
 
 

University of Birmingham

Protein structure optimization with a "Lamarckian"
ant colony algorithm
Oakley, Mark T; Richardson, E Grace; Carr, Harriet; Johnston, Roy L

DOI:
10.1109/TCBB.2013.125

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Oakley, MT, Richardson, EG, Carr, H & Johnston, RL 2013, 'Protein structure optimization with a "Lamarckian"
ant colony algorithm', IEEE - ACM Transactions on Computational Biology and Bioinformatics, vol. 10, no. 6, pp.
1548-52. https://doi.org/10.1109/TCBB.2013.125

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
(c) 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists,
or reuse of any copyrighted components of this work in other works.

Eligibility for repository : checked 22/07/2014

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 28. Apr. 2024

https://doi.org/10.1109/TCBB.2013.125
https://doi.org/10.1109/TCBB.2013.125
https://birmingham.elsevierpure.com/en/publications/d9d97290-fec2-4e89-a3ac-9c1ee7c01e72


Protein Structure Optimisation With a

“Lamarckian” Ant Colony Algorithm

Mark T. Oakley, E. Grace Richardson, Harriet Carr, Roy L. Johnston ∗†

July 6, 2014

Abstract

We describe the LamarckiAnt algorithm: a search algorithm that com-

bines the features of a “Lamarckian” genetic algorithm and ant colony

optimisation. We have implemented this algorithm for optimisation of

BLN model proteins, which have frustrated energy landscapes and repre-

sent a challenge for global optimisation algorithms. We demonstrate that

LamarckiAnt performs competitively with other state-of-the-art optimi-

sation algorithms.

1 Introduction

Locating the global minimum structure of a flexible molecule can be a difficult

problem. Even relatively small molecules can have sufficient degrees of freedom

to make finding the global minimum by exhaustive searches computationally

infeasible. Larger molecules, such as peptides and proteins, have hundreds or

thousands of degrees of freedom and present a difficult optimisation challenge.

Numerous global optimisation algorithms have been applied to the problem of

locating the most stable structures on the potential energy surface. By far the
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most widely used methods are those based on Metropolis Monte Carlo [1–6] or

genetic algorithms [5–10]. Other algorithms, such as particle swarm optimisa-

tion [11, 12], immune algorithms [13] and artificial bee colonies [14] have also

been used.

One search algorithm that has only seen limited applications in molecular

structure optimisation [15–18] is ant colony optimisation (ACO) [19]. This al-

gorithm is inspired by the foraging of colonies of ants, which tend to find the

shortest path to a source of food in spite of the fact that individual ants have

no knowledge of the overall landscape. As ants forage, they lay down a trail

of pheromone that slowly evaporates. Other ants tend to follow more intense

pheromone trails, which leads to shorter paths being reinforced by repeated

visits from several ants while longer paths dissipate. Eventually, most of the

pheromone remains on the shortest available path. Originally, the ACO algo-

rithm was applied to the travelling salesman problem (TSP) [19].

The ACO algorithm must be modified for use in structure optimisation prob-

lems, requiring a representation of the structure that can be treated as an ant’s

path and a way of assigning the energy of the structure to the length of the path.

The optimisation of protein structures on a regular lattice is a discrete problem

like TSP, and a protein structure can simply be expressed as a walk over this

lattice. The length of the path is related to the energy of the structure, with

more stable structures corresponding to shorter paths. ACO gives comparable

performance to other state-of-the-art algorithms for the optimisation of lattice

proteins [15, 16].

To optimise chemical structures that are not constrained to a lattice, ACO

must be further modified to deal with optimisation of continuous functions.

Daeyaert et al. [17] optimised the structures of a series of small molecules, where

each structure was represented by a series of torsion angles corresponding to the

freely-rotatable bonds in the molecule. The torsion angles were discretised into

bins, and one of these discrete values was selected for each angle. To account for

the continuous nature of the energy function, pheromone was laid down in the
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chosen bin, with smaller amounts deposited in neighbouring bins. Dresselhaus

et al. modified this approach by using particle-swarm optimisation to optimise

the parameters used in the ACO search [18].

An important development in the global optimisation of chemical struc-

tures is the basin-hopping (BH) principle of performing a local minimisation of

all candidate structures generated by a search algorithm. Local minimisation

transforms the potential energy surface into a series of steps, each of which is

the basin of attraction of a minimum [20]. This removes the downhill barriers

between minima and allows larger moves over the potential energy surface to

be attempted. In the BH variant of Monte Carlo optimisation, structures are

subjected to random deformation and then locally minimised before performing

a Metropolis acceptance test [2–6]. Similarly, “Lamarckian” genetic algorithms

(GA) locally optimise all offspring and mutants before selecting the individu-

als that go forward to the next generation [5, 6, 8]. Here, we describe an ACO

algorithm that includes a local optimisation stage. We call this method Lamar-

ckiAnt because it is an ACO algorithm that includes some of the features of a

”Lamarckian” GA. We test the performance of the LamarckiAnt algorithm on

two BLN model proteins, which are difficult challenges for optimisation algo-

rithms because of their frustrated energy landscapes.

2 Methods

2.1 BLN proteins

The BLN-model is a coarse-grained potential for modelling proteins [21, 22]. It

treats a protein as a string of beads, with one bead per peptide residue. The

beads are divided into three classes: hydrophoBic, hydrophiLic and Neutral.

We use two BLN-model proteins as test systems for the LamarckiAnt algorithm

(Fig 1). The 46-residue protein, B9N3(LB)4N3B9N3(LB)5L, folds into a four-

strand β-barrel and has a frustrated energy landscape, with several competing

low-energy structures separated by high barriers [5, 6, 21–24]. The 69-residue

3



protein, B9N3(LB)4N3B9N3(LB)4N3B9N3(LB)5L, forms a six-strand β-barrel

and has a more frustrated energy landscape [5,6,25–28]. These will be referred

to as BLN-46 and BLN-69 in the rest of this manuscript. The largest molecule

previously investigated with ACO was a peptide with 10 rotatable torsion angles

[18]. The BLN-model proteins have 43 and 66 rotatable torsions and therefore

have substantially larger conformational spaces.

Figure 1: Global minima of the BLN-46 (left) and BLN-69 (right) model pro-
teins.

For consistency with previous studies [5, 6, 23, 24, 29], the energies of the

protein structures were evaluated using a version of the BLN potential with

bond lengths and angles constrained by stiff spring constants [22]:

VBLN =
1

2
Kr
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∑
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2 +

1

2
Kθ

N−2
∑

i=1

(θi − θe)
2

+ ǫ

N−3
∑

i=1
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N−2
∑

i=1

N
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Cij

[

(

σ

Rij

)12

−Dij

(

σ

Rij

)6
]

, (1)

where Rij is the distance between atoms i and j, θi is the angle between atoms

i, i + 1 and i + 2 and φi is the torsion angle given by atoms i, i + 1, i + 2 and

i + 3. The first two terms are stiff harmonic angle and bond restraints with

Kr = 231.2 ǫσ−2, Re = σ, Kθ = 20 rad−2 and θe = 1.8326 rad. In the third

term A = B = 1.2 unless two or more of the beads involved are N. In this case,

A = 0 and B = 0.2. The parameters for the non-bonded terms are listed in

Table 1.
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B L N

B C = 1, D = 1 C = 2/3, D = −1 C = 1, D = 0

L C = 2/3, D = −1 C = 2/3, D = −1 C = 1, D = 0

N C = 1, D = 0 C = 1, D = 0 C = 1, D = 0

Table 1: Parameters used in the non-bonded term of the BLN potential.

2.2 LamarckiAnt Algorithm

The LamarckiAnt algorithm is based on Daeyaert’s ACO [17], but with some

modifications (Fig 2). In each cycle of the algorithm, m ants are generated,

each of which encodes a single conformation of the protein. Each ant’s route

comprises the sequence of torsion angles in the backbone of the protein chain.

The torsion angle space is divided into bins of width ∆φ. Each torsion angle,

φi in an ant’s route is assigned by roulette selection with the size of each sector

of the roulette wheel given by:

p(φi, t) = τ(φi, t) (2)

where τ(φi, t) is the amount of pheromone present for a given residue and torsion

angle at iteration t. The values of the torsion angles within each bin are then

assigned randomly. The values of τ(φi, t) are always normalised. In the first

iteration of the algorithm, τ(φi, 0) is a uniform probability function.

In Daeyaert’s ACO, the selection of torsion angles includes an additional

factor based on the torsional energy term from the force field [17]. This biases

the search towards torsion angles that are locally stable, but requires the im-

plementation of a system-dependent term in the optimisation algorithm. The

LamarckiAnt algorithm does not include this term and the selection of torsional

angles is based only on the pheromone trail. After the random torsion angles

are assigned, each structure is then relaxed to the nearest local minimum using

the limited-memory Broyden-Fletcher-Goldfarb-Shanno method (L-BFGS) [30]
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algorithm as implemented in GMIN [31]. The values of φi are then replaced with

those from the corresponding optimised structure and the pheromone trails are

generated from these updated routes. Local minimisation has been shown to

be very effective in combination with other optimisation algorithms [3, 8] and

has the additional advantage of not requiring the implementation of a system-

specific torsional biasing term.

After m ants have made their walks, the pheromone trails are updated. The

amount of pheromone laid down by ant k is determined by the learning rate,

Qk, which is given by:

Qk = e−γ(ek−emin) (3)

where ek is the energy associated with ant k and emin is the lowest energy found

so far. Thus, low energy structures result in more pheromone being deposited,

with the parameter γ determining the weighting for less-stable solutions.

The trail update, ∆τ(φi), for each bin for a given torsion angle is given by:

∆τ(φi) = N
∑

k

Qk

√
2πw

e
−(φi−φk

i )2

2w2 . (4)

The parameter, w, determines the width of the pheromone trail laid down by

each ant. The normalisation constant, N , ensures that the sum of all the proba-

bilities for a single torsion angle is unity. The pheromone trails are then updated

as:

τ(φi, t+ 1) = ρτ(φi, t) + (1− ρ)∆τ(φi) (5)

where ρ is the persistence of the pheromone trail and takes a value between 0

and 1.
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initialise pheromone trails

while (not converged)

for k = 1, . . . , n

ant k makes walk

relax structure corresponding to ant k

replace ant k’s path with minimised path

end loop over n

calculate Qk for each ant from relaxed structure

if no improvement for m cycles

re-set pheromone trails

else

update pheromone trails

end if

end cycle

Figure 2: Pseudocode describing the LamarckiAnt algorithm.

Some additional modifications to Daeyaert’s ACO [17] were tested. We

employ a restart operator in the LamarckiAnt algorithm that is analogous to the

epoch operator in our GA [5]. If the energy of the lowest structure found since

the last restart does not improve for a number of cycles, m, the pheromone trail

is re-set to a uniform probability distribution. Using a restart operator ensures

that, eventually, all searches locate the global minimum. In ACO searches on

other system [18, 32], the efficiency of the search is improved by including the

best solution found so far in the trail update. We include a global best update in

the LamarckiAnt algorithm, with a fraction, g, of the trail update in each cycle

supplied by the best solution found so far. Note that the global best update

is taken from the best solution found in the whole search, which allows some

information about the search to be retained after a restart. There are seven

parameters that can influence the performance of the LamarckiAnt algorithm.

7



We study the effect of varying g and m in this manuscript. The values of the

other parameters are kept constant and are shown in Table 2.

Parameter Value

Number of ants n 50

Learning rate constant γ 2.5

Pheromone persistence ρ 0.1

Pheromone width w 20◦

Bin width ∆φ 10◦

Restart length m 50

Table 2: Parameters used for LamarckiAnt optimisation of the BLN model
proteins.

The BLN-46 and BLN-69 proteins have been studied extensively, and the

global minimum structures for both are known. We measured the performance

of the LamarckiAnt algorithm by recording the mean time to the first encounter

of the global minimum from 100 independent searches. All searches were allowed

to run until they located the known global minimum of BLN-46 or BLN-69. We

quote these times in terms of the number of minimisation operations and the

number of energy evaluations, both of which are independent of the computer

hardware used in the calculations. To the best of our knowledge, the fastest

published optimisations of the BLN proteins have been obtained using the BH

and GA approaches [5], and we compare LamarckiAnt to these. The published

times for the GA were obtained by using single-point crossover in the mating

step [5]. We have subsequently found that two-point crossover improves the

efficiency of the GA, and these results are also presented here.

3 Results

When optimising BLN-46, the best published performance [5] was obtained by

the BH algorithm, which required an average of 4400 minimisations to locate
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the global minimum (Table 3). GAs using one- or two-point crossover are both

slower than this in terms of the number of minimisations required to locate the

global minimum. The LamarckiAnt algorithm requires an average of only 2600

minimisations to find the global minimum. The mean first encounter time on a

single core of a 2.2 GHz Intel Sandy Bridge E5-2660 processor is 100 s. The use

of a restart operator is unnecessary for BLN-46, because all searches locate the

global minimum rapidly. The best performance of the LamarckiAnt algorithm

is obtained when the global best structure is not included in the trail update

(g = 0). Larger values of g lead to an increase in the time required to locate

the global minimum.

Mean first encounter time

Method Energy evaluations Minimisations

BH [5] 6.7× 105 (5.6× 105) 4.4× 103 (3.8× 103)

GA-1pt [5] 1.4× 106 (9.3× 105) 8.3× 103 (5.7× 103)

GA-2pt 1.2× 106 (7.0× 105) 5.1× 103 (3.4× 103)

LamarckiAnt

g = 0 1.3× 106 (8.5× 105) 2.6× 103 (1.7× 103)

g = 0.25 1.6× 106 (1.3× 106) 3.2× 103 (2.7× 103)

g = 0.5 2.6× 106 (7.5× 106) 6.0× 103 (1.7× 104)

g = 0.75 3.1× 106 (6.6× 106) 5.8× 103 (6.7× 103)

Table 3: Mean first encounter times for 100 global optimisation runs from ran-
dom starting positions of the BLN-46 protein. Values in parentheses are the
standard deviations.

To demonstrate the importance of the local optimisation step, optimisation

of BLN-46 was attempted using Daeyaert’s original ACO algorithm [17]. A

series of 100 ACO runs were performed, each of which proceeded was allowed

to run for 105 cycles, giving 5 × 106 energy evaluations in each run. The most

stable structures found were > 50ǫ above the global minimum with four ex-

tended strands that had not folded into a β-barrel. The global minimum has
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a densely-packed structure and structures that deviate from it by a small dis-

tance can have very high energies due to the r−12 repulsive term in the BLN

potential (1). Without local minimisation, these structures make a negligible

contribution to the pheromone trail. Gradient-driven minimisation removes the

overlapping residues and the resulting structures make a larger contribution to

the pheromone trail.

Analysis of the ants’ paths (Fig 3) and the pheromone trails (Fig 4) shows

how the LamarckiAnt algorithm locates the global minimum. Here, we analyse

the search with the median first encounter time from the searches where g = 0.

In the initial population, solutions with a range of values for all 43 of the torsion

angles are present. As the search proceeds, the extended conformations of the

four strands of the β-barrel are located at different times, with the (LB)5L

strand at the C-terminus (residues 36-46) found first and the B9 strand at the

N-terminus (residues 1-9) found last. The correct conformations of the turn

residues are not located until very late in the search.
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Figure 3: Optimised paths taken by the ants in the first (top), tenth (middle)
and final (bottom) cycles of a typical run of the LamarckiAnt algorithm on
BLN-46. The most stable structure (solid line) and all of the other structures
in the current cycle (dotted lines) are displayed. In the final cycle, the most
stable structure is the known global minimum. The index is of the first residue
of the torsion angle i, . . . i+ 3.
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Figure 4: Intensity of the pheromone trail, τ , before the tenth (top) and final
(bottom) cycles of a typical LamarckiAnt optimisation of BLN-46. The index
is of the first residue of the torsion angle i, . . . i+ 3.

The published optimisation times [5] for BH and the GA with one-point

crossover on BLN-69 are very similar (Table 3). Here, the use of two-point

crossover in the GA gives a significant improvement in the efficiency of the

search. The performance of the LamarckiAnt algorithm is less competitive for

this system. Without the use of a global best update, the search rapidly locates

structures ∼ 5ǫ above the global minimum. From there, it visits several solutions

of similar energy, but only rarely finds structures that are more stable. The

use of a global best update improves the mean first encounter time, with g =

0.75 making the searches three times faster compared to g = 0. However,

LamarckiAnt is still slower than BH or the GA when optimising BLN-69.

The restart operator plays an important role in allowing the LamarckiAnt

algorithm escape from traps. With m = 50, the searches require an average

of 17 restarts to find the global minimum. In the range 10 ≤ m ≤ 100, the

performance is not very sensitive to the value of m. The mean first encounter

time on a single core of a 2.2 GHz Intel Sandy Bridge E5-2660 processor is 5600

s.
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Mean first encounter time

Method Energy evaluations Minimisations

BH [5] 4.8× 106 (4.0× 106) 2.6× 104 (2.3× 104)

GA-1pt [5] 5.3× 106 (2.8× 106) 2.5× 104 (1.5× 104)

GA-2pt 4.0× 106 (2.3× 106) 1.6× 104 (1.0× 104)

LamarckiAnt

g = 0, m = 50 1.5× 108 (1.6× 108) 2.7× 105 (2.7× 105)

g = 0.25, m = 50 1.3× 108 (1.2× 108) 1.9× 105 (1.8× 105)

g = 0.5, m = 50 8.3× 107 (6.2× 107) 1.3× 105 (9.4× 104)

g = 0.75, m = 10 4.7× 107 (4.1× 107) 7.8× 104 (6.9× 104)

g = 0.75, m = 50 4.8× 107 (4.3× 107) 8.1× 104 (7.2× 104)

g = 0.75, m = 100 5.2× 107 (6.2× 107) 8.9× 104 (1.1× 105)

Table 4: Mean first encounter times for 100 global optimisation runs from ran-
dom starting positions of BLN-69. Values in parentheses are the standard de-
viations.

4 Conclusions

We have shown that the LamarckiAnt algorithm is competitive with the best

available optimisation algorithms for a class of difficult global optimisation prob-

lems. For BLN-46, the mean number of minimisations before first encounter of

the global minimum are lower than those found with BH or GA. The perfor-

mance is less impressive for BLN-69, but it is close enough to the best available

algorithms to suggest that further optimisation is worthwhile. The use of a

restart operator combined with a global best update that allows information

to be transferred between restarts gives a substantial improvement in the effi-

ciency of LamarckiAnt for the larger system. In future work, we will implement

the LamarckiAnt algorithm for all-atom models of molecules, such as the AM-

BER [33] and CHARMM [34] force fields, as well as other coarse-grained protein

models.
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