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Abstract—Automated protein function prediction is one of the grand
challenges in computational biology. Multi-label learning is widely
used to predict functions of proteins. Most of multi-label learning
methods make prediction for unlabeled proteins under the assump-
tion that the labeled proteins are completely annotated, i.e., without
any missing functions. However, in practice, we may have a subset
of the ground-truth functions for a protein, and whether the protein
has other functions is unknown. To predict protein functions with
incomplete annotations, we propose a Protein Function Prediction
method with Weak-label Learning (ProWL) and its variant ProWL-
IF. Both ProWL and ProWL-IF can replenish the missing functions
of proteins. In addition, ProWL-IF makes use of the knowledge that
a protein cannot have certain functions, which can further boost
the performance of protein function prediction. Our experimental
results on protein-protein interaction networks and gene expression
benchmarks validate the effectiveness of both ProWL and ProWL-IF.

Index Terms—Protein Function Prediction, Multi-label Learning,
Incomplete Annotations

1 INTRODUCTION

ADVANCED biological techniques have gener-
ated various high-throughput proteomic data,

i.e., protein-protein interaction networks and protein
structures. However, the functions of these proteins,
which is of great importance to the investigation
of the life process, are not well studied. As such,
predicting the biological functions of proteins is one
of the fundamental issues in the post-genomic era
[1], [2], [3]. The financial and time costs associated
with biological experiments to annotate these proteins
are quite demanding. The availability of various pro-
teomic data and function annotation approaches al-
lows for automatic protein function prediction, which
can often guide the follow-up biological hypothesis

G. Yu is with the College of Computer and Information Science, Southwest
University, Chongqing, 410075 China, and School of Computer Science
and Engineering, South China University of Technology, Guangzhou,
510006 China, email: gxyu@swu.edu.cn
H. Rangwala and C. Domeniconi are with the Department of Computer
Science, George Mason University, Fairfax, VA, 22030 USA, email:
rangwala@cs.gmu.edu, carlotta@cs.gmu.edu
G. Zhang is with the School of Sciences, South China University of
Technology, Guangzhou, 510640 China, email: magjzh@scut.edu.cn
Z. Yu is with the School of Computer Science and Engineering, South
China University of Technology, Guangzhou, 510006 China, email: zh-
wyu@scut.edu.cn
Manuscript received 24 Mar. 2013; revised 16 Oct. 2013;

and experiments. For these reasons, it is critical to
develop computational methods to predict protein
functions.

The recent availability of various proteomic data
have led to the development of various computational
methods for inferring protein functions. Several of
these approaches take advantage of kernel functions
to capture the similarity between gene expression
sequences and employ kernel-based classifiers to pre-
dict protein functions [4], [5]. Some methods use PPI
and graph- (or network-) based classifiers to predict
the functions of proteins [1], [6], [7], [8], [9]. Several
approaches predict protein functions by using hetero-
geneous data sources (including amino acid sequences
and PPI) [2], [10], [11], [12].

Traditional protein function prediction models [5],
[10] often neglect the fact that biological functions are
correlated with each other [13]. Multi-label learning
approaches [14], [15] use function correlation to boost
the accuracy of protein function prediction [4], [14],
[16] and can assign more than one function to a
protein. Some protein function prediction methods
incorporate the correlations between the functions
(labels) to improve the multi-label prediction accuracy
[7], [12], [16], [17], [18]. In particular, some approaches
first train binary classifiers for each functional label
and then utilize the hierarchical structure [19], [20],
[21] prevalent within the underlying protein func-
tion databases (e.g., Function Catalogue [22] or Gene
Ontology [23]). In this paper, we focus on protein
function prediction using multi-label learning and
function correlation.

All these methods predict the functions of proteins
under the assumption that the functions of labeled
proteins are complete, i.e. there are no missing labels.
In contrast, in practice we just know a subset of
the functions of a protein, and whether this protein
has additional functions is unknown. Namely, these
proteins have an incomplete annotation [2]. This kind
of multi-label learning problem is referred to as the
‘weak label’ or ‘incomplete class assignment’ prob-
lem [24], [25]. Unlike, traditional multi-label learning
methods [7], [16], [19], [18], which predict protein
function under the assumption that the annotated
functions of proteins in the training set are complete,
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we develop a method, called Protein Function Predic-
tion with Weak-label Learning (ProWL), which can
replenish the missing functions on the incomplete
annotated proteins in the training set, and also predict
functions on the completely unlabeled proteins.

Sun et al. [24] and Bucak et al. [25] performed multi-
label learning with weak labels by taking the currently
specified labels of an instance as relevant labels, and
all the unspecified labels (missing labels and irrele-
vant labels) of the instance as candidates for relevant
labels. In practice, we may also know that a protein
cannot have certain functions (hereinafter, we call
these functions irrelevant functions). Previous weak-
label learning approaches [24], [25] ignore this prior
knowledge, which can often boost the performance
of protein function prediction. To take advantage of
these irrelevant functions, we propose a variation of
ProWL, called Protein Function Prediction with Weak-
label Learning and Knowledge of Irrelevant Function
(ProWL-IF). ProWL-IF can not only make use of the
relevant functions of a protein, but also of the irrel-
evant ones to replenish the missing functions of a
protein.

This work presented here is an extension of our
earlier paper [26]. In particular, the additional con-
tributions of this paper are as follows:

1) We provide motivations and an analysis of the
proposed approaches.

2) We investigate the benefit of using the guilt by
association rule and function correlation inde-
pendently, along with an empirical study.

3) We compare the proposed methods against
other related techniques, namely two multi-label
weak-label learning methods and two multi-
label protein function prediction approaches, us-
ing various metrics on public available protein
datasets, and show their effectiveness.

The rest of the paper is organized as follows. In
Section 2, we review related work on multi-label
learning for predicting protein function and weak
label learning approaches. In Section 3, we introduce
ProWL and its variation ProWL-IF. Section 4 details
the experimental protocol and Section 5 discusses the
empirical results. In Section 6, we provide conclu-
sions.

2 RELATED WORK

2.1 Graph-based Protein Function Prediction
Since our proposed approaches are graph- (or
network-) based methods, we review some graph-
based protein function prediction methods using PPI
networks. Schwikowski et al. [27] determined the
putative functions of a protein from the known func-
tion of its neighbors in PPI networks. Vazquez et al.
[28] predicted protein functions by minimizing the
number of protein-protein interactions among differ-
ent functional categories and exploiting the global

connectivity pattern of the protein network to predict
protein function globally. Chua et al. [9] observed that
indirectly interacting proteins also shared a few func-
tions and extended the PPI network by setting dif-
ferent weights between level-1 and level-2 neighbors.
Although these methods can assign more than one
function to a protein by thresholding, they do not take
into account the function correlation explicitly. For
more information on network-based protein function
prediction, one can refer to a comprehensive survey
by Sharan et al. [1].

Proteins have multiple roles and functions. Each
function can be viewed as a label. Thus, various multi-
label learning approaches based on PPIs have been de-
veloped to automatically annotate proteins [14], [16],
[17]. Pandey et al. [17] used Lin’s measure [29] to com-
pute the correlation between different functions (or
GO terms) and incorporated the function correlation
into a weighted k-nearest neighbor classifier to predict
protein functions. Jiang et al. [18] proposed a product
graph to incorporate pairwise function correlation in
the label propagation framework. The adjacent matrix
associated with this product graph is (N×K)×(N×K)
(N is the number of proteins and K is the number
of distinct functions). Given, the size of the product
graph, it is computationally expensive to conduct
label propagation on this graph. To overcome this lim-
itation, Jiang [6] employed a bi-relation graph [30] and
network propagation to predict protein functions. In
the bi-relation graph, both proteins and functions are
viewed as nodes, and three kinds of edges are defined,
namely edges between proteins (exploiting the protein
similarity), edges between functions (using function
correlations) and edges between function nodes and
protein nodes (function annotations). To avoid the risk
of functions being overwritten (or missing) in the bi-
relation graph, Yu et al. [12] proposed the directed
bi-relation graph and applied a random walk with
restart [31] on this graph to predict protein functions.
Zhang et al. [16] used Jaccard coefficients to measure
function correlations between different functions and
then predicted protein function under a graph-based
semi-supervised learning framework [32]. Wang et al.
[7] used the Green function [33] to incorporate the
function-function correlations based on the theory of
reproducing kernel Hilbert space (RKHS), and pro-
posed a method called Function-function Correlated
Multi-Label (FCML) to infer protein functions. Bog-
danov et al. [34] developed an approach that utilized
the network structure for extracting features for pre-
dicting protein function. Mitrofanova et al. [35] took
advantage of relationships between homologous pro-
teins to connect networks of two (or more) different
(but related) species for protein function prediction.
Re et al. [36] developed an efficient ranking based
prediction model using local and global learning
strategies. Chi et al. [37] proposed an iterative protein
function prediction method called Cosine Iterative Al-
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gorithm (CIA). CIA increases the number of predicted
functions on unlabeled proteins iteratively. At each
iteration, the most confident predicted functions on
the unlabeled proteins are appended as relevant func-
tions, and the pairwise similarities between training
and testing proteins are updated using the functions
belonging to these two sets of proteins. This updated
similarity, together with the PPI network structure
and the function correlation term, are used for predict-
ing functions on the test proteins in the next iteration.

2.2 Weak-label Learning.

Prediction of the complete set of labels (i.e., predicting
the missing labels), given partial or incomplete labels
is defined as the weak-label learning problem. Most
multi-label learning approaches focus on exploiting
the label correlation to boost learning results, under
the assumption that the given labels for the train-
ing instances are complete and accurate [14], [16].
However, in several cases, a multi-label instance often
has only a subset of the ground-truth labels. In this
scenario, given an annotated instance, it is unknown
whether the annotations are complete or partial. Some
approaches developed to replenish the missing (or
noisy) labels in the single label case [38], and few
methods are developed for multi-label learning sce-
narios.

Sun et al. [24] studied the weak-label learning prob-
lem in multi-label learning and proposed a method
called WEak Label Learning (WELL). WELL con-
siders the fact that classification boundary for each
label should go across low density regions, and any
given label will not be associated to the majority of
instances. Based on these two assumptions, WELL
solves this problem using convex optimization. In
order to utilize the label correlation, WELL assumes
that there is a group of low-rank based similarities,
and the appropriate similarities between instances
for different labels can be derived from these base
similarities. However, WELL depends on quadratic
programming to obtain the low-rank based similar-
ities and to do the final prediction. Therefore, it has
a large time complexity and computational load. This
approach is only capable of replenishing the missing
labels of partially labeled instances and can not be
applied to a large number of proteins with a large
number of functions. Buncak et al. [25] studied the
incomplete class assignment problem for annotating
images, and developed an approach called MLR-GR.
MLR-GR optimizes the ranking errors and group
Lasso loss in a convex optimization form. MLR-GL
is useful for only predicting unlabeled multi-label
instances using partially labeled instances. Qi et al.
[39] used the Hierarchical Dirichlet Process to append
missing labels for a set of images. In addition, Wang et
al. [38] developed an approach for annotating weakly
labeled facial images. However, this approach is a

single-label (or multi-class) method and focuses on
refining the noisy labeled images.

We develop a new weak-label learning algorithm
for predicting multiple functions (or labels) of proteins
by making use of the guilt by association rule [27]
and function correlations. We refer to our approach
as ProWL, Protein function prediction with Weak-
label Learning. We extend ProWL to incorporate ir-
relevant functions (or labels) information of proteins
and call the resulting approach ProWL-IF. Different
from WELL and MLR-GL, the proposed ProWL and
ProWL-IF can replenish the missing functions and
make prediction on unlabeled proteins using partially
labeled proteins. In addition, ProWL-IF makes ad-
ditional use of irrelevant functions, which is rarely
studied in previous weak label learning. Further, our
empirical study shows that ProWL performs better
than WELL and MLR-GL in both these two tasks.

3 PROBLEM FORMULATION

We study the weak-label problem in protein function
prediction for two tasks as illustrated in Figure 1. In
these figures, each row denotes the function anno-
tation for a protein, and each column corresponds
to a function label. Fig. 1(a) depicts the complete
annotated proteins, with 1 and 0 representing function
annotations (f1 - f4) on the six proteins p1 - p6. In Fig.
1(b), 1 represents the known relevant functions, ? in
the color boxes denote the missing functions and will
be set to 0s, all the 0s serve as candidates for being
predicted as relevant, i.e., ProWL may change a 0 to
1. In Fig. 1(c), 1 and -1 represent the relevant (1) and
irrelevant (-1) known functions, ? in the color boxes
denote the missing functions, which are set to 0s. The
goal of ProWL-IF is to predict the missing functions
(0) as relevant (1) or irrelevant (-1), respectively.

In Task 2 (c.f. Fig. 1(d)), the definition of 1 and 0 are
the same as in Fig. 1(b). However, the target of ProWL
is to use the incomplete annotated proteins (p1 - p4)
to predict the functions of proteins p5 and p6, which
are completely unannotated.

3.1 Protein Function Prediction with Weak-label
Learning
It is important to make use of function correlations
when annotating proteins [18], [16]. Given n proteins,
let K be the number of distinct functions across all
proteins. Let Y = [y1,y2, . . . ,yn] be the original label
set, with yik = 1 if protein i has the k-th function,
and yik = 0 otherwise. At first, we can define a
function correlation matrix C

′ ∈ RK×K based on
cosine similarity as follows:

C
′

st =
YT

.sY.t

‖Y.s‖‖Y.t‖
(1)

where C
′

st is the function correlation between func-
tions s and t, and Y.s represents the s-th column of
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(a) Original (b) Task 1(ProWL) (c) Task 1(ProWL-IF) (d) Task 2(ProWL)

Fig. 1. Task Overview: “1” stands for relevant function, “?” in a colored box stands for missing function and will
be transformed to a “0”, “-1” stands for irrelevant function, p5 and p6 in the figure 1(d) are completely unlabeled.

Y . There are many other ways to define the function
correlations, e.g., Jaccard coefficient [16] and Lin’s
similarity [29]. Here, we use the cosine similarity for
its simplicity and wide use [6], [7], [37]. Note that
Eq. (1) can also be used with probabilistic function
assignment. From Eq. (1), we can observe that if a
large set of proteins share functions s and t but a small
(or no) set of proteins share functions s and u, then C

′

st

will be greater than C
′

su. We normalize C
′

as follows:

Cst =
C

′

st∑K
k=1 C

′
sk

(2)

Thus, Cst can be viewed as the likelihood that a
protein has function t given that it is annotated with
function s.

We now consider the case with incomplete annota-
tion, and define the weighted loss function as the first
part of our objective function as follows:

Φ1(f) =
1

2

n∑
i=1

K∑
k=1

Mik(fik − ỹik)2 (3)

where Ỹ = [ỹ1, ỹ2, . . . , ỹn] is the extended function set
of n proteins, with Ỹ = Y C. ỹik is the extended func-
tion assignments of protein i with respect to the k-th
function, and fik is the predicted likelihood of protein
i with respect to the k-th function. Our motivation
in using Ỹ is to append the missing functions based
on the labeled ones and function correlations. Specif-
ically, suppose the currently confirmed functions Yi
for the i-th protein have a large correlation with the
k-th function (which may be missing), then it is likely
that this protein will also have function k. Mik is the
weight of protein i with respect to function k:

Mik =

{
1, yik = 1
yT
i c.k, yik = 0

(4)

where c.k is the k-th column of C. As defined in Eq.
(4), if the annotated functions of protein i have large
correlations with function k, the weight Mik will be
large, since protein i is likely to also have function k.

A protein can have multiple functions, so the over-
lap between the function sets of two proteins can be
used to measure their similarity, the more function
they share, the more similar they are. This idea is also
used in Chi et al. [37] and Wang et al. [7]. Thus we can
use the function set of a protein to enrich its feature
representation. We define the function induced graph
W f as:

W f
ij =

yT
i yj

‖yi‖‖yj‖
(5)

Note that an element in W f describes the pairwise
similarity between proteins induced from function
annotations, whereas the element in C (in Eq. (2))
measures the pairwise correlation between functions.

The composite similarity matrix W between pair-
wise proteins can be defined as:

W = W p + γW f (6)

where W p captures the feature (or biological) induced
similarity between pairwise proteins. The matrix W p

can be set to the pairwise sequence similarities, fre-
quency of interactions found in multiple PPI stud-
ies, or to a kernel matrix derived from PPI stud-
ies. γ is a parameter to balance the importance of
the protein similarity graph W p and the function
induced similarity graph W f , and it is often set as
γ =

∑N,N
i=1,j=1W

p
ij/
∑N,N

i=1,j=1W
f
ij . Our empirical study

shows that label propagation on W can achieve better
performance than on sole W p or W f .

Proteins with similar amino acid sequences tend to
have similar functions, and the ‘guilt by association’
rule [27] assumes that interacting proteins are more
likely to share similar functions. To make use of this
knowledge, as in label propagation [40], we incorpo-
rate a smoothness term within our objective function:

Φ2(f) =
1

2

n∑
i,j=1

‖ fi√
Dii

− fj√
Djj

‖2Wij

= tr(FT (I −D− 1
2WD−

1
2 )F )

= tr(FTLF ) (7)
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where F = [f1, f2, . . . , fn], and D is a diagonal matrix
with Dii =

∑n
j=1Wij . I is an n × n identity matrix,

L = I−D− 1
2WD−

1
2 , and tr(·) is the matrix trace oper-

ation. By minimizing Eq. (7), the function annotations
can be propagated from labeled proteins to unlabeled
proteins.

Our objective function to be minimized is provided
by:

Φ(F ) =
1

2

n∑
i=1

K∑
k=1

Mik(fik − ỹik)2

+αtr(FTLF ) + β‖FTF‖

=
1

2
‖M ◦ (F − Ỹ )T (F − Ỹ )‖

+αtr(FTLF ) + β‖FTF‖ (8)

where ◦ denotes element-wise multiplication (also
called Hadamard product). The third term is to con-
trol the sparsity of F , since each function is associated
with a small number of proteins. α and β are pa-
rameters to balance the importance of the second and
third terms, respectively. The motivation to minimize
Eq. (8) is that we want to seek the prediction that is
not only smooth and sparse, but can also append the
missing annotations for proteins.

Eq. (8) coherently uses the first and second term
to replenish (or predict) the missing functions for
proteins in the training (or testing) set. Particularly,
the first term uses ỹik and Mik to replenish the
missing functions of partially annotated proteins in
the training set, and the second term propagates the
function annotations between proteins in the training
set, it also can replenish the missing functions in some
extent. For example, if training protein i has function
k missing, all its interacting proteins annotated with
function k, then this protein is likely to be anno-
tated with function k. In addition, the second term
can propagate the function annotations (including the
replenished ones) on the training proteins to testing
proteins.

Taking the derivative of Eq. (8) with respect to F ,
we have:

∂Φ(F )

∂F
= M ◦ (F − Ỹ ) + αLF + βIF (9)

Eq. (9) can be divided into K problems and for the
k-th problem it can be solved as:

(M̃.k + αL+ βI)f.k = pk (10)

where

M̃.k = diag(M.k),pk = M.k ◦ Ỹ.k (11)

diag(·) is the vector diagonalization operation. Instead
of computing the inverse of (M̃.k + αL + βI), Eq.
(10) can be solved with various existing fast iterative
solvers [41]. We use the Conjugate Gradient (CG)
solver, which is guaranteed to terminate in n steps.
The most time-consuming step at each iteration of

CG is a matrix vector product. The time complexity
is proportional to the number of non-zero elements
in M̃.k + αL + βI . Since M̃.k, L and I are sparse,
positive definite, and with O(n) non-zero elements,
Eq. (10) can be solved efficiently. In our experimental
evaluation, we find that CG terminates in fewer than
30 iterations. The ProWL algorithm is described in
Algorithm 1.

Algorithm 1 ProWL: Protein Function Prediction with
Weak-label Learning
Input:

Weight matrix W p, incomplete annotations Y =
[y1,y2, . . . ,yn], α, β

Output:
Predicted likelihood score vectors {fi}ni=1

1: Compute C using Eq. (2) and W f using Eq. (5).
2: Compute W using W f and W p, and L = I −
D− 1

2WD− 1
2 .

3: Set Ỹ = Y C and initialize M using Eq. (4).
4: for k = 1 to K do
5: Set M̃.k and pk using Eq. (11).
6: Solve f.k using Eq. (10)
7: end for
8: return F = [f.1, f.2, . . . , f.K ]T .

3.2 Protein Function Prediction with Weak-label
Learning and Knowledge of Irrelevant Functions
In practice, we may know that some functions are
not associated with specific proteins. However, all
the aforementioned multi-label learning methods with
weak labels [25], [39], [24] do not take into consid-
eration this knowledge. Here, we introduce ProWL-
IF, a variation of ProWL, which takes advantage of
the annotated relevant and irrelevant functions, in
addition to missing functions.

In this setting, we have a partially annotated func-
tion set Z = [z1, z2, . . . , zn], with zik = 1 if protein
i has the k-th function, zik = −1 if protein i does
not have this function, and zik = 0 if it’s unknown
whether the protein has the function, i.e. the corre-
sponding function is missing. At first, we transform
Z into Z̄ = [z̄1, z̄2, . . . , z̄n], where z̄i = zi+abs(zi)

2 ,
and abs(zi) computes the absolute values of zi, with
each element corresponds to one entry of zi. This
transformation of Z is intuitive but yet reasonable
because correctly predicting relevant function is more
desirable than irrelevant functions, and a protein often
has more irrelevant functions than relevant functions.
In the future we will investigate other possible and
effective ways for transforming Z. Next, we define
the correlation between functions s and t based on Z̄
as follows:

C̃st =
Z̄T

.sZ̄.t

‖Z̄.s‖‖Z̄.t‖
(12)

where Z̄.s is the s-th column of Z̄. Similar to ProWL,
we normalize C̃ into C as in Eq. (2) and define the
function induced graph W f as in Eq. (7) based on Z̄.
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Similar to Eq. (3), the weighted loss function of
ProWL-IF is defined as:

Ψ1(f) =
1

2

n∑
i=1

K∑
k=1

M
′

ik(fik − z̃ik)2 (13)

where Z̃ = [z̃1, z̃2, . . . , z̃n] is the extended label set of
proteins. For the i-th protein with respect to the k-th
function, z̃ik is specified as:

z̃ik =

{
zik, zik = 1 or zik = −1
z̄Ti c.k, zik = 0

(14)

where c.k is the k-th column of the correlation matrix
C, and M

′

ik is the weight of protein i with respect to
the k-th function:

M
′

ik =

{
1, zik = 1 or zik = −1
z̄Ti c.k, zik = 0

(15)

Eq. (13) is similar to Eq. (3), but in Eq. (13) Z̃ ∈ [−1, 1]
and in Eq. (3) Ỹ ∈ [0, 1]. In addition, Eq. (13) does
not consider the irrelevant functions as candidates of
missing functions, whereas Eq. (3) does. Therefore,
ProWL-IF has the advantage of properly capturing the
domain information.

The objective of ProWL-IF is to minimize the fol-
lowing function:

Ψ(F ) =
1

2

n∑
i=1

K∑
k=1

M ′ik(fik − z̃ik)2

+αtr(FTLF ) + β‖(F + 1n×K)T (F + 1n×K)‖

=
1

2
‖M

′
◦ (F − Z̃)T (F − Z̃)‖+ αtr(FTLF )

+β‖(F + 1n×K)T (F + 1n×K)‖ (16)

1n×K is an n×K matrix with all entries equal to 1. The
third term controls the complexity and sparsity of F ,
since each protein has a large proportion of irrelevant
functions (denoted by -1) and a small proportion
of relevant functions (denoted by 1). α and β are
scalar parameters to balance the importance of the
smoothness and sparsity terms, respectively.

Taking the derivative of Ψ(F ) with respect to F , we
have:

∂Ψ(F )

∂F
= M

′
◦(F−Z̃)+αLF+βIn×n(F+1n×K) (17)

where In×n is an n×n identity matrix. Similar to Eq.
(9), Eq. (17) can be divided into K problems and will
be solved as:

(M̃
′

.k + αL+ βIn×n)f.k = qk (18)

where

M̃
′

.k = diag(M
′

.k),qk = M
′

.k ◦ Z̃.k − βIn×n1n×1 (19)

Eq. (18) can be efficiently solved in the same way as
Eq. (10), and the learning procedure for ProWL-IF is
similar to that of ProWL (Algorithm 1).

4 EXPERIMENTAL SETUP

4.1 Datasets

We evaluate the proposed methods by testing their
performance on the tasks of replenishing missing
functions and predicting protein functions on four
benchmarks. The first dataset (PPI17) is a PPI network
of Saccharomyces Cerevisiae extracted from the BioGrid
1 with PubMed ID 17200106 2. Its largest connected
component contains 1002 proteins annotated accord-
ing to FunCat3 [7], across 33 functions. The functions
in FunCat are organized in a tree structure. We use
the most informative functions as defined in [18],
[16]. Informative functions are the ones that have at
least 30 proteins as members, and within the tree
structure these functions do not have a particular
descendant node with more than 30 proteins. The
second dataset, Saccharomyces Cerevisiae PPIs (ScPPI),
was downloaded from BioGrid (2011-12-25). After the
preprocessing and filtering, it contains 3041 proteins
annotated with 86 informative functions. The weight
matrix W p of ScPPI is specified by the number of
common PubMed IDs, where 0 implies no interac-
tion between two proteins and q > 0 implies the
interaction is supported by q distinct publications.
The third dataset (HumanPPI) was extracted from
heterogeneous data sources of human protein-protein
interactions benchmarks4 [11]. We use its largest con-
nected component, which includes 2950 proteins an-
notated according to the Gene Ontology [23]. Similar
to [11], we use the functions that have at least 30 an-
notated proteins. The fourth dataset (Yeast) was used
in WELL5 [24] and includes 1500 proteins annotated
with 14 functions. We specify the weight matrix W p

in the same way as it was done for WELL. The weight
matrices W p of PPI17 and HumanPPI were speci-
fied by the providers. We do not specifically handle
hierarchical structure or the transitive closer among
functional annotations. For PPI17, ScPPI and Yeast
datasets, we considered functional annotations at a
flat level. For the HumanPPI dataset, the functional
annotations are organized in hierarchical structure
(Gene Ontology). However, for this study we do not
utilize the hierarchical or transitive structure preva-
lent within the underlying data. The statistics of the
processed datasets are listed in Table 1.

To simulate the incomplete annotation scenario, we
assume that the annotations on the currently labeled
proteins are complete and mask the ground truth
(or relevant) functions of proteins. For example, if
a protein has 4 functions (labels), we can change 2
functions from 1 to 0. As a result, it becomes unknown
whether these masked functions belong to the protein

1. http://thebiogrid.org/
2. http://www.ncbi.nlm.nih.gov/pubmed/17200106
3. http://mips.helmholtz-muenchen.de/proj/funcatDB/
4. http://morrislab.med.utoronto.ca/∼sara/SW
5. http://lamda.nju.edu.cn/files/WELL.rar

http://thebiogrid.org/
http://www.ncbi.nlm.nih.gov/pubmed/17200106
http://mips.helmholtz-muenchen.de/proj/funcatDB/
http://morrislab.med.utoronto.ca/~sara/SW
http://lamda.nju.edu.cn/files/WELL.rar
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TABLE 1
Statistics of datasets (Avg±Std means average

number of functions for each protein and its standard
deviation)

Dataset #Proteins #Functions Avg±Std
PPI17 1002 33 2.00± 1.37
ScPPI 3041 86 1.94± 1.60
HumanPPI 2950 200 6.86± 3.77
Yeast 1500 14 4.23± 1.58

or not. In this case, the incomplete function (IF) ratio is
2/4 = 50%. Explicit irrelevant functional annotations
are quite rare in both the Gene Ontology and in
the FunCat database. As such, to simulate the in-
complete annotation settings in ProWL-IF, we assume
the currently available functional annotations of a
protein as relevant functions and the other unspecified
functional annotations of this protein as irrelevant
functions. We mask both relevant functions (1s) and
irrelevant functions (-1s) as missing functions (0s). To
keep consistency, the IF ratio is kept the same as in
ProWL (i.e. we mask the same IF ratio of relevant
functions). In addition, we also mask an equal number
of -1s as 0s.

4.2 Comparing Methods and Evaluation Metrics

We compare our methods with (i) WELL [24], (ii)
MLR-GL [25], (iii) FCML [7], and (iv) CIA [37]. The
first two approaches are weak-label learning methods,
and the other two methods are recently developed
protein function prediction algorithms using multi-
label learning and PPI networks. WELL and MLR-
GL need an input kernel matrix, and we substitute
the kernel with the PPI matrices W p, or compute W p

as done in WELL [24]. In fact, the weight of each
interaction between proteins in the PPI datasets is no
smaller than zero, thus a PPI matrix is as a semi-
definite positive matrix. WELL was originally pro-
posed for replenishing the missing functions. Here,
we adopt WELL for Task 2 by including the unlabeled
proteins in the input kernel matrix. MLR-GL was
initially developed for predicting the functions of
testing proteins using partially annotated proteins. We
adopt MLR-GL for Task 1 by using all the proteins
as training and testing proteins. Note, W f in Eq. (5)
used by ProWL, FCML and CIA is computed based
on the incomplete (or partial) annotations on proteins,
instead of the to-be predicted annotations F . Both
ProWL, CIA and FCML make use of W f (function
induced graph) and W p (PPI network) as inputs for
protein function prediction. The parameters of WELL
are specified as the authors reported [24]. For MLR-
GL, we use the default parameters in the package
provided by the authors6. For FCML, we set α = 0.01;
for CIA, we use the default setting as in the original

6. http://www.cse.msu.edu/∼bucakser/

paper. For ProWL and ProWL-IF, we set α and β
to 0.01 and 0.001. We observed that the performance
with respect to various metrics does not change as we
vary α and β around the fixed values.

Various evaluation metrics have been developed for
evaluating multi-label learning methods [14]. Here we
use six evaluation metrics, namely, MacroF1, MicroF1,
AvgROC, RankingLoss, adapted AUC [25] and Coverage.
For maintaining consistency with other evaluation
metrics, we report 1-RankingLoss. Thus similar to other
metrics (except Coverage), the higher the value of 1-
RankingLoss, the better the performance. Some of these
metrics were also used to evaluate WELL [24] and
MLR-GL [25]. The discussion on these metrics are
described in the supplementary file.

5 EXPERIMENTAL ANALYSIS

5.1 Performance on Replenishing Missing Func-
tions
We performed experiments to assess the performance
of the proposed methods in replenishing the missing
functions. In these experiments, all the proteins within
the datasets are used as training and testing data. To
investigate the performance of different methods, we
vary the IF ratio of each protein from 20% to 80%, with
an interval of 20%. Some proteins in the PPI network
do not have functions. To make use of the PPI network
structure and keep the network connected, we do not
remove them, but we evaluate the performance of
replenishing missing functions on only the proteins
with annotations. The experimental results (average
of 20 independent runs and standard deviations) are
reported in Tables 2-5 (more experimental results can
be found in the supplementary file). We use pairwise
t-test at 95% significant level to check the difference
among these comparing methods and report the best
performance in boldface. WELL formulation involves
quadratic programming to compute the solution and
HumanPPI has a large number of proteins and func-
tions. Thus, WELL did not complete on our system
with 4GB memory. MacroF1, MicroF1, 1-HammingLoss,
Accuracy, and Completeness require partitioning the
predicted likelihood vector fi into a binary indicative
label vector. Here, we consider the functions corre-
sponding to the largest s values of fi as the relevant
ones, and the remaining as irrelevant functions of
protein i. s is determined by the number of ground-
truth functions of the i-th protein. Note, irrespec-
tive of the comparing methods, s is the same for
each comparing method, and the number of missing
functions with respect to a protein is the same. In
addition, this setting of s also helps us to count how
many functions are correctly replenished. Given these
reasons, we set s equal to the number of ground
truth functions for each protein. For the Task 2 (See
Subsection 5.4, prediction on completely unlabeled
proteins), we adapt another setting of s, where s is

http://www.cse.msu.edu/~bucakser/
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TABLE 2
Replenishing missing functions on PPI17

Metric IF Ratio ProWL WELL MLR-GL FCML

MacroF1

20% 97.84±0.18 45.07±0.82 35.09±0.65 90.51±0.36
40% 89.24±0.33 39.20±1.51 36.09±0.91 84.84±0.60
60% 76.70±1.02 33.18±1.91 37.37±1.13 77.02±1.12
80% 69.30±1.08 25.01±1.09 42.18±0.65 67.81±1.38

MicroF1

20% 98.19±0.13 55.88±0.36 36.80±0.47 90.46±0.27
40% 90.32±0.28 50.94±0.53 38.49±0.99 85.75±0.51
60% 78.59±0.90 44.97±0.86 39.49±0.66 78.15±0.90
80% 71.33±0.97 38.55±0.78 45.64±0.77 71.23±1.16

AvgROC

20% 99.73±0.05 96.77±0.04 74.39±0.28 99.17±0.06
40% 98.30±0.17 94.89±0.17 74.52±0.30 97.58±0.11
60% 94.97±0.36 91.85±0.36 73.77±0.43 94.98±0.29
80% 91.78±0.41 88.47±0.76 68.91±0.72 91.13±0.70

1-RankingLoss

20% 99.86±0.02 90.92±0.04 70.77±0.35 99.33±0.04
40% 98.87±0.08 89.66±0.19 69.95±0.57 98.37±0.09
60% 96.45±0.21 86.59±0.41 68.40±0.48 96.42±0.23
80% 93.87±0.27 83.92±0.23 61.71±0.52 94.48±0.25

AUC

20% 98.41±0.05 90.15±0.04 72.13±0.37 97.80±0.08
40% 96.77±0.13 87.74±0.12 71.80±0.37 96.19±0.14
60% 93.70±0.25 83.74±0.45 71.43±0.36 93.73±0.28
80% 89.35±0.38 79.60±0.23 67.59±0.48 90.64±0.31

Coverage ↓
20% 1.34±0.03 5.56±0.03 13.06±0.17 1.67±0.05
40% 2.30±0.09 6.53±0.07 13.63±0.19 2.60±0.08
60% 3.89±0.17 8.21±0.22 13.84±0.09 3.88±0.14
80% 5.36±0.16 9.28±0.07 16.30±0.17 4.97±0.16

Overall Win/Draw/Lose 14/7/3 0/0/24 0/0/24 3/7/14

TABLE 3
Replenishing missing functions on ScPPI

Metric IF Ratio ProWL WELL MLR-GL FCML

MacroF1

20% 95.76±0.19 56.92±0.15 22.99±0.65 95.09±0.13
40% 86.47±0.30 51.08±0.06 24.91±0.47 87.89±0.23
60% 71.60±0.49 42.01±0.19 27.24±0.55 77.23±0.42
80% 61.37±0.64 35.12±0.99 27.21±0.68 66.31±0.49

MicroF1

20% 95.72±0.12 61.87±0.22 22.66±0.35 94.81±0.12
40% 86.78±0.19 55.94±0.15 24.55±0.42 87.90±0.23
60% 71.12±0.30 46.06±0.23 26.88±0.47 78.43±0.36
80% 59.44±0.44 38.76±0.10 26.26±0.53 69.17±0.37

AvgROC

20% 99.77±0.03 98.83±0.11 64.03±0.51 99.63±0.04
40% 98.50±0.07 94.74±0.22 62.14±0.53 98.61±0.08
60% 94.59±0.21 88.32±0.09 60.63±0.82 96.53±0.12
80% 87.75±0.28 83.36±0.12 55.06±0.96 93.27±0.14

1-RankingLoss

20% 99.80±0.01 95.24±0.03 45.47±0.37 99.79±0.01
40% 98.97±0.03 93.48±0.08 42.99±0.47 98.97±0.07
60% 96.28±0.13 90.13±0.03 40.81±0.54 96.65±0.09
80% 92.52±0.30 88.24±0.12 33.21±0.60 93.99±0.14

AUC

20% 99.08±0.03 93.95±0.05 56.21±0.35 99.01±0.03
40% 97.78±0.05 91.16±0.16 54.39±0.47 97.79±0.11
60% 94.69±0.15 87.54±0.02 53.57±0.67 95.26±0.12
80% 89.01±0.43 84.60±0.19 49.38±0.70 91.37±0.17

Coverage ↓
20% 2.10±0.05 9.30±0.06 54.23±0.53 2.15±0.06
40% 4.51±0.11 13.44±0.34 57.68±0.55 4.51±0.21
60% 9.68±0.26 18.70±0.02 59.59±0.74 9.02±0.24
80% 15.91±0.51 20.99±0.45 66.08±0.64 14.10±0.27

Overall Win/Draw/Lose 6/3/15 0/0/24 0/0/24 15/3/6

equal to the average number of functions per protein
in the dataset. To simulate the incomplete annotation
scenario, we assume the annotated functions of pro-
tein i in the dataset as the ground-truth functions. The
ground-truth functions include the masked functions
and the partially annotated (or unmasked) functions.

From these Tables (2-5), we can observe that ProWL
outperforms WELL and MLR-GL in replenishing
missing functions of proteins in almost all the metrics
across the four datasets. Both ProWL and FCML take

advantage of the guilt by association rule and function
correlation explicitly. ProWL achieves better perfor-
mance than FCML on PPI17 and Yeast; ProWL and
FCML have similar performance on ScPPI and Hu-
manPPI. Overall, ProWL performs better than FCML.
Taking MacroF1 on Yeast, for example, ProWL on
average is 4.41% better than WELL, 52.22% better
than MLR-GL, 28.73% better than FCML. These results
confirm the effectiveness of ProWL in replenishing
the missing functions. The experimental results also
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TABLE 4
Replenishing missing functions on HumanPPI

Metric IF Ratio ProWL MLR-GL FCML

MacroF1

20% 96.39±0.17 15.11±0.37 96.32±0.09
40% 93.03±0.25 16.46±0.30 90.43±0.28
60% 82.94±0.53 16.02±0.29 80.45±0.46
80% 58.50±0.78 13.50±0.31 60.18±0.52

MicroF1

20% 96.71±0.14 15.03±0.31 96.44±0.08
40% 93.75±0.22 16.64±0.26 91.01±0.21
60% 84.16±0.49 16.44±0.29 81.86±0.37
80% 58.59±0.83 14.35±0.28 62.99±0.51

AvgROC

20% 99.80±0.02 61.06±0.17 99.70±0.02
40% 99.29±0.05 61.76±0.16 99.14±0.04
60% 97.90±0.10 61.74±0.20 97.89±0.07
80% 93.56±0.24 58.27±0.23 93.56±0.26

1-RankingLoss

20% 99.86±0.02 54.68±0.21 99.89±0.01
40% 99.43±0.04 55.10±0.21 99.52±0.03
60% 98.13±0.12 57.98±0.22 98.47±0.06
80% 94.07±0.36 57.75±0.38 95.39±0.18

AUC

20% 98.77±0.03 54.06±0.19 98.78±0.02
40% 98.09±0.06 54.69±0.17 98.15±0.05
60% 96.42±0.13 55.71±0.13 96.74±0.09
80% 90.17±0.35 55.32±0.27 92.11±0.21

Coverage ↓
20% 4.63±0.23 124.80±0.58 4.45±0.19
40% 8.60±0.37 131.60±0.76 7.64±0.27
60% 16.69±0.69 130.12±0.65 13.99±0.39
80% 36.79±1.70 129.76±1.15 29.84±0.83

Overall Win/Draw/Lose 8/4/12 0/0/24 12/4/8

TABLE 5
Replenishing missing functions on Yeast

Metric IF Ratio ProWL WELL MLR-GL FCML

MacroF1

20% 96.34±0.34 84.73±0.50 40.54±0.34 88.96±0.16
40% 89.54±0.65 77.22±0.98 41.72±0.51 75.37±0.16
60% 78.67±1.29 65.15±0.97 42.27±0.93 60.32±0.55
80% 59.14±2.31 56.38±0.59 40.12±0.39 45.48±0.51

MicroF1

20% 97.28±0.13 92.73±0.19 56.51±0.33 92.66±0.03
40% 92.34±0.32 86.35±0.25 56.96±0.54 75.24±0.18
60% 83.93±0.76 77.28±0.30 57.43±1.07 56.70±0.45
80% 68.54±2.55 71.27±0.27 53.84±0.93 41.15±0.42

AvgROC

20% 99.08±0.06 96.04±0.28 52.20±0.47 98.02±0.12
40% 97.85±0.15 88.01±0.37 54.50±0.30 93.97±0.21
60% 92.79±0.62 78.34±0.40 56.78±0.45 86.66±0.59
80% 76.38±1.65 70.43±0.45 56.37±0.50 75.31±0.68

1-RankingLoss

20% 99.40±0.04 97.30±0.06 69.38±0.25 96.30±0.06
40% 98.17±0.07 94.71±0.10 70.61±0.51 84.19±0.09
60% 94.83±0.35 89.63±0.16 72.44±0.46 67.68±0.32
80% 85.42±1.47 86.72±0.13 71.04±0.79 52.73±0.40

AUC

20% 96.34±0.04 94.60±0.07 72.81±0.22 92.78±0.07
40% 95.10±0.07 91.87±0.09 73.56±0.44 80.57±0.09
60% 92.06±0.29 87.69±0.15 74.45±0.40 65.45±0.28
80% 83.11±1.34 84.69±0.11 73.43±0.63 50.65±0.35

Coverage ↓
20% 3.45±0.02 4.06±0.03 8.49±0.05 4.96±0.03
40% 3.89±0.03 4.91±0.02 8.51±0.07 8.59±0.03
60% 4.70±0.09 5.95±0.04 8.42±0.07 10.59±0.06
80% 6.58±0.25 6.29±0.02 8.38±0.10 11.19±0.09

Overall Win/Draw/Lose 20/0/4 4/0/20 0/0/24 0/0/24

corroborate our motivation in combining guilty by
association rule and function correlation.

Another observation is that the performance of
ProWL, WELL and FCML downgrade as the IF ratio
increases. As more relevant functions are masked,
the function correlation measure becomes less reliable
and the task becomes more difficult. Since ProWL
exploits the function correlation matrix C to specify
the weight matrix M , as more functions are missing,
C becomes less accurate and M turns out to be

less reliable. Thus, ProWL and FCML have similar
performance when the IF ratios are large (i.e., 60%),
and ProWL is sometimes outperformed by FCML
when a very large portion of functions are missing
(i.e., 80%). The performance of MLR-GL varies based
on experiment. MLR-GL was originally developed for
predicting completely unlabeled samples by making
use of incomplete labeled training samples. Here, it
is adapted to replenish missing functions. As the
IF ratio increases, the number of missing functions
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TABLE 6
Experimental results of ProWL-IF on replenishing missing functions. The better performance are shown in

boldface (statistical significance is examined via pairwise t-test at 95% significant level).

Dataset Method MicroF1 1-RankingLoss AUC
20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80%

PPI17 ProWL 98.19 90.32 78.59 71.33 99.86 98.87 96.45 93.87 98.41 96.77 93.70 89.35
ProWL-IF 98.75 92.65 82.34 76.10 99.96 99.61 98.63 97.53 98.67 98.38 97.75 96.85

ScPPI ProWL 95.72 86.78 71.12 59.44 99.75 99.23 98.33 97.65 99.08 97.78 94.69 89.01
ProWL-IF 97.57 90.20 80.19 72.88 99.97 99.79 99.37 98.81 99.33 99.17 98.86 98.40

HumanPPI ProWL 96.71 93.75 84.16 58.59 99.86 99.43 98.13 94.07 98.77 98.09 96.42 90.17
ProWL-IF 94.33 85.40 74.79 65.52 99.97 99.81 99.49 99.06 98.98 98.77 98.39 97.84

Yeast ProWL 97.28 92.34 83.93 68.54 99.40 98.17 94.83 85.42 96.34 95.10 92.06 83.11
ProWL-IF 96.20 85.64 74.88 65.20 99.32 95.73 87.48 75.88 96.60 94.61 90.30 84.04

rises and the number of functional classes with less
than 30 annotations also ascends. From the results in
Tables (2-5), when there is a large number of missing
functions, ProWL often performs similar with FCML,
and outperforms other approaches.

We conducted additional experiments on the four
datasets to investigate the performance of ProWL-IF.
In these experiments, we masked few of the relevant
(+1) and irrelevant (-1) functions for a protein as 0s.
The defintion of IF ratio for ProWL-IF is similar to
the previous experiments set for ProWL. We mask
the same number of irrelevant functions (-1) as the
relevant functions (+1) for each protein. For example,
if two relevant functions (+1) of a protein are masked
as 0s, two irrelevant functions (-1) are also masked as
0s (if this protein has at least two irrelevant functions).

We repeat ProWL-IF 20 times and in each run,
we randomly mask the relevant and irrelevant func-
tions according to the fixed IF ratio. For brevity,
we just report the average results with respect to
MacroF1, 1-RankingLoss, and AUC in Table 6. We can
observe that ProWL-IF generally outperforms ProWL.
Another observation is that, as the ratio of missing
function increase, the downgrade trend of ProWL-IF
is not so pronounced as for ProWL. The reason is
that ProWL-IF makes use of both relevant functions
and irrelevant functions as prior knowledge, whereas
ProWL just takes advantage of relevant functions as
prior knowledge. There is a contrary phenomenon on
the Yeast dataset that the performance of ProWL is
generally better than that of ProWL-IF. The possible
reasons are two-fold: (i) in the Yeast data set the
number of relevant functions is 6342 and the number
of irrelevant functions is 14658, so the assumption
that each protein has a large number of irrelevant
functions is not feasible here, and (ii) ProWL-IF uses
‖(F + 1n×K)T (F + 1n×K)‖ to enforce the prediction
toward irrelevant functions.

5.2 The Benefit of using Guilt By Association and
Function Correlation

We also perform experiments to investigate the ben-
efit of using guilt by association rule and function
correlation. We introduce two variants of ProWL:

(i)Pro wGBA and (ii) Pro wFC. Pro wGBA corre-
sponds to Protein function prediction using weak-
label learning without using Guilt By Association rule.
Specifically, Pro wGBA is based on Eq. (9) with α = 0,
that is Pro wGBA just uses the currently incomplete
annotation information and function correlation to re-
plenish the missing functions. Pro wFC corresponds
to Protein function prediction using weak-label learn-
ing without using Function Correlation. In Pro wFC,
Y is used in Eq. (10) instead of Ỹ , M is set using
annotated functions only and without considering the
function correlation.

We vary the IF ratio from 10% to 80% at intervals of
10% and record the results of ProWL, Pro wGBA and
Pro wFC. For brevity, in Figure 2 we just report the
results with respect to MacroF1 and 1-RankingLoss on
ScPPI. The results with respect to PPI17 are reported
in the supplementary file. Pro wGBA and Pro wFC
have similar performance as ProWL when a small
number of functions are missing. This implies that
guilt by association rule and function correlation can
help replenish the missing functions to some extent.
However, as the number of masked functions in-
creases, the difference between ProWL, Pro wGBA,
and Pro wFC increases. This can be attributed to the
fact that ProWL takes advantage of both guilt by
association and function correlation, whereas the two
variants just make use of one or the other. These
results demonstrate that both guilt by association rule
and function correlation are important to replenish the
missing functions, especially when a large portion of
functions is missing.

5.3 The Benefit of using Biological Induced Graph
and Function Induced Graph
In this section, we conduct experiments to investigate
the benefit in integrating biological induced graph
and function induced graph. We introduce two vari-
ants of ProWL: (i) Pro Wp and (ii) Pro Wf. Pro Wp
stands for Protein function prediction using weak-
label learning based on biological induced graph only
(i.e., PPI networks, protein sequence induced pairwise
similarity graph). Pro Wf stands for Protein function
prediction using weak-label learning based on func-
tion induced graph only.
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Fig. 2. The Benefit of using Guilt By Association and Function Correlation (Pro wGBA means Protein
function prediction w ithout Guilt By Association, Pro wFC means Protein function prediction w ithout Function
Correlation).
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Fig. 3. The Benefit of using Function Induced Graph and PPI Graph (ProWL Wp means ProWL on PPI graph
only, and ProWL Wf means ProWL on Function induced graph only).

We vary the IF ratio from 10% to 80% and record
the results of ProWL, ProWL Wp and ProWL Wf.
For brevity, in Figure 3 we report only the results
with respect to MacroF1 and 1-RankingLoss on PPI17.
The results with respect to ScPPI are reported in the
supplementary file. We can observe that ProWL of-
ten performs better than ProWL Wg and ProWL Wf
for various IF ratios. The performance of Pro Wf is
poorer in comparison to ProWL and ProWL Wp as
the IF ratio increasing. As the number of missing
functions increases, the pairwise similarity, induced
from the overlapping functions between two proteins,
becomes less reliable. For this reason, ProWL Wf per-
forms much worse than ProWL Wp and ProWL, and
ProWL Wp performs slightly better than ProWL (see
Figure 3(b)). ProWL often outperforms ProWL Wp.
This fact indicates that the function induced graph
indeed reinforces the protein function prediction on
PPI networks. ProWL Wf sometimes gets better per-

formance than ProWL when the IF ratio is small,
but is outperformed by ProWL when a large portion
of functions are missing. Overall, it is beneficial to
make use of the composite function and biologically
induced graph.

5.4 Performance on Task 2 (Completely Unlabeled
Proteins)
We conduct experiments to evaluate the effectiveness
of ProWL in predicting the function of completely
unlabeled proteins using incomplete annotations on
labeled proteins. We first divided each dataset into
two subsets: (i) training set (accounting for 70% of
the all proteins) with missing annotations and (ii)
testing set (accounting for the remaining 30% of all
the proteins) with no annotations (i.e., completely
unannotated). We repeat these experiments 20 times.
Each time, the dataset is randomly partitioned into
training and testing datasets, and 50% functions of the
labeled proteins are randomly masked in the training
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TABLE 7
Prediction of Unlabeled Proteins with Incomplete Annotations on PPI17

Metric ProWL WELL MLR-GL FCML CIA
MacroF1 44.97±2.01 16.91±2.09 32.61±1.96 38.19 ±2.01 37.70±2.20
MicroF1 54.04±2.20 33.84±1.39 35.47±1.49 49.71 ±2.55 42.59±1.86

1-RankingLoss 86.74±1.38 78.24±1.05 69.24±3.09 84.77 ±1.38 50.63±2.43
AUC 86.45±1.19 76.45±1.26 78.59±1.84 84.13 ±1.40 75.64±1.22

Coverage ↓ 7.15±0.54 10.87±0.34 8.01±0.45 7.85±0.49 13.34±1.37

TABLE 8
Prediction of Unlabeled Proteins with Incomplete Annotations on ScPPI

Metric ProWL WELL MLR-GL FCML CIA
MacroF1 32.35±1.22 5.35 ±0.35 25.09±1.34 29.86±1.09 25.68±0.94
MicroF1 30.66±0.86 19.40 ±1.58 22.72±0.43 27.91±0.73 19.79±0.53

1-RankingLoss 61.00±1.00 71.84 ±1.40 39.31±0.63 68.44±0.94 20.09±0.70
AUC 79.13±0.55 76.37 ±1.07 60.25±0.69 74.00±0.86 62.81±0.48

Coverage↓ 27.89±0.63 30.63 ±1.13 51.71±2.15 37.61±1.16 49.05±0.82

TABLE 9
Prediction of Unlabeled Proteins with Incomplete Annotations on HumanPPI

Metric ProWL MLR-GL FCML CIA
MacroF1 19.60±0.89 11.85±0.96 14.99 ±0.72 10.34±0.58
MicroF1 23.14±0.97 12.92±0.93 17.46 ±0.98 13.08±0.67

1-RankingLoss 74.80±0.83 66.85±0.97 75.23±0.93 32.13±1.13
AUC 77.35±0.58 65.79±0.79 75.68 ±1.24 66.47±0.81

Coverage ↓ 71.04±1.46 104.00±2.47 70.01 ±2.20 112.61±2.05

TABLE 10
Prediction of Unlabeled Proteins with Incomplete Annotations on Yeast

Metric ProWL WELL MLR-GL FCML CIA
MacroF1 34.54±1.13 32.59±1.46 41.47±0.60 23.11±0.73 18.58±0.67
MicroF1 63.15±1.37 62.67±1.31 57.69±0.61 46.03 ±0.79 38.48±2.16

1-RankingLoss 81.09±1.01 80.58±1.08 76.83±0.76 60.14 ±1.44 48.19±2.54
AUC 82.17±0.81 81.70±0.75 78.63±0.77 64.01 ±1.06 70.45±1.77

Coverage ↓ 6.46±0.17 6.45±0.11 7.38±0.13 10.58 ±0.08 8.63±0.75

set. The setting of missing functions for each protein
is set as in the first set of experiments in Section
5.1, but s is determined as the average number of
functions of all proteins. The experimental results
(average of 20 independent runs) are reported in
Tables 7- 10. The results with respect to Accuracy and
Completeness are not included, since they were initially
used to evaluate the performance of replenishing the
missing functions. WELL on HumanPPI can not run
to completion using 4GB of memory, so its results are
not reported in Table 9.

From these tables (Table 7- Table 10), we can ob-
serve that ProWL achieves better performance than
other comparing methods on various evaluation met-
rics. Taking the MacroF1 on PPI17 for example, ProWL
on average is 165.94% better than WELL, 37.90%
better than MLR-GL, 17.75% better than FCML, and
19.28% better than CIA. In the task of replenishing
the missing functions, ProWL and FCML sometimes
performs similarly to each other on ScPPI and Hu-
manPPI. However, FCML always loses to ProWL in
the task of predicting functions on completely unan-
notated proteins. ProWL takes into consideration the

incomplete annotation in the training set (a more
general case in real-world proteomic data), whereas
FCML does not. CIA also takes advantage of func-
tion induced similarity and PPI network to predict
protein functions, but it is always outperformed by
ProWL. There are two possible reasons. Firstly, CIA
does not consider the weights of interaction between
two proteins. Secondly, CIA mainly depends on the
function induced graph, when training proteins are
only partially annotated, this graph becomes less re-
liable. MLR-GL predicts protein function under the
assumption of partially annotated proteins, it is out-
performed by ProWL. MLR-GL optimizes the ranking
loss and group Lasso loss, whereas ProWL optimizes
an objective function based on the function correlation
and the guilt by association rule, which are more
faithful to the characteristic of PPI data. For the same
reasons, ProWL often outperforms WELL, which takes
advantage of low density separation and low-rank
based similarity to capture function correlation. All
these results demonstrate the effectiveness of ProWL
in predicting unlabeled proteins by considering the
incomplete annotations on proteins.
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5.5 Run Time Analysis

In Table 11, we also report the average run time
for each of the methods (except CIA, which is only
targeted at predicting function on unlabeled proteins)
on the four datasets. The experiments are conducted
on Windows 7 platform with Intel E8400 processor
and 4GB memory. While ProWL has to solve Eq. (12)
K times, its run time is ranked 2nd best amongst
the four comparing methods. At the same time, it
outperforms the other methods in Task 1 and Task
2. FCML infers the functions of a protein in one step,
but it needs to compute the eigenvectors of the matrix
associated with a PPI network. Eigendecomposition
is computationally expensive, so it often takes more
time than ProWL. MLR-GL solves the simplified Sec-
ond Order Cone Programming (SOCP) [42] problem
to solve the convex-concave optimization problem,
which takes less time than the other methods. WELL
uses eigendecomposition and convex optimization, so
it takes much more time than the other comparing
methods.

TABLE 11
Run time Analysis (seconds)

Dataset ProWL FCML WELL MLR-GL
PPI17 15.63 31.21 100.84 5.48
ScPPI 172.52 633.42 5783.49 5.04
HumanPPI 436.56 655.84 – 198.90
Yeast 27.45 85.33 97.80 85.22
Total 652.16 1405.80 5982.13 294.64

6 CONCLUSION

In this paper, we study the incomplete annotation
problem in protein function prediction. We develop
a method called ProWL. ProWL uses guilt by as-
sociation rule and function correlation to replenish
the missing functions of partially annotated proteins.
It can also predict functions for completely unanno-
tated proteins. To take advantage of irrelevant func-
tions of proteins, we introduce a variant of ProWL,
called ProWL-IF. Unlike traditional weak-label learn-
ing methods, which consider all the missing functions
as candidates of relevant functions, ProWL-IF takes
into account relevant, irrelevant, and missing func-
tions of proteins. Our empirical study finds that the
proposed methods perform better than other related
methods. We will investigate a function correlation
definition that can capture the correlation with a large
ratio of missing functions. We also plan to search for
a way to more efficient use of the irrelevant functions
for ProWL-IF.
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