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Abstract

Analysis of molecular interaction networks is pervasive in systems biology. This research relies

almost entirely on graphs for modeling interactions. However, edges in graphs cannot represent

multiway interactions among molecules, which occur very often within cells. Hypergraphs may be

better representations for networks having such interactions, since hyperedges can naturally

represent relationships among multiple molecules. Here, we propose using hypergraphs to capture

the uncertainty inherent in reverse engineering gene-gene networks. Some subsets of nodes may

induce highly varying subgraphs across an ensemble of networks inferred by a reverse engineering

algorithm. We provide a novel formulation of hyperedges to capture this uncertainty in network

topology. We propose a clustering-based approach to discover hyperedges. We show that our

approach can recover hyperedges planted in synthetic data sets with high precision and recall,

even for moderate amount of noise. We apply our techniques to a data set of pathways inferred

from genetic interaction data in S. cerevisiae related to the unfolded protein response. Our

approach discovers several hyperedges that capture the uncertain connectivity of genes in relevant

protein complexes, suggesting that further experiments may be required to precisely discern their

interaction patterns. We also show that these complexes are not discovered by an algorithm that

computes frequent and dense subgraphs.
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1 Introduction

Interaction networks are increasingly used to represent cellular processes and reason about

them [28]. Methods have been developed to reconstruct gene regulatory networks from gene

expression profiles [18], to predict molecular interactions [13], to classify cellular states [8],

and to compute cellular response networks [30]. An overwhelming majority of these

approaches use directed or undirected connections between pairs of molecules to model

interaction networks. However, pairwise interactions cannot accurately represent

coordinated activity of assemblages of more than two molecules, such as a protein complex

that acts as a unit, modifier proteins that bind to and modulate the activity of transcription

factors (TF), and metabolic reactions that may involve multiple substrates and products and

be catalyzed by one or more enzymes [19].

Hypergraphs are attractive alternatives to graphs to represent such facets of cellular

processes [6], [11], [12], [15], [32]. Informally, a hyperedge (an edge in a hypergraph) is

simply a set of one or more nodes; therefore, every edge in a graph is a hyperedge composed

of exactly two nodes. Hypergraphs are increasingly being recognized for their utility in

accurately representing cellular processes. Many databases and interaction storage formats

support hyperedges of different types, either explicitly or implicitly [7], [25]. Such formats

have proven useful for converting existing interaction pathways and processes into

hypergraph representations.

The power of hypergraphs for representing uncertainty in experimentally and

computationally derived interactions is less well recognized. For example, pairwise

interactions are inappropriate for representing protein complexes pulled down by tandem

affinity purification; it is widely recognized that the spoke and matrix models are both

incorrect representations of purified complexes [26]. While techniques have been developed

to infer which pairs of proteins physically interact in each complex [26], representing each

protein complex by a hyperedge is natural [23].

More generally, methods that reconstruct gene networks [3], [21] from systems biology data

sets may be able to infer only that there is some set of interactions among a group of

molecules but may not be able to precisely discern pairwise interactions within the group.

Furthermore, since experimental data are noisy and limited, there may be multiple network

topologies that fit the experimental data equally well. Existing algorithms for inferring and

representing molecular interaction networks make simplifying assumptions to account for

the underdetermined nature of the system [18] or compute a single network that is the

consensus of multiple high-scoring networks [9]. The central thesis of our work is that

hypergraphs are natural candidates for representing uncertainty in the topology of the

inferred network.

1.1 Contributions

Our primary contribution is formulating the novel problem of reverse engineering

hypergraphs from systems biology data sets. Many network inference techniques, for

example, those discovering Bayesian networks, search the landscape of possible networks
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until they converge to local optima, thereby generating ensembles of networks with scores

that are close to optimal [3], [21]. Although these networks have very similar scores, they

may have different dependence and connectivity structures [9], [21]. We take as our starting

point a set  of graphs computed by such an algorithm. In our formulation, a set S of nodes

constitutes a hyperedge if S induces very different subgraphs in each of the graphs in .

Intuitively, across the ensemble , there is no consensus on which specific edges should

connect pairs of nodes in S. We deem such a set of nodes to be a hyperedge. We formalize

this notion by incorporating parameters that are lower bounds on the number of distinct

subgraphs on S that appear in  and the number of times each such subgraph occurs in .

Our second contribution is an algorithm that discovers hyperedges by computing heavily

weighted clusters in an appropriately defined summary graph. As far as we know, ours is the

first paper to explicitly propose using hypergraphs to represent uncertainty in the structure of

reverse-engineered gene networks, to propose a formal definition of hyperedges in this

context, to develop an efficient algorithm to compute hyperedges supported by a set of

varying graphs, and to show that hyperedges as well as the hypergraph itself are biologically

interesting.

An implementation of our hyperedge miner is available as part of the Biorithm software

suite at http://bioinformatics.cs.vt.edu/~murali/software/biorithm/.

1.2 Results

First, we demonstrate that our approach recovers hyperedges planted in synthetic data sets

with high precision and recall, even when there is a moderate amount of noise in the data

and when the planted hyperedges overlap. Second, we highlight an application where we use

hyperedges to capture the variations in an ensemble of networks inferred from quantitative

genetic interaction (GI) data in S. cerevisiae [3]. Upon analysing this data, we observe that

our method discovers hyperedges that capture specific pathways and complexes in the ER

for whom the GI data do not support well-defined interactions.

2 Related Research

Here, we highlight how our question is conceptually distinct from related areas of research.

2.1 Network Inference

Our knowledge of molecular interactions that take place within the cell is highly incomplete.

To surmount this difficulty, methods have been developed to predict or “reverse engineer”

interactions from data sets of information on gene and protein expression, under the

assumption that an interaction may be inferred between two genes if they show similar

patterns of activities in multiple experimental conditions. Based on this hypothesis, many

methods have been developed to infer interactions between pairs of genes [18]. As far as we

know, these methods have not been generalized to predict hyperedges.

2.2 Gene Modules and Network Clustering

A functional module may be defined as a set of molecules that interact to execute a discrete

biological function. A vast number of approaches have been developed to find modules or
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communities from one or more molecular networks [16], [20], [28]. All existing methods

start from one or more graphs and find dense clusters within these graphs. The clusters may

exist within a single graph, be composed of edges arising from different graphs, or occur

simultaneously in many graphs (the last version of the problem is often termed frequent

subgraph mining in relational graphs). In contrast, in our work, we focus on a completely

different type of property: a set of nodes that do not exhibit any consistent pattern of

connectivity in any graph.

2.3 Molecular Hyperedges

Some approaches do exist to reverse-engineer specific types of hyperedges from systems

biology data. For instance, the MINDY [31] algorithm predicts post-translational modulators

of transcription factors. In other words, it predicts directed hyperedges with the TF and its

modulator in the tail of the hyperedge and the target gene in the head of the hyperedge.

Another example arises in the work by Battle et al. on identifying pathways from genetic

interaction data [3]. They reconstruct an ensemble of high-scoring Bayesian networks that

represent pathway structures from quantitative phenotypes of double knockout strains of

budding yeast. They identify sets of nodes that are connected by some path in many graphs

in the ensemble, while allowing the specific ordering to vary in different graphs. They call

such sets of nodes collapsed nodes. In principle, collapsed nodes are similar to the

hyperedges we compute. However, the paths induced by a collapsed node do not necessarily

vary widely across the graphs in , i.e., only a few of the possible paths among the nodes

may be represented in . Our methodology differs significantly, as we explicitly seek sets of

nodes whose induced subnetworks exhibit high variation across the collection of graphs.

Moreover, our important contributions include a formal definition of hyperedges and an

algorithm to systematically compute hyperedges. In Section 5.2, we demonstrate the value

of our approach by applying our hyperedge discovery technique to their ensemble of

networks.

3 Definitions

Let  be a set of n graphs computed by multiple runs of a network inference algorithm. We

assume that each graph in  is undirected, unweighted, and has the same set V of vertices.

There are a number of ways to define how one set of nodes induces different subgraphs in .

We propose one such formulation in this work.

Given a set S ⊆ V of k nodes and a graph G ∈ , let G(S) denote the subgraph of G induced

by S. Let (S) denote the multiset of these subgraphs as we vary the graphs in  and let (S)

denote the set of  possible graphs on the nodes in S. Note that the number of distinct

subgraphs in (S) is at most . Consider a graph H ∈ (S). Let ψ(H) denote

the number of occurrences of H in (S). Ideally, as we vary H ∈ (S), we desire the counts

ψ(H) to be as uniform as possible. We capture this notion using the following definition.

Given parameters 0 < β, σ ≤ 1, we say that S is a (β, σ)-hyperedge if ψ(H) ≥ βn for at least
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 graphs in (S). The parameters β and σ ensure that the counts ψ(H) are balanced for

at least some number of graphs in (S).

Fig. 1a illustrates these ideas using a set  of 12 graphs on the set of nodes {a, b, c, d, e, f,

g}. Consider the set of nodes {a, c, d}. Each of the eight possible graphs among these nodes

occurs as a subgraph of at least one graph in  in the figure, with some graphs occurring

exactly once. By our definition, {a, c, d} is a (1/12, 1)-hyperedge. Fig. 1b displays all (1/12,

1)-hyperedges supported by the set of graphs in Fig. 1a. Observe that four out of the eight

possible graphs among {a, c, d} appear twice in . Therefore, {a, c, d} is also a (2/12, 4/8)-

hyperedge. As another example, consider the set of nodes {e, f, g}. All eight graphs among

these nodes appear in , with two graphs appearing twice each and one graph appearing

thrice. Thus, {e, f, g} is a (1/12, 1)- and a (2/12, 3/8)-hyperedge. While this set is also a

(3/12, 1/8)-hyperedge, in practice, we do not consider the pair of parameters (3/12, 1/8) as

suggesting a hyperedge, since this means that only one out of eight possible subgraphs is

present in the graphs in . In contrast to these examples, consider the set of nodes {a, b, e}.

Only two of the eight possible subgraphs occur in , five and seven times, making {a, b, e}

a (5/12, 2/8)-hyperedge. Here, the β parameter is quite large (5/12) but the σ parameter is

quite small (2/8). Since {a, b, e} induces only two different subgraphs, we do not consider it

as a hyperedge.

Note that since the ensemble contains 12 graphs, every four-node set is a hyperedge only for

values of σ less than ; thus, no four-node set is likely to constitute an

interesting hyperedge. More generally, the largest (β, σ)-hyperedge has

 nodes.

We now state the problem we solve in this work:

“Given a set of graphs , an integer k > 0, and parameters 0 < β, σ ≤ 1, enumerate

all (β, σ)-hyperedges containing k nodes.”

We consider other formulations of the problem in the conclusions (see Section 6).

4 Algorithm

In this section, we describe an algorithm that formulates the problem of discovering

hyperedges in terms of computing clusters in an appropriate summary graph (see Fig. 1c).

To motivate the algorithm, consider a (β, σ)-hyperedge S that contains k nodes such that σ =

1, i.e., each of the  possible graphs on S occurs as a subgraph of some graph in . For

such a hyperedge, the largest possible value of β is . In this situation, each pair of

nodes in S will appear as an edge in precisely half the graphs in . Therefore, we can

compute such a hyperedge by constructing the average of all graphs in  and searching for

cliques in which each edge has weight equal to 0.5.
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We now generalize these observations to arbitrary (β, σ) hyperedges. We first prove lower

and upper bounds on the “density” of a hyperedge. We use these bounds to transform the

edge weights in the average of all graphs in . Finally, we use a clustering algorithm to

enumerate all dense subgraphs in this transformed graph.

4.1 Bounds on Hyperedge Densities

We start by defining some notation. Given a set  of undirected, unweighted graphs, let μ(G)

denote the average of , i.e., μ(G) is an undirected, weighted graph such that the edge set of

μ(G) is the union of the edge sets of all the graphs in  and the weight of each edge in μ(G)

is the fraction of graphs in  that contain the edge. Given a (β, σ)-hyperedge S, let μS(G)

denote the subgraph of μ(G) induced by the nodes in S. If S contains k nodes, then μS(G)

contains at most  edges. In general, any particular edge in μS(G) may have a weight in

the interval (0, 1]. However, we can establish lower and upper bounds on the density of

μS(G), where we define the density of a graph to be the total weight of the edges in the graph

divided by the number of possible edges in the graph. The following two lemmas state the

lower bound and the upper bound, respectively. For the sake of convenience, we assume that

 is an integer.

Lemma 1: If S is a (β, σ)-hyperedge with k nodes, then the density of μS(G) is at least

where l is the smallest integer such that

Proof: To prove this lower bound, we consider the sparsest graphs in (S) that enable S to

be a hyperedge. To assist this analysis, we partition (S) into  sets (S),

 where (S) is the set of graphs on the nodes in S that contain exactly i edges.

By construction, (S) contains  graphs. It is easy to see that the lower bound is

achieved when the following conditions are satisfied:
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1. if a nonempty graph H ∈ (S) occurs at least once in (S), i.e., ψ(H) > 0, then H is

one of the  sparsest graphs in (S), i.e., the graphs with the smallest number

of edges,

2. for each such graph H, ψ(H) = βn, and

3. each of the remaining graphs (for which ψ(H) < βn) in (S) is the empty graph, i.e.,

the only graph in (S).

Using the definition of l in the statement of the lemma, we select the  sparsest graphs

in (S) as follows: 1) pick all the graphs in the sets (S), (S), …, (S), (S) and 2)

pick as many graphs as necessary from (S) so as to obtain  graphs. To obtain the

lower bound on the density, we simply compute the total number of edges in these graphs

and divide that number by . Each graph in (S), 1 ≤ i < l contributes i edges, whereas

each of the  graphs from (S) contributes l edges.

Lemma 2: If S is a (β, σ)-hyperedge, then the density of μS(G) is at most

where u is the largest integer such that

Proof: To obtain the upper bound on the density of μS(G), we pack the densest graphs in 

(S) into the set of  graphs that occur at least βn times in (S). Using the definition of

u from the statement of the lemma, these graphs belong to the sets ,

…, (S), (S) and as many graphs as necessary from (S). To maximize the density,
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each of these graphs, other than the complete graph in , must occur exactly βn

times in (S). The number of such graphs is . The remaining occurrences

correspond to the complete graph in , i.e., it must occur  times.

Summing up the total number of edges in these graphs and dividing the sum by  gives

rise to the upper bound. Specifically, we use  edges from the complete graph in

, i edges from each of the graphs in (S), , and u edges from

each of

graphs in (S) for computing the total number of edges. Finally, we need the indicator

function [ ] to avoid double counting in the special case when .

Given the parameters 0 < β, σ ≤ 1 and an integer k > 0, let λ(k, β, σ) and γ(k, β, σ) denote the

lower and upper bounds defined by Lemmas 1 and 2, respectively, on the density of a (β, σ)-

hyperedge with k nodes. For purposes of brevity, we denote the bounds by λ and γ when the

parameters are clear from the context.

Lemma 3: If l is the smallest integer such that

and u is the largest integer such that
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then .

We can prove this lemma by changing the variable i to  in the definition of either l or

u. By using the previous three lemmas and some simplifications, we can prove the following

corollary.

Corollary 4: If S is a (β, σ)-hyperedge with k nodes, then λ (k, β, σ) + γ(k, β, σ) = 1.

Fig. 2 illustrates how the theoretical lower bound on density λ(3, β, σ) varies with the

parameters β and σ for hyperedges of size three. In general, after fixing β (respectively, σ),

the lower bound monotonically increases with an increase in σ (respectively, β). For small

values of β or σ, the lower bound is zero. Note that we only plot the lower bounds since for a

given value of β, σ, and k, the sum of λ and γ is one, by Corollary 4.

4.2 Clustering Algorithm

Our algorithm consists of the following steps, illustrated in Fig. 3:

1. Compute μ( ) =  G, the union of the graphs in .

2. Assign each edge (u, v) in μ( ) a weight w(u, v) equal to the fraction of graphs in 

that contain (u, v) as an edge.

3. For each edge (u, v) in μ( ), transform its weight using the function

where τ is a large positive number.

4. Compute all highly dense subgraphs of k nodes in μ( ).

The first two steps simply compute the average μ( ) of the graphs in . The third step

transforms the edge weights in μ( ) so that all edge weights in the interval [λ, γ] are close to

one and all edge weights outside this interval are small. Note that the value of the maximum

in the transformation function is negative iff w(u, v) lies in the interval [λ, γ]. Hence, by

choosing τ = 100, we ensure that the transformed weights are close to one for edges whose

weights lie in the interval [λ, γ] and are close to zero otherwise.

Finally, in this transformed graph, we compute all subgraphs with sufficiently high density,

and report the node sets of these subgraphs as hyperedges. For a hyperedge S, our intuition

is that this transformation will convert μS( ) into a dense (heavily weighted) subgraph of

μ( ). To enumerate all sufficiently dense subgraphs, we extended the ODES algorithm [17].

We describe this extension below.

Given an unweigthed graph, ODES enumerates all clusters in the graph with density above a

given threshold, provided this threshold is at least 0.5. Starting from each individual edge in

the input graph, ODES iteratively extends each potential cluster by adding any node whose
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addition to the cluster does not decrease its density below the input threshold. If a cluster

cannot be so extended, ODES reports it as a maximal dense cluster. ODES hinges on the

property that every subgraph with density at least 0.5 contains a node whose removal does

not disconnect the graph or decrease the density. We extended this property for weighted

graphs (see the supplemental material, which can be found on the Computer Society Digital

Library at http://doi.ieeecomputersociety.org/10.1109/TCBB.2013.71).

Also, we forced our algorithm to compute dense subgraphs with exactly k nodes rather than

enumerate all dense subgraphs.

4.2.1 Remarks—Our algorithm is a heuristic that is not guaranteed to compute all (β, σ)-

hyperedges. Moreover, some sets of nodes computed by our algorithm may not satisfy the

properties of a (β, σ)-hyperedge. This discrepancy can arise because the lower and upper

bounds apply to the density of a hyperedge but we transform each edge weight individually.

Yet our approach works well on both synthetic and real biological data, as we demonstrate

below. The worst-case running time of our algorithm can be exponential in k. However, in

practice, our algorithm runs very efficiently, as we report below.

5 Results

We divide our results into two parts: 1) synthetic data (see Section 5.1) and 2) the pathway

structures inferred from double knockout budding yeast strains [3] (see Section 5.2). We

used a Dell R515 server with two 2.8-GHz AMD Opteron 4,184 CPUs for all operations. In

each execution of our algorithm, we computed all subgraphs in the summary graph with

density at least 0.9.

5.1 Synthetic Data

5.1.1 Generation—We generated synthetic data sets by implanting hyperedges in a

“background graph.” We used the BioGRID (version 3.1.74) [29]. S. cerevisiae protein-

protein interaction network as the background graph. This graph contained 168,599

interactions among 6,063 genes. Three parameters governed the data generation: k, the

number of nodes in the hyperedges we implanted; ω, the maximum fraction of node overlap

between an implanted hyperedge and any other implanted hyperedge(s); and η, a fraction

representing the amount of noise that we introduced. We used the values of 3 and 4 for k, 0

and 0.5 for ω, and the elements in the set {0, 0.1, 0.2, 0.3, 0.4, 0.5} for η, giving 24

combinations of parameters. For each setting of the parameters (k, ω, η), we generated 10

graph ensembles, with each ensemble containing 1,024 graphs. We used 1,024 graphs to

support hyperedges of size four. We created ten ensembles so that we could compute the

average and standard deviation of the results. To generate one ensemble for the parameters

(k, ω, η), we performed the following sequence of steps:

1. We created 1,024 copies of the background graph. These graphs formed the

ensemble .

2. We implanted 100 hyperedges of size k among these copies. To create a single

hyperedge with k nodes, we used two steps:
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a. We selected k nodes uniformly at random from the set of nodes in the

background graph, while ensuring that at most an ω fraction of these k

nodes overlapped with hyperedge(s) that were already implanted.

b. To implant a hyperedge among these k nodes, we replaced the subgraph

induced by them in each graph in  with a random subgraph generated by

the Erdös-Rényi (k, 0.5) model. By adding each possible edge with

probability 0.5, we aimed to ensure that the distribution of edges among

these k nodes was relatively uniform across .

3. To add noise, we performed the following steps on each graph G in :

a. We removed each edge in G with probability η.

b. We generated a graph G′ using the degree-preserving randomization of the

background graph.

c. We added each edge of G′ to G with probability η.

Observe that when the noise parameter η = 0, step 3 does not change G. On the other hand,

when η = 1, G equals G′. In this situation, we replace the graph containing all the implanted

hyperedges by a randomized version of the background graph. Values of η between zero and

one create a graph that interpolates between these two extremes.

5.1.2 Evaluation—We applied our algorithm on each of these data sets using five values

of σ, {i/8, 3 ≤ i ≤ 7}, and  (its largest feasible value). We did not consider σ

equal to 1/8 or 2/8, reasoning that these values were two small for our purpose. Neither did

we consider σ = 1, since our hyperedge implantation method was unlikely to generate all

possible subgraphs corresponding to a hyperedge.

To compare the computed hyperedges with the planted hyperedges, we defined precision

and recall in the following manner. Let R denote the set of planted hyperedges and C denote

the set of computed hyperedges. We defined

Note that the numerators of both quantities measured the planted hyperedges that we also

found by our algorithm. For precision, we compared the size of this set to the total number

of computed hyperedges, whereas for recall, we compared this number to the total number

of planted hyperedges. For each setting of the parameters, we computed the average and

standard deviation of precision and recall values across all 10 runs.

5.1.3 Results—We ran our algorithm on each of the ten ensembles for each of the 24

parameter sets. Our algorithm ran in an average of 5.6 seconds across all the data sets. When

the noise parameter η is 0.5, both precision and recall were zero. Therefore, we do not
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display results for this value of noise. For smaller values of η, we observed that both

precision and recall were equal to one for many parameter sets. Moreover, precision was not

less than 0.9 for any parameter set, but recall decreased with increasing values of noise.

Hence, we focus only on the recall values in the rest of this section.

For each value of η between 0 and 0.4, Fig. 4 plots the highest value of σ such that recall is

one. Note that the two curves (for the two values of hyperedge overlap parameter ω) for

three node hyperedges are identical, as are the two curves for four node hyperedges. These

plots show that as noise increased, the highest value of σ for which we could recover the

implanted hypergraphs perfectly decreased. Moreover, noise had a more deleterious effect

on the algorithm’s ability to recover four node hyperedges than on three node hyperedges.

The graphs in Fig. 5 illustrate the precise relationship between noise and recall. Several

salient trends emerge from these plots. For three node hyperedges (with overlaps of 0 and

0.5, Figs. 5a and 5b), the curves for σ = 4/8 and σ = 3/8 are almost identical. For three node

hyperedges, noise had no appreciable effect on recall for the two lowest values of σ we

experimented with (3/8 and 4/8). However, for four node hyperedges, recall dropped

dramatically with increase in noise. As can be expected, this drop-off occurred at a larger

value of noise (0.4) when σ is 3/8 compared to when σ is 4/8 (noise of 0.3). In fact, our

algorithm was unable to recover any implanted four node hyperedges when the overlap was

0.5 and noise was larger than 0.2. In general, recall dropped with increase in noise or σ, with

the magnitude of the decrease being largest for the largest values of these parameters. We

concluded that for σ ≤ 5/8, our algorithm can recover the implanted hyperedges with high

precision and recall for moderate amounts of noise (0.1–0.2) even when the hyperedges

overlapped.

5.2 Analysis of Battle et al. Data

Given quantitative phenotype measurements for a set of single and double knockout

organisms, Battle et al. [3] computed activity pathway networks (APNs) that represented

functional dependences between genes and their combined effects on the phenotype. Each

APN terminated in a node called “Reporter” that represented the quantitative phenotype.

They sampled the space of APNs using a Markov chain Monte Carlo method, thereby

creating an ensemble of networks. Analogous to our definition of hyperedges, they were

interested in sets of genes that occurred in a single linear chain (in any order). For each such

set, they computed the probability that the genes in it occurred in a linear chain across the

ensemble of APNs. When this probability was at least 0.6 and exceeded the probability of

occurrence of any specific linear ordering of the genes in G by a factor of 1.8, they collected

these genes into a collapsed node similar to our notion of hyperedge. They applied their

method to quantitative GI data between pairs of genes [14] whose single mutants

upregulated the unfolded protein response (UPR) in the endoplasmic reticulum.

We obtained the 500 APNs computed by them. We treated each APN as an undirected,

unweighted graph so as to focus purely on the network topology rather than on the

directionality of the probabilistic dependences. Here, we discuss the properties of the

hyperedges we computed and what light they shed on the interactions between these genes.

We divided our analysis into multiple parts:
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1. parameter selection,

2. degree distribution in the hypergraph,

3. comparison of hyperedges to collapsed nodes, and

4. comparison to NetsTensor.

5.2.1 Parameter Selection—We executed our algorithm on the ensemble of 500

networks with k = 3, 4, and 5, eight values of σ, {i/8, 1 ≤ i ≤ 8}, and β = 2j/500,

. For each dense subgraph computed by our algorithm, we evaluated whether

it was truly a (β, σ)-hyperedge. If it was not, we deemed this hyperedge a false positive, and

measured the false-positive rate (FPR) as the ratio of the number of false positives to the

total number of computed dense subgraphs. As pointed out earlier, our approach may also

have false negatives. However, we do not have a method for estimating their count.

Fig. 6 illustrates how the FPR varies with β and σ. When both parameters are small (lower

left corner), the FPR is close to 0. When σ is high (top) or when both parameters are high

(center), the FPR is close to one, suggesting that our algorithm computes many dense

subgraphs that do not satisfy the constraints laid down by β and σ. We selected two pairs of

the parameters that had FPR less than 0.5: (0.032, 0.625) and (0.064, 0.5), with FPR 0.34

and 0.29, respectively. In the first case, 5/8 possible subgraphs each appear at least 16 times

in the set of 500 graphs. In the second case, 4/8 possible subgraphs each appear at least 32

times in the 500 graphs. The first case has the advantage of having a higher value of σ. The

second case has a lower value of σ, but involves more networks overall from the input

ensemble. We observed that the (0.032, 0.625)-hyperedges formed a superset of the (0.064,

0.5)-hyperedges. Hence, we focused our attention on the parameters β = 0.032 and σ =

0.625. Using these parameter values, we obtained 398 3-node hyperedges, out of which 262

were true hyperedges (see the online supplemental Table S1 for details). Our method took

1.54 seconds to compute these hyperedges. Note that we did not find any hyperedge having

four or more nodes with these values of β and σ. In fact, this set of 500 networks did not

support any four-node hyperedges unless the values of β and σ were very small, which are

uninteresting for our purpose. Hence, we focused our attention on three-node hyperedges in

the rest of the analysis.

5.2.2 Analysis of Degree Distribution in the Hypergraph—High degree nodes

(a.k.a. hubs) in protein-protein interaction networks are known to carry out important

biological functions [10]. We asked whether the same property held true in our hypergraph,

i.e., whether genes participating in many hyperedges were highly enriched in any biological

function. Accordingly, we computed the degree distribution of the hypergraph, i.e., we

ranked genes in decreasing order of the number of hyperedges in which they participated.

We computed Gene Ontology (GO) biological processes enriched in this ranked list of genes

using FuncAssociate [5], which is a functional enrichment software package that can take

ranked lists of genes as input. We asked FuncAssociate to compute enriched terms using the

list of genes studied by Battle et al. as background. We set the number of simulations to

10,000 and significance cutoff to 0.01 in FuncAssociate. We reasoned that this analysis
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would help us identify biological processes whose genes participated in numerous

hyperedges, i.e., processes whose genes were connected in multiple ways both to each other

and to genes external to the process.

Table 1 displays the top four enriched GO terms (see the online supplemental Table S2 for

all the enriched terms). Note that FuncAssociate may report closely related GO terms, in

which case we focus on the most specific term. The most enriched GO term was the

molecular function transferase activity, transferring hexosyl groups. This term annotates

genes that encode enzymes responsible for catalyzing the transfer of hexosyl groups from

one compound to another during the glycosylation reaction [24]. The genes annotated with

this term either participate in protein N-linked glycosylation (ALG3, ALG5, ALG6, ALG8,

ALG9, ALG12, DIE2, OST3, OST5) or in mannosylation (ANP1, MNN2, PMT1, PMT2)

[14]. Both of these reactions are vital for protein folding because (i) during the N-linked

glycosylation of a protein in ER, an oligosaccharide is attached to a protein as a marker of

the state of its folding [1] and (ii) inhibition of O-mannosylation has been implicated in the

activation of unfolded protein response [2]. On average, each of the genes in these two terms

participated in 13 hyperedges (in at least 2 and as many as 28 hyperedges), indicating that

the interactions between their corresponding enzymes and several ER proteins are quite

unclear, at least from the APN-based analysis of the genetic interaction data.

We also noticed that there were 34 hyperedges such that each of them contained three genes

from Protein N-linked glycosylation (GO:0006487), suggesting that the pairwise

connections among these genes are difficult to estimate. In contrast, Battle et al. reported

that their method accurately predicted the ordering of the genes participating in N-linked

glycosylation. Their observation appears to contradict our results. Upon examining the

subgraphs induced by this set of genes in the ensemble of 500 networks, we observed that

they involved only 32 unique edges (reinforcing their findings) but in numerous

combinations (supporting our result), thus resolving the apparent contradiction. See Fig. 7a

for some of the subgraphs induced by this set of genes in the APNs.

Note that we did not perform a similar analysis for collapsed nodes computed by Battle et al.

since they did not overlap each other.

5.2.3 Comparison between Hyperedges and Collapsed Nodes—From the

supplementary data provided by Battle et al., we collected all six collapsed nodes containing

three or more genes. The largest collapsed node contained six genes. Treating all these

collapsed nodes as the ground truth, we computed the precision and recall of our hyperedges

in the following manner. Let Ri denote the ith collapsed node and Cj denote the jth

hyperedge, where i ranges over the collapsed nodes and j over the hyperedges. We defined
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For this calculation, we only considered hyperedges that did not involve the Reporter node.

There were 281 such hyperedges out of which 193 were true hyperedges. These hyperedges

had a recall of 0.83 and a precision of 0.21. Such a high recall resulted from the fact that

most of the collapsed nodes were small in size (four of them contained three or four nodes)

and thereby were comparable to the hyperedges. Overall, these statistics indicated that our

algorithm succeeded in discovering almost all the collapsed nodes computed by Battle et al.

In addition, our method discovered many hyperedges not computed by Battle et al.

To better understand the similarities and differences between hyperedges and collapsed

nodes, we computed the functional enrichment of each hyperedge and each collapsed node.

For this analysis, we used the MGSA algorithm [4]. We did not select FuncAssociate since

we did not need to analyze ranked lists. Moreover, MGSA selects a non-redundant set of GO

terms enriched in a input set of genes. It computes a posterior probability for each GO term

that reflects how well the genes annotated to that term overlap with the given set of gene

while not overlapping with other GO terms. For our analysis, we used MGSA to compute

the enrichment of GO cellular components. We reported all GO terms with posterior

probability at least 0.4.

We found that 32 hyperedges were significantly enriched in seven protein complexes and

two membrane-related GO terms (see Table 2 and the online supplemental Tables S3 and S4

for details). Of these, 27 hyperedges are true (0.032, 0.625)-hyperedges, suggesting that the

true hyperedges are more likely to include biologically interesting sets of genes. This

observation supports our FPR-based method of choosing parameters. Note that the majority

of hyperedges were not significantly enriched in any GO term. We anticipated this result

since each hyperedge involved only three genes, a number usually insufficient for significant

enrichment.

A majority of the enriched complexes were involved in vesicular trafficking of proteins

between ER and the Golgi body (GET complex, GARP complex, and vacuolar transporter

chaperone complex) and/or sorting proteins (vacuolar transporter chaperone complex,

phosphatidylinositol 3-kinase complex II). The GET complex is involved in Golgi to ER

Traffic, especially in facilitating insertion of tail-anchored proteins into the ER membrane

[27]. It contained three proteins: Get1, Get2, and Get3; Fig. 7b illustrates some of the

different subgraphs induced by the corresponding genes in the ensemble. All three genes

were members of a single hyperedge, suggesting that the APNs had considerable

disagreement about how these proteins should be connected to each other. The Golgi-

associated retrograde protein (GARP) complex (see Fig. 7c) is responsible for recycling of

proteins from endosomes to the late Golgi. The original publication of the genetic

interaction data used by Battle et al. [14] noted that a significant set of genes whose deletion

caused up-regulation of the UPR were involved in the late Golgi. This complex contains

four proteins: Vps51, Vps52, Vps53, and Vps54. Among them, the last three constituted a

hyperedge, suggesting that the precise connections among these proteins are unclear

(according to the genetic interaction data). The ER membrane protein complex (EMC) was

highly enriched, as well. Loss of this complex causes misfolding of membrane proteins [14].

The SWR1 complex, which is involved in chromatin remodeling, was also highly enriched

in three hyperedges.
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Table 2 compares the GO terms enriched in hyperedges to the terms enriched in collapsed

nodes. Four collapsed nodes were enriched, each in one distinct GO term. Three out of four

GO terms enriched in collapsed nodes were also enriched in hyperedges. Interestingly, seven

of the 11 GO terms enriched in hyperedges were not enriched in any collapsed node. On the

other hand Golgi transport complex was enriched in a collapsed node, but not in any

hyperedge. In Fig. 7d, we display some of the subgraphs induced by the three genes (Cog5,

Cog6, and Cog8) annotated to this term in the ensemble of APNs. Although some subgraphs

were partially or fully disconnected, a vast majority of the subgraphs were paths. Thus, our

algorithm did not consider these genes as constituting a hyperedge. We concluded that

hyperedges and collapsed nodes were somewhat complementary to each other in capturing

interesting sets of genes, although hyperedges do seem to involve a larger space of ER-

related functions than the collapsed nodes.

5.2.4 Comparison to NetsTensor—Finally, we sought to demonstrate that our notion of

hyperedges is quite dissimilar to other types of analyses on graph ensembles, notably that of

finding frequent dense subgraphs. We chose the NetsTensor [16] algorithm, whose goal is to

find dense subgraphs that are frequent, i.e., appear in many graphs in the ensemble. To

obtain clusters comparable to our hyperedges (for which k = 3, β = 16/500), we asked

NetsTensor to compute clusters of size at least 3 and frequency at least 16. However, we

could not find any clusters, even with the low density cutoff of 1/3. This result shows the

usefulness of hyperedges in identifying interesting sets of genes that cannot be computed by

more well-established methods for computing dense modules in graph ensembles.

6 Conclusions

In this paper, we have proposed hypergraphs as a novel representation for capturing the

uncertainty inherent in inferring gene interaction networks from systems biology data sets.

Our main theoretical contributions are twofold: a formal definition of (β, σ)-hyperedges

supported by an ensemble of networks and an algorithm for computing (β, σ)-hyperedges of

a fixed size k. Our algorithm relied on a transformation of the input ensemble that enabled us

to apply an existing clustering algorithm to discover hyperedges. We demonstrated that our

algorithm could recover hyperedges planted in synthetic data sets with high precision and

recall. The recall of our algorithm degraded gracefully with increase in the noise in the data.

Applying these techniques to a data set of 500 APNs inferred from quantitative genetic

interaction data, we discovered 398 hyperedges. Each hyperedge included genes for which

the APNs could not infer precise pairwise interactions. We were able to use the false-

positive rate to select appropriate values of the parameters β and σ. We could settle on the

value of k by examining the largest value for which our method was able to compute

hyperedges. Examination of functional enrichment trends in the list of genes ranked in order

of the number of hyperedges they participated in revealed several biological processes

related to protein folding. Enrichment of individual hyperedges allowed us to discover

interesting protein complexes, among which the genetic interaction data did not support

precise pairwise interactions. These results suggest that more in-depth experiments may be

needed to resolve the ambiguity in the connections among the members of these complexes.
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We envision that this paper will serve as the basis for a rich body of research. Several

extensions and generalizations of our ideas are immediate. For instance, we would ideally

like to compute maximal hyperedges (those that are not contained in any other hyperedges).

We would also like to systematically enumerate all hyperedges. It may be possible to

employ the ideas from itemset mining here. Formulations of the problems other than

enumeration are also interesting, for example, finding the (β, σ)-hyperedge with the largest

number of nodes, computing a set of nonredundant (β, σ)-hyperedges, or discovering

statistically significant hyperedges. Moreover, we will also consider other definitions of

hyperedges, for example, a variation of the current formulation where each hyperedge will

still induce highly varying subgraphs across the ensemble but we will consider subgraphs

sharing a large fraction of edges to be identical. We plan to address these problems in the

future. We are also considering extensions to weighted and directed graphs.

Ultimately, we are interested in directly inferring hyperedges from diverse data sets without

going through the intermediate step of inferring an ensemble of graphs. By discovering such

hypergraphs, we hope to pinpoint which set of genes and proteins might be ideal for further

experimentation. Incorporating the data from these experiments might help to refine

hyperedges and resolve the pairwise interactions among the nodes, resulting in a fruitful

interplay and feedback between computational and experimental scientists.

Our method is directly applicable to any set of networks with varying topologies. Such a set

of networks may naturally occur in a cell due to the dependence of molecular interactions on

time, space, and/or cellular contexts [12], [22]. Hypergraphs derived from such networks

may reveal new biological insights about condition-specific cellular processes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
An illustration of a set  of graphs, two hyperedges defined by , and the summary graph of

. In Fig. 1c, to aid clarity, we show the number of occurrences of each edge in a graph in ,

rather than the fraction of graphs in which the edge occurs.
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Fig. 2.
Variation of lower bound on density of three-node hyperedges across different values of β

and σ. Gray cells indicate the values of β and σ for which no hyperedge can exist.
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Fig. 3.
A flowchart that illustrates how our method computes (1/12, 1)-hyperedges in the ensemble

of graphs displayed in Fig. 1a. Solid lines (respectively, dashed lines) in the summary graph

indicate edges whose weights fall inside (respectively, outside) the interval spanned by the

theoretical lower and upper bounds on the density of a (1/12, 1)-hyperedge. Line widths in

both summary graphs are proportional to the corresponding edge weights.
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Fig. 4.
Plot of the highest value of σ for which recall is 1, as the noise parameter η varies.
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Fig. 5.
Recall as a function of noise parameter η for synthetic data.
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Fig. 6.
Visualization of the false-positive rates in the hyperedges computed from the ensemble of

APNs. Red cells correspond to parameter values for which our algorithm did not compute

any cluster for k = 3. Gold boxes highlight pairs of β and σ we used for further biological

analysis. Gray cells indicate pairs of β and σ that are invalid, i.e., no collection of graphs can

support hyperedges with such high values of β and σ. In other words, βσ > 1/23.

Rahman et al. Page 26

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2014 June 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 7.
Illustration of different subgraphs induced in the ensemble by genes annotated to GO terms

enriched in hyperedges or collapsed nodes.
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TABLE 1

GO Terms Enriched in the List of Genes Sorted in Descending Order of Their Degrees in the (0.032, 0.625)-

Hypergraph

Rank GO Term ID GO Term Name Adjusted P-value LOD

1 GO:0016758 Transferase activity, transferring hexosyl groups 0.0004 1.384

2 GO:0016757 Transferase activity, transferring glycosyl groups 0.0004 1.384

3 GO:0016020 Membrane 0.0034 1.219

4 GO:0006486 Protein glycosylation 0.0008 1.167

LOD stands for log-odds ratio. We have sorted the rows by the values in the LOD column.
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