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Abstract

Detecting and quantifying the timing and the genetic contributions of parental populations to a

hybrid population is an important but challenging problem in reconstructing evolutionary histories

from genetic variation data. With the advent of high throughput genotyping technologies, new

methods suitable for large-scale data are especially needed. Furthermore, existing methods

typically assume the assignment of individuals into subpopulations is known, when that itself is a

difficult problem often unresolved for real data. Here we propose a novel method that combines

prior work for inferring non-reticulate population structures with an MCMC scheme for sampling

over admixture scenarios to both identify population assignments and learn divergence times and

admixture proportions for those populations using genome-scale admixed genetic variation data.

We validated our method using coalescent simulations and a collection of real bovine and human

variation data. On simulated sequences, our methods show better accuracy and faster runtime than

leading competitive methods in estimating admixture fractions and divergence times. Analysis on

the real data further shows our methods to be effective at matching our best current knowledge

about the relevant populations.

Index Terms

J.3.a Biology and genetics; E.1.d Graphs and networks; H.1.1.b Information theory; F.2.2.b
Computations on discrete structures

1 Introduction

Understanding modern human origins and evolution has long been a central question in

anthropology and human genetics. Since our emergence as a species, humans have diverged

into numerous subpopulations. In some instances, individuals from different subpopulations
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have come into contact, yielding genetically mixed populations. We call this incorporation

of genetic materials from one genetically distinct population into another admixture. This

process is believed to be common in human populations, where migrations of peoples have

repeatedly brought together populations that were historically reproductively isolated from

one another. This can be seen, for instance, in the United States where many African

Americans contain varying amounts of ancestry from Europe and Africa [1]. Reconstructing

historical admixture scenarios also has important practical value in biomedical contexts. For

instance, learning the correct time scale on which different strains of the human

immunodeficiency virus (HIV) have diverged would be useful for understanding the

circumstances surrounding the emergence of the acquired immune deficiency syndrome

(AIDS) pandemic as well as its continued genetic divergence [2]. In statistical genetics,

studying admixture and population structure can help in identifying and correcting for

confounding effects of population structure in disease association tests [3]. Studying

admixture can also help in understanding the acquisition of disease-resistance alleles [4].

A recent explosion in available genome-scale variation data has led to considerable prior

work on characterizing relationships among admixed populations. One popular approach for

qualitatively characterizing such relationships derives from the observation that principal

component analysis (PCA) provides a way to visually capture such relationships for

complex population mixtures [5], [6]. While such methods provide a powerful tool for

visualizing fine substructure and admixture, however, they typically require considerable

manual intervention and interpretation to translate these visualizations into concrete models

of the population history. Furthermore, these methods provide only limited quantitative data

on relationships between admixed populations, providing fractions of admixed data but not

complete parameters of an admixture model, such as timing of divergence and admixture

events. Other methods focus on the related problem of finding detailed assignments of local

genomic regions of admixed individuals to ancestral populations [7], [8], [9], which

provides complementary information with important uses in admixture mapping, but

similarly provides little direct insight into the history by which these admixtures occurred.

Inferring detailed quantitative models of historical admixture events, especially the timing of

these events, remains a difficult problem. It is typically addressed by inferring basic

parameters of a single admixture event — the creation of a hybrid population from two

ancestral populations. Some methods do examine more complex scenarios, such as the

isolation with migration model [10], and others different parameters, such as effective

population size [11]. We, however, focus here on the more standard three-population

scenario and the joint inference of both the admixture proportion and the times of

divergence and admixture. Most methods for this problem use allele frequencies to estimate

admixture proportions by assuming that admixed populations will exhibit frequencies that

are linear combinations of those of their parental populations and optimizing with respect to

some error model [12]. While such methods can be very effective, they generally require

substantial simplifying assumptions regarding the admixture process, for example assuming

the absence of mutations after admixture events. Such an assumption can be problematic

when the mutation rate is high or when the admixture is sufficiently ancient that mutations

novel to the admixed populations are no longer negligible.
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This issue has been previously addressed by methods utilizing coalescent theory, [13], [14].

a probabilistic model of ancestral relationships that can be used to efficiently sample among

possible evolutionary histories of a set of individuals in a population. MEAdmix [13], for

instance, uses coalescent theory to compute expected numbers of segregating sites (or

mutations) between lineages then identifies an optimal admixture proportion by minimizing

the squared difference between the expected number and observed number of segregating

sites. While such methods were significant advances on the prior art, they have difficulty

scaling to large data sets due to long computation time and numerical errors. With genomic-

scale data becoming widely available from whole-genome variation studies, new methods

are needed to make full use of such data in achieving more accurate and detailed models of

population dynamics. The prior methods also assume that we know in advance the

population structure and assignment of individuals to that structure, a restriction that is

increasingly suspect as we seek ever finer resolution in our population models.

In the present work, we develop a novel approach to reconstructing parameters of admixture

events that addresses several limitations of the prior art. Our method is designed to learn,

directly from the molecular data, what subpopulations are present in a given data set, the

sequence of divergence events and divergence times that produced them, whether admixture

exists between these subpopulations, and, if so, with what proportions admixed populations

draw their ancestry from each ancestral population.

More formally, we assume the input to the problem is a n × m [0,1] matrix D where element

Dij represents the allele of the jth genetic variation site for the ith taxon. The output is a tuple

T = {P1, P2, P3, t1, t2, α, θ}. P1, P2, and P3 form a tripartition of the rows of D, t1 ∈ ℛ+, t2
∈ ℛ+, α ∈ [0, 1]. These outputs model a simple history of a population group that arose

from an ancestral population, divided into two subpopulations, and then admixed to produce

a third subpopulation. P1, P2, and P3 are an assignment of rows of D (taxa) to the three final

subpopulations, t1 is the elapsed time from the admixture event to the present, t2 is the

elapsed time from the divergence event to the admixture event, and α is the fractional

contribution of the first population to the admixture. θ is a scaling parameter, explained in

more detail in Materials and Methods, that combines effective population size and mutation

rate. The problem does not have a simple, standard objective function and the contribution

of the present work is in part to define a likelihood-based objective function, explained in

detail in Materials and Methods below. We further note that the tripartition is commonly

assumed in the literature to be included in the input. A further contribution of the present

work is to infer the tripartition as an output together with the real-valued parameters, treating

the variation matrix D as the sole input.

We have created a novel two-step inference model called Consensus-tree based Likelihood

Estimation for AdmiXture (CLEAX). Rather than inferring the population history directly

from the molecular data [10], [13], [14], we first learn a set of summary descriptions of the

overall population history from the molecular data D corresponding to a inferred set of

subpopulations and a set of bipartitions, i.e., partitions of the taxa into two non-empty

subsets, with a weight associated with each bipartition. Once the set of summary

descriptions is obtained, we then apply a coalescent-based inference model on the summary

descriptions to learn divergence times and admixture fractions for the model. A key
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advantage of our two-step inference model is substantial reduction in the computational cost

for large data sets, making it possible to perform more precise and reliable inferences using

genomic-scale variation datasets. In addition, the proposed method has the advantages of

learning divergence times and admixture times in a more general framework encompassing

simultaneous inference of population groups, their shared ancestry, and potentially other

parameters of their history.

2 Materials and Methods

To learn population history for a dataset, our approach first tries to determine a number of

subpopulations K and a summary description H = (BM, W) that approximates the number of

segregating sites (or mutations) that separate any given pair of subpopulations. We then use

the resulting discrete model of population divergence events to estimate expected times

between events and the admixture proportions between subpopulations.

As with much of the prior work [12], [13], [14], [15], we specifically address the problem of

accurately reconstructing parameters of a single historical admixture event. As shown in Fig.

1(a), we will assume that there exists a single ancestral population P0 before time t2. A

divergence event then occurs at time t2 that results in the formation of two subpopulations

P1 and P3. Finally, at time t1, an admixture event occurs between the two parental

populations P1 and P3 to form a new admixed population P2. The admixed population P2 is

composed of an α fraction of individuals from P1 and a 1 − α fraction of individuals from

P3. Except for the admixture event itself at t1, all populations are assumed genetically

isolated throughout history. The model can be characterized by the time of the divergence

(t2), the time of admixture (t1), and the admixture proportion (α). Additional hidden

parameters include mutation rate, μ, and the effective population size for the ancestral

population (N0), the two parental populations (N1 and N3), and the admixed population (N2).

For simplicity, we will assume that the effective population size stayed constant in each

population (e.g., N0=N1=N2=N3=N). While this assumption may not hold for all data, it is

supported for non-African human populations, which have been found to have

approximately the same effective population sizes [16], [17]. Furthermore, as we

demonstrate in Results, the method can still give accurate results when effective population

sizes do not vary greatly. Given this assumption, the effective population size, N, and

mutation rate, μ will be aggregated with the length of the sequences, l, as a single parameter

θ. As a result, the free parameters Θ we must learn are t1, t2, α, and θ.

Given the admixture model, we would expect local regions of the genome to each have a

tree-like ancestral history, but with different histories in different regions sampled from a

network of possible ancestral relationships implied by the divergence and admixture events.

A tree-based history corresponding to a local, non-admixed region of the genome is known

as a genealogy. For example, at some regions of the genome, we would expect to see a

genealogy of the three samples derived from Fig. 1(b) while other regions would have a

genealogy derived from Fig. 1(c). If we suppose α = 0.5 then we should see these two

genealogies with approximately equal frequency across the genome.
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Given the sequence data derived from the admixture scenario, our approach will first learn

that there are three subpopulations in the example dataset using an algorithm developed in

our previous work [18] for the problem of reconstructing population histories, which

describe the historical emergence of population subgroups in a broader population, from

non-admixed data. The algorithm will also learn a summary description of the data that

assigns mutations to biparititions between population subgroups. In the example of Fig. 1,

this summary description would suggest that approximately 1 mutation occurred in the

genetic region under study after P2 was formed (branch ed in Fig. 1(d)), that approximately

2 mutations occurred either in P1 after P2 was formed or in P3 before P2 was formed

(branches eb and ec in Fig. 1(d)), and that approximately 2 mutations occurred either in P3

after formation of P2 or in P1 before P2 (branches ea and ee in Fig. 1(d)). Using these

inferences, the next step would be to estimate the distribution of the posterior probability of

the event times and admixture proportions that best describe the data.

Learning Summary Descriptions

Our previous work on learning population histories from non-admixed variation data [18] is

conceptually based on the idea of consensus trees [19], which represent inferences as to the

robust features of a family of trees. The algorithm uses the genetic variation dataset to infer

a set of local phylogenetic trees from small consecutive regions across the genome. It then

breaks each tree into a set of bipartitions, where each bipartition corresponds to one edge in

one tree whose removal divides the taxa labeling nodes into two groups (see Fig. 1(f)). From

the set of bipartitions, the algorithm then identifies a set of model bipartitions, robust splits

between population groups that define an inferred overall population history so as to

minimize an information-theoretic minimum description length score [20].

The intuition behind our method is that different regions in the genome should correspond to

different genealogies embedded within the overall population structure. By first inferring

likely phylogenies on many small regions spanning the genome and learning the robust

features of the phylogenies, the algorithm specifically builds a summary description H =

(BM, W) consisting of a set of model bipartitions, , and a set of

weight values, W = {w0, w1, w2, …, wr}. Weights w1, …, wr are each associated with a

model biparition while weight w0 provides an additional count of observed bipartitions

unassigned to any model bipartition. The weights, w1, …, wr, are computed by counting the

number of observed bipartitions optimally assigned to each corresponding model bipartition

using an entropy-based scoring function described in our prior work [18] that matches each

observed bipartition to its most similar model bipartition or to no bipartition if there is no

sufficiently close match. When none of the model bipartitions is a good assignment for the

observed bipartition, the bipartition is then assigned to a empty bipartition and attributed to

the weight w0. By matching the observed to model bipartitions, we indirectly estimate the

approximate number of mutations that most likely occurred along any given branch in the

population history. This set of model bipartitions and its associated weights are then used to

reconstruct the evolutionary model.

Under the described admixture scenario, our consensus-tree based algorithm should first

identify that there are three subpopulations (K = 3) in the data. Second, the algorithm should
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output an inferred model bipartition set .

Finally, the algorithm should produce a weight vector W = {w0, w1, w2, w3}, representing

the number of observed bipartitions most likely represented by none of the model

bipartitions versus model bipartitions , or . The method can also predict which of

the populations is likely admixed, as the two model bipartitions having the largest weights

should represent the two parental populations, P1 and P3.

Likelihood Model

Under the two-parental, one-admixed population scenario, learning the directed graph G =

(V, E) of ancestry relationships among populations and its label function from the outputs of

consensus tree algorithm could be trivially accomplished by associating the model

bipartition of highest weight to the divergence between the two non-admixed populations.

This would leave us with just the real-valued parameters Θ to infer. To make inferences

about the parameter set Θ, we will estimate the distribution of the posterior probability of the

parameters given the observed weights W associated with the model bipartitions. We note

that in the absence of recombination and assuming an infinite sites model, the number of

mutations corresponding to an edge of the genealogy would be Poisson distributed with

mean equal to the product of the sum of all branch lengths in the genealogy lG, the effective

population size N, the number of base pairs l in the segment, and the mutation rate μ. We

then break down the genealogy into a set of bipartitions corresponding to the edges of the

genealogy. For each bipartition b, we determine an assignment f(b) of b either to a model

bipartition or to no bipartition so as to optimize the conditional entropy of the assignments.

This assignment procedure is described in detail in our prior work [18]. If lbj is the branch

length of the bipartition bj, then the total branch length  that will be assigned to model

bipartition  is given by . This formula gives us an estimated

amount of time over which a mutation could have occurred in the genealogy on the ith

model bipartition, specifying an independent Poisson distribution for each wi in that

genealogy.

Because of recombination, however, the entire genome is made up of non-recombinant

fragments of DNA having different genealogies. Since we do not know the actual genealogy

for each fragment of the genome, the likelihood function will have to sum over all possible

genealogies. Let  = {G1, G2, …, Gn} be the set of n genealogies each representing a

genealogy of a non-recombinant fragment on the genome. Then the likelihood function ℒ =
P(W|Θ) will be:

(1)

where .

The branch length associated with each model bipartition can be computed exactly given the

genealogy set. The integral can then be eliminated, as  becomes zero for any
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branch length not consistent with the genealogy and one for any branch length consistent

with the genealogy. Hence, the likelihood function simplifies to:

(2)

As an illustration, suppose the model population history is as shown in Fig. 1(d). If we have

a particular parameter set for which we want to evaluate the likelihood function, we would

enumerate over all possible genealogies consistent with the specified t1, t2, α, and θ.

Suppose a genealogy in Fig. 1(e) was one possible genealogy being enumerated. We would

evaluate the likelihood by converting the genealogy into a set of bipartitions as shown in

Fig. 1(f) and subsequently compute the optimal assignment of each sampled bipartition to

the most similar model bipartition by the minimum entropy criterion of [18]. Given the

optimal assignment of each bipartition, we can then compute the expected branch lengths 

associated with the model bipartitions , and  as well as the null bipartition. The

optimal assignment in the example should give us expected branch lengths

, and l0 = 0. Using the expected branch

lengths and θ, we can then compute the expected number of mutations associated with each

model bipartition and with null bipartition and thus the probability . The

likelihood model assumes that a correct parameter set for a given history will yield a set of

bipartition weights that most closely matches the observed weights and thus yields the

maximum likelihood score.

We know of no analytical solution to this function and the infinite number of possible

genealogies prevents exhaustive enumeration. We therefore employ an MCMC strategy

similar to that of [14] and [10] but differing in the details of the likelihood function to better

handle large genomic datasets. MCMC sampling may require a large number of steps to

accurately estimate the posterior of the likelihood function, so we make two simplifications

that drastically reduce the number of steps needed to achieve convergence in exchange for a

modest decrease in precision. First, we assume that the coalescence times are fixed at their

expected values, rather than being exponentially distributed random variables, yielding a

number of genealogies that is finite, although still exponential in n. We justify this

approximation by noting that, in the limit of large numbers of fragments, the total branch

length of the genealogy will converge on the mean implied by the coalescent process,

making it a reasonably accurate assumption for a model such as ours designed to work with

large genomic datasets.

To prove this, let Ltot,G be a random variable representing the total branch length in a

genealogy. Suppose we have k individuals in the sample, implying k − 1 coalescence events

needed to reach a common ancestor. Ltot,G would then be a function of the k − 1 random

variables, L1, L2, …, Lk − 1, representing the time of each coalescent event relative to the

previous coalescent event. Specifically, .
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If we assume that the entire genome is made up of n non-recombinant fragments and that

each fragment is relatively independent, then the total branch length of the entire genome

Ltot,  would be the sum of n independent random variables Ltot,G.

(3)

Under the weak law of large numbers, the average of a large number of trials should be

close to the expected value of each trial. Assuming a genome-wide count of variations

represents a sufficiently large sample of an independent per-base mutation rate, we can

approximate the above formula as follows:

(4)

The second approximation that we incorporate into the model is the reduction of the total

genealogies from n to m. The intuition is that the total number of distinct genealogies from

which lineages evolve (m) should be much less than the number of genetic sites typed (n).

This approximation would follow, for example, from the assumption that recombination is

sufficiently rare that nearby genetic regions usually have the same genealogy. If we set m =

n, we would allow for an exact model in which each input genealogy could be distinct.

While specifying m << n independent genealogies allows for a possibility of error, we

provide empirical evidence in Results to show that the actual increased error in practice is

modest and that improvements in accuracy taper off quickly as we increase the number of

genealogies. Making this second approximation, however, reduces the number of

genealogies we must consider in evaluating the likelihood function to exponential in m

rather than n, a much more manageable term when m << n.

Letting 𝒢̂ be the reduced set of genealogies, we derive the following simplified likelihood

function given the two approximations:

(5)

The above assumptions and the constraints on the parameters impose some constraints on

the feasible genealogies. From time 0 to t1, individuals from P1 P2, and P3 can only coalesce

with individuals within the same population. Let mx,1, mx,2, mx,3 be the number of lineages

that came from populations P1, P2, and P3 respectively at time x. Then the ith coalescence

point starting from time 0 to time t1 going backward will have an expected coalescence time

of 4N/((m0,y − i + 1)(m0,y − i)) from the previous coalescence event. If the next coalescence

time point is greater than t1 then the waiting time until the next coalescence time point

beyond that one will be sampled from t1 rather than from the previous coalescence time

point.
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MCMC Sampling

To estimate the posterior probability distribution, we employ the Metropolis-Hastings

algorithm. We define the state space of the Markov model as the set of all parameters t1, t2,

α, θ and the set of possible genealogies 𝒢̂ spanning the genome, where |𝒢̂| = m.

Furthermore, given specific values of t1 and t2, the genealogy set  can only contain

genealogies consistent with those values of t1 and t2. For any state  the

likelihood of that state can be expressed as:

(6)

To identify a candidate next state Xn, the algorithm will sample new values of t1, t2, α, and θ

from independent Gaussian distributions with , and  and

σt1, σt2, σα, and σθ, using variances adjusted during the burn-in period by increasing

variance when the expected number of mutations is far from the observed number and

decreasing variance as the expected and observed numbers of mutations become more

similar. We developed this strategy based on the observation that acceptance rate tends to be

better for large variances when the difference between the expected and observed number of

mutations is large and better for small variances when the difference between the expected

and observed numbers of mutations is small.

Once the algorithm selects values of parameters for the new MCMC state Xn, it then samples

a new genealogy set through coalescent simulation given the selected new parameters. The

resulting new state will thus have a stationary probability

(7)

yielding a Metropolis-Hastings acceptance ratio r of:

(8)

3 Validation Experiments

Coalescent Simulated Data

We evaluated our method on simulated datasets generated using different t1, t2, α, and

chromosome lengths. Each simulated dataset consisted of 100 chromosomes from each of

the three hypothetical populations (P1, P2, and P3) resulting in a total of 300 chromosomes.

We divided the simulated datasets into three groups consisting of chromosomes with 3.5 ×

107 base pairs, 3.5 × 106 base pairs, and 2.0 × 105 base pairs. For each group, we generated

45 different datasets from all combinations of t1 = {400, 800, 1200, 2000, 4000}, t2 = {6000,

8000, 20000}, and α = {0.05, 0.2, 0.6}. We chose the coalescence simulator MS [21] for

generating the simulated datasets. In all of our simulations, we assumed the effective
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population size of each population is 10,000. We set the mutation rate to be 10−9 per base

pair per generation and the recombination rate to be 10−8 per generation for simulations,

based on estimated human mutation and recombination rates [22], [23]. Using the

parameters described above, the simulations generated approximately 50 to 120, 1000 to

2000, and 10,000 to 20,000 SNPs on datasets with 2.0 × 105-, 3.5 × 106-, and 3.5 × 107-base

sequences, respectively.

To evaluate the performance of our algorithm, we compared our results obtained from the

simulated data with those of another method for learning admixture fractions and divergence

times: MEAdmix [13]. MEAdmix takes as input a set of sequences of genetic variations from

individual chromosomes grouped into three different populations and outputs the admixture

fraction, divergence time, admixture time, and mutation rates from the input data. While

MEAdmix produces similar outputs to CLEAX, one key difference between MEAdmix and

CLEAX is the specification of populations. In MEAdmix, individual sequences must be

assigned by the user to one of the three populations. On the other hand, CLEAX infers the

populations directly from the variation data before estimating the divergence time and

admixture fraction. Although there are a number of methods in the literature for learning

admixture and divergence times [10], [13], [14], we chose to compare to MEAdmix because

it estimates similar continuous parameters to CLEAX and its software is freely available. The

same characteristics apply to lea, but it was unsuitable for the present comparison because it

is designed for much smaller datasets and proved unable to process even the smallest models

of genome-scale data we considered. Other methods were also investigated [10], [15], but

we could not directly compare their performance to our own because of different admixture

models assumed, different estimated parameters, or lack of availability of the software for

comparison.

We ran both CLEAX and MEAdmix on the S = 135 simulated datasets and computed the

average absolute relative difference between the true and estimated parameter values for

each parameter, . We terminated a program on a given data set if the

analysis took more than 48 hours to complete. When running our method on simulated data,

we set the number of genealogies for CLEAX to be m=30. For MEAdmix, we set the

bootstrap iterations to be five, which proved to be a practical limit for the mid-size data sets

given the run time bounds.

We also evaluated the accuracy of our algorithm as a function of the number of genealogies,

m. Using the same 45 simulated datasets with t1 = {400, 800, 1200, 2000, 4000}, t2 = {6000,

8000, 20000}, and α = {0.05, 0.2, 0.6} obtained from simulations using 3.5 × 106 base

pairs, we ran our method with 10, 30, and 100 genealogies. For each genealogy size, we

repeated the Markov chain ten times with different starting points and computed the average

absolute relative difference between the estimated parameters and true parameters. Each

MCMC run used 1,000 iterations of burn-in followed by 20,000 MCMC steps.

In addition to evaluating our algorithm under scenarios in which the effective population

size remains fixed, we also examined the performance under scenarios in which this

assumption no longer holds in order to explore a possible source of error in the analysis of
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real data. To evaluate the performance of the method under scenarios for which effective

population size is not constant, we generated four additional sets of simulated data

consisting of the same values of admixture time (t1), divergence time (t2), and admixture

fraction (α) as in previous experiments but with a reduced effective population size for all

three populations after the admixture event occurs. Specifically, prior to time t1, the

effective population size is assumed to be 10,000 as in our other simulated data sets. From t1
to the present time, though, the effective population size of all three populations is reduced

to 2,000, 4,000, 6,000, or 8,000. Using the original data and the additional four groups of 45

simulated datasets, we evaluated the performance of the algorithm by the average absolute

difference between the true and estimated parameter values within each group. Additionally,

we computed the ratio of t1 to t2 across all 45 datasets in order to test whether one could get

accurate estimates of both times if a single “anchor” time was already known.

Real SNP Data

We further evaluated our method by applying it to a bovine SNP dataset [24], chosen due to

the limited availability of large-scale human genetic variation data containing known

admixed individuals. The bovine data consists of 497 cattle from 19 breeds. Of the 19

different breeds of cattle, 3 of them are indicine (humped), 13 of them are taurine

(humpless), and the rest are hybrids of indicine and taurine. Because the dataset has more

breeds than the supported admixture model, we filtered the dataset until only one hybrid

population and two non-admixed populations remained. In particular, we selected a total of

76 cattle as our input dataset: 25 Brahman, 27 Hereford, and 24 Santa Gertrudis. The

Brahman are a breed of taurine, the Hereford a breed of indicine, and the Santa Gertrudis a

cross between Shorthorn and Brahman with an approximate mixture proportion of five-

eighths Shorthorn and three-eighths Brahman. Because the dataset did not include the

Shorthorn cattle, we used the Hereford as a representative of the Shorthorn since they are

closely related to the Shorthorn breeds. Given the filtered bovine data, we tested our

algorithm on 2,587 SNP sites genotyped from chromosome 6.

We then tested our method on a human data set from 1,000 Genomes Project Phase I release

version 3 in NCBI build 37 [25]. The dataset consisted of 1,092 individuals from a number

of different ethnic backgrounds that can largely be grouped into four different continents of

origin: Africa, Europe, Asia, and America. Of the 1,092 individuals sequenced, 246 have

African ancestry from Kenya, Nigeria, and Southwest US. 379 individuals have European

ancestry from Finland, England, Scotland, Spain, Italy, and Utah. 286 individuals have

Asian ancestry from China and Japan. The remaining 181 individuals from America consist

mainly of admixed individuals from Mexico, Puerto Rico, and Columbia. Similarly to the

bovine dataset, we filtered the dataset until only one admixed population and two parental

populations remained by removing the 246 individuals having African ancestry. Due to

computational limitations, we ran our algorithm on a uniformly selected subsample of

150,000 variant sites across the whole genome.

In addition to positive validations, we also performed a negative control for our method on a

human data set for which no appreciable admixture is known to occur. We used the Phase II

HapMap data set (phased, release 22) [26] which consists of over 3.1 million SNP sites
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genotyped for 270 individuals from four populations: 90 Utah residents with Northern and

Western Europe ancestry (CEU); 90 individuals with African ancestry (YRI); 45 Han

Chinese (CHB); and 45 Japanese (JPT). For the CEU and YRI groups, which consist of trio

data (parents and a child), we used only the 60 unrelated parents. Although the HapMap

dataset does not contain known admixed populations, the dataset allows us to evaluate the

method’s ability to learn the divergence time between populations. In addition, it serves as a

useful negative control for detecting admixture. For the HapMap dataset, we tested our

algorithm on all 50,556 SNPs collected from chromosome 22.

For all three datasets, we set the number of genealogies m to be 30 for these tests. We did

not evaluate the real datasets using MEAdmix, as the number of segregating sites in the real

dataset exceeded the software’s limitations. As with the simulated datasets, we used 1,000

steps in the burn-in period followed by 20,000 MCMC steps. We ran 10 independent copies

of each chain for bovine and HapMap data and 50 for 1,000 Genomes data to minimize the

risk of poor sampling due to a chain becoming stuck in local optima.

4 Results

Coalescent Simulated Data

Figure 2(a) shows the estimated α computed by CLEAX using 10, 30, and 100 genealogies

and by MEAdmix on the 3.5 × 106-base sequences. Estimations of α by CLEAX tend to

improve as we increase the number of genealogies. When comparing results to MEAdmix,

estimations of α by CLEAX generally have a slight edge over MEAdmix using 30 and 100

genealogies. The major exceptions are data with large t1 (4000 generations) and small t2
(6000 generations). The advantage of CLEAX is less consistent when using only 10

genealogies. Mean and 95% confidence interval estimations of α by CLEAX also tend to

improve as we increase the number of genealogies. The two methods are about equally

likely to cover the true α within the confidence interval, but CLEAX tends to have a smaller

confidence interval, especially when run with 30 or 100 genealogies. While MEAdmix does

not show any obvious trend as we vary parameters, CLEAX tends to do better on sequences

with small t1 and large t2.

Estimates of t1 (Figure 2(b)) and t2 (Figure 2(c)) show similar trends to α. As with α, mean

estimations by CLEAX tend to be closer to the true values than those of MEAdmix in the

majority of cases. Mean and 95% confidence interval estimations of t1 and t2 again improve

for CLEAX as we increase the number of genealogies. Confidence intervals estimated by

CLEAX are wider than those for MEAdmix for these parameters, but more often covered the

true parameters.

Aggregate quantitative performance is shown in Table 1, which provides the average

absolute relative difference between the estimated parameters and true parameters computed

by the algorithm for different lengths of simulations, . For datasets with 3.5 × 106-

base sequences, CLEAX has a worse average relative difference between estimated and true

t2 and α parameters when we set the number of genealogies to be 10, but better average
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relative difference for t1. When we increase the number of genealogies to 30 or more,

CLEAX yields more accurate estimates for all three parameters than did MEAdmix.

We next examined performance on smaller sequences of 2.0 × 105 bases (approximately 50

to 120 SNPs), to test scaling of the methods to sub-genomic scale data. For these sequences,

our program is unable to automatically identify the three major population groups. Instead, it

identifies only the divergence into subpopulations P1 and P3. We attribute this failure to the

small number of SNPs providing insufficient evidence for the existence of a separate

admixed subpopulation P2. Since MEAdmix depends on the user to perform this assignment

of population groups, we manually performed the comparable assignment for our program in

order to test just assignment of continuous parameters in this low-data scenario. For these

data, both methods again perform comparably to one another at estimating α, with

MEAdmix showing slightly lower mean and standard deviation in errors. Compared to the

3.5 × 106-base data, both methods show substantially worse α estimations, with

approximately a three-fold increase in mean error. Estimates of t1 and t2 on the smaller

dataset also show substantially worse performance for both methods. As seen in Table 1,

CLEAX is worse in estimating t1 and t2 under these conditions, likely because the

assumptions of our simplified likelihood model are valid only in the limit of large numbers

of segregating sites and thus yield more pronounced inaccuracy on short sequences. Both

programs, however, do worse on this small dataset than on the larger ones.

We next examined scaling to larger (genomic-scale) data sets by testing on simulated data of

3.5 × 107 bases. MEAdmix did not report any progress on any of these data sets after 48

hours of run time, and so results are reported only for CLEAX. As Table 1 shows, accuracy

of the three estimated parameter is improved relative to the smaller datasets, with roughly

35%, 1%, and 6.5% improvements for t1, t2, and α for m = 30.

We also examined the average running times for these data sets. CLEAX with |𝒢̂| = 30

required 1.27 hours, 1.94 hours, and 7.61 hours, respectively, for the 2.0 × 105-, 3.5 × 106-,

and 3.5 × 107-base data sets. MEAdmix required 2.8 hours for the 2.0 × 105-base data set and

6.2 hours for the 3.5 × 106-base data set, while making no apparent progress in 48 hours on

the 3.5 × 107-base data set.

To understand the effect of varying effective population size on the performance of the

algorithm, we evaluated our method on datasets with reduced effective population size after

admixture events. Figure 3 shows the average absolute difference between the estimated and

the true parameter values across different reduced effective population sizes after admixture.

Across all parameters, the average absolute difference between the estimated and true

parameter values increases as the effective population size decreases. For α, we observe a

modest change in the absolute difference between the estimated and true parameter values

from 0.04 when the effective population remains constant to 0.10 when the effective

population size is reduced to 20% of the original size. Estimates for t1 and t2, on the other

hand, are significantly affected as we decrease the effective population size. For both t1 and

t2, average absolute difference increases roughly 100-fold as we decrease the effective

population to 20% of the original size after admixture. This suggests that estimation of α
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would be less likely to be affected by fluctuation of effective population size throughout

history.

We next examine the performance of the method under varying effective population sizes by

plotting the estimated t1/t2 ratio against true t1/t2 ratio. This allows us to determine if the

estimation of the time can be corrected when effective population size is drastically changed

by anchoring one time point using external information. Figure 4 shows the t1/t2 ratio for

different effective population sizes. Aside from the datasets where the effective population

size drops to 20% of the original size, most of the estimates maintain ratios close to one,

suggesting that errors induced by changes in effective population size can be effectively

corrected if additional partial data is available fixing one of the two times.

Real SNP Data

Figure 5(a) shows the smoothed probability density distribution, the mean, and 95%

confidence interval of each parameter value for the bovine dataset. Each gray line in the

figure represents the smoothed probability distribution from one independent run of the

Markov chain. All ten runs of the chain on the bovine data yielded consistent probability

distributions. The estimated mean admixture proportion for the bovine dataset is 41.6

percent Brahma and 58.4 percent Hereford. The 95% confidence interval for admixture

proportion α is between 32.2 percent and 50.6 percent. The mean estimate of divergence

time (t2) is about 28,000 generations. Assuming 7 years per generation for cattle, the

divergence time would translate to approximately 195 kya (thousand years ago), consistent

with the belief that the indicine and taurine diverged approximately 250 kya [24].

Admixture time (t1) is estimated to be approximately 6 kya with ranges between 3.5 kya to

8.5 kya. This range is likely an overestimate of the true value since artificial breading of the

hybrid did not become common until the past 100 years [24]. The mean estimate of θ = l ×

N × μ is 36.1. If we assume the effective population size is 2000 based on the estimated

ancestral effective population size [24] then the mutation rate would be approximately

2.0×10−10 base per site per generation, a much lower estimate than is supported by the prior

literature [23], [27]. Using an estimated effective population size of 107 [24], a more

consistent estimate of effective population sizes after a recent population bottleneck derived

by averaging the recent effective population sizes of the three breeds, would yield a more

realistic mutation rate of 2.8 × 10−9 [23]. Inaccuracy in the rate might also be due to

ascertainment bias or the incomplete detection of the mutations at the sequencing phase.

Figure 5(b) shows distributions of CLEAX estimates for the 1,000 Genomes Project data.

The method interprets the American group, consisting of individuals from Mexico and

Puerto Rico, as admixed from the Asian and European groups. CLEAX inferred an average

of 9% admixture from the Asian group and 89% from the European group. The admixture

fractions α from different chains are most concentrated around 0.05. Six out of 50 chains,

however, appear likely to have become stuck in local optima, with values of approximately

0.3 for five chains and 0.6 for another. While the mean estimate is slightly lower than is

found in prior work [28], [29], [30], the 95% confidence interval overlaps estimates from the

prior literature. The mean estimate of the admixture time t1 was 48 generations with a 95%

confidence interval of 17 to 150 generations. Assuming 20 years per generations, this would
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translate to approximately 960 years ago with a 95% confidence interval ranging from 340

years ago to 3,000 years ago. This range is somewhat higher than the 200–500 year ago

estimate by Tang et al. [29] but with some overlap. The mean divergence time t2 was

estimated to be 161 generations ago with a 95% confidence interval of 74 to 447 generations

ago. Using the same assumption of 20 years per generations, this would translate to

approximately 4,800 years ago and a 95% confidence interval of 1,500 years to 9,500 years

ago, a range consistent with that of Garrigan et al. [31] although more recent than that of

Zhivotvosky et al. [32].

Figure 5(c) shows the probability distribution for the HapMap Phase II data. As with the

bovine dataset, there is a generally high consistency across the ten runs in the parameter

estimates. For the HapMap Phase II data, CLEAX estimated α to be less than 1% with a 0%

to 6% confidence interval. The mean divergence time (t2) was estimated to be about 4,000

generations. Assuming 20 years per generation, the estimated divergence time of Europeans

(CEU) and Africans (YRI) would be around 80 kya with a confidence interval between 57.6

kya and 106 kya. The divergence time (t1) between Europeans (CEU) and East Asians (CHB

+JPT) has a mean estimate of 26.1 kya and a confidence interval between 18.9 kya and 33.6

kya. The mean estimate of θ is 4, 320. Assuming the effective population size of human

population to be 10,000 [33], the implied mutation rate would be 2.16 × 10−9 per site per

generation, similar to prior estimates [23], [27].

5 Discussion

In this paper, we propose a method to learn admixture proportions and divergence times of

admixture events from large-scale genetic variation data. Prior coalescent-based methods for

estimating such parameters have been proposed in recent years, but such methods tend to be

computationally costly and poorly suited to handling genomic-scale data. Our new method

provides comparable estimates of admixture proportions to the prior art on smaller datasets

while scaling to much larger data sets with increasing accuracy. Although the average errors

for t1 and t2 were worse than those of MEAdmix for datasets with 2.0 × 105-base long

sequences, we observed a general improvement in CLEAX estimates over MEAdmix as we

increased the length of the input datasets. Our method also provides much better time

estimates than MEAdmix on larger datasets, yielding average t1 and t2 estimation errors

roughly two-thirds of those of MEAdmix for chromosome-scale data. The poor performance

on short sequences may be due to the assumption that coalescence times in the genealogies

are fixed, an assumption whose validity breaks down in the limit of small numbers of variant

sites.

Variance between true and estimated parameter tends to be high for datasets with shorter

sequences, as evident in Table 1, but decreases as we increase the length of the sequences.

We expect the variance to continue to reduce further as we use longer sequences. Our

method thus appears to be a poorer choice on older, gene-scale data than prior methods, but

a clear improvement on datasets comparable in size to human chromosomes.

The performance of CLEAX also tends to improve as we increase the number of genealogies,

|𝒢̂|, used to estimate the expected branch length. While the estimates of α by CLEAX are
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worse than those of MEAdmix when |𝒢̂| is set to 10, the results are better than those of

MEAdmix for |𝒢̂| = 30. Results showed little improvement upon further increase of |𝒢̂| to
100, suggesting that a relatively small number of genealogies is adequate to closely

approximate the true likelihood function.

Results on the real datasets provide further confidence in the method, yielding estimates of

divergence times and admixture fractions generally consistent with the current literature

[24], [32], [34]. Using the HapMap Phase II dataset, our method’s estimation of the YRI-

CEU divergence time between 76.5 kya to 89.6 kya is consistent with the STR estimation of

[32] (62–133kya) and the HMM estimation of [11] (60–120 kya). Estimation of little or no

admixture fraction between the CHB+JPT and CEU is also consistent with the general belief

that negligible admixture has occurred between the major human populations. Our estimates

of the divergence time between Asians and Europeans of 23.0 kya to 33.6 kya for HapMap

are similar to estimates by Gutenkunst et al. [34]. Estimates of the divergence time between

Asians and Europeans from the 1,000 Genomes data are also similar to the estimates from

HapMap and consistent with estimates from Garrigan (7–13kya) et al. [31], albeit with a

slightly more recent range. While the mean estimate of admixture time for the American

group was somewhat higher than expected (980 years), the lower bound of 340 years ago is

reasonable. The admixture fraction estimate for the American group is also consistent with

existing literature [29], [30].

Similarly, using the bovine dataset, estimates of divergence time and admixture fraction

were also consistent with the general consensus [24]. One discrepancy in the bovine dataset

was an unrealistically high estimate of admixture time (6,000 years). One plausible source of

error is the algorithm’s assumption of fixed effective population size. Because there is

believed to have been a drop of effective population size to a few hundred cattle in recent

years [24], [35], the decrease in effective population size would increase the chance that

cattle share a most recent common ancestor at a much earlier time. As a result, more

mutations that occurred before the admixture time will be miscategorized as mutations that

occurred after the admixture time, resulting in a bias in estimated admixture time. This

observation may suggest that our method in current form is poorly suited to estimating

admixture times on data with significant changes in effective population size over time. Our

analysis of simulated data, however, suggests that estimates of admixture fractions should

remain accurate despite changes in effective population size. The discrepancy could also be

attributed to the difference between the Hereford and Shorthorn breeds, where the mutations

over-represented in the hybrid population that led to the long estimates of time since

admixture could actually have been misattributed mutations between the Hereford and

Shorthorn breeds.

When we examine the results of our method on simulated data, we observe generally worse

performance with increasing admixture time, especially for simulations with low admixture

proportions. Such a phenomenon is likely caused by the fact that there are fewer lineages at

the admixture time as we increase the admixture time. For example, for simulations with

admixture time t1 of 4,000, we would expect roughly 10 lineages left by the time the

admixture event occurred, preventing the method from inferring admixture proportions at a

resolution of better than 10%. Consequently, fewer lineages at the admixture time would
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increase the variance of the admixture fraction estimate. This observation suggests that our

method will work better at analyzing more recent admixture.

The effects of varying effective population size on inference accuracy suggest that estimates

of times of divergence and admixture is sensitive to changes in effective population size but

that such changes have only a modest effect on the admixture fraction estimation. This

observation suggests that estimates of the admixture fraction should be considered more

reliable than estimates of divergence and admixture time when one suspects effective

population has changed drastically over time. Time estimates were within an order of

magnitude when the change in effective population size was up to 40%, suggesting

estimates could still be trusted if changes in effective population size are modest.

Furthermore, estimates of the ratio between t1 and t2 seem to be accurate even when

effective population size changes significantly. Despite poor estimates of time when

effective population size changes drastically, we could potentially correct time estimates

using the ratios if we could anchor at least one time point using external data sources or

prior knowledge.

Despite some of the shortcomings of the algorithm, our method nonetheless has

demonstrated its capability in estimating accurate parameters on long sequence datasets.

While our MCMC strategy is similar to a number of prior approaches [10], [14], our

algorithm is distinguished by novel strategies for simplifying the likelihood model in ways

especially suited to genomic-scale variation data sets, trading off increases in performance

that are substantial for long sequences with decreases in accuracy that are modest under the

same circumstances. Our method also has the unique feature of automatically inferring the

population substructure, history of formation of that structure, and likely admixture model in

a single unified inference, allowing it to take advantage of the fact that each aspect of that

inference is dependent on the answers to the other two. Although our method currently only

estimates divergence times and admixture fractions for a standard three-population single-

admixture scenario, the approach establishes a method for assigning likelihoods to

admixture events and sampling over parameters for these events that could in principle be

used as a module for considering more complicated scenarios potentially involving larger

numbers of populations or multiple admixture events.
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Fig. 1.
Example of a history of two parental populations (P1 and P3) and an admixed population

(P2). Ancestral population P0 diverged at t2 to form P1 and P3, followed by an admixture

event at t1 to form P2. (a) The admixture model of the example. (b) Possible history of the

example at some non-recombinant region of the genome with mutations occurring at various

branches of the tree. (c) Alternative history of the example at other non-recombinant region

of the genome with mutations occurring at various branches of the tree. (d) The desired

output of the consensus tree algorithm applied to the genetic variation data, inferring the set

of model bipartitions and its associated weights as well as a crude model of population

history without the actual parameters. (e) Genealogy generated from parameters t1, t2, and α
showing a possible ancestry of all taxa, including branch lengths. Here, AB is in P1, CD is

in P2, and EF is in P3. (f) The corresponding bipartitions and associated branch lengths

obtained from the genealogy in (e).
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Fig. 2.
Mean and 95% confidence interval of the estimated parameters on 3.5 × 106-base sequences.

The different bars represent the means estimated by CLEAX using 10, 30, and 100

genealogies (left) and by MEAdmix (right). Solid gray horizontal bars represent true

parameter values used for the simulated data. (a) Estimated α organized into three rows of

distinct true α values and grouped vertically by true t2. (b) Estimated t1 in generations

organized into three rows of true α and grouped by true t1. (c) Estimated t2 in generations

organized into three rows of true t2 and grouped by true α.
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Fig. 3.
Plot of the mean and standard deviation of the average absolute difference between the

estimated and true parameter values when the effective population size changes from 10000

to 2000, 4000, 6000, 8000, and 10000. (a) Plot of the average absolute difference between

the estimated α and the true α. (b) Plot of the average absolute difference between the

estimated t1 and the true t1. (c) Plot of the average absolute difference between the estimated

t2 and true t2.
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Fig. 4.
Plot estimated t1/t2 ratio against true t1/t2 ratio from datasets when the effective population

size changes from 10000 to 2000, 4000, 6000, 8000, and 10000 (a–e).
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Fig. 5.
Probability density of the estimated parameter values, t1, t2, and α (left to right) for the

bovine, HapMap, and 1,000 Genomes datasets. The dark vertical lines represent the means

of the parameter values. The 95% confidence intervals are shown in parentheses. (a) 10

MCMC chains run on 76 cattle from the Bovine HapMap dataset on each of the 10

independent runs [24]. (b) 50 MCMC chains run on 1092 individuals from the 1,000

Genomes dataset [25]. (c) 10 MCMC chains run on 210 individuals from HapMap Phase II

dataset [26].
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TABLE 1

The three quartiles (25%,50%,75%) of the relative difference between estimated and true parameter values for

135 simulated data sets. t1 and t2 are in units of generations.

2.0 × 105

CLEAX-30 [2.200 4.535 12.819] [2.077 5.584 8.922] [0.223 0.441 1.272]

MEAdmix [0.317 0.512 0.666] [0.226 0.479 0.698] [0.290 0.470 1.337]

3.5 × 106

CLEAX-10 [0.082 0.216 0.397] [0.069 0.193 0.420] [0.078 0.168 0.523]

CLEAX-30 [0.087 0.179 0.289] [0.068 0.125 0.335] [0.071 0.156 0.267]

CLEAX-100 [0.079 0.165 0.254] [0.063 0.121 0.321] [0.062 0.153 0.264]

MEAdmix [0.114 0.356 0.592] [0.069 0.127 0.329] [0.069 0.165 0.299]

3.5 × 107

CLEAX-30 [0.061 0.116 0.199] [0.064 0.124 0.268] [0.062 0.146 0.248]
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