-
trices between proteins and functions, and /5 controls
the relative importance of the intra- and the inter-
subgraphs. It also controls the frequency with which
a random walker jumps from a function subgraph to
a protein subgraph. Wpp and Wrp are computed as:

Wpp = D;};S‘DP Wrr = D;}U'SFF (3)

where Spp is the pairwise similarity matrix between
all proteins, and S is the pairwise correlation matrix
between all functions. Dpp and Dpp are the diagonal
matrices of the row sums of Spp and Srr, respectively.
Wpr and Wrp are calculated as:

)

W= @)

_1 _1 _1 _1
Wpp = Dp2SppDp2 Wep = Dp2SppDpZ,  (4)

where Spr is the relation matrix between proteins
and functions, and Sgp is the transpose of Spr. Dpr
is the diagonal matrix of the row sums of Spr and
Drpp is the diagonal matrix of the column sums of

Spr. We observe that if protein ¢ has function ¢ then
Spr(i,c) =1 ; otherwise Spp(i,c) = 0.

The c-th function node and the proteins annotated
with this function are considered as a group:

Ge.=vEU{wl|Spr(i,c) =1} (5)
'

where vl is the c-th function node and v} is the i-
th protein node of the bi-relational graph. In the bi-
relational graph, instead of computing the node-to-
node relevance between a function node and an unan-
notated protein node, the relevance between a protein
and a group G, is considered. Let Y € RIV+C)xC pe
the label distribution on the N + C nodes of the bi-
relational graph with respect to C' function labels. Each
column corresponds to one function label. For the c-th
function, the distribution vector Y, (c-th column of }7)
is: -

% ’ch
o= |0 e

where Y € RY is the distribution vector on the
protein nodes, and V£ € R is the distribution vector
on the function nodes. Y2 (i) = 1/, Spr(i,c) if
Spr(i,c) = 1 and Y (i) = 0 otherwise; Y (j) = 1
if j = ¢, and YE(j) = 0 otherwise. v adjusts the
distribution of function labels on protein and function
nodes.

Based on these preliminaries, an iterative objective
function is defined on this bi-relational graph as
follows:

} c RN+C ©)

N+C
FEDG) = (1 —a) Y W(i,j)FP (i) + aY;

i=1

where F(*) (i) € R® is the predicted likelihood of the
i-th protein with respect to C function labels in the
t-th iteration, W (3, j) is the weight of edge between
nodes i and j, Y; € R is the initial set of functions
on the j-th node, « is a scalar value to balance the
tradeoff between the initial set functions and the
predicted functions. From Eq. (7), we can see that the
functions of a node are predicted by the functions of
its connected nodes. This makes TMC a direct protein
function prediction method [2]. Note that, in the bi-
relational graph, the predictions are made on all the
nodes (including proteins and functions).

However, the application of Eq. for protein
function prediction has a major drawback. Suppose 4
is a protein vertex annotated with a function vertex j.
The function j may be overwritten by the functions
of the proteins connected to ¢, thus causing the loss
of reliable information. As such, the functions of
initially annotated proteins may be changed during
the iterative label propagation. This phenomenon is
similar to the one occurring in the local and global
consistency method [30], and should be avoided. A
toy example in the following section will illustrate this
problem.

@)
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Eq. (7) can be rewritten as follows (for simplicity, (excluding Y) is a geometric series with the following

the parameter § in Eq. () is not included):

FU Wpp Wpp] [FY Yp
(t+1) (1-a) | Ty
Fy Wrp Wrr| | Fy Yr
— (1-a) WPPFS)'FWPFFS) n Y/p
= o (t) oYy,
WFPFP + WFFFF F

Fz(atﬂ) =(1- a)(WPPF}(Dt) + WPFFJE“t)) +a¥p  (8)
FUMY = (1= a)(WepFY + WepFYD) + oV (9)

From Egs. (B}9), we can see that Wpr propagates func-
tion information from function to protein nodes, and
Wrp propagates function information from protein to
function nodes. In a bi-relational graph, we expect that
information propagates from function to protein nodes,
but not vice versa. Thus, we change the undirected
bi-relational graph into a directed one. An example of
the proposed directed bi-relational graph is shown in
Figure[l} In this graph, information can be propagated
in the intra-subgraphs Wpp and Wgr, and in the inter-
subgraph Wpp, but not in the inter-subgraph Wgp.
Therefore, we define the propagation matrix Wy on
the directed bi-relational graph as follows:

Wpp WPF:|

0 Wep (10)

we|
where 0 € RN, TMC takes advantage of network
propagation by optimizing local and global consistency
functions [30]. By defining directed edges between pro-
teins and functions, the induced propagation matrix of
the directed bi-relational graph becomes not symmetric.
The directed edges control the information that flows
from one side of the bipartite graph (function sub-
graph) to the other (protein sub-graph). As described
earlier in Egs. ©), and through the empirical
study in the following Subsection we show that
TMC trained on a directed bi-relational graph can
avoid the observed problems (i.e., annotation change
and function label override) associated with TMC
trained on an undirected bi-relational graph. Thus,
we advocate the use of a directed bi-relational graph,
and define a non-symmetric propagation matrix on
this graph.

Based on Eq. (7), we can get the iterative equation
on the directed bi-relational graph:

FD — (1 — @)W F® + oY (11)

By setting F(?) =Y, we have:

t

FUD = (1—a)W) VY 40> (1—a)Wa)*Y (12)
k=0

Since 0 < o < 1 and 0 < (1 — @)W, < 1. Note that

when k =0, ((1 — a)Wy)* is the identity matrix. The

first term in Eq. is bound to 0, and the second term

|

limit:

t
Jim B (1 W) = (I —(1-a)Wy) =t (13)
—00
k=0
where I is an (N + C) x (N + C) identity matrix. Thus

the equilibrium solution F' of Eq. is:

F=al-(1—-a)Wy) Y (14)

The predicted F(j) is a real value vector with size C,
where each entry reflects the likelihood that protein j
has the corresponding function. Thus, we also refer to
F(j) as the predicted likelihood score vector of protein
j. From Eq. (14), we can see that F' is determined by Wy
and a well-structured bi-relational graph can produce
a competent F.

F}(,t ) is initially set according to the original function
annotation on the ! annotated proteins. For both the
directed and undirected bi-relational graphs, Fl(f) is up-
dated in iterations, but FI(;’ ) on the directed bi-relational
graph avoids the problems (i.e., annotation change and
function label override, c.f. Subsection associated
with the undirected bi-relational graph, and achieves
better prediction. In the undirected bi-relational graph,
Wrp propagates label information from protein nodes
to function nodes, but in the directed bi-relational
graph, no information is propagated from the protein
nodes to function nodes. Thus, the term Wx pFPt) may
lead to poor performance due to Wrp, while the term
FI(Dt ) alone does not have this problem.

3.2 The Problem of Undirected Bi-relational
Graph in Label Propagation

We provide an illustrative example to instantiate the
problem of the undirected bi-relational graph in label
propagation, and therefore motivate the use of a
directed bi-relational graph.

The toy example is illustrated in Figure [T} In this
directed bi-relational graph, there are three func-
tion nodes (f1, f2 and f3), and six protein nodes
(pl,---,p6). The first four proteins are labeled (as
specified by the directed solid lines), and the last two
proteins are unlabeled. In the graph, p5 is more similar
to (or interacted with) p4 than p3. From the ‘guilty
by association” rule [38] (interacting proteins tend to
share similar functions), p5 is more likely to have the
function set of p4. However, TMC on the undirected bi-
relational graph predicts p5 to have the same function
set as p3, instead of p4, as illustrated in the fifth row of
Table [1} In contrast, TMC on the directed bi-relational
graph predicts p5 to have the same function set as p4.

Another observation is that for the undirected graph,
p4 is initially annotated with f1 and f3, but after
label propagation, this protein is annotated with f1
and f2 (see the fourth row of Table . In addition,
after the label propagation on the undirected bi-
relational graph, the information on the f3 node is
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Fig. 1. An example of a directed bi-relational graph.
The circles are function nodes, the rectangles are
protein nodes, the directed edges represent function
assignment, the undirected edges with weights in
solid line represent protein-protein interactions, and the
dotted lines with weights represent function correlations.
The width of the line reflects the weight of the edge.

TABLE 1
The prediction of TMC on the undirected and directed
bi-relational graph for the protein nodes and function
nodes, and the original function assignment.

Nodes original undirected directed

f. 2 371 2 £3[]f1 2 13
pl 1 1 o1 1 O0f1 1 O
p2 11 o1 1 o1 1 O
p3 i1 1 o1 1 O0}1 1 O
p4 1 0 1|1 1 01 0 1
p5 o 0 o1 1 0|1 0 1
p6 0 0 o1 1 O0]1 1 ©
f1 1 0 0|1 0 01 0 O
f2 o 1 o0o}0 1 0|0 1 O
{3 0 0 1]1 0 0]O0O 0 1

dominated by the information of f1 (see the last
row of Table , resulting in the function override
problem, which was pointed out and analyzed in the
previous subsection. In contrast, by using the directed
bi-relational graph, these problems are avoided. The
advantage of the directed bi-relational graph with
respect to the undirected one will be further confirmed
in our experiments on real world benchmarks.

Note, for the experiment in Figure [I] and Table
we compute the function similarities using Eq. (1).
Since there is no prior information on how to balance
the importance of the protein and function nodes, we
use the default settings of 5 = 0.5 and v = 0.5 as in
prior work [15]. For the experiment here, we can not
select the best 3 and v by grid search, since there is
very scarce training data. In addition, setting higher

values of § and v lead to the observed problems
of undirected bi-relational graphs. We convert the
predicted likelihoods F' into binary labels using the
Top k scheme [18], [21], [39]. For each protein, the &
largest predicted probabilities are chosen as relevant
functions and labeled as 1s, and the others are set
as irrelevant functions and labeled as 0s. In the toy
example, since each training protein has 2 functions,
we set k = 2. The other parameter settings for TMC
will be detailed in the Experimental Section [4]

3.3 Transductive Multi-label Ensemble Classifica-
tion

TMC avoids the risk of overwriting the information
given by function nodes. However, because of noisy
edges (i.e., false positive interactions) and isolated
proteins present in a single bi-relational graph, it
is still limited in providing a confident likelihood
score vector F'(j) from a single data source. To avoid
this limitation, we can leverage the various graphs
(or kernels) associated to the same set of proteins
(e.g., PPI network, gene interaction network, and co-
participation network in a protein complex) [4], [13].
These graphs are, to some extent, independent to one
another, and also carry complementary information.

Here we predict protein functions using multiple
kernels derived from multiple sources by performing
classifier integration. More specifically, we first trans-
form each kernel into a directed bi-relational graph.
We then train a TMC on each of these graphs. Finally,
we combine these TMCs into TMEC using an ensemble
approach. TMEC is described in Algorithm 1. In Eq.
, we combine the F, values using a weighted
majority vote. This is due to the fact that different
kernels have different qualities (c.f. Figure 2|and Figure
B), and have different levels of confidence on the
predicted functions of a protein. For example, if kernel
K, is more confident on annotating protein i with
function m, and K is more confident on annotating
protein i with function n, then K; will have more
influence on determining the m-th function of protein
i, and K5 will have more influence on determining
the n-th function of protein i. On the other hand, if
unlabeled protein ¢ in K; is isolated (TMC on K; can
not predict protein ), but it is connected with some
proteins in K5, then the functions of protein ¢ can be
predicted by TMC on K.

Due to the different structures across different
kernels, the base classifiers F;. in Eq. are diverse.
In addition, because of the complementary information
between different kernels, the predicted likelihoods
F,(j) are also complementary to each other. In con-
trast, the annotator trained on the composite graph
cannot make use of these predicted likelihoods. In
ensemble learning, diversity between base classifiers
is paramount to gain a consensus classifier with a
good generalization ability [40]. For these reasons,



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XX, NO. XX, XX 20XX 7

Algorithm 1 TMEC: Transductive Multi-label Ensem-
ble Classification

Input:
{K,}E | from R data sources
Y = [Y17y27"'7yl]
@, B,

Output:

Predicted likelihood score vectors {F(])}jvzl 41

1: Specify Y using Eq.@

: forr =1to R do

Set Wpp = K, and construct a directed bi-
relational graph using Eqs.(3[f4) and Eq.(10)

4 Get the r-th annotator F, using Eq.(T4)

W N

5. end for
6: Integrate the R annotators {F,}Z | into an ensem-
ble classifier as:
1B
F(G) =5 > F() (15)
r=1

TMEC can annotate proteins with higher confidence
than approaches trained on the composite kernel and
single kernels. Our experimental results in Section [f]
confirm this advantage. An additional merit of TMEC
is that it does not require to have all the data sources
available beforehand, and each TMC can be trained
individually or incrementally. Thus, new data sources
can be appended into TMEC without repeating the
entire training process.

4 EXPERIMENTAL SETUP
4.1

We evaluate the performance of our algorithms on
three previously defined protein function prediction
benchmarks, namely Yeast, Human and Fly. All these
benchmarks were downloaded from the study by
Mostafavi et al. [9E] and annotated according to
the biological process function categories in the GO
database [1]. The Yeast benchmark includes 3904
proteins annotated with 1188 functions. There are 44
different kernel functions in Yeast dataset, most of
which are protein-protein interactions obtained from
different experiments. The Human benchmark includes
13281 proteins annotated with 1952 GO functions.
There are 8 different kernel functions in the Human
dataset, which are derived from various domains, i.e.,
protein-protein interactions, tissue expression, protein-
DNA /RNA-interaction. The Fly benchmark includes
13562 proteins annotated with 2195 GO functions.
There are 38 different kernel functions in the Fly
dataset, including gene expression, protein-protein
interactions, and Pfam.

Dataset Description

4. http:/ /morrislab.med.utoronto.ca/~sara/SW/

TABLE 2
Protein function prediction benchmarks statistics
(Avg+Std means average number of functions for each
protein and its standard deviation)

Dataset #Kernels | #Proteins | #Functions Avg+5Std

Yeast 44 1809 57 4.35 +3.28
Human 8 3704 254 3.73 + 3.67
Fly 38 3509 426 6.53 + 7.47

To avoid too general or too small functions, as done
in previous studies [9], [18], we filtered the proteins
in Yeast to include only those GO functions that had
at least 100 proteins and at most 300 proteins. After
this preprocessing, there are 1809 proteins annotated
with 57 functions in Yeast. We filtered the proteins in
Human and Fly to include only those GO functions
that had at least 30 proteins and at most 100 proteins.
Thus, there are 3704 proteins annotated with 254
functions in Human, and 3509 proteins annotated with
426 functions in Fly. The statistics of these filtered
benchmarks are listed in the Table 2|

4.2 Evaluation Metrics

We evaluate the protein function prediction problem as
a multi-label classification problem. There are various
evaluation metrics in multi-label learning [24]], here we
adopt three evaluation metrics, namely, Ranking Loss,
Coverage and adapted Area Under the Curve (AUC).
Given C different protein functions, our approach
results in a predicted likelihood vector that assigns
a protein i to a function ¢ with probability F(i,c).
There is no standard rule to transform the predicted
likelihood vector into a binary indication label vector
[24], [41]. Thus we do not apply the evaluation metrics
that depend on transforming the predicted likelihood
vector into a binary label vector. For brevity, the
definition of Ranking Loss and Coverage is introduced
in the supplementary file.

The adapted Area Under the Curve (AUC) for multi-
label learning was utilized in [42]. AUC first ranks
all the labels for each test instance in the descending
order of their scores; it then varies the number of
predicted labels from 1 to the total number of labels,
and computes the receiver operating characteristic
curve by calculating the true positive rate and the
false positive rate for each number of predicted labels.
It finally computes the area under the curve of all
labels to evaluate the multi-label learning methods.

For maintaining consistency with AUC, we use
1-RankingLoss. Thus, the higher the value of 1-
RankingLoss and AUC, the better the performance. In
contrast, the lower the value of Coverage, the better
the performance.

5 EXPERIMENT ANALYSIS

We evaluate TMC and TMEC by comparing them
against PfunBG [15], GRF [18], SW [9], MKL-Sum
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[19] and MKL-SA [20]. PfunBG and GRF are recently
proposed semi-supervised multi-label classifiers based
on PPI networks for protein function prediction. SW
is a recently introduced efficient protein function pre-
diction method based on the composite kernel. MKL-
Sum and MKL-SA are two multi-label multiple kernel
learning approaches, whose performance is verified
in gene function prediction. We adopted the codes
of SWﬂ MKL-S MKL-Sunﬂ for our experiments.
We implemented PfunBG and GRF as the authors
presented in the original papers, and set the parameter
values as the authors reported. TMC and PfunBG
have a similar objective function. The main difference
between them is that TMC is trained on the directed
bi-relational graph and PfunBG is trained on the
undirected bi-relational graph. Here, we use the similar
settings of undirected bi-relational graph in [22] and
[15], and set a in Eq. @ equal to 0.01, and 8 and v
in the bi-relational graph equal to 0.5. We set equal
weights for protein nodes and function nodes, since
there is no prior knowledge on the relative importance
between protein and function nodes. Both MKL-Sum
and MKL-SA depend on the setting of soft margin
parameter ) of SVM; in the experiments, 7 is chosen
among {1074,1073,--- 103,10*} using 5-fold cross
validation.

TMC, PfunBG and GRF work on a single graph (or
kernel). As the authors reported in [6] and [10], the
composite kernel combined with different weights has
similar performance to the composite kernel combined
with equal weights. Therefore, in the following ex-
periments, TMC, PfunBG and GREF are all trained on
the same composite kernel combined with individual
kernels using equal weights. We also study TMC
on the composite kernels combined with individual
kernels in other ways, which will be detailed in Section
In addition, we compare TMEC with SW, MKL-
Sum and MKL-SA, which learn different weights
for different kernels. In Section we investigate
the performance of TMC on each single kernel. In
the following experiments, we varied the ratio of
labeled proteins from 10% to 60%, and used the
remaining proteins as unlabeled for testing. Unless
otherwise specified, all the results are the average of
20 independent runs in each fixed labeled ratio.

5.1 Directed Bi-relational Graph vs. Undirected Bi-
relational Graph

To investigate the difference between directed and
undirected bi-relational graphs, we compare our TMC
against PfunBG, GRF, SW, MKL-Sum and MKL-SA
on the composite kernel of Yeast, Human and Fly.
The composite kernel for TMC, PfunBG and GRF

5. http:/ /morrislab.med.utoronto.ca/~sara/SW/

6. http:/ /www.cse.msu.edu/~bucakser/ML-MKL-SA .rar

7. http:/ /www.public.asu.edu/~Itang9/code/mkl-multiple-
label/

is a linear combination with equal weights, and the
composite kernel for SW, MKL-Sum and MKL-5A is
a linear combination with optimized weights. Table

B| reports the 1-RankingLoss, Table [4] lists the Coverage

and Table [5| reports the AUC on the three benchmarks.
Standard deviations are also reported. In these tables,
results reported in boldface are significantly better,
with significance level p < 0.05. Particularly, for each
fixed labeled ratio, we repeat independent experiments
for each method 20 times and record the results. Then,
we apply a pairwise t-test to check the significance of
the difference among these comparative methods.

From these tables (Table B} Table [5), we can observe
that TMC trained on the directed bi-relational graph
almost always performs better than PfunBG trained
on the undirected bi-relational graph. These results
corroborate the advantage of the directed bi-relational
graph with respect to the undirected one. GRF extends
the function assignment on the annotated proteins
and then makes use of a semi-supervised classifier
on the graph (only consisting of proteins, one protein
corresponding to one node) to infer protein functions.
From these tables (Table [3| - Table [5), we can also see
that TMC often outperforms GRF. This observation in-
dicates that the directed bi-relational graph (consisting
of protein and function nodes) is also more effective
than the sole protein graph.

TMC often outperforms the other comparing meth-
ods, some of which (i.e. SW, MKL-Sum and MKL-
SA) are trained on the optimized composite kernel.
SW takes advantage of regression to seek the optimal
combining weights, and graph-based classification to
predict protein functions; it achieves higher AUC on
Human benchmark, but it loses to TMC on Yeast and
Fly benchmarks with respect to all the evaluation
metrics. Both MKL-Sum and MKL-SA are based on
the optimized composite kernel and SVM to predict
protein functions, but they are always outperformed by
TMC. These results indicate that our equal combination
of single kernels (derived from various data sources)
is reasonable. The possible explanations are that the
composite kernel used in TMC captures complemen-
tary information spread in different kernels [6] and
multi-label classification is more suitable for protein
function prediction than binary classification methods.

5.2 Multiple Kernels vs. Single Kernel

In this subsection, we conduct experiments on these
benchmarks to investigate the advantage of classifier
ensembles. We compare TMEC, GRF-MK and PfunBG-
MK against SW and TMC. Among the five comparing
approaches, the first three are classifier integration
methods, and the last two are kernel integration
methods. In the experiments, the base classifiers of
PfunBG-MK and GRF-MK on the individual kernels
are combined in the same way as TMEC in Eq. (15).
For brevity, we just report 1-RankingLoss and Coverage


http://morrislab.med.utoronto.ca/~sara/SW/
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TABLE 3

(1-RankingLoss)*100 (avg+std) on Yeast (44 kernels), Human (8 kernels) and Fly (38 kernels) on the
composite kernel. The numbers in boldface denote the best performance (significance is examined by pairwise
t-test with significance level p < 0.05).

Labeled Ratio
DataSet | Method 0% 20% 30% 0% 50% 0%
SW 50632217 | 55581237 [ 6036 23,38 | 6A74L 175 | 6741 £2.42 | 69.00 £ 1.05
MKL-Sum || 53.23+3.01 | 5497 £3.54 | 54.46 £4.09 | 58.53 £ 2.63 | 61.31£9.76 | 67.83+2.16
Veast | MKLSA || 623150.77 | 6540095 | 67.87%0.88 | 60.14+0.64 | T0.61=050 | 7142 0.83
GRF 48.04 1148 | 54.94+1.62 | 60.68£1.98 | 66.12L1.18 | 69.08+1.36 | 7151 +1.52
PFunBG || 65.17 £ 1.56 | 67.65L1.42 | 68.46+1.28 | 69.84L11.00 | 68.97 +1.36 | 67.79+1.83
T™MC 68.60 1124 | 72.58 +1.07 | 7478 £ 0.78 | 76.98 = 0.66 | 77.83 +0.75 | 78.60 + 0.82
SW 5311 L1.10 | 63245 1.68 | 6920094 | 73.909£0.73 | 76.75 1 0.48 | 78.49 £ 0.58
MKL-Sum || 52.11+5.58 | 58.77£7.60 | 53.46 £5.73 | 47.22 H0.67 | 46.19£7.71 | 56.77 H40.89
Human | MKLSA || 52.30£1.93 | 55.55%0.88 | 55.57=0.39 | 56.79=0.15 | 57.13=0.47 | 56.40+0.44
GRF 55.56 £ 0.90 | 63.21£1.27 | 66.95%+090 | 69.96+0.64 | T1.40L0.62 | 72.31 +0.42
PRunBG || 64.60+0.86 | 68.25L0.82 | 69.87 £0.74 | 7TLASL0.53 | T1.93+0.70 | 7215+ 0.50
T™MC 67.31 £ 0.76 | 71.55 £ 0.70 | 7343 £0.56 | 75.03 £0.37 | 75.79+0.44 | 76.25+0.49
SW 13812078 | 52.92L0.86 | 61.47£0.97 | 67.07 L L.11 | 70.37£0.87 | 72.99 £ 0.66
MKL-Sum || 40.49 014 | 58.57 £ 1.95 | 63.66£1.19 | 65.08L1.49 | 65.97+0.58 | 66.54 L 1.23
iy MKL-SA || 63.41+1.13 | 65.37£0.26 | 66.78+0.70 | 68.16 £ 0.55 | 69.13+£0.31 | 69.80 + 1.14
GRF 44594077 | 54212074 | 61.54+£0.72 | 66.90+1.11 | 7017 +£0.91 | 73.08+0.73
PfunBG || 61.76 £1.30 | 69.22£0.64 | 72.20 £0.45 | 7410+ 0.79 | T498£0.60 | 75.67 = 0.57
T™MC 64.92 £1.41 | 7310 £0.48 | 76.39 £ 0.43 | 78.43 £ 049 | 79.74 +0.56 | 80.69 +0.37
TABLE 4

Coverage (avg=+std) on Yeast (44 kernels), Human (8 kernels) and Fly (38 kernels) on the composite kernel.
The numbers in boldface denote the best performance (significance is examined by pairwise t-test with
significance level p < 0.05). The lower the Coverage, the better the performance.

Labeled Ratio
DataSet | Method 0% 20% 30% 0% 50% 0%
SW 3743 £1.14 | 35338 £1.06 | 33.06 T150 | 3043 £0.86 | 2018 £1.13 | 27.40 £1.06
MKL-Sum || 34.46 £1.26 | 34.60 £1.41 | 3454 £2.61 | 32.64 £1.30 | 30.61 £5.08 | 27.08 +1.46
Venst | MKL-SA || 20.80 £0.43 | 2842 £0.62 | 26.64 £0.60 | 26.00 £034 | 25.18 £0.53 | 25.21 £0.78
GRF 36.69 £0.95 | 3345 £0.77 | 3049 £0.85 | 27.17 £0.67 | 25.37 £0.78 | 23.82 +0.79
PfunBG 97.45 £1.10 | 26.02 £0.83 | 25.67 £0.67 | 2491 +0.68 | 25.59 £0.77 | 26.25 +0.84
T™MC 25.05 £0.89 | 22.61 +0.67 | 21.20 +052 | 19.80 +047 | 19.37 +044 | 18.81 +0.57
SW 15052 £2.75 [127.37 £3.07 | 111.05 £2.37 | 98.65 £1.73 | 89.83 £1.65 | 83.76 £2.12
MKL-Sum || 151.68 H3.21 | 135.51 47.90 | 149.06 H15.80 | 165.52 427.95 | 168.12 H9.65 | 140.99 126.82
Human | MKL-SA || 147.51 £6.24 | 14041 £2.20 | 142.00 +1.29 | 130.49 +0.92 |130.97 £2.22 |143.25 = 1.80
GRF 137.61 +£2.32 | 116.65 £3.36 | 105.76 £2.43 | 97.36 £1.99 | 92.50 = 1.81 | 89.35 +1.53
PfunBG || 111.74 £2.40 | 101.76 £2.20 | 97.48 £2.03 | 93.87 £1.64 | 92.74 £2.02 | 92,50 + 1.72
T™MC 105481222 | 93.32 +2.07 | 87.50 +1.58 | 8320 +1.35 | 80.48 147 | 78.73 +1.64
SW 307.65 £2.82 | 278.50 £2.61 [246.06 £3.21 [222.72 £1.02 |206.64 £3.81 [193.92 £3.14
MKL-Sum || 276.89 418.72 | 251.72 £ 9.76 | 231.04 £ 5.57 | 227.34 £ 7.51 | 223.84 +3.25 | 221.19 £ 5.67
Hy MKL-SA || 228.59 +6.13 |220.05 £1.41 | 214.54 £4.20 |209.37 £2.42 | 203.61 +1.88 |201.02 +5.94
GRF 203.58 +2.95 | 254.63 +3.26 | 223.75 £2.60 | 20058 £ 5.02 | 184.23 +3.26 | 171.40 + 3.42
PfunBG || 223.49 +5.54 | 189.68 £3.21 |176.24 £1.93 | 168.82 +3.64 | 164.84 +2.66 |163.99 +3.18
T™MC 21178+ 649 | 173.48 +2.86 | 156.77 +2.34 | 147.41+2.87 | 140.09 - 2.83 | 135.80 + 2.75

on these three datasets with 30% and 60% annotated
proteins in Table[f]and Table [/} The results with respect
to other labeled ratios are similar, and are excluded
for brevity.

We can observe that TMEC on the multiple kernels
often outperforms TMC on the composite kernel, and
TMEC always performs better than SW. GRF-MK and
PfunBG-MK sometimes also outperform TMC, whereas
TMC outperforms GRF and PfunBG on the composite
kernel. This fact demonstrates the advantage of clas-
sifier integration with respect to the kernel integration
method in protein function prediction.

We conduct additional experiments (with 80% pro-
teins annotated and 20% used for testing) to investigate
the difference between the TMC on the composite
kernel, TMC on a single kernel from one data source,
and TMEC on multiple kernels. We show the result
with respect to 1-RankingLoss and Coverage in Figure
[ and Figure [3} In all these figures, the first two bars
represent TMEC (red bar) and TMC (white bar) trained
on the composite kernel; the remaining bars (grey bars)
describe the results of TMC trained on a single kernel.
The highest bar (I-RankingLoss) in Figure [2| and the
lowest bar (Coverage) in Figure 3| indicate that the
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TABLE 5
AUC*100 (avg+std) on Yeast (44 kernels), Human (8 kernels) and Fly (38 kernels) on the composite kernel.
The numbers in boldface denote the best performance (significance is examined by pairwise ¢-test with
significance level p < 0.05).

Labeled Ratio

kernels) and Fly (38 kernels).

DataSet | Method 0% 0% 30% 0% 50% 0%
SW 547200.65 | 592024128 | 63.084153 | 65384158 | 67634114 | 7118086
MKL-Sum || 54464211 | 57.0242.68 | 55.80+3.56 | 58464249 | 60.3848.27 | 66.38+2.37

Venst | MKLSA || 62712091 | 6474060 | 6654076 | 67.80+0.81 | 69222055 | 70.11+1.29
GRF 562041148 | 62.674119 | 68524148 | 70.88+1.45 | 73414070 | 75.32+1.08
PRunBG || 68.26+1.05 | 71.0840.93 | 71.5141.39 | 71.9040.60 | 72.11+0.53 | 72.11+0.77
T™MC 69.0240.81 | 72.9440.93 | 74.23+1.00 | 75.59+0.41 | 76.53--0.66 | 77.68-0.69
SW 60.73E1.06 | 67912070 | 72.512037 | 75.1550.74 | 77350051 | 78.7010.79
MKL-Sum || 51.07£6.83 | 57.58.48.24 | 51.7144.80 | 47.3349.57 | 46.74+7.59 | 55.6.410.4

Human | MKL-SA || 5303103 | 5498052 | 55332033 | 5568048 | 5554064 | 55274055
GRF 63504119 | 68384070 | 70954028 | 72.69-40.56 | 73.79-00.66 | 74764054
PfunBG || 68.48:£0.70 | 70.76+0.56 | 72.5040.50 | 73154054 | 73.6640.56 | 73.95+-0.68
T™MC 69.5210.43 | 72.4840.37 | 73.9740.38 | 74.89-4038 | 75344040 | 76.36.£0.44
SW 53.3910.69 | 53.8500.85 | 63.5620.87 | 66.7720.79 | 68.1720.75 | 69.9900.31
MKL-Sum || 51754240 | 55964124 | 60064073 | 60944123 | 61494070 | 62.40+0.98

iy MKL-SA || 59.8100.66 | 61.1040.48 | 62.0220.45 | 63.00£0.26 | 63.844054 | 64.68+0.88
GRF 54391059 | 61441080 | 65754066 | 69.28-00.87 | 72104052 | 73.62-00.66
PFunBG || 65.6740.67 | 70182049 | 71.944034 | 72.954040 | 73.774052 | 73660047
T™MC 66.8210.52 | 71.61-0.35 | 73.65-0.30 | 74.87--0.38 | 76.08-0.63 | 76424071

TABLE 6

and Fly (38 kernels).

Yeast Human Fly
30% 60% 30% 60% 30% 60%
SW 60.361+3.38 | 69.90+£1.95 | 69.294+0.94 | 78.49+0.58 | 61.47+0.97 | 72.9940.66
TMC 74.784+0.78 | 78.604+0.82 | 73.434+0.56 | 76.254+0.49 | 76.39+0.43 | 80.6940.37
GRF-MK 68.74+1.66 | 74.12+1.16 | 76.02+0.71 | 81.11£0.51 | 68.13+0.65 | 75.45+0.58
PfunBG-MK || 73.48+0.90 | 75.70+1.05 | 77.57+0.52 | 81.60+0.50 | 74.67+0.40 | 78.31+£0.42
TMEC 76.75+0.57 | 80.18+0.61 | 79.30+0.43 | 83.40+0.46 | 77.24+0.41 | 81.16+0.37
TABLE 7

Yeast Human Fly
30% 60% 30% 60% 30% 60%
SW 33.06+1.59 | 27.40+1.06 | 111.054+2.37 | 83.76+2.12 | 246.06+3.21 | 193.92+3.14
TMC 21.204+0.52 | 18.814+0.57 | 87.50+1.58 | 78.73+1.64 | 156.77+2.34 | 135.80+£2.75
GRF-MK 25.80+0.83 | 22.18+0.66 | 81.39+£2.00 | 66.084+1.85 | 194.444+2.37 | 160.68+3.03
PfunBG-MK || 22.51+£0.53 | 21.224+0.63 | 76.73+£1.46 | 65.63+1.80 | 164.40+1.96 | 149.65+2.95
TMEC 19.944+0.36 | 17.72+0.50 | 71.86+1.25 | 59.67+1.72 | 151.63+2.11 | 132.02+2.94

(1-RankingLoss)*100 (avg+std) on the composite kernel and multiple kernels of Yeast (44 kernels), Human (8

Coverage (avg+std) on the composite kernel and multiple kernels of Yeast (44 kernels), Human (8 kernels)

corresponding results are significantly better than the
others bars.

We observe that TMC trained on the composite
kernel always outperforms TMC trained on a single
kernel. There are three possible reasons. First, there
are some isolated proteins in each data source, whose
functions can not be predicted using a single kernel
derived from a single data source. Second, an isolated
protein in one kernel may be connected with other
proteins in other data sources. Therefore, there are
few (or no) isolated proteins in the composite kernel,
which includes the complementary information across
different kernels. Third, the similarity between two

proteins from the composite kernel is often more
reliable than that from a single kernel (derived from a
single data source).

TMEC performs better than TMC trained on the
single kernel, and it outperforms TMC trained on the
composite kernel. TMEC not only takes advantage
of the complementary information between different
kernels, but also makes use of the structural differ-
ence among different kernels and the complementary
predicted likelihood score vectors. These results also
corroborate the advantage of classifier integration versus
kernel integration.
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of Yeast, Human and Fly, with respect to Coverage.

TABLE 8
(1-RankingLoss)*100 (avg+std) on Yeast (44 kernels), Human (8 kernels) and Fly (38 kernels), with respect
to different weighting schemes

Yeast Human Fly
20% 50% 20% 50% 20% 50%
TMC-B 69.41+1.01 | 74.70+0.79 | 75.08+0.68 | 81.75+0.56 | 70.24+0.73 | 77.85+0.41
TMC-BW 71.98+1.00 | 77.124+0.80 | 75.354+0.68 | 82.10+0.56 | 72.17+0.67 | 79.70+0.45
TMC-E 72.58+1.07 | 78.60+0.75 | 71.55+0.70 | 76.25+0.44 | 73.10+0.48 | 80.69+0.56
TMEC 74.71+0.80 | 80.18+0.67 | 76.86+0.53 | 83.40+0.50 | 74.29+0.39 | 81.16+0.55
5.3 Influence of Different Weighting Schemes i and j as:
In this section, we investigate the performance of Kpw(i,j) = Zf;l O(K, (i, 7))
TMC on the different composite kernels, obtained by BWihJ) = R

combining individual kernels using different weighting
schemes. Here, we use two approaches to combine the
single kernels, plus the equal weight one already used
in TMC. The first one is a binary way. We set the weight
of the edge between protein i and j as:

- Lif 2 K, (i,5) >0
K — ) r=1 D7t
5(6:9) { 0, otherwise
Thus if there is an edge between proteins ¢ and j
in any of the individual kernels, we specify the edge
weight between them as 1. The second one is a weighted
version; we set the weight of the edge between proteins

where (K, (4,5)) = 1if K,-(i,5) >0, and §(K,(4,7)) =
0 otherwise. Thus Kpw (i,j) is proportional to the
number of edges between proteins i and j in the
individual kernels. The composite kernel used in TMC
is a summation of single kernels with equal weights,
it is defined as:

Ly = et K (i)

K E (Za J ) - R

We then train TMC on Kpg, Kgw and Kg, and name
the resulting classifiers as TMC-B, TMC-BW and TMC-
E, respectively. For brevity, we just report the results
(along with the results of TMEC on multiple kernels)
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with respect to 1-RankingLoss in Table |8| with 20% and
50% proteins annotated. The results with respect to
Coverage are reported in the supplementary file. The
results with respect to other labeled ratios have similar
observations.

From these tables, we observe that none of these
three kernel integration methods performs significantly
better than others, and TMC-E often works better
than the other two kernel integration techniques.
Another observation is that TMEC always achieves
better performance than the three different kernel
integration methods (TMC-B, TMC-BW and TMC-E).
These results further demonstrate the advantage of
classifier ensemble with respect to kernel integration.

5.4 Influence of Different Ensemble Techniques

In this section, we conduct experiments to explore the
performance of TMEC with respect to several other
ensemble techniques, namely decision templates [43]
and linear regression based ensemble [44]. The detail
of these two ensemble technique is introduced in the
supplementary file.

We utilize decision templates, linear regression based
ensemble, and Eq. to integrate TMCs trained on
individual kernels, and name the resulting ensemble
classifiers as TMEC-DT, TMEC-Reg, and TMEC, re-
spectively. For brevity, we just report the results with
respect to 1-RankingLoss in Table [9] We report the
results with respect to Coverage in the supplementary
file. In the experiment, 50% of the data are randomly
selected for training and the remaining 50% are used
for testing. The other settings of the experiments are
kept the same as described in the Experimental Setup

@

TABLE 9
Performance ((1-RankingLoss)*100) with respect to
different ensemble techniques.

Methods Yeast Human Fly

TMEC 79.21+0.76 | 82.17+0.45 | 80.58+0.50
TMEC-DT || 61.944+0.40 | 65.074+0.41 | 68.12+0.32
TMEC-Reg || 61.174+1.00 | 70.30+1.08 | 61.50+1.19

From these tables, we can observe that TMEC, which
uses simple weighted majority vote as in Eq. to
combine base classifiers, outperforms TMEC-DT and
TMEC-Reg, which use optimized weights to integrate
base classifiers. This is because there were many
isolated proteins in each single data source of our
experimental datasets. The functions of these isolated
proteins cannot be predicted by using a single data
source alone. In addition, the predicted likelihoods
from each single data source are not reliable. Learning
from these unreliable predictions results in incorrect
learned weights for each of the base classifiers, which
deteriorates the ensemble classification performance.

5.5 Parameter Sensitivity Analysis

There are three parameters: o, § and v in TMC and
TMEC. « is used to balance the tradeoff between label
propagation and initial label assignment; « is often
set to a small value (i.e., a = 0.01) [15], [22]. In this
section, to explore the sensitivity of our methods with
respect to § and 7, we vary § and v between 0.1
and 0.9 with step size 0.1. The settings of 5 = 0,1
and v = 0,1 are not reasonable for the directed bi-
relational graph. If we set § = 0, there is no function
propagation among proteins. If we set 5 = 1, there
is no function propagation from function to protein
nodes. If we set v = 0, there is no function annotations
on the protein nodes in the directed bi-relational graph.
If we set v = 1, there is no propagation probability
between protein and function nodes. Given these
reasons, we vary 3 and «y in [0.1,0.9] to investigate the
parameter sensitivity of TMC and TMEC. The recorded
1-RankingLoss and Coverage with respect to different
settings of 8 and v are shown in Figure {4| for the
Human benchmark. The recorded 1-RankingLoss and
Coverage for the Yeast benchmark are included in the
supplementary file. Here, we utilize the surf figure to
visualize the parameter sensitivity of TMC and TMEC
with respect to 8 and . The density plot shows that
similar colors in the same figure are parameters with
similar predictive performance. We also fix the scale of
TMC and TMEC in the same range for each evaluation
metric on each dataset.

From these figures, we can observe that TMEC is less
sensitive than TMC to parameter selection. TMEC has
wider ranges of effective parameter values than TMC,
and it can often achieve better performance than TMC
in the same parameters setting. These advantages can
be attributed to the fact that TMEC not only makes use
of the structure differences among the single kernels
from various data sources, but also takes advantage
of the complimentary information among the base
classifiers on each single kernel. These results again
support the advantage of classifier integration over kernel
integration.

Both TMC and TMEC are more sensitive to ~ than
to . v adjusts the distribution of function labels on
protein and function nodes. 8 adjusts the importance
of the inter-subgraph (between proteins and functions)
and intra-subgraph (between pairwise proteins, or
pairwise functions), it determines the speed of label
information propagated from function nodes to protein
nodes. TMEC achieved relative stable performance
when 7 € [0.4,0.9] and TMC reaches relative stable
performance when ~ € [0.5,0.9]. Bigger v means more
emphasis on the initial function assignment. This fact
reinforces that it is important to keep the original label
assignment in label propagation, it also indicates the
rationality of the proposed directed bi-relational graph.
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™e TMEC

™e T™EC

(a) TMC (1-RankingLoss)*100  (b) TMEC (1-RankingLoss)*100

(c) TMC (Coverage) (d) TMEC(Coverage)

Fig. 4. 1-RankingLoss and Coverage on different 5 and v (Human). Similar colors in the figure are parameters

with similar predictive performance.

6 CONCLUSIONS

In this paper, we analyze the drawback of using
undirected bi-relational graphs in label propagation.
To avoid this limitation, we propose to use a directed
bi-relational graph, and define a TMC on it. We further
improve the performance by combining various TMCs
trained on multiple data sources (TMEC). Different
from traditional methods that make use of multiple
data sources by kernel integration, TMEC takes advan-
tage of multiple data sources by classifier integration.
TMEC does not require to collect all the data sources
beforehand. Our experimental results show that classi-
fier integration is a valuable methodology to leverage
multiple biological data sources.
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