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Reliable and Fast Estimation of Recombination
Rates by Convergence Diagnosis and Parallel
Markov Chain Monte Carlo

Jing Guo, Ritika Jain, Peng Yang, Rui Fan, Chee Keong Kwoh, and Jie Zheng

Abstract—Genetic recombination is an essential event during the process of meiosis resulting in an exchange of segments between
paired chromosomes. Estimating recombination rate is crucial for understanding the process of recombination. Experimental
methods are normally difficult and limited to small scale estimations. Thus statistical methods using population genetics data are
important for large-scale analysis. LDhat is an extensively used statistical method using rjiMCMC algorithm to predict recombination
rates. Due to the complexity of fMCMC scheme, LDhat may take a long time for large SNP data sets. In addition, ijMCMC
parameters should be manually defined in the original program which directly impact results. To address these issues, we designed
an improved algorithm based on LDhat implementing MCMC convergence diagnostic algorithms to automatically predict values of
parameters and monitor the mixing process. Then parallel computation methods were employed to further accelerate the new
program. The new algorithms have been tested on ten samples from HapMap phase 2 data set. The results were compared with
previous code and showed nearly identical output. However, our new methods achieved significant acceleration proving that they
are more efficient and reliable for the estimation of recombination rates. The stand-alone package is freely available for download

http://www.ntu.edu.sg/home/zhengjie/software/CPLDhat.

Index Terms—Recombination hotspot, reversible jump MCMC, convergence diagnosis, parallel computation, genome instability

1 INTRODUCTION

MEIOTIC recombination occurs in the pairing of homolo-
gous chromosomes in meiosis leading to the genera-
tion of novel gene combinations. The transfer of genes from
parents into offspring by genetic recombination during mei-
osis is a major engine of genetic variation [1]. The meiotic
recombination events break down the genealogical history
within a genome which is critical for analyses of genetic var-
iations [2]. The improper segregation of chromosomes can
lead to aneuploidy, a significant risk factor for fetal loss and
developmental disability in humans [3]. In addition, delete-
rious variations can be removed from the gene pool by
recombination.

The rate and location of meiotic recombination have
implications for understanding of recombination process
and its evolution. They vary markedly between species and
among individuals. The estimation of the rate at which
recombination occurs can theoretically provide guidance for
biologists to explore biological problems, e.g., gene targeting,
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mutation mechanisms [4]. Tracking distance between two
genes on a chromosome by recombination rate could detect
the presence of certain disease-causing genes [5].

Obtaining accurate prediction of recombination rates
could be challenging and prohibitively expensive through
direct experimental methods. Sperm typing produces
high-resolution estimates; however, this procedure is
complex, only applicable for male [6], and limited to
small scale prediction. Hence, indirect statistical methods
are useful. Patterns of genetic variation among DNA
sequences have been used to analyze recombination rate
[7]. Hudson [8] proposed a composite-likelihood estima-
tor of the population recombination rate that combines
the coalescent likelihoods of all pairwise comparisons for
segregating sites. McVean et al. [9] extended Hudson's
method to allow for a finite-sites mutation model, and
also introduced a likelihood permutation test. Later the
heterogeneity implied by recombination hotspots is incor-
porated to improve the accuracy [10]. Li and Stephens
[11] developed a method considering all loci simulta-
neously rather than pairwise comparisons based on an
approximation to the conditional likelihood (imple-
mented in PHASE). Instead of approximate likelihood
method, Wang and Rannala [12] proposed a full-likeli-
hood Markov chain Monte Carlo method (implemented
in InferRho).

The algorithm of [10] has been implemented in the pro-
gram LDhat package. It has been extensively used for detec-
tion and calculation of variable recombination rates in
population genetic data via composite likelihood method. A
typical change point scheme of reversible jump Markov
chain Monte Carlo (rj/MCMC) algorithm [13] is employed to
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predict the interval constant rates. The final recombination
rate is composed of the morphology of hotspots and back-
ground rate. Due to the complexity of rjMCMC scheme,
LDhat is a time-consuming program that would take several
hours to generate results. In addition, the accuracy of the
outputs and execution time are determined by parameters
of 1jMCMC which can only be manually specified by users.
The rjMCMC parameters consist of a set of numbers, includ-
ing transition times, initial samples discarded called ‘burn-
in” and sampling frequency. Insufficient running would
cause unstable status of the Markov Chain. Conversely,
over calculation would waste extra resources.

To address the above issues, we propose an improved
algorithm for the prediction of recombination rates based
on LDhat. First we evaluated the performances of LDhat
identifying the bottleneck of running time and testified
the impact of jMCMC parameters on recombination pro-
file and time complexity. Second, to avoid manually set-
ting the parameters of 1MCMC, we incorporated
algorithms for MCMC convergence assessment to auto-
matically predefine those arguments. In addition, the
chain convergent status is monitored during iteration pro-
cess until it reaches the target distribution. Then we made
use of parallel computation methods in order to further
speed up the process of calculation.

In order to evaluate our new algorithm, we utilized 10
sets of test samples extracted from HapMap phase 2 data.
We compared the recombination profiles, running time and
iteration numbers of the original LDhat program and our
improved methods. The result showed that our methods
achieved significant speedup without affecting the accuracy
of outputs. The parallel computation method resulted in
even more significant reduction of execution time with
identical outputs.

2 METHOD

In this section, we analyzed the LDhat program to identify
the most time-consuming part. In addition, we evaluated
the influence of parameters, i.e., iteration number and single
nucleotide polymorphism (SNP) number, on output pro-
files. In allusion to rjMCMC scheme, we proposed an
improved algorithm applying MCMC convergence diag-
nostic methods and parallel computation.

2.1 LDhat Program Analysis
LDhat (specifically, the rhomap program) employs the
rjMCMC algorithm which incorporates genomic polymor-
phisms to estimate the pairwise constant rates by composite
likelihood. Composite likelihood [8] is an approximation of
the coalescent likelihood [14] which is more easily imple-
mented and based on independent pairwise single nucleo-
tide polymorphisms to estimate the recombination rate p.
According to the composite likelihood estimator, the maxi-
mume-likelihood estimate of p can be obtained as the maxi-
mum product of conditional-likelihood functions of all
independent pairs in n samples. These two-locus condi-
tional-likelihoods of a fix n samples can be precalculated
and stored for future researches.

However, the ad hoc estimator have underestimated the
effects of mutations to genetic variation assuming infinite
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site model whereby mutation rate 6 tends to be negligible.
To address this problem, Auton and McVean extended
Hudson’s work to provide an improved estimation proce-
dure incorporating mutation models [10]. Suppose that the
population mutation rate 6 is constant across the sequence,
it is estimated by Watterson algorithm [15]. Then pairwise
segregating sites with two alleles are classified into equiva-
lent sets for further likelihood calculation. The execution
burden depends on the number of segregating sites with an
order of ngcq, where n,, is the number of haplotypes.
Assuming that pairs of SNPs are independent, given the
number of haplotypes, all of the possible combinations of
allelic states could be consulted from tabulated files which
contain precalculated likelihoods. Then the likelihood of
each pair of segregating sites is estimated over a grid
extracted from those files.

In addition to the contribution of background rate, the
morphology of hotspots that reveals the relationship
between recombination and genome features [16], [17] is
incorporated into the pseudoposterior distribution of
recombination rate. The jMCMC algorithm is implemented
to determine the parameters of the mutation model, i.e.,
change-points of SNPs, background rate, hotspot locations,
hotspot heat and hotspot scale.

The scheme of rjMCMC algorithm is a typical change
point problem [13] (Appendix Table A.1, available in the
online supplemental material). Set L as the position of the
last SNP, and let k£ be the number of change-points drawn
from a Poisson distribution. The locations of change points
are s;,, where 0 < s1 < s9 < -+ < 8, < L. The recombina-
tion rate is given by a step function z(.) on [0, L.

In the algorithm of LDhat, the interval background rate h;
on the jth block [s;, s;11] is initialized with the prior as expo-
nential distribution, denoted as P(h;) ~ Ezp(¢). And the
prior on the kth hotspot rate is defined as a truncated dou-
ble-exponential curve, presented as f, o< ALaplace(u,b),
where b is the central position of hotspot. Two parameters A
and u are defined for evaluating the heat and scale of hot-
spots. The priors on both of them are in gamma distribution,
ie, A~I(a1,B;),n ~TI'(a2,B;). The hyperparameters o,
By, a2, B, were obtained by Maximum Likelihood estimation
to fit a gamma distribution to empirical hotspot data sets
[10]. The contribution of a recombination hotspot to the final
recombination rate depends on its relative location to blocks.

The mutation model is designed as four independent ran-
dom transitions for background model: (a) ‘death’of a ran-
domly chosen block, (b) ‘birth’of a new block at a randomly
chosen location in [0, L], (c) a change of the height of a ran-
domly chosen block, and (d) a change of the position of a ran-
domly chosen block. In addition, there are five transitions for
hotspot model: (a) ‘delete’of a randomly chosen hotspot,
(b) ‘insert’of a new hotspot at a randomly chosen location in
[0, L], (c) a change of the heat of a randomly chosen hotspot,
(d) a change of the scale of a randomly chosen hotspot, and
(e) a change of the position of a randomly chosen hotspot.

According to the rjMCMC algorithm, mutations occur
during each transition. To compute the Metropolis-Hast-
ings acceptance ratio, the recombination map composed
of constant rates and a pseudo-likelihood of the data in
each transition have to be calculated which take most of
the execution time. For N iterations, the complexity of
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LDhat program scales with an order of N X I, where
lyeq is the number of SNPs. For large scale matrix, the
running time of LDhat is prohibitively lengthy. More-
over, in order to get accurate recombination rate profiles,
an appropriate setting of parameters, specifically the
number of iterations, is critical to guarantee that a Mar-
kov chain reaches its equilibrium distribution.

Therefore, we evaluated the influences of parameters
on LDhat. Two-sample Kolmogorov-Smirnov test [18] is
employed to compare two outputs. The control object x is
attained from the results of the same data set with 11 mil-
lion iterations, 1,000,000 burn-in and 2,000 sample. The
accuracy of the predicted recombination profile x with n
intervals is estimated by Kolmogorov-Smirnov statistic,
defined as

KSZ = \/g,maxm — x|, wherei=0,1,2...n—1. (1)
3

Given rejection level « = 0.05, the reference KSZ,.; =

1.36, /ﬁ.

impact of the number of iterations on execution time and

First, a test data set is applied to examine the

recombination profile. Then we use a group of data sets
with different sizes to analyse the correlation between
data size and running time with the same number of itera-
tions. The running time shows approximately linear corre-
lations between the number of iterations and data sizes
which is consistent with the analysis on LDhat complexity.
In addition, the accuracy of outputs is highly correlated
with the two parameters.

Thus in the original LDhat program, a major limita-
tion is that the parameters have to be defined by users
without references. Estimation of the parameters of
MCMC, such as the iteration number and the number of
discarded initial samples, is a critical issue for the appli-
cation of LDhat. To address the issue, several algorithms
have been developed to determine how many steps are
needed to ensure the convergence of Markov chains.
However, due to the complexity and specialization,
direct prediction of parameters is only theoretically
described and thus impractical [19]. Hence a variety of
empirical tools for the diagnosis of MCMC convergence
which are well designed and implemented are used, e.g.,
Gelman and Rubin diagnostic method [20], Brook and
Giudici’s method [21], Raftery and Lewis diagnostic
algorithm [22].

In the next section, we presented our convergence diag-
nostic method based on the framework of Raftery and Lewis
diagnostic algorithm [22], thereby solving the above major
issue of LDhat, as well as speeding up large-scale estimation
of recombination rates. For standard Markov Chain Monte
Carlo algorithms, the dimension of the parameter vector is
fixed, whilst in jMCMC scheme it has varying dimensions.
Normal convergence assessment algorithms cannot be
applied directly to outputs from an rjMCMC sampler. Cas-
telloe and Zimmerman’s method extends the work of [20]
by encompassing all of the parameter spaces and monitor-
ing several parameters simultaneously [23] which is espe-
cially designed for 1jMCMC situation. Thus we employed

the method of Castelloe and Zimmerman in this paper to
monitor the status of Markov chain.

2.2 Convergence Diagnostic Methods

Here we propose an improved algorithm for the predic-
tion of meiotic recombination rates which makes use of
convergence diagnostic methods. The original LDhat pro-
gram not only takes large amount of time on calculation,
but also requires users to specify the values of parameters
which cannot ensure the convergence of Markov chains.
Thus our main purpose is to control the process of
rjMCMC iteration to monitor the Markov chain conver-
gent status and supervise the adaptation of parameters in
order to accelerate the mixing process and ensure the
accuracy. To achieve these goals, the key point is to deter-
mine the appropriate number of iterations for the conver-
gence of Markov chains.

Raftery and Lewis diagnostic algorithm and Castelloe
and Zimmerman convergence assessment method are
adopted in our program. The former is widely used to
predict the number of iterations, burn-in and sample
parameters in MCMC applications, and the latter cannot
predict parameters, but it is dedicated for rjMCMC con-
vergence diagnosis. In our program, the numbers of iter-
ations and burn-in are determined by Raftery and Lewis
diagnostic algorithm for a given level of precision. Cas-
telloe and Zimmerman’s convergence assessment method
runs periodically to check if the chain has reached its
target distribution.

First, a pilot chain is run with initial iterations. Using the
output sample, Raftery and Lewis diagnostic algorithm will
generate a new Markov chain to predict how many steps
are needed for each parameter to get equilibrium status and
how long the burn-in should be. A reliable factor / will be
calculated as well. Values of I must be greater than 1, but
when I > 5 it often indicates problems [22]. Since a bad
starting value or high posterior correlations may cause
unreliable results, the estimations are just used as references
of initiate settings. The set of parameters satisfying the
threshold with the maximum number of iterations will
be chosen as the input arguments. Sometimes all of the reli-
able factors are larger than 5. In that case, none of the results
are reliable. The minimal iteration number is selected as the
initial values of parameters. Castelloe and Zimmerman con-
vergence assessment method will check the status repeat-
edly to rectify the values.

Castelloe and Zimmerman'’s algorithm needs multiple
testing chains running for certain steps. It is particularly
designed for rjMCMC convergence diagnosis. Since the
solution dimention of rfMCMC is not fixed, different models
with variant sizes of parameter vectors are generated. Mar-
kov chains transit between these models. Thus the evalua-
tion of the variations within each sample, testing chains,
different models, could reflect the convergent status of
whole Markov chains.

Let C be the number of chains required by Castelloe and
Zimmerman’s method, 7" be the number of sweeps in each
chian and 6 be a vector of parameters. M is the number of
distinct models visited by any chain. R, stands for the
number of times model m occurrs in chain c. The total vari-
ance V is estimated by
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where 6 is the average of all samples. Variation within
chains, variation within models and variation within mod-
els and chains are defined as

M Rem
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W W, =

The above four factors reflect the convergence in differ-
ent levels. The convergence assessment algorithm is used to
check whether they reach the stable states. Four ratios in
equations (6), (7), (8) and (9) are created to evaluate the
chain mixing status. When M PSRF, and M PSRF; are set-
tled close to 1, V and W,, W,, and W,, W, are all settled
approximately to a common value, indicating that it has
achieved the desired distribution of convergence:

mazx eigen V

PSRF| = ——F——
SRE, max eigen W,’ (6)

max eigen W,
PSRF, = 7
> max eigen W, W, (7)
MPSRF, = mazx eigen [W,]'V, (8)
MPSRF, = max eigen [WmWC]lem. 9)

The convergence algorithm needs to calculate the
inverse matrixes and eigenvalues. The complexities of
them are about O(n?®), where n is the dimension of
the matrix, equal to the number of parameters. When the
diagnosis algorithm is frequently called with a large
number n, it may take considerable time. To accelerate
the process, a new parameter addon is defined to control
this process. It is initially set to 2 and will be added by 5
percent of the number of SNPs in each round of conver-
gence diagnosis. Then the iteration number will be set to
addon times the estimated value. Once the C chains are
diagnosed as convergent, the final output is generated
by combining the results of all chains.

In our improved program for estimating recombination
rates, a convergence diagnostic model is invoked to estimate
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run pilot chain
predict parameters
Initiate addon=2

get new

run C chains with

if convergent?

addon += SNPs/20 H convergence

Fig. 1. Workflow of convergence diagnosis model.

MCMC parameters and monitor the convergence process.
The computational workflow is shown in Fig. 1.

Instead of manually setting values, an automatic defini-
tion process of parameters is initially run, then a conver-
gence diagnosis procedure repeatedly to check the status.
Finally, the results from each chain are combined to a final
recombination profile. Since the rMCMC assessment
method requires multiple chains for diagnosis, the sequen-
tial scheme would make this new method even more time-
consuming than running a single chain when the iteration
loop is fixed. However, in most cases the iteration number
is unknown to users, thus we cannot directly compare our
improved method with the original program with the same
number of iterations.

2.3 Parallel Method

Due to the increasing availability of cheap computing
power, parallel computing has received impetus. It has long
been employed for scientific computing. Next, we are con-
cerned with parallel implementation of MCMC in the con-
text of accelerating our convergence diagnostic method.

Current algorithms for parallelizing MCMC can be clas-
sified into two main categories: one is parallelization of a
single chain, and the other is parallel generation of multiple
different chains [24]. Conceptually, parallel processing can
be applied to almost any problem. However, MCMC is not
easy to run in parallel owing to its serial nature. Due to the
tight synchronization requirements of MCMC, the single-
chain parallelization strategy requires considerable modifi-
cation of the serial algorithm [25]. While the total iterations
could be divided by multiple processors due to the indepen-
dence nature of samples [25]. We concentrate on introduc-
ing a parallel algorithm that significantly decreases the
execution time on multiple short Markov chains.

Assuming that each iteration takes roughly the same
time to compute, an iteration may be used as a unit of time.
Since the samples collected from MCMC chains are inde-
pendent, it is possible to allocate the n required samples to
N available processors, where the same program is run on
each processor.

For a long chain the burn-in only happens once,
whereas for several short chains, each must have a respec-
tive burn-in, resulting in many wasted samples [25]. With
increasing numbers of processors, the performance of
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Parallel Algorithm :

Step 1. Master program runs with » iterations, b burn-in, and passes b+ (n-b)/N
iterations to each available processor.
Step 2. Each processor £
(a) Simulates b+(n-b)/N independent realizations of Markov chain
(b) Passes result M back to master program
Step 3. Master program combines the My, M ... My-1to get final M.
Step 4. Master program returns M//N

Fig. 2. Parallel algorithm for a single Markov chain.

parallel computation becomes limited owing to redundant
burn-in. Thus the issue of burn-in is of particular concern
in a parallel computing environment. Here we make each
process with the same burn-in phase identical with the
sequential program.

We take advantage of parallel computation integrating
convergence diagnosis model. The scheme of integrated
method is nearly the same as convergence diagnosis pro-
gram except that the convergent diagnostic tasks are
divided by N processors. Each of the C' diagnostic chains is
run on N/C processors. The algorithm for parallel simula-
tion of a single Markov chain can be described in Fig. 2.

The theoretical speedup is proportioned to the number of
processors. However, due to the burn-in overhead, if N pro-
cessors run one chain with a burn-in of b and n total itera-
tions, then b+ (n —b)/N iterations are allocated for each
chain. When neglecting the communication time between
processors and the handling time on file combination, it
gives an optimal speedup of

n

SpeedUp1 (N) = m .
N

(10)

Let n = 10b, then SpeedUp;(5) = 3.5714, SpeedUp;(8) =
4.7059. However, when using 10 processors, there is only
fivefold speedup indicating that the effect of parallel com-
putation on large clusters becomes limited. Theoretically,
due to the burn-in, it could reach a maximum of 10 times
speedup, when N — oco. Furthermore, effective utilization

of multiple processors is also limited due to the aggregation
of communication time.

Based on a single chain parallel algorithm, the C diag-
nostic chains are divided into multiple sub-tasks. In
Fig. 3, it shows the strategy of the parallel approach
employed in our program. Each processor runs indepen-
dent copies of the program with n/N iterations, and gen-
erates individual output files. The length of burn-in
period keeps the same ratio with sequential execution.
These numerous files are then compiled to obtain the
final outputs of diagnostic chains for convergence evalu-
ation. The implementation of this approach is done using
OpenMPI programming language for communicating
messages between multi-core processors.

Suppose that C parallel chains run on N processors with
consistent burn-in of b and n total iterations, then n/C itera-
tions and N/C' processors are assigned to each chain. This
gives a speedup of

n

n/C=b"
b N/C

SpeedUpy(N) = (11)

Empirically n = 100C, C =5 is a useful rule-of-thumb.
We can get SpeedUps(5) =5, SpeedUp,(10) =9.09,
SpeedUps(20) = 15.38 with a maximum speedup of 50
theoretically.

Another issue we have addressed is the random number
generator. The correlation among random number streams
on separated processors should be reduced by assigning
identical random number seeds to each machine [26]. The
original LDhat program uses the default random number
generator provided by the C language. It can only be used
by one processor at a time. The other processors need to
wait for their turn to obtain the random number losing the
benefit of parallelization. Since each loop of the program
requires random number generation over ten times, the
over-all impact of improving the random number generator
can be very significant. A sophisticated approach is to
change the random number generator to SIMD-Oriented
Fast Mersenne Twister (SEMT), which supports multicore

Serial Approach

Start

C chains

For i =1:lteration/C
if i < Burn-in
discard samples
else
record samples

Multiple chains Parallel Algorithm

C chains

For i =1:lteration/C/n-processors
ifi < Burn-in discard samples
else record samples

For i =1:lteration/C/n-processors
if i < Burn-in discard samples
else record samples

End

For i =1:lteration/C/n-processors
ifi <Burn-in discard samples
else record samples

For i =1:lteration/C/n-processors
ifi < Burn-in discard samples
else record samples

Fig. 3. Parallel algorithm for multiple chains.
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TABLE 1
Test Data Sets
Datasets | Haplotypes | SNPs | Length(kb)

Test1 48 61 9.730
Test2 180 100 38.771
Test3 120 110 35.449
Test4 50 251 504.492
Test5 120 401 796.496
Test6 70 520 1102.571
Test7 70 610 983.183
Test8 60 790 1385.201
Test9 60 850 1437.376

Test10 50 1000 2643.03

parallel random number generation and has been shown
suitable for use in Monte Carlo simulations [27]. Therefore
we replace the random number generator in order to make
it applicable for parallel computation.

3 RESULTS

To investigate the performance of the new method, we con-
ducted two comparison studies. Since the program is used
for fundamental genetics studies, it is imperative that the
optimization techniques used do not affect the results. The
new program should expedite the calculation process mean-
while retaining the accuracy. Not only the recombination
rates but also the change positions should be predicted
within the acceptable deviation. Hence we analyzed recom-
bination profiles, running time and iteration numbers to
evaluate the performance of the new method. We use LDhat
to refer to the original LDhat implementation, CLDhat to
refer to the convergence method, and PLDhat to refer to the
parallel approach.

Ten sets of test data with equal iterations are used to
evaluate the performance. They are drawn from human
genomes with different numbers of haplotypes, SNPs and
sequence lengths (Table 1). In the first study, we compared
recombination profiles on outputs of 10 data sets by LDhat,
CLDhat and PLDhat. In the second study, the execution time
and the number of iterations are compared to show the effi-
ciency of our improved programs.

The experiments were implemented on an IBM cluster of
24 quan-CPU 2.53 GHz Intel Xeon Linux Systems, con-
nected to each other by 100 Mbps Ethernet connections.

3.1 LDhat Analysis

Before the comparison studies, we analyzed the influence
of parameters, i.e.,, the numbers of SNPs and iterations,
on execution time and recombination profiles. First, a
test data set with 61 SNPs is used to examine the effect
of iteration number on output profiles and execution
time. The iteration numbers are set 3,000, 6,000, 10,000,
15,000 and 18,000 respectively. Assuming that each
mutation transition consumes the same time, the itera-
tion loop in Line 6 of LDhat pseudocode (Appendix
Fig. A.1, available in the online supplemental material)
constructs the main component of jMCMC leading to a
significant linear correlation between iterations and exe-
cution time. The comparison results in Fig. 4a shows an
approximately linear relationship with r=0.992. Thus
controlling the loop length is important for the speedup
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Fig. 4. Execution time (a) and KSZ (b) analysis on 61SNP test data set
with different iterations. The dotted line in (b) represents the reference
KSZ value for the data sets with an acceptance probability of 0.95.

of LDhat. With increasing iterations, the KSZ value
decreases gradually (Fig. 4b) indicating that the Markov
chain is close to the target distribution. However, when
the iteration is set too small, e.g., less than 6,000, in this
case, a deviation occurs in the output profile. On the
contrary, over calculation with a large number of itera-
tions would waste computational time without gain of
additional information.

We analyzed the correlation between the number of
SNPs and execution time, the number of SNPs and recombi-
nation profile with a fixed iteration number 10,000. As dem-
onstrated above, the time complexity of LDhat has a linear
correlation with the number of SNPs (Fig. 5a, r = 0.999).
The red line in Fig. 5b shows the threshold of K'SZ values
for different SNPs with an acceptance value of 0.95. For
small scale data sets, the setting of 10,000 iterations is
enough for the convergence of Markov chains. When the
number of SNPs exceeds 400, more training is required to
make the chains reach the target distribution.

3.2 Comparison of Recombination Profiles
In the first study, we conduct experiments to compare
recombination profiles of LDhat, CLDhat and PLDhat on the
10 data sets in Table 1. For all data sets, LDhat is running for
11 million iterations, and the initial 1,000,000 samples are
discarded as burn-in. Samples of the chain are taken every
2,000 iterations after the burn-in. Then the output recombi-
nation rates are recorded as control groups to evaluate other
methods. By contrast, we don’t have to specify the numbers
of iteration, burn-in and samples in the CLDhat method. By
convention, five chains are generated to check the mixing
status [28].

For PLDhat, the sequential procedure is divided into five
parallel tasks making use of 15 processors. One processor
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Fig. 5. Execution time (a) and KSZ (b) analysis on different size of test
data sets with the same iterations. The dotted line in (b) represents the
reference KSZ value for the individual data set with an acceptance prob-
ability of 0.95.

operates as the master running the Raftery and Lewis diag-
nostic algorithm to estimate the parameters and control the
process of convergence assessment. Every three processors
are applied to generate a single chain with parameters
received from master processor.

Comparing the output graphs, the CLDhat and PLDhat
methods got almost the same figures as the original program
(Appendix Fig. A.1, available in the online supplemental
material). Although the peak values are slightly changed in
some points, the outputs showed high correlation coeffi-
cients among the three methods. The error is acceptable by
KS test (see methods). Fig. 6 shows the K.SZ of 10 data sets
for our improved methods with reference values in red line.
In most cases, the KSZ values of CLDhat are smaller than
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N
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4
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Fig. 6. KSZ values on the 10 data sets by CLDhat and PLDhat. The solid
line indicates reference values.
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Fig. 7. Prediction of numbers and positions of hotspots on Test 2.
(a) Posterior distribution of numbers of hotspots. (b) Posterior density
estimates of positions of hotspots conditional on the number of hotspots
k = 3 (solid curves) and k = 4 (broken curves).

PLDhat. This may be due to the loss of accuracy in frequent
‘split-and-combine” process during parallel computation.
But for small data sets, it converges more quickly with no
need for frequently calling diagnosis and combination. Even
so, both the outputs of CLDhat and PLDhat are under the
threshold indicating the accuracy of our new methods.

Take Test 2 for instance. Fig. 7a shows the posterior dis-
tribution of the number of hotspots. More than 50 percent of
models contain three hotspots. Conditional on the numbers
of hotspots k = 3 and 4, Fig. 7b shows the posterior densities
of the step positions. The positions of three hotspots are
accurately identified. The density estimates are obtained
using a Gaussian kernel with standard deviation.

3.3 Comparison of Running Time

In the second study, the total time consumed by LDhat
and the improved methods on the 10 data sets are
shown in Fig. 8a (details in Appendix Table A.2, avail-
able in the online supplemental material). The execution
time was tremendously decreased when using our new
methods. There are almost 80 times speedup in CLDhat.
Using PLDhat on 15 processors, we got 622 times acceler-
ation. In Fig. 8b, it shows the separate running time of
each test data for LDhat, CLDhat and PLDhat. As the
number of SNPs increases, our methods take a linear
growth in time which is consistent with previous analy-
sis in Section 2.1.

Unlike LDhat program, CLDhat method is a non-parame-
ter approach under rjMCMC scheme. It is a more reliable
and faster method. The mixing process is automatically
monitored and checked periodically for convergence. So the
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MCMC chain could reach the equilibrium distribution rap-
idly in moderate iteration. In Table 2, the iteration numbers
of test data sets by CLDhat are significantly decreased com-
pared with LDhat leading to an expressively optimization of
time efficiency. The PLDhat approach has successfully
obtained more significant speedup than CLDhat.

We replace the original random number generator with
SFMT for parallel computation. Since the program fre-
quently requests for random number generation and SEMT
is an efficient and faster random number generator, the
replacement of original function reaches approximately
three times speedup (data not shown). For large data sets,
such as the calculation of Test 7-10, they take more iterations
for convergence when the accelerating effect by parallel
becomes more apparent.

The parameter addon controls the span length of each
diagnosis round that correlates with the number of SNPs
which makes large data sets mix faster. Conversely, this
jumping scheme is suboptimal for small data sets.

4 DISCUSSION AND CONCLUSIONS

The main purpose of optimization of LDhat is to decrease
the time complexity and increase the accuracy and reliabil-
ity of output recombination profiles. Besides, there are no
strategy to set the jMCMC parameters in the original LDhat
program, such as the iteration number, burn-in length and
sample frequency. The bottleneck identified as the main
loop in the original LDhat program is normally suggested
to carried out a million iterations or more which may result
in over calculation or insufficient running.

In this paper, we exploited MCMC convergence diagnos-
tic algorithms and proposed two improved methods based

NO.1, JANUARY/FEBRUARY 2014
TABLE 2
Numbers of iterations by CLDhat and PLDhat
Datasets | CLDhat | PLDhat
Test1 156109 | 22561
Test2 | 185691 | 23768
Test3 | 293663 | 33746
Testd | 297257 | 68746
Tests | 390294 | 108746
Test6 | 1525275 | 144821
Test7 | 2395086 | 158746
Test8 | 3215746 | 297466
Test9 | 3695314 | 396121
Testl0 | 4721811 | 447752

on LDhat. A major advantage of the new methods is signifi-
cant acceleration compared with original program. In addi-
tion, the parameters are automatically estimated by our
algorithms and only depend on input data. The mixing pro-
cess is dynamic and monitored until the Markov chain
reaches its target distribution. This could avoid unnecessary
consumption of resources while also guarantees the accu-
racy of outputs.

Although the running time of the convergence method is
tremendously decreased compared to the original program,
it was further improved by implementation of parallel com-
putation method due to the sequential scheme of the gener-
ation process of diagnostic chains. Hence we developed a
parallel algorithm to allocate separate tasks to individual
processors running a single chain in parallel. It achieves sig-
nificant speedup.

The outputs of the above two methods were com-
pared with the original LDhat program which showed
similar output graphs. Since the results were generated
through strict convergence assessment procedure, our
methods achieved low values of KSZ (i.e., high accuracy)
in much less iterations presenting extraordinarily similar
recombination rate profiles.

Therefore our improved programs provide efficient and
accurate methods for recombination rate prediction. Espe-
cially the parallel program provides a practicable, time sav-
ing and effective method. The improved methods, CLDhat
and PLDhat, including the original LDhat (rhomap) program
are implemented in a stand-alone package written in Java
which is freely available for download at web site http://
www.ntu.edu.sg/home/zhengjie/software/CPLDhat/. It
could run in both Linux and Windows OS.

APPENDIX A

Tables A.1 and A.2 and Fig. A.1 can be found on the Computer
Society Digital Library at http:/ /doi.ieeecomputersociety.org/
10.1109/TCBB.2013.133.
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