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Abstract—Coupling graphs are newly introduced in this paper to meet many application needs particularly in the field of

bioinformatics. A coupling graph is a two-layer graph complex, in which each node from one layer of the graph complex has at least

one connection with the nodes in the other layer, and vice versa. The coupling graph model is sufficiently powerful to capture strong

and inherent associations between subgraph pairs in complicated applications. The focus of this paper is on mining algorithms of

frequent coupling subgraphs and bioinformatics application. Although existing frequent subgraph mining algorithms are competent to

identify frequent subgraphs from a graph database, they perform poorly on frequent coupling subgraphmining because they generate

many irrelevant subgraphs. We propose a novel graph transformation technique to transform a coupling graph into a generic graph.

Based on the transformed coupling graphs, existing graph mining methods are then utilized to discover frequent coupling subgraphs.

We prove that the transformation is precise and complete and that the restoration is reversible. Experiments carried out on a database

containing 10,511 coupling graphs show that our proposed algorithm reduces the mining time very much in comparison with the

existing subgraph mining algorithms. Moreover, we demonstrate the usefulness of frequent coupling subgraphs by applying our

algorithm to make accurate predictions of epitopes in antibody-antigen binding.

Index Terms—Coupling graph, epitope prediction, graph mining, graph transformation
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1 INTRODUCTION

GRAPH representation and graph data analysis have
been widely used in many bioinformatics studies. Pro-

tein-protein interaction (PPI) network is a well-known
example; its nodes denote unique proteins and its edges
represent physical contacts between the pairs of proteins
[1]. Another example is genetic regulatory networks in
which the nodes represent genes, and the edges stand for
gene regulatory relations, such as a relation that gene A
inhibits gene B, or a relation that gene B activates gene C [2].

More interesting graphs used in bioinformatics include
those which contain two sets of nodes of different meanings.
For example, a gene-phenotype association network con-
tains two different sets of nodes. Nodes in one set represent
genes, while nodes in the other set stand for phenotypes.
The edges in such a network also have different meanings,
and can be grouped into: (i) those relation edges within the
genes only, (ii) those similarity edges within the phenotypes
only, and (iii) the association edges between the genes and

phenotypes [3]. An illustration of a gene-phenotype net-
work is shown in Fig. 1a. It can be seen that the nodes in
this network belong to two categories (gene and phenotype)
and that the edges have different meanings (i.e., inter-gene
interactions, inter-phenotype similarities, and gene-pheno-
type associations). This kind of two-layer graph complex is
referred to as a coupling graph in this work. Each layer in a
coupling graph is defined as a subgraph and every node in
one layer has at least one edge connecting with a node in
the other layer. A coupling graph is not necessarily a bipar-
tite graph, as there usually exist many edges within each
layer of a coupling graph. However, a coupling graph can
be easily reduced to a bipartite graph by removing all of the
edges in the same layer subgraph.

Many other bioinformatics problems also involve cou-
pling graphs. For example, an antibody-antigen interaction
complex [5] can form a coupling graph when the residues
are represented by nodes, and the physical contacts
between the residues are represented by edges. As shown
in Fig. 1b, the interactions of some residues in the antibody-
antigen complex (Protein Data Bank (PDB) entry 1TJG)
forms a coupling graph, where the nodes are the contacting
residues and the edges are the residue contacts. As another
example, the expression regulation network of microRNAs
and genes can be constructed as a coupling graph. One layer
of this coupling graph represents the similarity network of
the microRNAs’ expression, while the other layer is a gene
expression similarity network. The edges between these
two networks are functional regulatory relationships [6], as
shown in Fig. 1c.

Compared to generic bipartite graphs, the integrative
notion of coupling graphs has advantages for deciphering
biological associations, identifying structural motifs in pro-
tein complexes, predicting context-awareness binding sites
of proteins, and constructing binding partners for an input
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protein [7], [8]. Taking a paratope-epitope interacting com-
plex as example, the coupling graph representation of this
complex has several advantages. First, the two special sub-
graphs (the two layers) in this coupling graph can preserve
topological information of paratope residues and epitope
residues. Second, the edges between the two subgraphs of
this coupling graph capture the contact details between the
nodes of the two subgraphs. Note that the contacts between
subgraphs have different meaning comparing with within-
contacts in each subgraph. In this example, the between-
contacts are mainly noncovalent bonds, while the within-
contacts are mostly covalent bonds. Therefore, using cou-
pling graph to distinguish them is informative and helpful.
Third, the unification of between-contacts and within-
contacts not only keeps the topology of the subgraph and
inter-contacts between the subgraphs, but also uncovers the
systematical structures of the contacts. For instance, a cou-
pling graph can reveal the complementary core interaction
between the epitope and the paratope in PDB complex
1AR1, where the epitope has a hydrophobic core surrounded
by hydrophilic rimwhile the paratope has a hydrophilic core
encompassed by neutral residues, as discovered in [9]. How-
ever, if bipartite graphs are used for the data representation,
many important neighborhood and topological information
as well as biological properties in the two subgraphs of cou-
pling graphsmay get lost.

The focus of this work is on efficient mining of cou-
pling subgraphs that occur frequently in coupling graph
databases and its bioinformatics application. There exist
efficient algorithms for mining frequent subgraphs from
a generic graph database, including AGM [10], FSG [11],
MoFa [12], gSpan [13], FFSM [14] and Gaston [15]. How-
ever, these algorithms cannot be directly used to mine
frequent coupling subgraphs from a coupling graph
database. If a coupling graph is treated as a generic
graph, difficulties will arise when the aforementioned
subgraph miners are used to find frequent coupling sub-
graphs. On the one hand, a frequent subgraph generated
by these algorithms may contain nodes from only one
layer of a coupling graph or include irrelevant sub-
graphs. For example, the frequent subgraph “1—3” in
Fig. 2 is not a frequent coupling subgraph but it is a fre-
quent subgraph, and the frequent subgraph “2—1—3”
contains a subgraph “1—3” which is not a coupling
graph. On the other hand, a coupling graph
A ¼ ðGA

1 ; G
A
2 ; E

AÞ is isomorphic to a coupling graph
B ¼ ðGB

1 ; G
B
2 ; E

BÞ if they are regarded as generic graphs,
but their corresponding constituent graphs may not be

isomorphic, i.e., GA
1 may not be isomorphic to GB

1 and
GA

2 is not necessary to be isomorphic to GB
2 .

We propose new algorithms and make the following con-
tributions to the efficient mining of frequent coupling sub-
graphs from coupling graph databases. We define and
formulate the new concepts related to coupling graphs. We
design an efficient algorithm to mine frequent coupling sub-
graphs from a coupling graph database by novel graph
transformation and graph restoration techniques. We prove
that the transformation and restoration are reversible. We
also evaluate the efficiency of our algorithm by comparing
it with the performance of generic subgraph mining algo-
rithms on large-scale real data.

To show the usefulness of frequent coupling subgraphs
in real bioinformatics problems, we apply our algorithm to
predict antibody-specific B-cell epitopes. The representation
of epitope-paratope interaction by the use of coupling
graphs not only implements the context-awareness theories
[16], it also builds a sound foundation to achieve better per-
formance on epitope prediction according to our experi-
mental results shown later.

2 DEFINITION AND RELATED WORKS

Coupling graph is a newly formulated concept, which is
convenient and comprehensive to capture information of
two related graphs. Coupling graph is related to, but differ-
ent from bi-clique, quasi bi-clique and generic graph.

1

2 3

1

2

3 1

4

3
H1 H2 H3

Closed frequent subgraphs
supp=2

1 3

12 3 1

2
generic graph coupling graph

Fig. 2. Some frequent coupling subgraphs and frequent subgraphs of a
graph data set. A solid line represents an edge within a layer subgraph,
while a dash line represents an edge between the two layer subgraphs
of a coupling graph.

Fig. 1. Examples of coupling graphs in bioinformatics. (a) is a diagram of gene-phenotype association network, in which genes are represented by
light green nodes and phenotypes are depicted by light purple nodes. The solid lines are interactions within the genes or phenotypes, while the dash
lines are associations between the genes and phenotypes. (b) shows partial interactions between antigen gp41 and antibody 2F5. The interactions
between this antibody and antigen are represented by dash lines. (c) illustrates the role of microRNAs in regulating TGFb singaling pathway. The reg-
ulations between the microRNAs and their targets are represented as dash lines [4].
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2.1 Definition of Coupling Graph

A graph G is an ordered pair denoted by G ¼ ðV;EÞ, where
V is a set of nodes and E � V � V is a set of edges. An edge
e in E is denoted by e ¼ ðvi; vjÞ.
Definition 1. A coupling graph H is a graph complex denoted

by H ¼ ððV 1; V 2Þ; ðE1; E2; E12ÞÞ, where E12 � V 1 � V 2, V 1

and E1 forms a subgraph G1, V 2 and E2 forms a subgraph G2,
and the two subgraphs satisfy that 8v1i 2 V 1, 9v2j 2 V 2 such
that ðv1i ; v2j Þ 2 E12, and 8v2j 2 V 2, 9v1i 2 V 1 such that
ðv1i ; v2j Þ 2 E12.

We note that every node v1 inG1 is required by definition
to connect to at least one node v2 in G2 for a coupling graph
H. This constraint guarantees that all the nodes are involved
in the interaction between the two subgraphs of a coupling
graph. This modeling constraint is motivated by some real
application needs. For example, to characterize antibody-
antigen interactions, only paratope residues in an antibody
and epitope residues in an antigen are needed, and the rest
can be ignored.

According to the definition above, a coupling graph may
contains several connected components, which is defined as:

Definition 2. A connected coupling graph Hc ¼ ððV 1
c ; V

2
c Þ,

ðE1
c ; E

2
c ; E

12
c ÞÞ is a coupling graph, such that 8u 2 V 1

c ; 9v 2
V 2
c , there is a path connecting u and v, and vice versa.

A coupling subgraph is a coupling graph which is a sub-
graph of a coupling graph.

Definition 3. A coupling graph H is frequent in a coupling
graph database H if H is a coupling subgraph in not less than
d number of coupling graphs inH.

2.2 Relation to Bi-Clique, Quasi Bi-Clique and
Generic Graph

Coupling graph has relation with bi-clique, quasi bi-clique
and generic graph, but essentially it is different from vari-
ous existing forms of graph.

A bi-clique is an undirected graph G ¼ ðV;EÞ, such that
V ¼ ðV1; V2Þ, V1 \ V2 ¼ ;, V1 [ V2 ¼ V , 8u 2 V1 and 8v 2 V2,
ðu; vÞ 2 E and jV1j � jV2j ¼ jEj. It is clear, from the two defi-
nitions, that a coupling graph differs from a bi-clique in two
major points: (i) the edges between the two sets of the nodes
in a bi-clique are complete, while no completeness restric-
tion on the edges between two subgraphs of a coupling
graph and; (ii) no edges within each set of the nodes in a bi-
clique, but each subgraph of a coupling graph can have
edges. Although differences exist, the two types of graph
are related—both of them are two-layered graphs.

Regarding the completeness between graph connections,
a coupling graph is more closer to a quasi bi-clique than a
bi-clique. In a quasi bi-clique, the degree of a node u 2 V1,
denoted as deg(u), satisfies d � degðuÞ � jV2j, and the same
constraint applies to any node of V2; while for a coupling
graph, the value d can be considered as degenerated to 1
(excluding the degree formed from the edges within the
same layer of a coupling graph).

A coupling graph is also quite different from a
generic graph, in which all the nodes are considered
within the same domain and thus no difference between
edges as well.

2.3 Frequent Subgraph Mining

Due to the essential differences between coupling graphs
and generic graphs, the frequent coupling subgraph mining
is quite different from generic subgraph mining. However,
several graph mining algorithms are closely related, and
some of their ideas are useful for developing coupling
graph mining algorithms.

AGM [10] is a representative Apriori-based approach for
mining frequent subgraphs, which can identify both con-
nected and unconnected graphs. It employs an adjacency
matrix to represent graphs, and breadth-first search (BFS) to
discover frequent graph patterns. Other Apriori-based algo-
rithms have also been proposed for mining frequent sub-
graphs, including FSG [11], gFSG [17] and DPMine [18].
Although the same strategy is adopted by these algorithms,
different graph representation and repeat count ideas are
used. The BFS search strategy performs strong pruning dur-
ing subgraph expansion; however, it consumes huge vol-
ume of memory. Therefore, the depth-first search (DFS)
method, which takes less memory, is developed. MoFa [12]
uses a fragment-local numbering scheme to expand sub-
graphs. Besides, structural pruning and molecular knowl-
edge are used to reduce support calculation, which thus
dedicates to chemical molecules exploration. Another well-
established algorithm for frequent subgraph mining based
on pattern growth is gSpan [13]. gSpan uses the minimum
DFS code to represent each graph and only expands a fre-
quent subgraph with minimum DFS code. The canonical
adjacency matrix (CAM) graph representation is used by
FFSM [14] to mine frequent subgraphs. This algorithm uses
an embedding list to record the discovered frequent pat-
terns in CAM format, which avoids graph isomorphism
testing. Gaston [15] incorporates a progressive model, from
path, tree to graph, to reduce the mining time. Graph iso-
morphism testing is only performed on subgraphs instead
of trees and paths. Various graph expansion and support
counting methods have been proposed to mine frequent
subgraphs; which, however, cannot be directly used to
mine frequent coupling subgraphs as the edges in a cou-
pling graph have different meanings.

2.4 Correlated Graph Pattern Mining

Besides frequent subgraph mining, attempts have been
made on correlated graph pattern mining. The correlated
graph search is formulated by Ke et al. [19], in which
Pearson’s correlation coefficient is used to measure the cor-
relation between graphs. Later on, the frequent correlated sub-
graph pairs mining algorithm is established by Ke et al. [20],
in which a theoretical bound on the minimum correlation is
determined to discover correlated subgraph pairs. HSG [21]
is proposed to discover frequent hyperclique patterns in
graph databases, where a hyperclique pattern is defined as
a set of items with high affinity measured by h-confidence
[22]. Another related work is pairs of graph pattern mining,
which discovers rules to classify graph pairs by estimating
the tight upper bound on a statistical metric. An attempt
has also been made on frequent subgraph-subsequence pair
mining [23]. However, these problems are different from
coupling graph mining—the correlated graphs are separate
in the former, while they are tightly connected in the latter.

ZHAO ET AL.: COUPLING GRAPHS, EFFICIENT ALGORITHMS AND B-CELL EPITOPE PREDICTION 9



3 ALGORITHMS FOR MINING FREQUENT COUPLING

SUBGRAPHS FROM A GRAPH DATABASE

We take the following three steps to mine frequent cou-
pling subgraphs: (i) transform a coupling graph into a
generic graph; (ii) mine frequent subgraphs from the
transformed generic graphs by using an existing graph
mining method; and (iii) restore the coupling graphs
from the set of transformed frequent subgraphs. The
detailed description for each step is presented in the fol-
lowing sections.

3.1 Transformation of Coupling Graphs into
Generic Graphs

For a coupling graphH ¼ ððV 1; V 2Þ; ðE1; E2; E12ÞÞ, we trans-
form it into a generic graph H 0 ¼ ðV 0; E0Þ in two steps: node
construction and edge construction.

� Node transformation. For each edge e12i ¼ ðv1i ; v2i Þ in
E12, we use v1i v

2
i as a label to form a new node of V 0;

� Edge transformation. Two nodes v0i ¼ v1i v
2
i and

v0j ¼ v1j v
2
j of V

0 are connected by an edge with a label
l defined as:

l ¼

11; iff v1i ¼ v1j &
�
v2i ; v

2
j

� 2 E2; ðaÞ
11; iff

�
v1i ; v

1
j

� 2 E1 & v2i ¼ v2j ; ðbÞ
11; iff

�
v1i ; v

1
j

� 2 E1 &
�
v2i ; v

2
j

� 2 E2; ðcÞ
01; iff

�
v1i ; v

1
j

�
=2 E1 &

�
v2i ; v

2
j

� 2 E2; ðdÞ
10; iff

�
v1i ; v

1
j

� 2 E1 &
�
v2i ; v

2
j

�
=2 E2: ðeÞ

8
>>>>><

>>>>>:

For the label “l” of an edge in E0, the first code “1” means
that the edge ðv1i ; v1j Þ exists in E1, and the first code “0” rep-
resents that there is no edge between v1i and v1j , and simi-
larly for the meaning of the two second codes. Condition (a)
represents that one node in G1 connects with two different
nodes v2i and v2j in G2 between which there is an edge, while
condition (b) is a similar situation of condition (a) differing
in that which layer the node(s) belong to. In condition (c), v1i
and v1j in G1 have an edge, and the same situation for v2i and
v2j in G2. Condition (d) and (e) are situations where only one
edge is present. If none of the two pairs of nodes is con-
nected in G1 or G2, then there is no edge between the newly
constructed nodes.

Fig. 3 shows an example using the above definition to
transform a coupling graph (Fig. 3a) into a generic graph
(Fig. 3b). For ease of presentation, we use superscript 1, 2,

or 12 to represent coupling graphs before our transforma-
tion and use those with superscript 0 to represent generic
graphs after the transformation.

Theorem 1. Transformation from H to H 0 is precise and com-
plete. Preciseness means that all the edges and nodes inH 0 cor-
respond to some nodes and/or edges in H. Completeness means
that all the edges and nodes information in H is contained in
H 0 without information loss.

The correctness of the theorem is proofed in the follow-
ing section, where restoration is presented.

3.2 Restoration of Coupling Graphs from
Transformed Generic Graphs

For a transformed generic graph H 0 ¼ ðV 0; E0Þ, we take the
following steps to restore its coupling graph H ¼ ððV 1; V 2Þ;
ðE1; E2; E12ÞÞ:

� Node restoration. For each node v0 ¼ v1v2 of V 0, we
add v1 to V1 and v2 to V2;

� Edge restoration. For each node v0 ¼ v1v2 of V 0, we add
ðv1; v2Þ to E12; for each edge e0 ¼ ðv0i; v0j; lÞ of E0, we
add ðv1i ; v1j Þ to E1 if l is “10” or “11” and add ðv2i ; v2j Þ
to E2 if l is “01” or “11”, where v0i ¼ v1i v

2
i , v

0
j ¼ v1j v

2
j

and l 2 f01; 10; 11g.
Theorem 2. Transformation from H to H 0 is reversible, i.e., all

the nodes and edges of H can be recovered from H 0 without
introducing additional nodes or edges.

Proof. Preciseness is obvious by construction of generic
graph from coupling graph. As to completeness, we
show all five components ðV 1; V 2; E12; E1; E2Þ of H are
captured in H 0. Wrt V 1, by definition of coupling
graphs, for each v1 in V 1, there is a v2 in V 2 such that
the edge ðv1; v2Þ is in E12. By the node transformation
step, there is a node v1v2 in V 0, thus capturing v1. A
similar argument shows that every node in V 2 is also
captured by a node in V 0. Wrt E12, for each edge
ðv1; v2Þ in E12, by the node transformation step, it is
captured by the node v1v2 in V 0. Wrt E1, for an edge
ðv1i ; v1j Þ in E1, by definition of coupling graphs, there
are nodes v2i and v2j in E2, not necessarily distinct,
such that ðv1i ; v2i Þ and ðv1j ; v2j Þ are in E12. By the
edge transformation step, there is an edge ðv1i v2i ; v1j v2j Þ
in E0 with label “10” or “11”. This implies ðv1i ; v1j Þ is
captured. Wrt E2, a similar argument shows that
every edge in E2 is also captured by an edge in E0.
Therefore, the transformation from H to H 0 is also
complete. Based on the procedure of constructing
transformed graph, it is obvious that the transforma-
tion from H to H 0 is reversible. tu

3.3 Frequent Coupling Subgraph Mining

For a coupling graph database H, we first transform each
coupling graph into a generic graph, then we use subgraph
mining algorithms to obtain frequent subgraphs from the
transformed graph database, finally the transformed fre-
quent subgraphs are restored to obtain the frequent cou-
pling subgraphs. The pseudocode for mining frequent
coupling subgraphs is shown in Algorithm 1.

(a)

11 11

vi
1vm

2 vk
1vn

2vm
2vj

1

vi
1

vj
1

vk
1

vm
2

vn
2

(b)

01

G1 G2

Fig. 3. Coupling graph transformation. (a) is the original coupling
graph, where solid lines represent edges within G1=G2 and dash
lines represent edges between G1 and G2. (b) is the transformed
generic graph.

10 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 11, NO. 1, JANUARY/FEBRUARY 2014



The time complexity of subgraph mining is in proportion
to the product between the total number of subgraphs and
the complexity of graph isomorphism testing. The main
part of the time cost of subgraph mining is for subgraph iso-
morphism testing, which is NP-complete [24]. The proposed
algorithm of coupling graph mining significantly reduces
the time cost and memory consumption by using graph
transformation which avoids the generation of many

irrelevant subgraphs. The time complexity of graph trans-
formation for a data set with n coupling graphs is in propor-
tion to

Pn
i N

i
1 �Ni

2, where Ni
1 is the number of edges of

graph Gi
1 andNi

2 is the number of edges of graph Gi
2.

3.4 Transformation and Restoration with Duplicate
Node Labels

In the above study, we assume that all the node labels in G1

or in G2 of a coupling graph H 0 are unique but allowing
some identical labels between some nodes in G1 and G2. In
practice labels usually have duplicates in V 1 or in V 2. For
example, an interface of protein-protein interacting complex
is composed of residues which have twenty types only in
nature, hence duplicate residues usually exist in interfaces.

Duplicate labels do not affect coupling graph transforma-
tion and transformed generic graph mining, but it does
impede graph restoration because whether a new node
should be created or not is unknown when a node with a
duplicate label is brought in. We take some additional steps
to solve coupling graph mining with duplicate labels:
(i) map each node in V 1 or in V 2 to a unique label and trans-
form the relabeled coupling graph into generic graph;
(ii) mine frequent subgraphs from the transformed generic
graph with new labels; (iii) restore each transformed
frequent subgraph into a coupling graph and recover the
original labels according to the mapping table.

4 PROTEIN COMPLEX COUPLING GRAPH

DATABASE AND EFFICIENCY RESULTS

In this section, we report the performance of our algorithm.
We also report the number of irrelevant subgraphs gener-
ated by existing subgraph mining algorithms to understand
why the high efficiency of our algorithm is achieved by the
graph transformation approach. The coupling graphs we
used in the evaluation are real data compiled from the Pro-
tein Data Bank [25]. The purpose is to comprehend to what
extent the new algorithm is better than the existing algo-
rithms when dealing with real-world problems.

4.1 Coupling Graph Database Compilation

As mentioned in Section 1, when one protein interacts with
another protein, the interacting part of the two proteins can
be represented as a coupling graph by using nodes to repre-
sent the contacting residues and using edges to represent
the close contacting distance. Protein-protein interaction
complexes are stored at the widely used PDB database
where the three-dimensional co-ordinates information of
atoms in every residues is available.

Protein-protein interaction complexes that satisfy the fol-
lowing criteria are retrieved from PDB: (i) the macromolecu-
lar type is protein only, without DNA and RNA; (ii) the
number of protein chains is larger than two; (iii) the length
of each protein (chain) is larger than or equal to 30; and (iv)
the X-ray resolution of one complex is less than 3 A

�
. As a

result, 29,418 PDB entries with 129,305 protein-protein inter-
action pairs are obtained. With the removal of those similar
chains under BLAST [26] maximum pair-wise sequence
similarity threshold of 90 percent, 9,781 PDB entries con-
taining 10,511 protein-protein interaction complexes are left
and used for our algorithm efficiency study.

ZHAO ET AL.: COUPLING GRAPHS, EFFICIENT ALGORITHMS AND B-CELL EPITOPE PREDICTION 11



The coupling graph database for the 10,511 protein-pro-
tein interaction complexes are built in two steps: (i) deter-
mine interfacial residues (i.e., the nodes of a coupling
graph) and connections between the two interfacial surfaces
(edges between the two layer subgraphs of a coupling
graph) from a PPI complex by using Euclidian distance of
2.75 A

�
plus residues’ radii [27]; (ii) build connections of resi-

dues within each interfacial surface (i.e., edges within each
of the two subgraphs of a coupling graph) by using qhull
[28]. The average number of nodes and the average number
of edges for the coupling graphs in our graph database are
65:3� 43:2 and 205:9� 155:8, respectively.

Our experiments were carried out on a platform with
Ubuntu 11.04 operating system, 4G physical memory and
eight cores with each of 2.67 GHz.

4.2 Efficiency Results

Frequent subgraphs of the coupling graph database without
graph transformation are mined using gSpan [13] which is
implemented in the ParMol package [29], while frequent
coupling subgraphs with graph transformation are mined
by using LCM [30].

LCM is feasible to mine frequent coupling subgraphs
because of the following reasons: (i) the transformation
makes the label sparser, i.e., theoretically from n to n4 (each
item is a transformed node pair connected by an edge);
(ii) duplicate items are allowed due to the relabelling of
repeat labels and; (iii) post-comparison on restoration with
duplicate labels guarantees that the repeat nodes are prop-
erly handled. In the extreme case, i.e., all the nodes have the
same label, although very unlikely to happen, however
LCM is not a good choice for our purpose. But considering
the real cases, it is still competent to handle.

To mine frequent coupling subgraph partially by using
LCM, we take a transactional database to represent the cou-
pling graph database. Each transaction represents a trans-
formed coupling graph and the items in this transaction are
the entire set of nodes and edges of the transformed graph
(duplicate items are preserved and are relabeled in order).
Each frequent item set corresponds to a transformed cou-
pling graph, which can be restored to its equivalent original
coupling graph form. The equivalence between a coupling

graph and its transformed generic graph has been proved
in the above section.

Fig. 4 shows the running time of mining frequent sub-
graphs from the database with 10,511 coupling graphs on the
original graphs and also on the transformed graphs. It is
clear that mining coupling subgraphs from the transformed
graphs is remarkably faster than mining subgraphs from
original coupling graphs. For example, mining frequent sub-
graphs from the original coupling graph database costs 3,084
seconds at the minimum support of 3 percent, while the cost
is only 147 seconds on the transformed graphs with the same
support level. In addition, Fig. 5 also indicates that using
graph transformation consumes significantly less memory.

4.3 Irrelevant Frequent Subgraphs Generated by
gSpan

We note that the frequent subgraphs mined from the cou-
pling graph database by using gSpan [13] covers a large
number of frequent non-coupling subgraphs. For instance
as shown in Fig. 2, the frequent subgraphs generated by
gSpan with support of 2 are “1”, “2”, “3”, “1—2”, “1—3”,
“2—1—3”; however, only “1—2” is frequent coupling sub-
graphs. Therefore, to eliminate these irrelevant frequent
subgraphs still takes plenty of time, especially when an
extremely huge number of frequent subgraphs are pro-
duced. In contrast, every frequent subgraph generated from
the transformed graphs is an equivalent of a coupling sub-
graph thus, no such tremendous cost is needed.

Fig. 6 shows the number of connected frequent sub-
graphs generated from the coupling graph database as well
as from its transformed graph database. The average num-
ber of frequent subgraphs generated by gSpan is about eight
times the number of connected frequent subgraphs pro-
duced from the transformed graph database. Therefore,
about 88 percent of the frequent subgraphs generated by
gSpan are irrelevant frequent subgraphs, not to say the
removal of irrelevant frequent subgraphs is a very heavy
task, especially when the minimum support is low.

4.4 Statistics on the Frequent Coupling Subgraphs

A coupling graph can be connected or disconnected. For
example, the coupling graphs shown in Figs. 7a and 7c are

Fig. 4. Running time comparison of mining frequent coupling subgraphs
from the original coupling graphs and from the transformed coupling
graphs.

Fig. 5. Memory consumption comparison of mining frequent coupling
subgraphs from the original coupling graphs and from the transformed
coupling graphs.
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connected coupling graphs, while the coupling graph
shown in Fig. 7b is disconnected. The number of frequent
coupling subgraphs of a coupling graph database can be
extremely large, partially because some frequent connected
coupling subgraphs can be combined to form new and fre-
quent coupling subgraphs.

Table 1 shows the total number of frequent coupling sub-
graphs and frequent connected coupling subgraphs with
respect to different minimum support from our data set
containing 10,511 coupling graphs. It can be seen that when
the support level is set as minimum 10 percent, there are
still hundreds of connected frequent coupling subgraphs in
our graph database. It implies that there are many regular
coupling graph patterns in the protein-protein interactions.

5 APPLICATION: PATTERN DISCOVERY AND

EPITOPE PREDICTION IN ANTIBODY-ANTIGEN

COMPLEXES

Frequent coupling subgraphs within protein-protein com-
plexes can reveal important patterns shared by multiple
complexes. These patterns have potential to discover con-
tact residues or to construct binding partners with the prop-
erty of “coupling”. In this section, we show an application
of using coupling graphs for detecting significant patterns
shared by antibody-antigen interacting complexes to
identify antibody-specific B-cell epitopes.

5.1 Frequent Coupling Subgraph Patterns in
Antibody-Antigen Complexes

We collected 156 antibody-antigen structural complexes
from the PDB with antigen pair-wise sequence similarity
less than 0.5 and the number of mutated antibody residues
larger than 30. By using the coupling graph mining algo-
rithm described in this study, we obtained 2,472 frequent

coupling subgraphs from the 156 antibody-antigen com-
plexes with the minimum support of 5 percent. Fig. 7 shows
three examples of significant structural patterns that are
common in antibody-antigen complexes. Among these
examples, only Figs. 7a and 7c can be found by the existing
subgraph mining algorithm, while Fig. 7b cannot be identi-
fied by them, but it can be found by our algorithm.

One of our findings from our experiments in coupling
subgraph mining is that the residue Tyrosine (Y) in the anti-
bodies is predominantly preferred in partnership with a
hydrophilic residue to perform antigen binding. However,
in the antigens the favored residues for antibody binding are
charged residues (both positively charged and negatively
charged), especially residues Arginine (R), Lysine (K),
Aspartate (D) and Glutamate (E). Although the preferences
of residue contacts within antibodies or within antigens have
been explored elsewhere [8], none of them can be used to dis-
cover structural patterns between antibodies and antigens.

5.2 Epitope Prediction Using Frequent Coupling
Graphs in Antibody-Antigen Complexes

Asmentioned in Section 1, a protein antigen is a string of res-
idues in the primary representation of proteins. An epitope of
an antigen is a subset of residues of this antigenwhich physi-
cally contact each other tightly at the surface of the antigen
and which is the binding area for an antibody in interaction.
Similarly, the paratope site of an antibody is a subset of resi-
dues of this antibody which physically contact each other
tightly at the surface of the antibody and which is the area
binding to an epitope of an antigen. An interaction between
an epitope and a paratope can be represented by a coupling
graphwhen the residues are denoted by nodes and the phys-
ical contacts are denoted by edges for the pairs of residues in
the antigen or in the antibody or in the both.

For a new antigen, its epitopes are usually unknown.
Thus, epitope prediction is an important research for many
applications in bioinformatics [31]. However, existing meth-
ods for epitope prediction overlook the principle of context-
awareness in antibody-antigen interactions, and thus may
not reflect biological reality [16], [32]. Therefore, we built a
model incorporating frequent coupling subgraphs within
antibody-antigen complexes to predict antibody-specific
epitopes. The main idea is using frequent coupling sub-
graphs of antibody-antigen complexes from a training data
set to identify the seeds of antibody-specific epitope
residues of the testing data set, and then the true epitope
residues are completely determined by some statistical
measures.

Fig. 7. Examples of frequent coupling patterns shared by antibody-
antigen complexes.

TABLE 1
The Numbers of Frequent Coupling Subgraphs and Frequent

Connected Coupling Subgraphs in the Database

Fig. 6. Numbers of connected frequent subgraphs generated from the
original graphs and from the transformed graphs.
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Experimental results conducted on the data set of [16],
which is the only existing data set for antibody-specific
epitope prediction, show that our coupling graph-based
model is much better than the association-based model
[16] on epitope prediction. Fig. 8 shows the performan-
ces comparison between the coupling graph-based and
the two-dimensional association-based methods for anti-
body-specific epitope prediction. The t-test p-values
between the two models on averaged sensitivity, accu-
racy and f-score are 3.0e-3, 4.5e-3 and 7.8e-4, respec-
tively. These significant p-values suggest that our
method is indeed more accurate on epitope prediction
than the association-based model.

As an example, the antigen lysozyme C with PDB
entry 1P2C, as shown in Fig. 9, contains 129 residues in
which 16 are epitope residues and 113 are non-epitope
residues. The coupling graph model can successfully

identify 11 epitope residues while only introducing
10 non-epitope residues; however, the association model
includes 35 non-epitope residues although 12 epitope res-
idues are correctly predicted. The prediction accuracy of
the coupling graph-based method and association-based
method on this antigen are 0.884 and 0.698, respectively.
Frequent connected coupling subgraphs which are used
to identify these epitope residues are shown in Fig. 10.
Interestingly, the seed epitope residues are mainly intro-
duced by the frequent coupling subgraphs with paratope
residues D and Y.

6 CONCLUSION

Coupling graph is a new and very useful graphical
model for representing intrinsic associations between
pairs of subgraphs in a complex. In bioinformatics, cou-
pling graphs can be used to reveal the structural interac-
tions of protein-protein interacting complexes, gene-
phenotype association networks, microRNA-gene expres-
sion regulatory networks, and so on. The frequent cou-
pling subgraphs of these coupling graph databases play
an important role in discovering the essential patterns
hidden in the coupling graph databases. However, min-
ing the frequent coupling subgraphs from a coupling
graph database is very challenging, as existing subgraph
mining algorithms perform poorly on coupling subgraph
mining. The huge number of irrelevant subgraphs gener-
ated by the existing algorithm is the big hurdle to the
efficiency. To overcome this obstacle, we have intro-
duced a new algorithm by using a novel graph transfor-
mation and restoration technique. In this work, a
coupling graph is transformed into a generic graph, and
then subgraph mining is conducted on the transformed
coupling graphs. We have proved that the transforma-
tion and restoration are equivalent. Experimental results
carried out on a data set containing 10,511 coupling
graphs have demonstrated that the proposed algorithm
not only shortens the mining time, but also reduces the
memory usage. The usefulness of frequent coupling sub-
graphs has also been demonstrated on identifying anti-
body-specific B-cell epitopes.
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Fig. 8. Performance comparison between the proposed model, cou-
pling graph based, and ABepar, association based, on antibody-
specific B-cell epitope prediction.

Fig. 9. An antibody-antigen interacting coupling graph extracted from the
PDB entry 1P2C, where the paratope and epitope residues are shown.
The epitope residues of the antigen are rendered as stick, while para-
tope residues of the antibody are represented by surface. The inter-
edges between paratope and epitope are represented by dash orange
lines.

Fig. 10. Frequent connected coupling subgraphs which are used for
identifying antibody-specific epitope residues of the antigen in PDB entry
1P2C.
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